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ABSTRACT

This paper envisions climate linkers. We define climate linkers as long-dated financial instruments (bonds,
swaps, and options) with payoffs indexed to climate-related variables, e.g., temperatures, sea levels, or
carbon concentrations. On top of facilitating the sharing of long-term climate risks, another key benefit of
these instruments would be informational, as their prices would reveal real-time market expectations
regarding future climate. We develop and calibrate a sea-level-augmented integrated assessment model
(IAM), and we exploit it to study climate-linked instruments’ cost and risk characteristics. We examine, in
particular, climate risk premiums: because of the insurance provided by a bond indexed on sea levels
(say), investors would demand a lower average return on such a bond than on conventional bonds.
Our findings highlight the sensitivity of climate premiums to the assumptions regarding (i) the damages
associated with temperature increases and (ii) feedback effects between temperatures and carbon
emissions.
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1 Introduction

The global annual average surface temperature has already increased by 1.1◦C since 1880, intensifying the

frequency and severity of adverse events—heatwaves, droughts, hurricanes, flooding. Extreme weather

events are projected to worsen over the next century, as the global annual mean temperature increases.

Through physical risks and transition risks (regulatory changes, technological innovations, and evolving

consumer preferences), the medium- to long-term exposure of our economies to climate risk is considerable
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(e.g., Stern, 2007; Burke et al., 2015a,b; Dietz et al., 2016).

In this paper, we envisions a novel class of financial instruments indexed to climate-related variables,

such as global temperatures, carbon concentrations, or sea levels.1,2 These instruments would not directly

contribute to the fight against climate risks, in the sense that they do not necessarily aim at funding

mitigation or adaptation projects (contrary to green bonds, e.g., Baker et al., 2018). They would, instead,

serve three main purposes. First, they would facilitate the sharing of (physical) long-term climate risks.

They would notably constitute an alternative and complementary sources of reinsurance capacity to

support the insurance industry’s goals in offering protection, as well as in providing direct capacity to

those seeking to transfer long-term climate-related exposure. Second, the existence of a novel market

for climate risks may stimulate investors to better understand climate risks, and incorporate them in their

analyses.3 Third, they would offer a public good by making market participants reveal their expectations

regarding future climate. This information would be captured in real-time, at high frequency. One could for

instance extract expected trajectories of future temperatures from market quotes of temperature-indexed

swaps or bonds—in the same manner as inflation expectation measures are currently extracted from

inflation linkers.4 This would provide, in particular, a natural way to gauge the perceived credibility and

effectiveness of international commitments regarding the climate.

The contribution of this paper is threefold. First, we discuss the advantages of financial instruments

indexed to secular climate changes. Second, we develop a modeling framework that allows for the fast

pricing of long-term financial instruments. Whereas it captures complex interactions between climate

and macroeconomic variables, our Integrated Assessment Model (IAM) is solved instantaneously and

offers quasi-analytical pricing formulas for swaps, bonds, and options indexed to sea levels, temperatures,

or carbon concentrations, for any maturity. (To our knowledge, this paper is, in particular, the first to

provide simple formulas to price of long-term bonds in an IAM framework.) Equipped with this model,

we explore the pricing of climate linkers, which constitutes our third contribution.

1A market for weather derivatives already exists (Cao and Wei, 2004; Campbell and Diebold, 2005; Brockett et al., 2005).
Pérez-González and Yun (2013) show that weather-sensitive firms have benefited from their introduction. To date, instruments
traded on weather-derivative markets feature short time horizons (typically a few months) and focus on specific regional areas.
In contrast, the derivatives discussed in this paper are long-dated and pertain to global risks. The long-dated nature of these
instruments (and the resulting counterparty risks) would call for appropriate credit-mitigation mechanisms.

2Sea level rise stands as one of the most critical climate change’s dangers (see, e.g., Hauer et al., 2016; Desmet et al., 2021,
for evaluations of associated costs).

3Deficiencies in this area are studied by Davies et al. (2014) and Slawinski et al. (2017). In particular, standard insurance
models remain rooted in the past, or backward-looking, and do not appropriately capture increasing climate-related risks (e.g.,
Bolton et al., 2020; Monasterolo, 2020; Swiss Re Institute, 2020). Recent studies however suggest that bond markets have
become sensitive to climate-related considerations (e.g. Cevik and Jalles, 2020). Relatedly, climate vulnerability is now taken
into account by credit rating agencies (Standard & Poor’s Global, 2017). Krueger et al. (2021) provide survey-based evidence
of an increase in climate-risk perceptions by institutional investors.

4Relatedly, extreme temperature scenarios could be derived from market prices of temperature options. These scenarios
would, in particular, be useful to design climate stress tests (Battiston et al., 2017). They would reflect risk-adjusted trajectories
of climate variables; risk premiums should be extracted from option prices to reflect physical trajectories. (The risk premium
extraction can be based on a model such as the one presented in the present paper.)
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Exploiting our analytical framework, we examine how linkers’ prices would be affected by climate

risk premiums. These premiums are defined as the price components arising because agents are averse to

climate risks (Dietz et al., 2018; Lemoine, 2021). Our model recognizes that, for a given expected payoff,

agents favor assets that tend to provide larger payoffs in “bad states of the world,” which correspond here to

situations where realized temperatures are above their expected trajectory. Consider, for instance, a 50-year

temperature-indexed bond (TIB) whose repayment value increases by 10% if atmospheric temperature is

0.1◦C higher than expected at maturity. Our results find that the associated yield-to-maturity would be 25

basis points lower than that of a standard (50-year) zero-coupon bond providing the same expected payoff.

This is because this TIB embeds insurance against increasing temperatures, implying that investors are

willing to hold these bonds even if their expected return is lower than for standard ones.

We further examine the importance of climate-risk premiums in long-dated temperature options. We

focus on digital options, whose payoff is equal to one if the atmospheric temperature exceeds a given

value—the option strike—and zero otherwise. The price of such an option can be interpreted as the

risk-adjusted probability of the temperature exceeding the strike. (Interestingly, one could use the prices

of options of strike 2◦C to measure the benefits associated with achieving the objectives of the Paris

agreement.) Our results show that for high-temperature strikes and long horizons—a temperature anomaly

of 3◦C, say, and horizons between 50 and 100 years— risk-adjusted probabilities can be several times

larger than physical ones. We also find that this ratio positively depends on the strike. This result is

reminiscent of those obtained in the literature on disaster-risk pricing: risk premiums represent the bulk

of the prices of those financial instruments providing larger payoffs in disastrous situations (financial

meltdowns, defaults of large corporate or sovereign entities, see, e.g., Elton et al., 2001; Coval et al., 2009).

This research relates to the literature investigating the pricing of climate risks. A large share of the

theoretical literature is concerned with the computation of the Social Cost of Carbon (SCC), defined as the

marginal value of emission reductions (e.g., Weitzman, 2013). Uncertainty and aversion to ambiguity are

found to have profound implications on the SCC calculations (e.g., Daniel et al., 2019; Cai and Lontzek,

2019; Barnett et al., 2020; Lemoine, 2021; van den Bremer and van der Ploeg, 2021). While the present

paper focusses on the pricing of fixed-income instruments, we also examine the SCC resulting from our

model. Our SCC estimate is $167 per ton of carbon, which stands among the highest values found in the

literature.

The empirical literature on the pricing of climate risks in financial products is rapidly growing. Several

articles assess the relative value of green or environmental, social, and governance (ESG) bonds, pointing

to small premiums to otherwise similar ordinary bonds (Baker et al., 2018; International Monetary Fund,

2019; Larcker and Watts, 2020). Other studies look for market price evidence of climate risk premiums:

Huynh and Xia (2020) find that corporate bonds whose value tend to increase when bad news about

the climate occur trade at a premium; Painter (2020) shows that long-dated municipal bond yields are
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higher for counties with large expected losses due to sea level rise. Since investors have been considering

climate risk for a relatively short period of time, quantitative estimates of climate risk premiums based on

(short) historical samples should be taken with caution (Giglio et al., 2020). After having constructed a

climate-news index, Engle et al. (2020) propose an approach to dynamically hedging the associated risks

using stocks-based factor-mimicking portfolios. Andersson et al. (2019) show that one can closely track

leading equity indices with portfolios featuring a carbon footprint 50% smaller than the benchmark.

The present paper is particularly close to those studies that investigate asset pricing in the context of

stochastic integrated assessment models (IAMs). In this literature, some studies rely on models whose

tractability is obtained by simplifying the climate block of the Dynamic Integrated Climate-Economy

model (DICE) of Nordhaus (1992) (e.g. Bansal et al., 2016; Karydas and Xepapadeas, 2019; Bansal

et al., 2019). Other studies employ standard DICE-related IAMs and look for efficient pricing solutions

(e.g., Daniel et al., 2019; Barnett et al., 2020). We manage to combine approximate DICE-type equations

and closed-form pricing solutions. This is achieved by making the state variables’ dynamics depend on

combinations of deterministic and stochastic components. As in Traeger (2021), the stochastic components

are such that the conditional Laplace transform of the state vector is affine in its past values—in a time-

dependent but deterministic fashion.5 The model tractability hinges on the properties of affine processes

(see, e.g., Duffie, 1996; Duffie et al., 2003; Piazzesi, 2010). Equipped with closed-form formulas for

expectations and covariances of the state variables—at any horizon—we propose an original calibration

approach to make the model replicate benchmark scenarios and outputs of reference climate models.6,7

This calibration approach is infeasible in the context of standard IAMs, whose resolution is not immediate.

The remainder of this paper is organized as follows. In Section 2, we expose the rationale behind

climate linkers. Section 3 details how these derivatives could be structured; it also discusses the concept

of climate risk premiums. Section 4 outlines our modeling framework, and Section 5 discusses its

implications in terms of climate derivatives’ pricing. Section 6 concludes. Technical details are gathered

in Appendices A (model) and B (calibration). All pricing formulas are given in the online appendices

(page 42).

5In spirit, this approach is similar to the one underlying the so-called market models of interest rates (Brace et al., 1997;
Miltersen et al., 1997).

6The model resolution and price calculation run several orders of magnitude faster than those based on dynamic programming
approaches (Cai and Judd, 2014; Cai and Lontzek, 2019; Barnett et al., 2020). For the latter approaches, solving for the model
on a single set of parameters is not fast enough to allow for a calibration approach that necessitates solving the model a large
number of times.

7No grid-based approach—subject to the curse of dimensionality—is needed to solve the model. By way of comparison,
Daniel et al. (2019) employ their approximated solution method in a context where both the number of dates and the number of
states are small (seven dates are considered, from 2015 to 2400; each node is followed by two possible states, leading to 27

possible states in 2400, and only 4 in 2100).
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2 Rationale behind climate-linkers

2.1 Hedging demand

In the coming decades, the frequency and severity of weather and climate disasters will increase, pushing

insurance and reinsurance claims up. According to the Swiss Re Institute (2020), total economic losses

from weather-related catastrophes amounted to $1’600bn between 2010 and 2019, 60% higher than

2000-2009, and 100% higher than for 1990-1999. Moreover, hedging needs are likely to increase to close

the so-called insurance gap—the difference between insured and total losses (Batten et al., 2016; Wolfrom

and Yokoi-Arai, 2016). This gap has widened over time in absolute terms, as the substantial growth in

insurance penetration was not significant enough to keep up with the increase in weather-related losses.

Growing demand for insurance against weather-related disasters has led to the emergence of alternative

risk transfer solutions (ART), such as insurance-linked securities (ILS), among which stand catastrophe

bonds and the so-called sidecars (special-purpose reinsurance vehicles). Insurers typically use ILS as an

alternative to traditional catastrophe reinsurance (Charpentier, 2008; Cummins and Weiss, 2009). While

these instruments add to the capacity of the insurance sector to deal with natural catastrophes, they do

not protect against long-term climate risks. Indeed, climate change is a slow-moving and long-term

phenomenon. In contrast, ILS are typically short-term instruments: Most catastrophe bonds have a term

of three years, and private transactions linked to natural catastrophe risk typically provide cover for 12

months (Cummins and Weiss, 2009). Over such horizons, climate change is essentially predictable, and

the risk level of an ILS does not change between inception and redemption. As a result, these instruments

do not help transfer risks associated with long-term climate change effects. This may contribute to the

moderate appetite for this kind of bonds.8 The demand for catastrophe bonds also suffers from their relative

illiquidity—the risk covered by each being very specific (in the peril and geographical dimensions).

Unlike existing ILS, the instruments discussed in this paper would allow for the transfer of long-term

climate-related risks. They could benefit the (re)insurance industry by helping them cope with worse-than-

expected long-term scenarios.9 They would also provide new perspectives of diversification to long-term

investors such as pension funds. A recent renewed interest in century bonds is suggestive of an increasing

appetite for ultra-long-term bonds.10

It is important to note that these instruments would be fundamentally different from green or environ-

8The relative cheapness of these bonds is illustrated by the fact that spreads for catastrophe bonds are substantially larger
than similarly-rated corporate high-yield debt and are typically four times larger than expected losses (Braun, 2016). Note that
the rating of catastrophe bonds is low (typically BB) because the probability of incurring large losses is high.

9Mills (2005) describes the long-run difficulties that an adverse climate scenario would pose to the insurance industry.
10Austria issued a 100-year bond in 2017 and 2019, raising EUR 4.75 billion. Long-dated debt is attractive to institutional

investors like pension or mutual funds looking for investments to match long-term liabilities and hedge funds seeking to
make gains through currency or interest rate swap trades. What makes them specific is a high convexity—a measure of the
curvature of the relationship between bond prices and bond yields. A high-convexity bond is such that a one-unit increase in the
yield-to-maturity results in a bond price decrease that is lower than the price increase following a one-unit drop in interest rates.
In other words, a high-convexity bond is a good hedge against falling yields.
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mental, social, and governance (ESG) fixed-income products. The latter are instruments to fund projects

that have a positive environmental and/or climate impact; they are the building blocks of sustainable

finance, defined as the process of taking into account environmental and social considerations in investment

decision-making (Baker et al., 2018; International Monetary Fund, 2019; Larcker and Watts, 2020; Hong

et al., 2020). Nevertheless, since the payoffs of standard ESG bonds are not state-dependent, these products

do not directly allow for the transfer of climate-related risks.11

2.2 The supply side

Governments constitute potential issuers of climate-indexed debt instruments. Following the global

financial crisis and the Covid19 pandemic, governments worldwide have been facing important funding

needs. Thus, issuing novel types of bonds may support the demand for sovereign debt by widening the

investor basis. Importantly, contrary to green bonds (or, more generally, ESG bonds), the proceeds of

climate-indexed bonds do not necessarily have to be invested in environment-related projects. In other

words, the issuance of climate-indexed bonds would not interfere with climate and environmental policies

pursued by governments; these novel debt instruments would complement existing ones (i.e., nominal and

inflation-indexed bonds).

All else being equal, by issuing climate-indexed bonds—with payoffs that positively depend on tem-

perature (say)—governments would increase their long-term exposure to climate risks. Notwithstanding

substantial international coordination problems, this would strengthen their incentives to implement

policies fighting these long-term risks. It can be noted here that governments already provide climate-

risk hedging as “insurers of last resort” (Bruggeman et al., 2010). In several countries, government

(re)insurance facilities have been established to support insurance availability. These facilities provide

direct insurance to property owners for disaster risks or provide reinsurance coverage to insurance compa-

nies for such risks (Wolfrom and Yokoi-Arai, 2016).12 In many countries, such facilities specifically aim

at reducing the maximum risk exposure faced by the insurance sector in the event of a disaster, thereby

addressing a key criterion for insurability (Berliner, 1985).13 By increasing their exposure to climate risk,

governments would also have more incentive to implement policies fighting it.

By providing insurance to bondholders through the issuance of climate-indexed bonds, governments

11A derivatives market associated with ESG products is developing (Lannoo and Thomadakis, 2020); the first ESG-linked
sustainability-improvement derivative was issued in 2019. As the underlying ESG bonds, these derivatives do not provide
(direct) insurance against climate risk; instead they allow to hedge against the risk associated with those investments taking
ESG criteria into consideration.

12Examples of comprehensive direct insurance facilities include the Consorcio de compensacion de seguros in Spain, and
Iceland Catastrophe Insurance. Direct insurance is also provided by the New Zealand Earthquake Commission, the Turkish
Catastrophe Insurance Pool and the United States National Flood Insurance Program, although for a sub-set of disaster risks.
Examples of reinsurance facilities include the Caisse centrale de réassurance in France (for all disaster risks), and Japan
Earthquake Reinsurance for a smaller sub-set of risks.

13Charpentier and Le Maux (2014) study the conditions under which reinsurance of natural catastrophe risks by the
government improves welfare.
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may expect to earn climate-risk premiums when issuing such instruments. Because these assets would

deliver higher payoffs in “bad states of nature”—characterized by higher marginal utility of consumption—

investors should indeed be willing to buy these bonds even if their expected returns are lower than those of

standard bonds (with fixed payoffs). That is, as of the date of issuance, the government should expect these

issuances to eventually result in lower debt service. This has been one of the arguments in favour of the

issuance of inflation-indexed bonds (see, e.g., Price, 1997, Section II.B). There are however two caveats to

this line of reasoning. The first is that the premium would probably be reduced—if not canceled—in the

early years, due to the existence of a negative “novelty premium”; empirical evidence indeed suggests that

investors tend to ask for premiums to hold new types of asset.14 The second, more theoretical, is that it

is not clear that public debt managers should take the minimization of the average cost of debts as their

main target; instead, borrowing costs must be considered in relation to risk (Campbell and Shiller, 1996,

Section 2).15

By reducing entry costs—materializing through the novelty premium mentioned above—the issuance

of sovereign climate-indexed bonds could open the door to private issuances and promote the development

of a liquid market.16 From an asset-liability management perspective, natural issuer candidates would

be firms whose activity relates to climate-risk mitigation (e.g., renewable-energy producers and electric-

vehicle makers). More generally, the introduction of sovereign climate-indexed bonds would contribute to

the development of climate derivatives markets. In this respect, the development of the market of inflation-

indexed derivatives stands as an example: Following the introduction of U.S. government inflation-linked

bonds, the Chicago Board of Trade introduced futures and options referenced to these bonds; mutual funds

benchmarked on these bonds also developed, and inflation-linked investment plans and annuities were

introduced by pension funds (García and Van Rixtel, 2007).

2.3 Informational content

The benefits expected from the development of climate-indexed instruments are also informational. Indeed,

the prices of climate-indexed instruments would reflect the market expectations regarding the future

trajectory of climate-related variables (e.g., temperatures, carbon concentrations). Furthermore, if climate

options were traded, one could also back out measures of the perceived uncertainty associated with these

expected trajectories.

14The novelty premium can reflect potential difficulties in measuring the risks underlying the asset (e.g. due to the absence
of appropriate and well-established models) or the limited liquidity of such bonds relative to conventional ones. Employing a
no-arbitrage term-structure model, D’Amico et al. (2018) find for instance that inflation-linked bond yields exceeded risk-free
real rates by as much as 100 basis points when they were first issued in the U.S..

15Such a cost-risk trade-off seem to be consistent with the actual public debt management practices. Indeed, if governments
were essentially minimizing borrowing costs, then they would massively borrow at the Treasury bill rate and would invest the
proceeds in longer-term bonds (thereby earning the term premium) or in stock markets (thereby earning the equity premium).

16As Campbell and Shiller (1996, p.191) put it: “It is widely acknowledged that the proper role of the government is to
provide public goods, and the demonstration by example of the potential for new financial markets and instruments is really a
public good.”
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These expectations and trajectories would be adjusted for risk: expectations that are extracted from

market prices embed risk premiums and therefore do not necessarily coincide with physical expectations

of future climate.17 However, as long as the risk premium components of climate-linkers’ prices vary

relatively slowly through time, changes in climate linkers may still be interpreted as changes in expectations.

Moreover, models—such as the one presented in Section 4—could be used to try and extract risk premiums

from observed market prices to recover corrected (physical) expectations.

Naturally, such market-based measures would not, per se, improve our understanding of climate

change. Having the market reveal their expectations would however be valuable in several respects. First,

to price these instruments, market participants would develop and employ climate models, which would

contribute to research efforts on climate modeling.18,19 Second, the observation of changes in these prices

(available at high frequency) would allow measuring the influence of different types of news on agents’

expectations. Typically, one could observe how markets evaluate the effectiveness of policies announced

during international summits.20,21 In particular, one could observe whether the objectives of the Paris

agreement of 2015—holding the global average temperature below 2◦C above pre-industrial levels—is

deemed credible by market participants.

Third, the trajectories of climate-related variables backed out from observed prices (temperatures, say,

in the case of temperature-indexed bonds) may be used to construct “market-based” scenarios. These

scenarios would complement model-based ones and may be used, e.g., to price long-term insurance

premiums or assets exposed to climate risks. Importantly, if climate options were available, the definition

of worst-/best-cased scenarios (corresponding to specific probabilities) could also be derived. The latter

may for instance help design climate stress tests (Battiston et al., 2017; Bolton et al., 2020).

3 Climate linkers

This section introduces different types of climate linkers. While we focus on derivatives whose payoffs

depend on a temperature index, different climate-related indices could be considered. In particular, we

could replace temperature indices with measures of sea level or carbon concentration (as is illustrated in

17As an example, in the context of the term structure of interest rates, empirical evidence suggests that forward rates do not
coincide with the (physical) expectation of future interest rates. That is, the so-called “expectation hypothesis” does not hold
(see, among many others, Cochrane and Piazzesi, 2005).

18According to the OECD, in 2017, the U.S. R&D spending in the finance and insurance sector amounted to $7.6bn, which
compares, e.g., to $8.8bn for R&D expenditures in the chemical sector.

19Relatedly, Purnanandam and Weagley (2016) show that the introduction of weather derivatives by the Chicago Mercantile
Exchange, in the late 1990s, has generated additional scrutiny of the temperature data.

20Central banks, academics, market analysts or practitioners widely resort to such approaches to assess the influence of
announcements or news on inflation expectations (using inflation derivatives). Revealing inflation expectations was among the
principal arguments for the development of inflation-indexed bond markets (see, e.g., Price, 1997).

21In this spirit, Gürtler et al. (2016) investigate how the occurrence of catastrophes lead market participants to reprice
catastrophe bonds.
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Subsection 5.3).22

For expository purpose, we abstract from inflation. It seems however appropriate to make climate

linkers’ payoffs indexed to inflation.23 This way, these instruments would constitute pure hedges against

physical climate risk, without being affected by inflation-risk premiums.

Let us start with the definition of a temperature-indexed swap. A swap is a basic derivative product

that materializes the agreement between two counterparties to exchange cash flows at predetermined dates.

The first type of the cash flows is determined at the time the swap is negotiated and paid by the protection

buyer to the protection seller. The second type of cash flows depends on an index that is observed after the

negotiation; these cash flows are paid by the protection seller to the protection buyer. In a Temperature

Indexed Swap (TIS), the reference index is a temperature measure. This derivative would allow investors

to either reduce or increase their exposure to climate change.

Definition 1. Temperature Indexed Swap (TIS). A zero-coupon TIS is a derivative in which a

fixed rate payment on a notional amount (N, say) is exchanged for a payment indexed to a given

temperature measure (Tt , say).a

Denote the current (negotiation) date by t. If the maturity date is t +h, then the temperature

seller will pay Tt+hN to the temperature buyer on date t +h (this is the protection leg of the swap);

and the latter gives T S
t,hN to the temperature seller (this is the premium leg of the swap). In other

words, the protection buyer and seller respectively receive (Tt+h−T S
t,h)N and (T S

t,h−Tt+h)N on

date t +h.

The temperature swap rate (T S
t,h) is negotiated by the the two counterparties on date t; it is such

that the values of the two legs are equal on date t.
aTt here denotes a generic temperature measure. It could be the atmospheric temperature, the ocean temperature, or

a combination of the two.

While the temperature swap rate (T S
t,h) is negotiated on date t by the two counterparties, Tt+h is observed

on date t +h only. That is, while the value of the premium leg is known as of date t, this is not the case of

the protection leg.

Let us take advantage of the simplicity of this instrument to introduce climate risk premiums. To start

with, consider the baseline case where agents are risk-neutral and risk-free interest rates are independent

22In any case, the definition and calculation of the index should be precisely defined; in particular, the calculation should be
based on perennial and reliable sources.

23For this, the payoffs given in Definitions 1, 2, and 3 would have to be multiplied by PIt+h/PIt , where PIt denotes a price
index prevailing on date t. In terms of pricing, the formulas developed in the Online Appendix III would remain valid under the
assumption that the (log) inflation rate πt,t+1 = log(PIt+1/PIt) is an affine combination of the state vector components.
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from temperatures. Under the absence of arbitrage opportunities, we then have:

T S
t,h = Et(Tt+h), (1)

where Et denotes the expectation conditional on the information available on date t.

The protection buyers then receives (Tt+h−Et(Tt+h))N at maturity. Thus, when temperature rises

above its expected path, the temperature buyer receives more from the temperature seller than what he

pays, and vice versa.

Let us now relax the risk-neutral assumption, and denote by Mt,t+h the stochastic discount factor

(s.d.f.) between dates t and t + h.24 Note that the s.d.f. considered here is general, and the formulas

presented in this section are not specific to the modeling framework described in Section 4.

The price of the protection leg is Et
[
Tt+hMt,t+h

]
, and that of the premium leg is T S

t,hEt
[
Mt,t+h

]
. The

fact that the two legs of the swap have the same value as of date t then gives:

T S
t,h = Et

[
Mt,t+h

Et
[
Mt,t+h

]Tt+h

]
. (2)

The previous equation shows that the TIS rate can be seen as a risk-adjusted expectation of Tt+h, and

that the risk-adjustment depends on Mt,t+h
/
Et
[
Mt,t+h

]
. Formally, T S

t,h is called h-forward risk-neutral

expectation of Tt+h, and Mt,t+h
/
Et
[
Mt,t+h

]
is the Radon-Nikodym derivative linking the physical and

risk-neutral measures.25

Eq. (2) also rewrites

T S
t,h = Et [Tt+h]+ premt,h, with premt,h =

Covt
[
Tt+h,Mt,t+h

]
Et
[
Mt,t+h

] , (3)

which shows that premt,h, the difference between the swap-implied temperature (T S
t,h) and the expected

temperature (Et [Tt+h]), depends on the covariance between temperatures and the s.d.f.: if states of higher

temperature are perceived as “bad states of the world” (states of high marginal utility, or high s.d.f.) then

the swap-implied temperature is above its expectation because the covariance term is then positive. In that

case, the protection buyer is willing to lose money, on average, to be hedged against temperature risk.

In the context of the pricing model presented in Section 4, Corollary 3 of Appendix III enables the

computation of the two conditional expectations appearing in eq. (2). (In particular, in this model, the

24In the discrete-time context, it can be shown that under the assumptions of (a) existence of a price, (b) price linearity and
continuity and (c) absence of arbitrage opportunity, there exists a positive SDF. This derives from a conditional version of the
Riesz representation theorem (see e.g. Hansen and Richard, 1987).

25The h-forward risk-neutral measure Qh is equivalent (in the measure sense) to the physical one. Under Qh, the numeraire
is a zero-coupon bond of maturity h (see e.g. Jamshidian, 1989). That is, conditional on the information available on date t, the
risk-adjusted probability of an event Ωt+h (say) is equal to Et(Mt,t+h1{Ωt+h})/Et(Mt,t+h).
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s.d.f. Mt,t+h is available in closed form.)

Definition 2. Temperature Indexed Bond (TIB). A zero-coupon TIB is a debt instrument whose

payoff is indexed to a given measure of temperature. Let us denote by t the issuance date and by h

the maturity at issuance. The payoff, settled on date t +h, is of the form:

1+χ(Tt+h−T 0
t,h), (4)

where T 0
t,h is a temperature defined by the issuer on the issuance date and where parameter χ is a

“leverage factor.” The temperature T 0
t,h could for instance be set to the expected temperature on date

t +h (as of date t), that is T 0
t,h = Et(Tt+h). In that case, the expected payoff of the TIB would be

equal to 1.

While the expected payoff of the TIB is equal to that of a standard zero-coupon bond when T 0
t,h =

Et(Tt+h), the price of the two types of bonds (with matching maturities) are not necessarily equal. Formally,

the TIB price is then given by:

Et
[
Mt,t+h{1+χ(Tt+h−Et(Tt+h))}

]
= Et

[
Mt,t+h

]
+χ premt,h,

where premt,h is defined in eq. (3). Therefore, the difference between the TIB price and Et
[
Mt,t+h

]
—that

is the price of a zero-coupon bond with a deterministic payoff of 1 at maturity—is equal to χ premt,h.

It can be noted that the TIB payoff turns negative if Tt+h < T 0
t,h−

1
χ

(eq. (4)). To prevent this, TIBs

could embed options for the payoff to be equal to max[1+χ(Tt+h−T 0
t,h),0].

26 In the context of our pricing

model, the TIB valuation formulas given in Corollary 4 of Appendix III would then have to be adjusted

with option prices. We now introduce such options.

Definition 3. Temperature options. A temperature option is a derivative instrument whose payoff

is nonlinearly indexed to a given temperature measure. We consider three types of options:

Option type Price (notation) Payoff (settled on maturity date t +h)

Digital Digt,h(TK) 1{Tt+h>TK}

Call Callt,h(TK) (Tt+h−TK)
+ = 1{Tt+h>TK}(Tt+h−TK)

Put Putt,h(TK) (Tt+h−TK)
− = 1{Tt+h<TK}(TK−Tt+h)

26Relatedly, U.S. Treasury Inflation-Protected Securities (TIPS) embed a put option for the nominal redemption value to be
higher than the original principal; this option hedges investors against deflation (see, e.g., Grishchenko et al., 2016).
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A temperature call of strike 3◦C allows, for instance, to get the payoff (Tt+h− 3) on date t + h if

Tt+h > 3. Proposition 11 of Appendix III enables to price these options’ in the context of the model

presented in Section 4.

4 Model

This section presents a modeling framework that we will subsequently use to get insight into the pricing of

the climate linkers introduced above. At the intersection between the well-known DICE model (Nordhaus,

2017) and the concise climate change economy of Bansal et al. (2019), the model offers closed-form

solutions for pricing different classes of assets. As schematically represented in Figure 1, the model

captures relationships between economic and climatic variables. In the remainder of this section, we

highlight the fundamental equations and ingredients of the model. Appendix A depicts the full model.

Figure 1. Schematic representation of the model

Production (a)

CO2 Emissions

Temperature

Damages

Consumption
& Investment Mitigation

+

(b)+

−

+(c)

(d)

(e)

+

+

Note — This schematic representation of the model depicts the main channels relating climatic and
economic variables. (a): Production increases emissions, but mitigation helps to reduce the positive
relationship between the two. (b): Emissions increase temperature anomaly. (c): Larger temperatures
increase the probability of agent’s being hit by climate-driven damages. (d): Damages negatively impact
production through a reduction in the quality of capital. (e): Temperature raises emissions by increasing
the probability of triggering a climate change feedback loop (triggered, e.g., by releasing tons of methane
trapped in the permafrost, or the acidification of oceans).
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4.1 Climate block

In the model, temperatures are expressed as temperature anomalies from a baseline period.27 As proposed

in the DICE model, we focus on two global temperatures: lower ocean (TLO) and atmosphere (TAT ). The

dynamics of these two temperatures depends on radiative forcings due to greenhouse gases (F): Earth

receives radiant energy from the Sun and emits some energy back into space; at equilibrium, Earth should

absorb as much radiant energy as it radiates out of our atmosphere; the difference between the two is

radiative forcings. When the latter goes up, absorption increases, and Earth warms. Specifically, the

atmosphere temperature—which drives damages to the economy—is determined as follows:28

TAT,t = TAT,t−1 +ξ1

{
Ft−

τ

ν
TAT,t−1−ξ2

[
TAT,t−1−TLO,t−1

]}
. (5)

In the present model, we consider the following linear approximation to the dynamics of radiative forcings:

Ft = τ log2(m0)+
τ

log(2)m0

(
MAT,t

MPI
−m0

)
+FEX ,t +σFηF,t , (6)

where FEX ,t is the (exogenous) part of radiative forcings that is due to non-CO2 greenhouse gases,29 MAT,t

is the mass of carbon in the atmosphere, and MPI is its preindustrial level. Moreover, m0 is the value of
MAT,t
MPI

at which the linearization is performed. Online Appendix IV.1 demonstrates that the previous first-

order approximation is satisfactory for plausible values of future carbon concentrations. The shock ηF,t is

a persistent Gaussian shock aimed at capturing the uncertainty pertaining to this relationship. Because

this uncertainty is further passed to temperature through (5), ηF,t eventually drives some randomness into

the relationship between atmospheric carbon concentrations and temperatures. In this sense, process ηF,t

captures the uncertainty associated with the so-called climate sensitivity parameter, which characterizes

the equilibrium warming response to a doubling of preindustrial CO2 concentrations (e.g., Macdougall

et al., 2017; Barnett et al., 2020).

The atmospheric carbon mass MAT,t appearing in (6) constitutes one of the three reservoirs used here

to capture the carbon cycle. The carbon cycle determines the journey of all carbon atoms on earth:30 a

loop between atmosphere, land, and ocean. We denote by Mt the vector whose components are the carbon

masses in atmosphere (AT ), upper ocean (UP), and lower ocean (LO). The carbon cycle is described as

27Consistently with the formulation of the Paris Agreement’s objectives, we use the 1850-1900 baseline period as an
approximation of the pre-industrial period.

28See, e.g., Ramaswamy et al. (2001) for a discussion of the relationship between global temperatures and radiative forcings.
29Carbon dioxide is considered as the main greenhouse gas that is due to human activity through the burning of fossil fuels.
30The main greenhouse gases containing carbon are also the most active in the atmosphere: carbon dioxide (CO2) and

methane (CH4).
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follows:

Mt =


MAT,t

MUP,t

MLO,t

= ϕ
∆tMt−1 +

∆t
3.666


Et−1

0

0

 , (7)

where ϕ is a square matrix describing yearly transfers of carbon between atmosphere and oceans. (The

column components of ϕ sum to one.) Et−1 accounts for total carbon dioxide (CO2) emitted into the

atmosphere for each year of period t (one period lasts ∆t = 5 years), converted into carbon masses by

applying the conversion rate 1/3.666. These total emissions Et are defined similarly as radiative forcings,

with an exogenous and an endogenous components:

Et = Eland,t +Eind,t +Nt , (8)

where Eind,t are industrial emissions due to human activity, and Eland,t represents an exogenous component

including, in particular, emissions due to deforestation. Industrial emissions, which are assumed to

grow as planned capital (K∗t in Subsection 4.2), are the main constituents of temperature warming. The

last component of Et , namely Nt , is a persistent shock whose probability of occurring increases with

temperature in the atmosphere. This variable intends to capture those feedback effects documented in the

literature on tipping points (Lenton et al., 2008). Tipping points stem from the existence of feedback loops

in our environment; they underlie arrows (b)↔(e) in Figure 1.31,32 A positive feedback loop amplifies

the positive imbalances in radiative forcings by creating a vicious circle strengthening global warming.

Examples of positive feedback loop commonly accepted by the scientific community include (a) the release

of tons of methane trapped in the permafrost, and (b) the acidification of oceans—the first CO2 absorbers

on Earth, closely followed by the forest ecosystem. If one of these loops is triggered, the probability

of triggering the next one jumps, giving rise to tipping point mechanisms (Lemoine and Traeger, 2016;

Steffen et al., 2018; Dietz et al., 2020). In our econometric specification, this is captured by drawing Nt

from a gamma-zero distribution, which is a distribution featuring a Dirac mass at zero (Monfort et al.,

2017), and we make the probability of having a non-zero Nt depend on TAT . In our setting, the probability

of having a non-zero Nt is typically small, but if it happens (i.e. when Nt jumps), emissions experiment

sudden and large increases, which further increases temperature, and so on.33

We augment the model with global mean sea level, which we denote by Ht (with H0 = 0.13, from

31Earth is composed of an unknown number of feedback loops, positive or negative. Negative feedback loops decrease the
pressure on global warming by absorbing greenhouse gases from the atmosphere.

32While our modeling of feedback loops accommodates sudden and large effects, it does not feature an explicit threshold as
in, e.g., Lemoine and Traeger (2014, 2016); Bansal et al. (2016); ?.

33This type of mechanism, called self-excitation, is the essence of the Hawkes (1971) process (see Aït-Sahalia et al., 2015,
for an application to the modeling of financial contagion).
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Vermeer and Rahmstorf (2009)). To do so, we employ the specification proposed by Vermeer and

Rahmstorf (2009), namely:

Ht = Ht−1 +∆t×aSAT (TAT,t−T0,S)+bSAT ∆TAT,t +σHηH,t , (9)

where T0,S is the average atmospheric temperature for the period from 1951 to 1980. Equations of the

form (9) are called “semi-empirical.” The fundamental idea of semi-empirical approaches is to exploit the

link between global sea level and global temperature in past observational data for projecting the future.34

4.2 Economic block

Let us now discuss the economic block of the model. We consider a standard production economy where

capital quality can be damaged by climatic disasters. On each period, agents allocate production (Yt)

between consumption (Ct), investment in productive capital (Invt), and investment in low carbon emissions

technologies (Ψt).

The production of date t is given by:

Yt = AtKt , with At = Ā+σAηA,t , (10)

where At and Kt are productivity, and the quantity of productive capital, respectively. Ā is the average

productivity, and ηA,t ∼ i.i.d.N (0,1) is a productivity shock. The dynamics of productive capital are

governed by:

K∗t = (1−dep)Kt−1 + Invt , (11)

Kt = exp(−Dt)K∗t , (12)

where dep is the depreciation rate, and where Dt (≥ 0) represents climatic disasters. As in Gomes et al.

(2019), and Miller et al. (2020), K∗t represents planned capital; productive capital Kt is smaller than

K∗t when climatic disaster occur, i.e., when Dt > 0. The last three equations imply that production is

persistently affected following climatic disasters. As is the case for Nt (see eq. 8), variable Dt is drawn

from a gamma-zero distribution (which features a Dirac mass at zero), and the probability that Dt > 0

positively depends on the atmospheric temperature (see eq. 28 in Appendix A.2). Therefore, increasing

industrial emissions pushes temperatures upwards, which increases the likelihood of disasters, which, in

turn, affect production. This adverse mechanism prompts agents to invest in low-carbon technologies.

These technologies allow reducing carbon emissions for a given production level. Specifically, investing

34See Rahmstorf et al. (2012) for an evaluation of semi-empirical approaches. Studies investigating the relationship between
temperatures and sea level include, among others, Rahmstorf (2007), Rahmstorf (2010), Kopp et al. (2016), and Mengel et al.
(2018).
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in these technologies allow to reduce the emissions stemming from the production of one unit of goods by

a factor µt , called mitigation rate (with 0≤ µt ≤ 1). Increasing µt is costly. Associated abatement costs

(i.e., investment in low-carbon technologies) are given by:

Ψt = ΛtYt , with Λt = µ
θ2
t BCt , (13)

where BCt (deterministically) decreases through time, which reflects that technological progress will

reduce the backstop price. The term µ
θ2
t captures the fact that, on a given date, the marginal cost of

mitigation is increasing (with θ2 > 1).

Hence, agents face the following trade-off: investing in mitigation reduces long-term risks (making

disasters less likely) but comes at the cost of lowering immediate consumption. Agents’ decision regarding

how to allocate output between mitigation (Ψt), investment in productive capital (Invt), and consumption

(Ct) depends on their preferences, which we take of the Epstein-Zin-Weil type (Epstein and Zin, 1989;

Weil, 1989).35

To get instant results, we simplify the agents’ optimization problem. On the initial date (t = 0), agents

decide on a parametric path for the mitigation rate µt . Formally, the parametric path is:

µt = min
[
exp
(
−
∣∣θa,opt

∣∣+ ∣∣θb,opt
∣∣× t

)
;1
]
. (14)

The choice of this parametric time function is based on the usual shapes of emission control rates obtained

in standard IAM.36 On the initial date, agents choose θa,opt and θb,opt to maximize their current utility.

They further commit to that parametric path (while dynamically adjusting Ct and Invt over time).37

4.3 The resulting affine state dynamics

Solving the model essentially amounts to determining the law of motion of consumption. Online Ap-

pendix I.1 shows that, under the prior assumptions, consumption growth is of the form:

∆ct = µc,t +σc,tηA,t−Dt , (15)

35These preferences allow to dissociate risk aversion and the elasticity of intertemporal substitution (EIS). The latter is
taken equal to one (see Appendix A.3 for computational details). Epstein-Zin-Weil preferences, or, more generally, recursive
preferences, are widely used to capture equity and bond risk premiums (Bansal and Yaron, 2004). These preferences have been
used in numerous recent IAMs (Cai and Lontzek, 2019; Jensen and Traeger, 2014; Lemoine and Traeger, 2014).

36See, e.g., Cai and Lontzek (2019), Figure 2.C. Our resulting path is given in Appendix IV.2, where it is compared to the
path underlying the 2017 version of the DICE model (Nordhaus, 2017).

37In practice, knowing all other model parameters, we numerically look for the values of θa,opt and θb,opt leading to the
highest utility in the current date. (For a given parameterization, the solution to the utility function is given by Prop. 8.) This
numerical optimization has to be performed for each considered set of parameters in the context of the calibration approach
(see Subsection 4.4); but it is extremely fast.
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where µc,t and σc,t are simple deterministic functions of the model parameters (see eq. 26 in Appendix A.2).

What is key for the tractability of the framework is that the resulting law of motion of the state vector

Xt—which gathers all economic and climatic variables introduced above—is of the affine class. Formally,

the conditional Laplace transform of Xt , which characterizes the state vector’s dynamics, is of the form:

Et [exp(u′Xt+1)] = exp(αt(u)+βt(u)′Xt), (16)

where functions αt and βt deterministically depend on the model parameters (see Proposition 2).38 Once

these functions are known, one can easily deduce the multi-horizon Laplace transform:

Et [exp(u′Xt+h)] = exp(at,h(u)+bt,h(u)′Xt), (17)

where functions at,h and bt,h are recursively defined (Corollary 1).

Knowing the multi-horizon Laplace transform (17) is equivalent to knowing the distribution of Xt+h

conditional on Xt . This implies in particular that, in the present framework, simple inverse Fourier

transform can be employed to recover the conditional distribution of any of the state variable, or any

linear combination of the variables, at any horizon. To our knowledge, this article is the first to propose

formulas for evaluating conditional distributions of macroeconomic and climate variables in an IAM

framework. It should be noted that these formulas make it possible to detect immediately whether a given

parameterization of the model is consistent or not with a stable economy. (This is more complicated, if not

impossible, in models whose solution is based on simulations.)

In terms of pricing, tractability results from (a) the affine property of Xt (eq. 16) together with (b) the

fact that the underlying stochastic discount factor Mt,t+1 (see Section 3) is exponential affine in Xt .39

These two ingredients ensure the existence of recursive formulas to price various long-term assets. With

respect to standard affine term-structure models,40 a specificity of the present framework is that functions

αt and βt depend on time. Online Appendix III shows how to accommodate this time dependency.

4.4 Calibration

Numerous parameters of the model are directly taken from existing literature (see Table 4). However, some

of our parameters have not direct equivalent in previous studies; this is notably the case of the parameters

governing economic damages (Dt) and positive feedback loops (Nt). In order to address this issue, we

employ an original approach that takes advantage of the model tractability. Specifically, a subset of the

model parameters is determined by minimizing a criterion that reflects the distance between moments

38The Analytic Climate Economy (ACE) model of Traeger (2021) also features an affine state vector. In the ACE model,
function βt does not depend on time, which relates from the fact that this framework does not consider mitigation opportunities.

39The fact that the s.d.f. is exponential affine is demonstrated in Proposition 9 of Online Appendix III.1.
40See, e.g. Duffie (1996), Duffie et al. (2003), or Piazzesi (2010) for presentations of affine term-structure modeling.
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found in the literature and their model-implied equivalents. Let us stress that this calibration approach is

infeasible in the context of standard IAMs, whose resolution is not immediate, or for which simulations

are necessary to compute long-term expectations or variances (such as the expectation or variance of

temperatures in 2100, say). By contrast, such moments are here available in closed-form (see Online

Appendix II).

Appendix B contains details regarding the calibration approach. Let us however briefly mention

the targeted moments: (a) the regression slope of cumulated climate-related damages on atmospheric

temperatures in 2100 (target based on Burke et al., 2015b, Figure 5.d); (b) the expected global atmospheric

temperature in 2100 (target based on IPCC’s Representative Concentration Pathways, RCPs);41 (c) the

standard deviation of global atmospheric temperature in 2100 (target based on RCPs); (d) the expected

contribution of feedback loops on the 2100 global temperature (target based on Burke et al., 2012); (e) the

expected cumulated emissions in 2100 (target based on Burke et al., 2012); (f) the 80-year real risk-free

yield (target based on very-long-term rates computed by the U.S. Department of the Treasury); (g) the

expected sea level in 2100 (target based on RCPs); (h) the standard deviation of sea level in 2100 (target

based on Mengel et al., 2016, Figure 4). Table 2 of Appendix B shows the parameters resulting from this

moment-fitting approach.

Because the social cost of carbon (SCC) occupies a central place in the IAM literature, it is interesting

to evaluate it in our calibrated framework. Our SCC estimate is $167 per ton of carbon, which is higher

than the values obtained in most alternative studies (see Appendix C). This high value may result from the

fact that our model is one of the very few that tries and capture climate-change feedback loops.

5 Results

5.1 Temperature-indexed swaps and bonds

This subsection presents model-implied prices of temperature-indexed swaps and bonds (presented in

Section 3). We also discuss the climate risk premiums, defined as those components of climate linkers’

prices that would be null under the “expectation hypothesis”, i.e. in a world where agents would not be

risk averse.42

Let us start with temperature-indexed swaps (TIS, see Definition 1). Panel (a) of Figure 2 shows the

term-structure of temperature-indexed swaps, in orange. More specifically, it shows TIS rates (T S
t,h) for

different maturities h. The blue line displays expected atmospheric temperatures, i.e., Et(TAT,t+h). If

agents were not risk-averse, then TIS rates would coincide with expected temperatures (see eq. (1)). In

other words, the deviation between the blue and the orange lines reflects climate risk premiums. The

41RCP scenarios are based on Clarke et al. (2007); Smith and Wigley (2006); Wise et al. (2009); Fujino et al. (2006); Hijioka
et al. (2008). Specifically, we use RCP45 and RCP60 scenarios.

42More precisely, these counterfactual prices would be the one prevailing under the “local expectation hypothesis”, as
convexity adjustments would be taken into account (see Piazzesi, 2010, Section 2.2).
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results indicate for instance that the TIS rate—which can be seen as a risk-adjusted expected temperature,

as explained below eq. (2)—lies about 0.25◦C above expected temperatures for 2100.

[Insert Figure 2 about here]

Panel (b) of Figure 2 shows the term structure of Temperature-Indexed Bond rates. Note that these

yields are real rates, as the model does not account for inflation. We consider different values of χ , which

determines the sensitivity of the payoff to realized atmospheric temperatures (see Definition 2). The figure

also displays zero-coupon bond yields, in black. As explain in Definition 2, the expected payoffs of a TIB

is equal to one if the reference temperature (T 0
t,h) is set to the expected temperature. Hence, a TIB and a

(standard) zero-coupon bond have the same expected payoff. However, Panel (b) of Figure 2 shows that

the equilibrium prices of TIBs are higher than those of standard bonds (since yields-to-maturity are lower).

This results from the fact that a TIB also provides insurance against temperature risks. Because of these

hedging properties, investors are willing to buy TIBs even if they provide lower expected returns. That is,

the difference between the black and orange lines are risk premiums. Naturally, the higher χ , the higher

the premium. Focussing on χ = 1, we obtain that the yield-to-maturity of a TIB maturing in 2100 is about

25 basis points lower than the zero-coupon bond providing the same expected payoff.

The fact that TIBs’ yields-to-maturity depend on the payoff’s sensitivity to realized atmospheric

temperatures (χ) illustrates the fact that appropriate discount rates depend on the climate-risk exposure of

the considered asset. This relates to the debate on the social discount rate to be used to assess climate-

related public policy actions (see, e.g., Gollier, 2013; Arrow et al., 2014; Gollier and Hammitt, 2014;

Bauer and Rudebusch, 2020): similar mechanisms indeed explain why one has to adapt the discount rate

to the risk profile of the flow of net benefits generated by the policy under scrutiny. As discussed in Dietz

et al. (2018), if a policy tends to raise the collective risk borne by a community of risk-averse agents, this

policy should be penalized by increasing the discount rate by a risk premium specific to the policy—and

vice versa if the policy tends to hedge collective risk.

[Insert Figure 3 about here]

Figure 3 illustrates the sensitivity of swap-embedded climate risk premiums to the magnitude of

disasters (µD) and of the feedback loops (µN). These two parameters are crucial to characterize climate-

related risks. In Panel (a), we show how expected temperatures and TIS rates—that can be interpreted

as risk-adjusted expected temperatures—are affected by changes in these two parameters. It appears in

particular that expected temperatures only weakly depend on the magnitude of economic disasters. On the

contrary, TIS rates (i.e. risk-adjusted temperatures) strongly depend on both parameters. As explained

above, the difference between TIS rates and expected temperatures is a climate risk premium. Panel (b)

of Figure 3 displays the contribution of these premiums in the TIS rate. It appears that risk premiums

increase w.r.t. to both parameters.
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[Insert Figure 4 about here]

Figure 4 provides another illustration of the sensitivity of risk premiums to the magnitude of disasters.

More precisely, Panel (a) shows how TIS-embedded risk premiums vary with µD for three different values

of the feedback loop magnitude (µN): the first is zero, the second is its calibrated value (µN ≈ 30), and

the third is larger (µN = 40). Three remarks are in order. First, the risk premium is highly nonlinear

in the magnitude of disasters. Second, for very low values of µD, the risk premium is negative. In this

case, high temperatures are not worrying because they do not give rise to disasters. On the contrary, high

temperatures then reflect periods of higher-than-expected growth—with no risk attached. Therefore, for

such specification (i.e., µD ≈ 0), agents perceive high-temperature states as “good states”. Accordingly,

financial instruments that pay relatively more in these states, such as TIS, embed negative risk premiums.

Let us stress that this situation, which prevails only for very small values of µD, is far from our baseline

specification. In the latter, µD is substantial, and high temperatures have disastrous implications. Third,

for each value of µN , there exists a value of µD for which risk premiums explode, resulting in a vertical

asymptote. (The higher µN , the lower this maximal value of µD.) Hence, when disasters are expected to be

large, insuring against climate change can become infinitely costly in our model, a situation that echoes that

studied by Weitzman (2009, 2014). Panels (b) and (c) of Figure 4 show that these limit parameterizations

also correspond to infinite model-implied social costs of carbon (SCCs), and infinitely-negative long-term

interest rates, respectively.

5.2 Temperature options

In the present section, we discuss the pricing of options, whose payoffs nonlinearly depend on temperatures

(see Definition 3), contrary to TISs and TIBs. Our framework offers quasi-closed-form valuation formulas

for these options.43 These formulas rely on Fourier analysis, that allows to recover probability density

functions (p.d.f.) of any linear combination of the state variables, at any horizon. This is illustrated by

Figure 5, whose Panels (a) and (b) respectively represent the physical and risk-adjusted (i.e., including

risk premiums) p.d.f. of atmospheric temperatures, up to 2100.44 Taken together, the plots show that the

risk-adjusted p.d.f. is shifted up w.r.t. the physical one. That is, when it comes to price temperature-indexed

instruments, risk-adjusted probabilities overweight those states of the world where temperature is higher.

This is because the model recognizes that high temperatures characterize states of high marginal utility

(lower consumption), which tends to increase the associate risk-adjusted (or Arrow-Debreu) probabilities.

Panel (c) of Figure 5 plots the model-implied physical and risk-adjusted p.d.f. of atmospheric temperatures

in 2100. Consistently with what precedes, we see that the risk-adjusted p.d.f. is shifted to the right w.r.t. the

43Solutions are quasi-explicit as they involve numerical computations of integrals. Importantly, these integrals are one-
dimensional, whatever the number of state variables considered in the model. See Proposition 11 of the online appendix for
more details; this proposition builds on Duffie et al. (2000).

44See discussion below eq. (2), and Footnote 25, for details onrisk-adjusted probabilities.
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physical one. Moreover, it appears that the risk-adjusted p.d.f. is flatter than the physical one, indicating

that the overall quantity of risk is higher in the risk-adjusted world.

[Insert Figure 5 about here]

Let us show how this translates into option prices. For expository purposes, we will focus on digital

options, whose prices can be interpreted as risk-adjusted probabilities that future temperatures will exceed

a certain threshold—namely, the option’s strike (TK in Definition 3). Figure 6 plots the prices of such

digital options for TK =2.5, 3 and 4, and maturities up to 2100. More precisely, we report option prices

divided by the prices of zero-coupon of matching maturities; this makes these prices comparable to

probabilities, and we call them risk-adjusted probabilities. (See Footnote 25 for a detailed definition of

risk-adjusted probabilities.) Consistently with what precedes, we observe that risk-adjusted probabilities

are substantially higher than their physical counterparts. We also find that ratios between risk-adjusted

and physical probabilities increase with the temperature strike. The ratio can be substantial for high

temperature. For TK = 3◦C and, focussing on the 2100 maturity, the risk-adjusted probabilities are about

10% larger than the model-implied physical probability of exceeding this threshold. That type of result is

reminiscent of a finding of the disaster-risk pricing literature: risk premiums can represent the bulk of the

prices of those financial instruments providing larger payoffs in disastrous situations (financial meltdowns,

defaults of large corporate or sovereign entities, e.g., Elton et al., 2001; Coval et al., 2009; Monfort et al.,

2021; Gouriéroux et al., 2021).

[Insert Figure 6 about here]

5.3 Alternative indexation variables

While temperature stands as an indexation variable of interest, other variables can be considered. Def-

initions 1, 2, and 3 could be easily adjusted to introduce, respectively, swaps, bonds, and options with

payoffs depending on these alternative climate-related variables. In this subsection, we focus on two of

them, namely the atmospheric carbon concentration, and the sea level.45

Figure 7 displays the physical and risk-adjusted distributions of future carbon concentrations. As for

temperatures, the risk-adjusted distribution of carbon concentrations is more disperse and shifted to the

right compared to its physical counterpart (see Panel (c) of Figure 7). This would translate, in particular,

in the existence of positive risk premiums in carbon-concentration swaps; these risk premiums correspond

to the difference between the orange and blue lines in Panel (b).

[Insert Figure 7 about here]

45Derivatives indexed on sea levels are discussed in Bloch et al. (2010, 2011).
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Let us now turn to sea levels. As shown by Figure 8, the model predicts an increase in the mean sea

level of about 0.45 meter by 2100. The corresponding risk-adjusted increase is of 0.47 meter. That is, if

sea level swaps were to be traded, (unadjusted) market quotes would overestimate physical expectations of

sea level rises.

[Insert Figure 8 about here]

6 Concluding remarks

This paper makes a case for climate linkers. We define climate linkers as long-dated financial instruments

(bonds, swaps, and options) with payoffs indexed to climate-related variables, e.g., temperatures, carbon

concentrations, or sea levels.

Naturally, even if a liquid market for climate-indexed instruments was to emerge, it could not eliminate

the fundamental risk that society faces, as associated net exposures eventually cancel out. Some entities

will have to bear the risks. We, however, argue that such instruments may contribute to the sharing of

long-term climate risks. Another key benefit would be informational, as the prices of such instruments

would reveal real-time market expectations regarding future climate. This information would, for instance,

be useful to appraise how investors assess the credibility of measures aimed at fighting climate risks, or

how they view the influence of economic or political news on climate. Furthermore, these measures would

be available in real-time, and at high frequency.

On the methodological front, we develop a tractable integrated assessment model (IAM). This model

can be solved instantaneously and offers quasi-analytical pricing formulas for climate-indexed bonds,

swaps, or options. Tractability results from the fact that the state vector is affine conditional on a few

deterministic processes (such as, e.g., the backstop price, as in the DICE model of Nordhaus, 2017).

Importantly, the affine property of the state vector does not preclude disasters; in particular: (i) the model

allows for sudden climate-related falls in consumption, and (ii) the model captures adverse feedback loops

reflecting, e.g., potential permafrost-related carbon releases.

We exploit the model tractability at the calibration stage. While we take many parameters directly

from the literature, we determine several others—typically those that have no direct equivalent in previous

studies—by minimizing a criterion capturing the distance between model-implied and targeted moments.

For instance, we look for a model parametrization that is consistent with available estimations of the

temperature effects of permafrost releases.

Equipped with our model, we examine, in particular, climate risk premiums. Because of the insurance

provided by a bond (positively) indexed on temperature, investors would demand a lower average return

on such a bond than on conventional bonds. Our findings highlight the sensitivity of climate risk premiums

to the assumptions regarding (i) damages associated with temperature increases and (ii) feedback effects

between temperatures and emissions.
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Figure 2. Term structures of temperature-indexed bond yields and swaps
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Note: Panel (a) shows the term-structure of temperature-indexed swaps (see Definition 1). More specifically, it shows
temperature swap rates (T S

t,h) for different maturities h (in orange). The blue line is the expected atmospheric temperature, i.e.,
Et(TAT,t+h). If agents were not risk-averse, the orange line would coincide with the blue one; in other words, the deviation
between the two lines reflects climate risk premiums. Panel (b) shows the term structure of Temperature-Indexed Bond (TIB)
real rates, for different values sensitivity factors χ (see Definition 2). Note that the model does not account for inflation;
reported TIB rates therefore are homogenous to real rates. Specifically, denote by Pt,h(χ) the price of this bond, the associated
yield-to-maturity (represented by the orange line) is then given by − 1

h logPt,h(χ). The black line shows yields-to-maturity
associated with standard zero-coupon (real) bonds (these yields are given by − 1

h logEt(Mt,t+h)).
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Figure 3. Sensitivity of expected temperatures (in 2100) to µN and µD
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Note: This figure illustrates the sensitivity of E0(TAT,2100) and T S
0,2100 (the Temperature-Indexed Swap of maturity 2100, see

eq. (3)) to µD and µN . The former parameter is the magnitude of climate related disasters (see eq. (28)); the latter is the
magnitude of feedback loops (see eq. (29)). On Panel (a), blue lines correspond to expected temperatures (E0(TAT,2100)), and
orange lines correspond to temperature swaps (T S

0,2100). Panel (b) displays the fraction of the swap price that corresponds to
climate risk premiums, i.e., (T S

0,2100−E0(TAT,2100))/T S
0,2100. The grey squares, in the middle of the plots, locate our baseline

calibration.
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Figure 4. Sensitivity of temperature risk premiums to µN and µD
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Note: This figure shows the difference between the temperature swap price of maturity 2100 (T S
0,2100, see eq. (3)) and expected

temperature E0(TAT,2100). This difference is a risk premium; it would be equal to zero if agents were not risk averse. The plot
highlights that this risk premium non linearly depends on µD (the magnitude of climate related disasters, see eq. (28)). The two
dashed lines are obtained for two different values of the magnitudes of feedback loops (µN , see eq. (29)); the solid line uses our
baseline (calibrated) value of µN . The vertical dashed line locates our baseline (calibrated) value of µD.
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Figure 5. Conditional distribution of future temperatures (swaps versus physical)
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Note: Panel (a) displays the conditional distribution of future atmospheric temperatures. The shaded areas are 50%, 80%, 90%,
and 95% confidence intervals. The central blue line shows the medians of the distributions. The dashed lines indicates two
IPCC’s Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 41 for references).
The orange solid line in Panel (b) is the term structure of temperature swap prices (T S

0,h), that can be seen as risk-adjusted
distributions (see Footnote 25 for technical details regarding risk-adjusted probabilities). The shaded areas shown in Panel
(b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the conditional
distributions of TAT,2100 under the physical (blue) and risk-adjusted (orange) measures.
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Figure 6. Price of digital options, with contributions of risk premiums
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Note: This figure shows the prices of digital options (see Definition 3) for different strikes (TK) and maturities (x axis). More
specifically, the solid lines display, for different maturities (h), Digt,h(TK)/Bt,h, where Digt,h is the date-t price of an option
providing the payoff 1{TAT,t+h>TK} on date t +h (see Definition 3) and Bt,h = Et(Mt,t+h) is the date-t price of a zero-coupon
bond of maturity h. The dashed lines show the probabilities that TAT,t+h > TK . If agents were not risk-averse, then solid lines
would coincide with dashed lines; in other words, the deviations between solid and dashed lines reflect climate risk premiums.
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Figure 7. Conditional distribution of future carbon concentration (swaps versus physical)

2040 2050 2060 2070 2080 2090 2100

1000

1100

1200

1300

1400

1500

1600

(a) − Trajectory of carbon concentration in the atmosphere

RCP4.5
RCP6.0

2040 2050 2060 2070 2080 2090 2100

1000

1100

1200

1300

1400

1500

1600

(b) − Trajectory of carbon concentration in the atmosphere including Risk−Premium
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Note: Panel (a) displays the conditional distribution of future atmospheric carbon concentrations. The shaded areas are 50%,
80%, 90%, and 95% confidence intervals. The central blue line shows the medians of the distributions. The dashed lines
indicates two IPCC’s Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 41
for references). The orange solid line in Panel (b) is the term structure of temperature swap prices (MS

0,h), that can be seen
as risk-adjusted distributions (see Footnote 25 for technical details regarding risk-adjusted probabilities). The shaded areas
shown in Panel (b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the
conditional distributions of MAT,2100 under the physical (blue) and risk-adjusted (orange) measures.
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Figure 8. Conditional distribution of future global sea level (swaps versus physical)
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Note: Panel (a) displays the conditional distribution of future global sea level. The shaded areas are 50%, 80%, 90%, and
95% confidence intervals. The central blue line shows the medians of the distributions. The dashed lines indicates two
IPCC’s Representative Concentration Pathway (RCP) scenarios, namely RCP45 and RCP60 (see Footnote 41 for references).
The orange solid line in Panel (b) is the term structure of temperature swap prices (HS

0,h), that can be seen as risk-adjusted
distributions (see Footnote 25 for technical details regarding risk-adjusted probabilities). The shaded areas shown in Panel
(b) are 50%, 80%, 90%, and 95% confidence intervals, using risk-adjusted probabilities. Panel (c) shows the conditional
distributions of H2100 under the physical (blue) and risk-adjusted (orange) measures.
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Figure 9. Social Cost of Carbon (and the contribution of risk premiums)
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Note: This figure illustrates the sensitivity of the social cost of carbon (SCC, see eq. (43)) to µD and µN . The former is the
magnitude of climate related disasters (see eq. (28)); the latter is the magnitude of feedback loops (see eq. (29)). On Panel (a),
dashed lines correspond to the SCC that would prevail under the expectation hypothesis, i.e., if agents were risk-neutral.
Panel (b) displays the fraction of the SCC corresponding to climate risk premiums. The risk premium is given by the difference
between the risk-adjusted prices (in orange in Panel (a)) and the price that would prevail under the expectation hypothesis (in
blue in Panel (a)). The grey squares, in the middle of the plots, locate our baseline calibration.
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A Model

A.1 Exogenous equations
Carbon intensity:

σt = σt−1(1+gσ ,t), with gσ ,t = gσ ,t−1(1+δσ )
∆t . (18)

Emission reduction rate (equivalent to (14)):

µt = min
[
exp
(
−
∣∣θa,opt

∣∣+ ∣∣θb,opt
∣∣× t

)
;1
]
, (19)

where
∣∣θa,opt

∣∣ > ∣∣θb,opt
∣∣T ∗, with T ∗ = 12. This last inequality ensures that complete mitigation is not

obtained before 2080 (T ∗ = 12).

Backstop price:

BPt = pback(1−gback)t−1. (20)

Adjusted cost for backstop:

BCt =
BPtσt

1000×θ2
. (21)

Exogenous land emissions:

ELand,t = ε0(1−ρ)t−1. (22)

Exogenous radiative forcings:

FEX ,t =

{
φ0 +

1
17(φ1−φ0)(t−1) if t < 18 (t = 18 corresponds to 2100)

φ1 if t ≥ 18.
(23)

Abatement costs:

Λt = µ
θ2
t BCt . (24)

A.2 Endogenous equations
As shown in Online Appendix I.1, under the assumptions described in Section 4, consumption growth is
given by (this is (15)):

∆ct = µc,t +σc,tηA,t−Dt , (25)

where µc,t and σc,t are given by µc,t = logδ + log
(
(1−Λt)Ā+(1−dep)

)
σc,t = (1−Λt)

(1−Λt)Ā+(1−dep)σA,
(26)

35/59



and where ηA,t is a component of vector ηt , which follows a Gaussian Vector Auto-Regressive (VAR)
process of order one:

ηt = Φηt−1 + εη ,t , with Var(εη ,t) = Ση ,t = Idnη×nη
. (27)

Industrial damages (affecting productive capital, see (12)):

Dt = γ0

(
`
(D)
0 + `

(D)
1 TAT,t−1,µD

)
, (28)

where γ0 denotes the gamma-zero distribution (Monfort et al., 2017). This distribution features a Dirac
mass at zero. Specifically, the probability of having Dt = 0 is equal to exp(−`(D)

0 − `
(D)
1 TAT,t−1).

Carbon release - Feedback effect:

Nt = γ0

(
ρN

µN
Nt−1 + `

(N)
0 + `

(N)
1 TAT,t−1,µN

)
. (29)

Up to potential mitigation (µt , see Section 4) and to deterministic decrease in the carbon intensity of
production σt (see eq. 18), industrial carbon emissions are supposed to grow as (planned) capital. This
leads to (see Online Appendix I.2):

EInd,t = σt(1−µt)q0 exp

(
t

∑
i=1

[
µc,i +

1
2

σ
2
c,i

])
[1+ ỹt−1] , (30)

where

ỹt =
t

∑
i=1

σc,iηA,i. (31)

Total emissions (equivalent to (8)):

Et = ELand,t +EInd,t +Nt . (32)

Radiative forcing (equivalent to (6), see also Online Appendix IV.1):

Ft = τ log2(m0)+
τ

log(2)m0

(
MAT,t

MPI
−m0

)
+FEX ,t +σFηF,t (33)

where ηF,t is a component of vector ηt (see equation (27)).

Carbon cycle - carbon concentration increase (equivalent to (7)):

MAT,t
MUP,t
MLO,t

=

ϕ11 = 1−ϕ12 ϕ21 = ϕ12
mateq
mueq 0

ϕ12 ϕ22 = 1−ϕ21−ϕ23 ϕ32 = ϕ23
mueq
mleq

0 ϕ23 ϕ33 = 1−ϕ32

5MAT,t−1
MUP,t−1
MLO,t−1

+ ∆t
3.666

Et−1
0
0

 .
(34)
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Temperature increase in the atmosphere (equivalent to (5)):

TAT,t = TAT,t−1 +ξ1

{
Ft−

τ

ν
TAT,t−1−ξ2

[
TAT,t−1−TLO,t−1

]}
. (35)

Temperature increase in the ocean:

TLO,t = TLO,t−1 +ξ3
{

TAT,t−1−TLO,t−1
}
. (36)

Sea level increase (equivalent to (9)):

Ht = Ht−1 +∆t×aSAT (TAT,t−T0,S)+bSAT ∆TAT,t +σHηH,t . (37)

A.3 Agents’ preferences
We consider an agent featuring Epstein and Zin (1989) preferences, with a unit elasticity of intertemporal
substitution (EIS).46 Specifically, the time-t utility of a consumption stream (Ct) is recursively defined by:

ut = (1−δ )ct +
δ

1− γ
log(Et exp [(1− γ)ut+1]) , (38)

where ct denotes the logarithm of the agent’s consumption level Ct , δ the time discount factor and γ the
risk aversion parameter.47

Online Appendix I.1 shows that, in the economy described in Section 4, the log consumption growth,
that is ∆ct = ct− ct−1, is of the form µc,t +σc,tηA,t−Dt (that is eq. 15, with µc,t and σc,t given by eq. 26).
Online Appendix II further shows that the model admits a state-space representation where the state vector
Xt includes, in particular, ηA,t and Dt (see eq. II.1). Accordingly, ∆ct is affine in Xt , that is:

∆ct = ct− ct−1 = µc,0,t +µ
′
c,1,tXt , (39)

where µc,0,t and µc,1,t are deterministic processes. Moreover, Online Appendix II shows that Xt admits an
exponential affine log-Laplace transform:

ψt(u,Xt) := logEt(exp(u′Xt+1)) = αt(u)+βt(u)′Xt , (40)

where functions αt and βt are deterministic (eq. II.6).
Appendix III.1 shows that, in this context, the s.d.f. is given by:

Mt,t+1 = exp
[
−(µr,0,t+1 +µ

′
r,1,t+1Xt)+π

′
t+1Xt+1−ψt(πt+1,Xt)

]
, (41)

where the vector of prices of risk πt as well as µr,0,t and µr,1,t are deterministic objects whose computation
is detailed in Proposition 9 (Appendix III.1).

46Using a unit EIS facilitates resolution (Piazzesi and Schneider, 2007). In an IAM context, Hambel et al. (2021) also work
under the assumption of a unit EIS. This value is however slightly below the lower bound of the 90% confidence interval found
by Schorfheide et al. (2018). Daniel et al. (2019) take an EIS of 0.9.

47Eq. (38) results from a first-order Taylor expansion around ρ = 1 of the general Epstein and Zin (1989) recursive utility

defined by: ut =
1

1−ρ
log
(
(1−δ )C1−ρ

t +δ (Et [exp{(1− γ)ut+1}])
1−ρ

1−γ

)
, where ρ is the inverse of the EIS.

37/59



B Calibration
Most of the model parameters are directly borrowed from the literature (see Table 4), and in particular
from DICE16 (Nordhaus, 2017). Additional parameters, that are more specific to the model used in this
paper, are calibrated in such a way as to make the model-implied dynamics of our model consistent with
different moments found in the literature (see Table 1). In practice, this is achieved by minimizing a loss
function expressing the deviation between targeted and model-implied moments. Formally, define by γ

the vector of targeted moments, by θ the vector of (free) parameters, and by ψ(θ) the model-implied
moments. The calibrated parameters θ̂ solve for the following optimization problem:

θ̂ = argmin
θ

(γ−ψ(θ))′Ω(γ−ψ(θ)), (42)

where Ω is a diagonal matrix whose diagonal entries are weights associated with the different moments
we consider. Alternatively put, (γ−ψ(θ))′Ω(γ−ψ(θ)) is a loss function that is minimized for θ = θ̂ .

Table 2 shows the parameters resulting from this moment-fitting approach.

Table 1. Targeted and model-implied moments (in 2100)

Moment Target Model-implied Source
Expectation of TAT,2100 3.50◦C 3.34◦C RCP4.5+RCP6.0
Standard deviation of TAT,2100 0.25◦C 0.32◦C RCP4.5+RCP6.0
Expected contribution of FL to GMST 0.25◦C 0.27◦C Burke et al. (2012)
Expected increase in cumulated emissions due to FL 188 GtCO2 189 GtCO2 Burke et al. (2012)
Linear regression slope of cumulated damages on GMST −0.12 −0.12 Burke et al. (2015b)
Long-term rate target 1.00% 0.94% US Treasury
E(H2100) 0.45m 0.45m RCP4.5+RCP6.0
Standard Deviation of H2100 0.10m 0.10m Mengel et al. (2016)

Note: This table compares targeted and model-implied moments, after having minimized a loss function that reflects the distance
between these two sets of moments. Resulting parameters are shown in Table 2. All moments are for 2100 and are conditional
on the information available on date t = 0 (that is 2015). FL stands for “Feedback Loops” (see Section 4). Numbers for FL
targets are in line with alternative estimations (Schaefer et al., 2014). Temperatures anomalies in Representative Concentration
Pathway (RCP) scenarios are expressed relative to the 1850-1900 baseline period (IPCC, 2014). RCP scenarios are based on
Clarke et al. (2007); Smith and Wigley (2006); Wise et al. (2009); Fujino et al. (2006); Hijioka et al. (2008). The targeted linear
regression slope of cumulated emissions due to FL is based on Figure 5.d in Burke et al. (2015b), which shows that a four-unit
increase in Global mean surface temperature (GMST) implies a 50% reduction in GDP per capita; the model-implied equivalent,
i.e. the population regression coefficient, is given by Covt=0(CumD,t=2100,Tt=2100)/Vart=0(Tt=2100), where CumD,t=2100 is
the cumulated consumption loss stemming from climate-related disasters between the current date and 2100. (Note that the
population regression coefficient, which depends only on second-order moments, is available in closed-form in our framework.)
The long term rate target is based on the High Quality Market (HQM) corporate bond yield curves. These very-long-term
yields are computed by the U.S. Department of the Treasury for the Pension Protection Act. The 100-year rate is available at
https://fred.stlouisfed.org/series/HQMCB100YR. This nominal rate is currently around 4%; we set our real
rate target at 1%, which is consistent with an inflation rate assumption of 2% and a credit spread of 100 basis points (as the
rates reported by the Treasury corresponds to corporate—hence defaultable—bonds). Including the very-long-term real rate
among the targets has the advantage of discarding calibrations for which long-term bonds have infinite prices. (The fact that
long-term rates may not exist is not specific to the present model.)
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Table 2. Estimated parameters

Parameter Notation Equation Value Unit/Note
Average TFP Ā (28) 0.43
Standard deviation of TFP shock σA (28) 3.33
Size of disasters µD (28) 6.05 %
Constant term in damage specification `D

0 (28) 0.00
Slope coefficient in damage specification `D

1 (28) 0.19
Size of carbon releases µN (29) 29.69 GtCO2
Constant term in carbon-release specification `N

0 (29) 0.10
Slope coefficient in carbon-release specification `N

1 (29) 0.10
Auto-correlation of carbon releases ρN (29) 0.00
Standard deviation radiative forcings shock ση ,F (33) 0.31
Backstop price pback (20) 2488 $
Sea level coefficient on ∆(TAT ,T0,S) aSAT (37) 0.0013 $
Sea level shock σH (37) 0.0233 $

Note: This table presents the parameters obtained by minimizing a loss function measuring the distance between model-implied
and targeted moments (see Table 1).

Table 3. Initial values of state vector X0

Variable Notation Value Reference
Initial consumption growth ∆c0 9.71% CDICE
Initial cumulative TFP shocks ỹ0 0.00
Initial emissions E0 38.45GtCO2 CDICE
Initial industrial emissions Eind,0 35.85GtCO2 CDICE
Initial radiative forcings F0 2.00W/m2 CDICE
Initial carbon concentration (atmos.) MAT,0 850.00GtC CDICE
Initial carbon concentration (upper ocean) MUP,0 765.00GtC CDICE
Initial carbon concentration (lower ocean) MLO,0 1799.00GtC CDICE
Initial temperature anomaly (atmos.) TAT,0 1.28◦C CDICE
Initial temperature anomaly (lower ocean) TLO,0 0.31◦C CDICE
Cumulative damages CumD,0 0.00% CDICE
Cumulative emissions CumE ,0 0.00GtCO2 CDICE
Cumulative consumption growth Cum∆c,0 9.71% CDICE
Initial sea level H0 0.13m Vermeer and Rahmstorf (2009)
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Table 4. Calibrated parameters (period = 5 years)

Parameter Notation Equation Value Unit/Note Reference
Value of MAT,t/MPI used in the linearization of (IV.1) m0 (33) 1168

607 CDICE + IPCC
Rate of preference for present δ (38) 0.95
Risk aversion γ (38) 7
Carbon emissions from land 2015 ε0 (22) 2.6 GtCO2 per year DICE2016
Decline rate in land emissions (Eq. 22) ρ (22) 0.115 per period DICE2016
Equilibrium concentration in atmosphere mateq (34) 607 GtC CDICE
Equilibrium concentration in upper strata mueq (34) 600 GtC CDICE
Equilibrium concentration in lower strata mleq (34) 1772 GtC CDICE
2015 forcings of non-CO2 GHG φ0 (23) 0.5 W/m2 DICE2016
2100 forcings of non-CO2 GHG φ1 (23) 1 W/m2 DICE2016
Preindustrial concentration of carbon in the atmosphere MPI (33) 607 GtC CDICE
Carbon cycle parameter between atmosphere and upper oceanϕ12 (34) 0.053 CDICE
Carbon cycle parameter between upper and lower ocean ϕ23 (34) 0.0042 CDICE
Climate equation coefficient for upper level ξ1 (35) ∆t×0.137 CDICE
Transfer coefficient upper to lower stratum ξ2 (35) ∆t×0.10001 CDICE
Transfer coefficient for lower level ξ3 (36) ∆t×0.00689 CDICE
Forcings of equilibrium CO2 doubling τ (33)+(35) 3.45 W/m2 CDICE
Equilibrium temperature impact ν (35) 3.25 ◦C per doubling CO2 CDICE
Decline rate of decarbonization δσ (18) −0.001 per period DICE2016
Carbon intensity 2010 σ0 (18)

e0

q0(1−µ0)
kgCO2 per output 2005 USD 2010 DICE2016

Industrial emissions in 2015 e0 (σ0)+(E2015) 35.85 GtCO2 per year DICE2016
Initial world gross output in 2015 q0 (30)+(σ0) 105.5 trillions of 2010 USD DICE2016
Initial emision control rate in 2015 µ0 (19) 0.03 DICE2016
Initial growth of sigma gσ ,1 (18) −0.0152 per year DICE2016
Initial cost decline backstop cost gback (20) 0.025 per period DICE2016
Exponent of control cost function θ2 (21)+(24) 2.6 DICE2016
Persistence of the radiative forcings shock Φ[2,2] (27) 0.95
Global surface temperature weights [TAT , TLO] weightsT [0.6,0.4] IPCC
Base Temperature (sea level equilibrium) T0,S (37) −0.375 ◦C, Baseline [1951-1980] Vermeer and Rahmstorf (2009)
Coefficient attached to ∆TAT,t bSAT (37) 0.025 m Vermeer and Rahmstorf (2009)
Capital depreciation rate dep (I.7) 0.27
Time step ∆t 5

Note: This table presents the parameters used in our baseline model. DICE16 refers to Nordhaus (2017). IPCC refers to IPCC (2014, Table 2.1). CDICE refers to Folini
et al. (2021)
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C Social cost of carbon
In this subsection, we examine the model-implied Social Cost of Carbon (SCC) and the influence risk
premiums have on this measure of economic costs of carbon emissions. Following the literature, we define
the SCC as the marginal rate of substitution between atmospheric carbon concentration and consumption,
that is:

SCCt =−
∂Ut

∂MAT,t

/
∂Ut

∂Ct
. (43)

In our framework, the SCC is available in closed-form (Online Appendix III.3). Table 5 shows how our
baseline SCC estimate (of $167 per tC) compares to those obtained in alternative studies.

Figure 9 depicts how the SCC depends on the two key parameters that are µD (magnitude of climate-
related disasters) and µD (magnitude of adverse feedback loops). On Panel (a), the orange lines show
the model-implied SCC. We observe that the SCC is particularly sensitive to the average disaster size
(µD). On the same panel, the blue lines indicate the SCC that would prevail if agents were not risk-averse.
Our results suggest that risk aversion has a strong influence on SCC or, alternatively put, risk premiums
account for a large share of the SCC. For the baseline calibration of µD and µN (see the central point of
the plot), risk premiums account for more than half of the SCC. Panel (b) further shows that this share
positively depends on both µD and µN .

[Insert Figure 9 about here]

Table 5. SCC comparison

Study SCC (U.S. $ per tC) Tipping points Stochastic IAM Discount Rate
Nordhaus (2017) 113 1.5%
Stern (2007) 312 0%
Jensen and Traeger (2014) [40;70] X 1.5%
Barnett et al. (2020) [240;411] X 1%
Cai and Lontzek (2019) [40;100] X X 1.5%
Bansal et al. (2016) [4;104] X X 1%
Lemoine and Traeger (2014) [37;55] X X 1.5%
van den Bremer and van der Ploeg (2021) 146 X 1.5%
This paper 167 X X 1%

Note: This table reports different SCC estimates. Cited studies differ along many dimensions, the last three columns highlight
particularly important ones.
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—Online Appendix—

Climate Linkers: Rationale and Pricing
Pauline CHIKHANI and Jean-Paul RENNE

I Consumption and emission growth rates in the production economy
I.1 Solving for the consumption process
In this appendix, we derive the consumption growth process in our production economy. Let us denote
agents’ wealth by Wt . In the context of Epstein-Zin-Weil preferences, and with a unit Elasticity of
Intertemporal Substitution, it can be shown that:48

Ct = (1−δ )Wt . (I.1)

Since agents’ wealth at time t is Wt =Ct +K∗t+1, it comes, using (I.1), that:

δWt = K∗t+1, (I.2)

Eq. (I.1) then gives:

Ct =
1−δ

δ
K∗t+1 (I.3)

We have:

Yt =Ct + Invt +Ψt , (I.4)

where, Ψt , the investment in low-carbon technologies, is given by Ψt = ΛtYt .
On date t +1, we have Yt+1 = At+1Kt+1, which implies that (I.4) rewrites (for date t +1):

Ct+1 = (1−Λt+1)At+1Kt+1− Invt+1 (I.5)

Using (I.3) in K∗t+1 = (1−dep)Kt + Invt gives:

Invt =
δ

1−δ
Ct− (1−dep)Kt . (I.6)

Using the previous expression in (I.5) yields

Ct+1 = (1−Λt+1)At+1Kt+1−
δ

1−δ
Ct+1 +(1−dep)Kt+1,

48See, e.g., Appendix B in Giovannini and Weil (1989).



that is, using Kt+1 = exp(−Dt+1)K∗t+1, and (I.3):

1
1−δ

Ct+1 =
(
(1−Λt+1)At+1 +(1−dep)

)
exp(−Dt+1)

δ

1−δ
Ct .

Finally:
Ct+1

Ct
= δ

(
(1−Λt+1)At+1 +(1−dep)

)
exp(−Dt+1).

Assuming that At = Ā+σAηA,t , we get:

Ct+1

Ct
= δ

(
(1−Λt+1)(Ā+σAηA,t+1)+(1−dep)

)
exp(−Dt+1).

The resulting log growth rate of consumption is:

∆ct+1 = logδ + log
(
(1−Λt+1)(Ā+σAηA,t+1)+(1−dep)

)
−Dt+1

≈ µc,t+1 +σc,t+1ηA,t+1−Dt+1, (I.7)

where µc,t and σc,t are given by (26). This is (15).

I.2 Emission growth rate
This subsection explains the specification of industrial emissions, namely eqs. (30) and (31).

Up to potential mitigation (µt , see Section 4) and to deterministic decrease in the carbon intensity of
production σt (see eq. 18), industrial carbon emissions are supposed to grow as (planned) capital. More
precisely, as in the DICE framework, industrial carbon emissions of date t are of the form σt(1−µt)qt ,
where qt follows:

qt+1

qt
=

K∗t+1

Kt
.

Using K∗t+1 =
1−δ

δ
Ct (eq. I.3) and Kt = exp(−Dt)K∗t = exp(−Dt)

1−δ

δ
Ct−1, we obtain:

qt+1

qt
=

Ct

Ct−1
exp(Dt).

Using (I.7), it comes that the log growth rate of qt is approximately equal to µc,t + σc,tηA,t (with a
one-period lag). This would lead to the following expression for industrial emissions:

Eind,t = σt(1−µt)q0 exp

(
t−1

∑
i=1

[µc,i +σc,iηA,t ]

)
.

However, to preserve the conditional affine property of the model dynamics, industrial emissions have to
linearly depend on the shocks ηA,t . Using (a) that exp(µ+σε)≈ exp(µ+ σ2

2 )(1+σε) when ε ∼N (0,1)
and for a small σ , and (b) that the ηA,ts are i.i.d., we get the following expression for industrial emissions:

EInd,t = σt(1−µt)q0 exp

(
t

∑
i=1

(
µc,i +

σ2
c,i

2

))
(1+ ỹt−1) , (I.8)
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(that is eq. 30), with ỹt = ∑
t
i=1 σc,iηA,i (that is eq. 31). Equation (I.8) can also be written as:

EInd,t = λt (1+ ỹt−1) , (I.9)

with:

λt = σt(1−µt)q0 exp

(
t

∑
i=1

(
µc,i +

σ2
c,i

2

))
. (I.10)

II State vector’s conditional moments and Laplace transform

II.1 Rewriting the model in matrix form

We decompose the state variable, denoted by Xt , as follows:

Xt =

[
Zt
Wt

]
, where Zt =



∆ct
ỹt
Et

EInd,t
Ft

MAT,t
MUP,t
MLO,t
TAT,t
TLO,t

CumD,t
CumE ,t
Cum∆c,t

Ht



, and Wt =

 ηt,[3×1]
Dt
Nt

 , (II.1)

where CumD,t =−∑
t
i=1 Di, CumE ,t = ∑

t
i=1 Ei, and ct =Cum∆c,t = ∑

t
i=1 ∆ci, .

The state variable’s dynamics is presented in Appendix A. This dynamics of Zt can be concisely
written in matrix form:

A∗0Zt = A∗1,tZt−1 +ω
∗
0,t +ω

∗
t Wt , (II.2)
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where:

A∗0 =



1 0 . . .
0 1 0 . . .
0 0 1 −1 0 . . .
0 0 0 1 0 . . .

. . . 0 1 − τ

log(2)MPI(1+m0)
. . .

. . . 0 1 0 . . .
. . . 0 1 0 . . .

. . . 0 1 0 0 0 0 0 0
0 0 0 0 −ξ1 0 0 0 1 0 0 0 0 0

. . . 0 1 0 0 0 0
. . . 0 1 0 0 0

0 0 −1 0 . . . . . . 0 1 0 0
−1 0 . . . . . . 0 1 0
0 0 0 0 0 0 0 0 −∆t×aSAT −bSAT 0 . . . 0 0 1



,

A∗1,t =



0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 λt 0 0 · · ·

· · · 0 · · ·
0 0 ∆t

3.666 0 0
· · · 0
· · · 0

ϕ11 ϕ21 0
ϕ12 ϕ22 ϕ32
0 ϕ23 ϕ33

∆t 0 · · ·
0 · · ·
0 · · ·

· · · 0
· · · 0

· · · 0

1−ξ1(
τ

ν
+ξ2) ξ1ξ2 0 0 0 0

ξ3 1−ξ3 0 0 0 0
· · · 0 −1 0 0 0

· · · 0 1 0 0
· · · 0 1 0

−bSAT 0 0 0 0 1



,

and

ω
∗
0,t =



µc,t
0

ELand,t
λt

τ

log(2) [log(1+m0)−1]+FEX ,t

0
0
0
0
0
0
0
0

−∆t×aSAT T0,S



, ω
∗
t =



σc,t 0 0 −1 0
σc,t 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 σF 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 σH 0 0



.
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Pre-multiplying both sides of (II.2) by (A∗0)
−1, we obtain:

Zt = A1,tZt−1 +ω0,t +ωtWt , (II.3)

with

A1,t = (A∗0)
−1A∗1,t , ω0,t = (A∗0)

−1
ω
∗
0,t , ωt = (A∗0)

−1
ω
∗
t .

II.2 Laplace transform of Wt

Proposition 1. The Laplace transform of Wt , considering uW = [u′η ,uD,uN ]
′, is given by:

ψW (uW ) := Et(exp[u′WWt+1]) = exp(αW (uW )+βW (uW )′Xt) ∀t, (II.4)

with 
αW (uW ) =

uη u′η
2 + uDµD

1−uDµD
`
(D)
0 + uN µN

1−uN µN
`
(N)
0

βW (uW ) =

014×1
Φ′uη

02×1

+ uDµD
1−uDµD

`
(D)
1 + uN µN

1−uN µN
˜̀(N)
1 ,

(II.5)

where vector ˜̀(N)
1 is such that ˜̀(N)

1
′Xt =

ρN
µN

Nt + `
(N)
1
′Xt .

Proof. The shocks being conditionally independent, and using the Laplace transform of the gamma-zero
distribution (Monfort et al., 2017) used to model Dt and Nt (see (28) and (29)), we have:

Et
(
exp
(
u′WWt+1

))
= Et

[
exp
(
u′ηηt+1 +uDDt+1 +uNNt+1

)]
= exp

(
u′ηΦηt

)
Et
(
exp
(
u′ηεη ,t+1

))
Et (exp(uDPD,t+1))Et (exp(uNPN,t+1))

= exp
[

u′ηΦηt +
uηu′η

2
+

uDµD

1−uDµD

(
`
(D)
0 + `

(D)
1
′Xt

)
+

uN µN

1−uN µN

(
`
(N)
0 + ˜̀(N)

1
′Xt

)]
,

which gives the result.

II.3 Simple and multi-horizon Laplace transforms of Xt = [Z′t ,W
′

t ]
′

In Proposition 2 and Corollary 1, we consider a linear combination of the components of Xt+1, namely
u′Xt+1 = u′ZZt+1 +u′WWt+1 (i.e. u = [u′Z,u

′
W ]′).

Proposition 2. One-period-ahead Laplace transform of Xt = [Z′t ,W
′

t ]
′. We have:

ψt(u) := Et(exp(u′Xt+1)) = exp(αt(u)+βt(u)′Xt),

with 
αt(u) = u′Zω0,t+1 +αW (uW +ω ′t+1uZ)

βt(u) =

[
A′1,t+1uZ

0(nη+2)×1

]
+βW (uW +ω ′t+1uZ),

(II.6)
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where functions αW and βW are defined by (II.5).

Proof. We have:

Et(exp(u′Xt+1)) = Et [exp(u′ZZt+1 +u′WWt+1)]

= Et(exp(u′Z(A1,t+1Zt +ω0,t+1 +ωW,t+1Wt+1)+uWWt+1))

= exp
[
u′Z(A1,t+1Zt +ω0,t+1)

]
Et
[
exp
(
{u′W +u′Zωt+1}Wt+1

)]
= exp

[
u′Z(A1,t+1Zt +ω0,t+1)+αW

(
uW +ω

′
t+1uZ

)
+βW

(
uW +ω

′
t+1uZ

)′Xt

]
,

which gives the result.

Proposition 3. Multi-horizon Laplace transform of Xt = [Z′t ,Dt ]
′. We have:

ψ
(h)
t (u1, . . . ,uh) := Et(exp[u′1Xt+1 + · · ·+u′hXt+h)

= exp
[
ψ

(h)
0,t (u1, . . . ,uh)+ψ

(h)
1,t (u1, . . . ,uh)

′Xt

]
, (II.7)

where, for all t and for h > 1: ψ
(h)
0,t (u1, . . . ,uh) = ψ

(h−1)
0,t+1 (u2, . . . ,uh)+αt

(
u1 +ψ

(h−1)
1,t+1 (u2, . . . ,uh)

)
ψ

(h)
1,t (u1, . . . ,uh) = βt

(
u1 +ψ

(h−1)
1,t+1 (u2, . . . ,uh)

)
,

(II.8)

and with, for all s, ψ
(1)
0,s (u) = αs(u) and ψ

(1)
1,s (u) = βs(u), functions αs and βs being defined in (II.6).

In practice: Using the notation Uk =ψ
(k)
1,t+h−k(uh−k+1, . . . ,uh) [with, notably, Uh =ψ

(h)
1,t (u1, . . . ,uh)],

the second equation of (II.8) implies that, for k ≥ 2:

Uk = βt+h−k(uh−k+1 +Uk−1),

which allows to compute the Uk (k = 1, . . . ,h) by backward recursions, starting from U1 =

βt+h−1(uh). Once the Uk (k= 1, . . . ,h) are computed, the first equation of (II.8) gives ψ
(h)
0,t (u1, . . . ,uh).

Specifically, for h≥ 1, we have:

ψ
(h)
0,t (u1, . . . ,uh) = αt(u1 +Uh−1)+αt+1(u2 +Uh−2)+ · · ·+αt+h−2(uh−1 +U1)+αt+h−1(uh).

Proof. We have:

Et(exp[u′1Xt+1 + · · ·+u′hXt+h])

= Et
(
Et+1(exp[u′1Xt+1 + · · ·+u′hXt+h])

)
= Et

(
exp
[
u′1Xt+1 +ψ

(h−1)
0,t+1 (u2, . . . ,uh)+ψ

(h−1)
1,t+1 (u2, . . . ,uh)

′Xt+1

])
= exp

[
ψ

(h−1)
0,t+1 (u2, . . . ,uh)+αt

(
u1 +ψ

(h−1)
1,t+1 (u2, . . . ,uh)

)
+βt

(
u1 +ψ

(h−1)
1,t+1 (u2, . . . ,uh)

)′
Xt

]
,

which leads to the result by induction.
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Corollary 1. (Simple) multi-horizon Laplace transform of Xt = [Z′t ,Dt ]
′. Using the ψ notation

introduced in Proposition 3 (via equation II.7), we have:

ψ
(h)
t (0, . . . , 0,u) = Et(exp(u′Xt+h)) = exp

[
at,h(u)+bt,h(u)′Xt

]
,

where bt,k(u) = βt ◦ · · · ◦βt+k−1(u), and

at,h = αt+h−1(u)+αt+h−2(bt+h−1,1(u))+ · · ·+αt+1(bt+2,h−2(u))+αt(bt+1,h−1(u)),

where functions αs and βs are defined in (II.6).

In practice: Using the notation Uk = ψ
(k)
1,t+h−k(0, . . . ,0,u) [with, notably, Uh = ψ

(h)
1,t (0, . . . ,0,u) =

bt,h(u)], the second equation of (II.8) implies that, for k ≥ 2:

Uk = βt+h−k(Uk−1),

which allows to compute the Uk (k = 1, . . . ,h) by backward recursions, starting from U1 = βt+h−1(u).
Once the Uk (k = 1, . . . ,h) are computed, the first equation of (II.8) gives at,h(u) = ψ

(h)
0,t (u1, . . . ,uh).

Specifically, for h≥ 1, we have:

at,h(u) = αt(Uh−1)+αt+1(Uh−2)+ · · ·+αt+h−2(U1)+αt+h−1(u).

II.4 Conditional mean and variance of Wt

Proposition 4. The conditional mean of Wt+1, given the information available at t, is given by:

Et (Wt+1) = α
(1)
W +β

(1)
W Xt , (II.9)

where

α
(1)
W =

0(nZ+nη )×1

µD`
(D)
0

`
(N)
0

 ,
β
(1)
W =


0nZ×nZ 0nZ×nη

0nZ×1 0nZ×1
0nη×nZ Φnη×nη

0nη×1 0nη×1
01×nZ 01×nη

0 0
01×nZ 01×nη

0 ρN

+µD


0nZ×nX

0nη×nX

`
(D)
1
′

01×nX

+µN


0nZ×nX

0nη×nX

01×nX

`
(N)
1
′

 .

Proof. We have Wt = [η ′t ,Dt ,Nt ]
′, where the dynamics of η , Dt and Nt are respectively defined by (27),

(28), and (29). We have:

Et(Wt+1) = Et

Φηt + εη ,t+1
Dt+1
Nt+1

=


Φηt

µD

(
`
(D)
0 + `

(D)
1
′Xt

)
ρNNt +µN

(
`
(N)
0 + `

(N)
1
′Xt

)
 ,
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which gives the result.

Proposition 5. The conditional variance of Wt+1, given the information available at t, is given by:

Vec(Vart(Wt+1)) = α
(2)
W +β

(2)
W Xt , (II.10)

with 
α
(2)
W = Vec


Idnη×nη

0 0
0nη×nη

2µ2
D`

(D)
0 0

0nη×nη
0 2µ2

N`
(N)
0




β
(2)
W = Vec

0nη×nη
0 0

0nη×nη
2µ2

D 0
0nη×nη

0 0

`
(D)
1
′+Vec

0nη×nη
0 0

0nη×nη
0 0

0nη×nη
0 2µ2

N

 ˜̀(N)
1
′,

where ˜̀(N)
1 is such that ˜̀(N)

1
′Xt =

ρN
µN

Nt + `
(N)
1
′Xt .

Proof. The shocks being conditionally independent, we have:

Vart (Wt+1) =

Vart(ηt+1) 0 0
0 Vart(Dt+1) 0
0 0 Vart(Nt+1)



=


Idnη×nη

0 0

0nη×nη
2µ2

D

(
`
(D)
0 + `

(D)
1
′Xt

)
0

0nη×nη
0 2µ2

N

(
ρN
µN

Nt + `
(N)
0 + `

(N)
1
′Xt

)
 ,

which gives the result.

II.5 Conditional mean and variance of Xt = [Z′t ,W
′

t ]
′

Proposition 6. The conditional mean of Xt+h, given the information available at t, is given by:

Et(Xt+h) = α
(1)
t,h +β

(1)
t,h Xt , (II.11)

where{
α
(1)
t,h = µX ,t+h−1 +ΦX ,t+h−1µX ,t+h−2 + · · ·+Φ

h−1
X ,t+1µX ,t ,

β
(1)
t,h = ΦX ,t+h−1ΦX ,t+h−2 . . .ΦX ,t ,
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with

µX ,t =

[
ω0,t+1
0nW×1

]
+

[
0nZ×nZ ωt+1
0nW×nZ IdnW×nW

]
α
(1)
W , and

ΦX ,t =

[
A1,t+1 0nZ×nW

0nW×nZ 0nW×nW

]
+

[
0nZ×nZ ωt+1
0nW×nZ IdnW×nW

]
β
(1)
W .

Proof. Using (II.3), we have:

Xt+1 =

[
Zt+1
Wt+1

]
=

[
A1,t+1Zt +ω0,t+1 +ωt+1Wt+1

Wt+1

]
, (II.12)

and therefore

Et(Xt+1) =

[
A1,t+1Zt +ω0,t+1

0nW×1

]
+

[
0nZ×nZ ωt+1
0nW×nZ IdnW×nW

]
(α

(1)
W +β

(1)
W Xt),

which gives the result for h = 1.
The law of iterated expectation implies that the conditional expectation Et(Xt+h) is given by:

Et(Xt+h) = µX ,t+h−1 +ΦX ,t+h−1Et(Xt+h−1),

which leads to the result.

Proposition 7. The conditional variance of Xt+h, given the information available at t, is given by:

Vec(Vart(Xt+h)) = α
(2)
t,h +β

(2)
t,h Xt , (II.13)

where{
α
(2)
t,h = α

(2)
t+h−1,1 +β

(2)
t+h−1,1α

(1)
t,h−1 +

(
β
(1)
t+h−1,1⊗β

(1)
t+h−1,1

)
α
(2)
t,h−1

β
(2)
t,h = β

(2)
t+h−1,1β

(1)
t,h−1 +

(
β
(1)
t+h−1,1⊗β

(1)
t+h−1,1

)
β
(2)
t,h−1,

(II.14)

with {
α
(2)
s,1 = (Γs⊗Γs)α

(2)
W

β
(2)
s,1 = (Γs⊗Γs)β

(2)
W ,

(II.15)

where Γs =

[
ωs+1

IdnW×nW

]
.

Proof. Let us start with the case h = 1. Using (II.12), we have:

Vart(Xt+1) = Vart

([
ωt+1

IdnW×nW

]
Wt+1

)
= ΓtVart(Wt+1)Γ

′
t+1,
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where Vart(Wt+1) is given by (II.10). This implies that:

Vec(Vart(Xt+1)) = (Γt+1⊗Γt+1)Vec(Vart(Wt+1)) = (Γt+1⊗Γt+1)
(

α
(2)
W +β

(2)
W Xt

)
,

where the last equality is obtained by applying Proposition 5. This proves (II.13) for h = 1 (using II.15).
Let us make the inductive hypothesis that (II.13) holds for h−1. More precisely, assume that, for any date
t:

Vec(Vart(Xt+h−1)) = α
(2)
t,h−1 +β

(2)
t,h−1Xt .

The law of total variance yields:

Vart(Xt+h) = Et(Vart+h−1(Xt+h))+Vart(Et+h−1(Xt+h)).

We get:

Vec(Vart(Xt+h)) = Et

(
α
(2)
t+h−1,1 +β

(2)
t+h−1,1Xt+h−1︸ ︷︷ ︸

using the inductive hypothesis

)
+Vec

(
Vart

(
α
(1)
t+h−1,1 +β

(1)
t+h−1,1Xt+h−1︸ ︷︷ ︸

using (II.11)

))

= α
(2)
t+h−1,1 +β

(2)
t+h−1,1

(
α
(1)
t,h−1 +β

(1)
t,h−1Xt︸ ︷︷ ︸

using (II.11)

)
+Vec

(
β
(1)
t+h−1,1Vart(Xt+h−1)β

(1)
t+h−1,1

′)

= α
(2)
t+h−1,1 +β

(2)
t+h−1,1α

(1)
t,h−1 +β

(2)
t+h−1,1β

(1)
t,h−1Xt +(

β
(1)
t+h−1,1⊗β

(1)
t+h−1,1

)
Vec
(
Vart(Xt+1)

)
= α

(2)
t+h−1,1 +β

(2)
t+h−1,1α

(1)
t,h−1 +β

(2)
t+h−1,1β

(1)
t,h−1Xt +(

β
(1)
t+h−1,1⊗β

(1)
t+h−1,1

)(
α
(2)
t,h−1 +β

(2)
t,h−1Xt

)
,

using (II.13) for h = 1.
To summarize, we have shown that: (II.13) is satisfied for h = 1, and we have shown that, if it is

satisfied for h−1 (with h≥ 2), then it is also satisfied for h (see equation II.13). By induction, it comes
that it is satisfied for any h≥ 1.

In practice, in order to use (II.14), we need:

• α
(2)
t+k,1, β

(2)
t+k,1 for all k of interest, using (II.15);

• α
(1)
t+k,1 ≡ µX ,t+k, β

(1)
t+k,1 ≡ΦX ,t+k for all k of interest;

• α
(1)
t,k , β

(1)
t,k for all k of interest, using (II.11).

III Pricing
III.1 Solving for the s.d.f.
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Proposition 8. In the context described by A.3, i.e. under (38), (39) and (40), and if, for t ≥ t0:

µu,0,t ≡ µu,0, µu,1,t ≡ µu,1, µc,0,t ≡ µc,0, µc,1,t ≡ µc,1, αt(•)≡ α(•) and βt(•)≡ β (•),

then we have:

ut = ct +µu,0,t +µ
′
u,1,tXt , (III.1)

where
µu,0,t = δ (µu,0,t+1 +µc,0,t+1)+

δ

1− γ
αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}

µu,1,t =
δ

1− γ
βt{(1− γ)(µu,1,t+1 +µc,1,t+1)},

(III.2)

and where, for t ≥ t0, µu,1,t solves:

µu,1 =
δ

1− γ
β{(1− γ)(µu,1 +µc,1)}, (III.3)

and µu,0,t satisfies:

µu,0 =
δ

1−δ
µc,0 +

δ

1−δ

1
1− γ

α{(1− γ)(µu,1 +µc,1)}. (III.4)

Proof. We start by positing a specification for the log-utility of the form of (III.1). Our objective is to
determine whether a utility of this form can satisfy (38), and the conditions that then have to be satisfied
by µu,0,t and µu,1,t . Under (III.1), we have:

Et exp [(1− γ)ut+1] = Et exp
[
(1− γ)(ct+1 +µu,0,t+1 +µ

′
u,1,t+1Xt+1)

]
= Et exp

[
(1− γ)(ct +∆ct+1 +µu,0,t+1 +µ

′
u,1,t+1Xt+1)

]
= exp [(1− γ)(ct +µu,0,t+1 +µc,0,t+1)]×

Et exp
[
(1− γ)(µu,1,t+1 +µc,1,t+1)

′Xt+1
]

= exp [(1− γ)(ct +µu,0,t+1 +µc,0,t+1)]×
exp
[
αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}+βt{(1− γ)(µu,1,t+1 +µc,1,t+1)}′Xt

]
.

Substituting for Et exp [(1− γ)ut+1] in (38) gives:

ut = ct +δ (µu,0,t+1 +µc,0,t+1)+

δ

1− γ

(
αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}+βt{(1− γ)(µu,1,t+1 +µc,1,t+1)}′Xt

)
.

Therefore, for ut to be equal to ct +µu,0,t +µ ′u,1,tXt , we need to have (III.2).
Equations (III.3) and (III.4) are obtained by setting µu,1 = µu,1,t = µu,1,t+1 and µu,0 = µu,0,t = µu,0,t+1

in (III.2).

In practice, we start by solving (III.3), which can be done by using the Gauss-Newton algorithm. 49

49A very good approximation to the solution is obtained in a few iteration. A relevant starting value of the Gauss-Newton
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This yields µu,1. Then, we obtain µu,0 by (III.4). Once µu,0,t0 (= µu,0) and µu,1,t0 (= µu,1) are known,
one can deduce the previous µu,i,t’s by backward computations. Specifically, knowing µu,1,t+1, one can
deduce µu,1,t by using the second equation of (III.2). And knowing µu,0,t+1 and µu,1,t+1, the first equation
of (III.2) yields µu,0,t .

Proposition 9. We have:

Mt,t+1 = exp[−(µr,0,t+1 +µ
′
r,1,t+1Xt)+π

′
t+1Xt+1−αt(πt+1)−βt(πt+1)

′Xt︸ ︷︷ ︸
=−ψt(πt), see Prop. 2

],

with 
πt+1 = (1− γ)µu,1,t+1− γµc,1,t+1

µr,0,t+1 = − logδ +µc,0,t+1 +αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}−αt(πt+1)
µr,1,t+1 = βt{(1− γ)(µu,1,t+1 +µc,1,t+1)}−βt(πt+1),

(III.5)

where the (recursive) computation of µu,1,t+1 results from Proposition 8.
The short-term risk-free rate, that is − logEt(Mt,t+1), is given by:

rt = µr,0,t+1 +µ
′
r,1,t+1Xt .

Proof. When agents’ preferences are as in (38), the s.d.f. is given by (e.g. Piazzesi and Schneider, 2007):

Mt,t+1 = δ

(
Ct+1

Ct

)−1 exp[(1− γ)ut+1]

Et(exp[(1− γ)ut+1])
.

Therefore, we have:

logMt,t+1 = logδ −∆ct+1 +(1− γ)ut+1− logEt(exp[(1− γ)ut+1])

= logδ −∆ct+1 +(1− γ)(ct +∆ct+1 +µu,0,t+1 +µ
′
u,1,t+1Xt+1)

−(1− γ)(ct +µu,0,t+1 +µc,0,t+1)

−αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}−βt{(1− γ)(µu,1,t+1 +µc,1,t+1)}′Xt

= logδ −µc,0,t+1−αt{(1− γ)(µu,1,t+1 +µc,1,t+1)}

+
(
(1− γ)µu,1,t+1− γµc,1,t+1

)′
Xt+1−βt{(1− γ)(µu,1,t+1 +µc,1,t+1)}′Xt ,

which leads to the result.

algorithm is obtained by replacing function β , in (III.3), by its first-order Taylor expansion around zero: using Prop. 2, it can be
seen that, when u is small, we have that β (u)≈Mu where

M =

[ [
A′1

0nW×nZ

]
0nX×nW

]
+

 0nX×nZ

 0nZ×nη

Φ′

0(nW−nη )×nη

 µD`
(D)
1 µN ˜̀(N)

1

 ·[ 0nZ×nZ 0nZ×nW

ω ′ IdnW×nW

]
.

Replacing the non-linear function β{(1− γ)(µu,1 +µc,1)} with its linearized version—that is M · {(1− γ)(µu,1 +µc,1)}—in
(III.3) yields the (approximated) solution: µ0

u,1 = δ (I−δM)−1Mµc,1. This vector µ0
u,1 turns out to be a relevant starting value

for the Gauss-Newton algorithm.

53/59



Corollary 2. In this economy, the maximum Sharpe ratio, between dates t and t +1 is given by
(see Hansen and Jagannathan, 1991):

maxSRt =

√
exp(αt(2πt+1)+βt(2πt+1)′Xt)

exp(2αt(πt+1)+2βt(πt+1)′Xt)
−1.

Proof. The maximum Sharpe ratio is given by:√
Vart(Mt,t+1)

Et(Mt,t+1)
=

√
Vart(exp(πt+1Xt+1))

Et(exp(πt+1Xt+1))
=

√
Et(exp(2πt+1Xt+1))−Et(exp(πt+1Xt+1))2

Et(exp(πt+1Xt+1))

=

√
exp(αt(2πt+1)+βt(2πt+1)′Xt)− exp(2αt(πt+1)+2βt(πt+1)′Xt)

exp(αt(πt+1)+βt(πt+1)′Xt)
,

which gives the result.

III.2 Asset pricing

Proposition 10. Consider an asset whose payoff, settled on date t +h, is exp(ω ′Xt+h). The date-t
price of this asset is given by:

ϕ
(h)
t (ω) := exp

(
ϕ
(h)
0,t (ω)+ϕ

(h)
1,t (ω)′Xt

)
,

where{
ϕ
(h)
0,t (ω) = −µr,0,t+1−αt(πt+1)−·· ·−µr,0,t+h−αt+h−1(πt+h)+ψ

(h)
0,t (u1, . . . ,uh)

ϕ
(h)
1,t (ω) = −µr,1,t+1−βt(πt+1)+ψ

(h)
1,t (u1, . . . ,uh),

(III.6)

where the µr,0,t’s, the µr,1,t’s and the πt’s are defined in (III.5), where functions ψ
(h)
0,t and ψ

(h)
1,t are

defined in (II.8) and where:

uk =

{
−µr,1,t+k+1−βt+k(πt+k+1)+πt+k for k = 1, . . . ,h−1,
πt+k +ω for k = h. (III.7)

Proof. The price of this asset is given by:

Et
(
Mt,t+h exp(ω ′Xt+h)

)
= Et

{
exp
(
−
[
µr,0,t+1 +αt(πt)+{µr,1,t+1 +βt(πt)}′Xt

]
−
[
µr,0,t+2 +αt+1(πt+2)+{µr,1,t+2 +βt+1(πt+2)}′Xt+1

]
+π

′
t Xt+1

. . .

−
[
µr,0,t+h +αt+h−1(πt+h)+{µr,1,t+h +βt+h−1(πt+h)}′Xt+h−1

]
+π

′
t+h−1Xt+h−1

+π
′
t+hXt+h +ω

′Xt+h
)}

= exp(−µr,0,t+1−αt(πt)−·· ·−µr,0,t+h−αt+h−1(πt+h))exp(−{µr,1,t+1 +βt(πt)}′Xt)×

exp
[
ψ

(h)
0,t (u1, . . . ,uh)+ψ

(h)
1,t (u1, . . . ,uh)

′Xt

]
,

where functions ψ
(h)
0,t and ψ

(h)
1,t are defined in (II.8) and the uk’s are given in (III.7).
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Corollary 3. Consider an asset whose payoff, settled on date t +h, is ω ′Xt+h. The date-t price of
this asset is:

ϕ̃
(h)
t (ω) = lim

ε→0

ϕ
(h)
t (εω)−ϕ

(h)
t (0)

ε
,

where the computation of ϕ̃
(h)
t (ω) is given by Proposition 10.

Proof. The derivative of exp(xω ′Xt+h) w.r.t. x is ω ′Xt+h exp(xω ′Xt+h). Evaluated at x = 0, this derivative
is equal to ω ′Xt+h, which leads to the result.

Corollary 4. Consider the temperature-indexed bond defined in 2. Denote by ωT the vector that is
such that Tt = ω ′T Xt . The date-t price of this TIB is:

(1−χT 0
t,h)ϕ

(h)
t (0)+χϕ̃

(h)
t (ωT ).

where the computation of ϕ
(h)
t (0) and ϕ̃

(h)
t (ω) are respectively given by Proposition 10 and

Corollary 3.

Proposition 11. Consider an asset whose payoff, settled on date t +h, is:

exp
(
ω
′Xt+h

)
1{a′Xt+h<b}.

The date-t price of this asset is given by:

ϕ̂
(h)
t (ω,a,b) =

ϕ
(h)
t (ω)

2
− 1

π

∫
∞

0

Im[ϕ
(h)
t (ω + iax)exp(−ibx)]

x
dx,

where Im(x) denotes the imaginary part of x and where function ϕ
(h)
t is defined in Proposition 10.

Proof. This is a direct application of Proposition 2 (equation 2.12) of Duffie et al. (2000).

Corollary 5. Consider an asset whose payoff, settled on date t +h, is:

ω
′Xt+h1{a′Xt+h<b}.

The date-t price of this asset is:

ϕ̄
(h)
t (ω,a,b) = lim

ε→0

ϕ
(h)
t (εω,a,b)−ϕ

(h)
t (0,a,b)

ε
,
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where the computation of ϕ̃
(h)
t (ω,a,b) is given by Proposition 11.

Proof. The proof is the same as that of Corollary 3.

III.3 Social cost of carbon
This subsection describes the computation of the Social Cost of Carbon (SCC), as defined by eq. (43).

As shown by Proposition 8, with preferences defined by (38), we have:

ut = log(Ut) = ct +µ0,u,t +µ
′
1,u,tXt ,

or

Ut =Ct exp
(
µ0,u,t +µ

′
1,u,tXt

)
. (III.8)

According to eq. (43), the SCC is given by:

SCCt =−
∂Ut

∂MAT,t

/
∂Ut

∂Ct
.

Given (III.8), we have ∂Ut
/

∂Ct =Ut/Ct and ∂Ut
/

∂MAT,t = µ1,u,t,6Ut (because MAT,t is the 6th component
of Xt , see (II.1)). Therefore:

SCCt =−µ1,u,t,6Ct , (III.9)

In other words, agents are willing to accept an increase in MAT,t of one unit if they are given an extra
consumption of |µ1,u,t,6|Ct .

According to the World Bank, from 2015 to 2019, global final consumption expenditures (C0) were
of $299tr (299×1012). Therefore, if MAT,t is expressed in GtC, the social cost of carbon, expressed in
dollars per ton of carbon, is given by:

|µ1,u,t,6|×299×1012/109 = |µ1,u,t,6|×299000.

Our framework also offers closed-form formulas for expectations of future SCCs. Indeed, using
eq. (III.9), we get:

Et(SCCt+h) = |µ1,u,t,6|Et(exp(ct+h))

= |µ1,u,t,6|C0Et(exp(Cum∆c,t+h)), where Cum∆c,t+h = ∑
t
i=1 ∆ci

= |µ1,u,t,6|C0Et(exp(ω ′cXt+h)),

where ωc = [0, . . . ,0,1]′ (see eq. II.1). This conditional expectation can be computed using Corollary 1.
Furthermore, since:

1{SCCt+h<x} = 1{|µ1,u,t,6|exp(ct+h)<x} = 1{|µ1,u,t,6|C0 exp(ω ′cXt+h)<x} = 1{
ω ′cXt+h<log

(
x

C0|µ1,u,t+h,6|

)},
it comes that the cumulative distribution function of future SCCs can be obtained by Fourier analysis.
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IV Additional results
IV.1 Relationship between carbon concentrations and radiative forcing
Following, e.g., Nordhaus (2017), we consider the following relationship between radiative forcing and
carbon concentration:

Ft−FEX ,t = τ log2

(
MAT,t

MPI

)
+σFηF,t , (IV.1)

where MPI stands for preindustrial concentration of carbon in the atmosphere.
This formulation implies that τ corresponds to the increase in radiative forcing resulting from a

doubling of atmospheric carbon concentration.
Linarizing (IV.1) at MAT,t

MPI
= m0 gives (6), that is:

Ft = τ log2(m0)+
τ

log(2)m0

(
MAT,t

MPI
−m0

)
+FEX ,t +σFηF,t .

In order to optimize the range of values of atmospheric carbon masses for which the linearization
will be relevant, we take a value of m0 that is consistent with the average carbon concentrations that will
prevail between 2020 and 2100. More precisely, we take m0 =

MAT
MPI

, where MAT is the 2020-2100 average
of carbon masses underlying the IPCC 4.5 and 6.0 scenarios.

Panel (a) of Figure IV.1 compares (IV.1) to its linearized version (6). Panel (b) shows the model-implied
distribution of carbon concentrations for two future dates, 2050 and 2100. In Panel (a) of Figure IV.1, we
also report 90% confidence intervals for the future pairs (MAT,t+h,Ft+h−FEX ,t+h). Together, these two
panels suggest that, for the most likely values of future carbon masses, the first-order approximation of
(IV.1) is of good quality.

IV.2 Mitigation rate
Figure IV.1 displays our model-implied emission control rate µt (see Subsection 4.2, and more precisely
eq. 14). For the sake of comparison, the figure also shows the emission control rate prevailing in the 2016
version of the DICE model (Nordhaus, 2017).
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Figure IV.1. Relationship between radiative forcing and atmospheric carbon concentration
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Note: This figure illustrates the quality of the first-order approximation of (IV.1). In Panel (a), the solid line (respectively
the dashed line) represents the conditional expectation E(Ft −FEX ,t |MAT,t) resulting from the non-linear equation (IV.1) (resp.
from the equation 6, that is its first-order approximation at m0). Panel (b) displays the distributions of MAT,t for two dates t
(2050 and 2100).
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Figure IV.2. Mitigation rate
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Note: This figure displays the mitigation rate (µt ) underlying our baseline calibration (parametric representation 19). The red
line represents the mitigation rate of the 2016 version of the DICE (Nordhaus, 2017).
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