ESG news spillovers to (and from) the supply chain

Guillaume Coqueret* Vu Le Tran†

June 3, 2022

Abstract

We document the impact of ESG shocks on the returns of suppliers and clients of affected firms. Our equilibrium model suggests that this impact is contingent not only on the sign and magnitude of the shock, but also on the product between the shock and the level of the ESG score. An empirical analysis of US stocks, along with their global clients and suppliers, reveals that ESG shocks are integrated into prices intra-daily and that the cross-effect between shocks and ESG levels is statistically significant. The indirect diffusion of ESG shocks to customers' and suppliers' returns is also significant, but takes more time (a few days) and is less pronounced.

*EMLYON Business School, 23 avenue Guy de Collongue, 69130 Ecully, FRANCE. E-mail: coqueret@emlyon.com

†Corresponding author, Nord University, Norway. E-mail: vu.l.tran@nord.no. Vu Le Tran thanks the Norwegian Research Council and NorQuant AS for the support via the research project grant 309603: “Machine Learning for Transparent and Sustainable Investing”.

1
1 Introduction

Financial markets react to news flows. The integration of announcements into prices has been a recurring topic in financial economics for decades. Simply put, stock market participants are likely to update their expectations when they receive new pieces of relevant information. Their positions are then updated, which, in relatively inelastic markets (Gabaix and Koijen (2021)), may shift prices up or down, depending on whether the total demand for an asset is higher or lower than the corresponding supply.

Originally, signals consisted of two types mainly: macro-economic news (inflation, GDP, unemployment, consumption, etc.) and firm-specific announcements (earnings, dividends, stock splits). Nowadays, with the advent of so-called alternative data, the sources of signals are diversified and it has been documented that many drivers of mood can shift markets (the weather (Hirshleifer and Shumway (2003)), soccer scores (Edmans et al., 2007), and even music tone (Edmans et al., 2021).

The heterogeneity in drivers of expectations at the stock level is driven by the large spectrum of fields that data providers sell to investors. Recently, sentiment and sustainability have expanded the palette of firm-specific attributes, even if their relevance for predictability and portfolio choice remains an open question. Many contributions find value in sentiment, whether aggregate (Baker and Wurgler (2006), Bollen et al. (2011), Da et al. (2015), and Fraiberger et al. (2021)), or stock-specific (Chen et al. (2014) and Zhang et al. (2016) to cite but a few), but favorable findings may also be due to the publication bias towards positive results, as is argued in Coqueret (2020), in which sentiment is found to have limited predictive power over future returns, at least at daily frequencies. With regard to sustainability, the debate is at least as rich and notoriously unsettled.\(^1\)

In the present paper, we analyze the impact of environmental, social and governance (ESG) shocks not only on firms’ stock returns, but also on their suppliers’, or their clients’ returns. The rationale is that positive or negative news for a corporation is likely to boost or shrink future sales, or influence the reputation of its suppliers or clients, and thus impact its value chain.

We propose a theoretical model in which sustainability-aware agents trade according to ESG news and shocks therein. The model predicts that returns should be impacted by ESG shocks, but also by an interaction term that links these shocks to the current level of the sustainability score. This term implies that shocks do not affect all firms in the same manner, and that the raw greenness of the firms also matters. The rationale is that a positive or negative shock does not have the same significance for a green or brown firm. Our second model generalizes the first by incorporating the sustainability scores of clients or suppliers into the pricing model of ESG-

\(^1\)We refer to chapter 4 of Coqueret (2022) for a review on the link between corporate and social responsibility on one hand, and financial performance on the other (see http://www.esgperspectives.com/Perf.html).
aware agents. We test our theoretical predictions on a sample of US firms which are linked to their most important clients and suppliers worldwide. To this purpose, we run panel regressions that seek to explain firms’ returns depending on their own ESG scores, and/or that of their clients or customers.

Our empirical contributions can be summarized as follows. First, we document a significant impact of ESG shocks on firms’ returns, on their customers’ returns, and on their suppliers’ returns, even after controlling for the most common asset pricing factors. Second, the impact of a firm’s ESG shock on its own return is immediate. The significant coefficients pertain to synchronous terms: firms’ return on a given day are hit by their own ESG news released during that day. There is therefore little predictive power of ESG shocks, at least at the daily frequency. However, we also find that shocks take more time to diffuse along the value chain, as it takes them a few days (two to three) to impact the returns of a firm’s main supplier or customer. This spillover effect on the values chain is less pronounced than the direct effect. Third, a shock related to materialized ESG topics spreads quicker through the supply-chain than a common ESG shock. Finally, the impact of ESG shock is more salient in recent years, concomitantly with the rise of investor awareness toward sustainability.

An important empirical confirmation is that the impact of shocks, both direct or stemming from the value chain, is indeed contingent on the original level of the ESG score. We reveal an asymmetric effect: brown firms react more positively to positive news, while green firms are more resilient to negative news. This latter finding is somewhat counter-intuitive, as green firms seem to have more to lose from a negative shock to their reputation.

The remainder of the paper is structured as follows. Section 2 is dedicated to the literature review. The theoretical models are presented in Section 3. Section 4 presents our dataset, while Sections 5 and 6 detail and discuss our empirical results. Finally, Section 7 concludes.

2 Literature review

Our paper first relates to the studies on the diffusion of news into asset prices, which has been a recurring topic, from the seminal work of Beaver (1968) and Fama et al. (1969), to Dow and Gorton (1993) and Mitchell and Mulherin (1994), and, more recently, to Curtis et al. (2014), Engelberg et al. (2018), Hirshleifer et al. (2021) and Hirshleifer and Sheng (2021). Macroeconomic drivers are for example analyzed in the early contributions of Bodie (1976), Fama (1981), Pearce and Roley (1985), Chen et al. (1986), Jain (1988), and Flannery and Protopapadakis (2002). At a more granular levels, stock-specific signals are also exhaustively followed by researchers and

2 Though the scope of the study is different, this can be put into perspective with the positive link between materiality disclosure and price informativeness documented in Grewal et al. (2021).
A longstanding asset pricing anomaly is the post earnings announcement drift (see, e.g., Foster et al. (1984), Patell and Wolfson (1984), Bernard and Thomas (1989), and Dontoh et al. (2003), to cite but a few). Relatedly, the price impact of dividends has also been investigated in Litzenberger and Ramaswamy (1982), Kane et al. (1984), Miller and Rock (1985) and Naranjo et al. (1998). With the advent of text processing, researchers and practitioners have started delving into the impact of individual pieces of news (articles in traditional outlets, posts on social media, earnings conference calls, etc.) on asset prices. We refer to Jeon et al. (2021) and the references therein, as well as to Eccles and Serafeim (2013) and Tomlinson et al. (2021) for contributions focused on sustainability.

A second adjacent stream of the literature pertains to the impact of ESG scores and news on financial performance. For instance, Giese et al. (2019) identify three channels through which ESG impacts financial performance: cash-flow, risk, and valuation. All three channel are rooted in a discounted cash-flow model. Zeidan and Spitzeck (2015) provide an example of a detailed accounting-based valuation derived from alterations of cash flows and weighted average cost of capital (WACC). Empirically, Derrien et al. (2021) find that most of the ESG-linked variation in valuation comes from the cash-flow channel and that the discount rates are not much affected by ESG scandals. Capelle-Blancard and Petit (2019), de Franco (2020), Dorfleitner et al. (2020) and Gloßner (2021) also report that ESG incidents do matter and are negatively related to future returns. However, Aouadi and Marsat (2018) document the reverse effect.

In a similar vein, Serafeim and Yoon (2022b) report a positive link between ESG news and price fluctuations. The authors also show that stocks price reacts to the unexpected part of the ESG news. Moreover, Serafeim and Yoon (2022a,b) document the mitigating role of disagreement. They find that ESG shocks to have an impact on future returns, but this impact is stronger when raters are in unison. Our paper adds another layer to the discussion. We argue that stock prices’ reaction to ESG news not only depends on the ESG news, and the current ESG rating but also on the interaction between these two.

The role of media and investor attention in the diffusion of sustainability shocks is analyzed in Wong and Zhang (2021) and Zhang et al. (2021). Another adjacent study is that of Adenot et al. (2022), who analyze the impact of carbon pricing on firm values. They use an input-output model to estimate the effect, on firm earnings, of the introduction of a carbon tax.

Lastly, our research also relates to the contributions pertaining to supply chain networks and the spillover effects therein. For example, Oberfield (2018) proposes a theoretical model on the architecture of firm’s input-output and on the choice of optimal suppliers. Inter-firm relationships also impacts the decision on firm’s capital structure (Banerjee et al., 2008), while bankruptcy fillings can adversely affect other firms in the supply chain (Hertzel et al., 2008). Cohen and Frazzini (2008) show that a firm’s price momentum effect can spread to firms that are
economically linked to this firm (both customers and suppliers). Barrot and Sauvagnat (2016) and Pankratz and Schiller (2021) both document evidence of spillover effects in the supply chain when a climate shock or disaster occurs. This effect can first adversely impact other firms’ sales and operating income, but can also break down the production link between firms. Schiller (2018) and Dai et al. (2021) show that environmental and social policies can transmitted from customers to suppliers firms. Finally, Bose and Pal (2012) prove that announcements related to supply chain management can be drivers of stock prices.

We contribute to these streams of literature by looking into the propagation of ESG shocks alongside the supply chain, from a return standpoint. In contrast to other studies which investigate the impact on low frequency accounting data, we use daily frequency return data to study the swift market reactions when there are ESG shocks in the value chain. We also predict and confirm that the ESG news propagation effect is non-linear because it depends both on the magnitude of the shock and on the current ESG rating of the affected firm.

3 Stylized equilibrium model

Time is discrete and there are N firms (risky assets) indexed by n in which agents can invest at any time t to gain some random time $(t+1)$ payoff. The price of shares is denoted with $p_{t,n}$, or, equivalently, p_t in column vector form when stacking all time-t prices. For simplicity, we will assume that the payoff is the time $(t + 1)$ price plus the dividends received between time t and time $t + 1$. The payoff for firm n is thus $p^*_{t+1,n} = p_{t+1,n} + d_{t+1,n}$.

All firms are publicly ranked by a third party agency according to some sustainability criterion, which we denote with $g_{t,n}$. The scores are normalized so that, in the cross-section, they always lie in the unit interval, i.e., $g_{t,n} \in [0, 1]$: a zero score pertains to a brown firm while a unit value signals firms with the highest sustainability standards. In addition, we assume that a risk-free asset is available in unlimited supply and pays a fixed payoff of $r > 0$ at each period.

3.1 Agents and partial equilibrium

There are two types of agents in the economy. The first type are signal traders who seek to maximize their expected utility over future wealth W_{t+1} via their portfolio allocation x:

$$U(x) = E_t[W_{t+1}] - \frac{\gamma}{2} V_t[W_{t+1}], \quad \text{with} \quad W_{t+1} = r (W_t - x' p_t) + x' p^*_{t+1}, \quad (1)$$

A unique company-specific ESG score is unlikely in practice, see Dimson et al. (2020) and Avramov et al. (2022). Nevertheless, the subtleties in sustainability ratings is out of the scope of the present paper.
where $E_t[\cdot]$ and $V_t[\cdot]$ are the agents’ conditional expectation and variance operators and x' is the transpose of vector x. This formulation follows that of Admati (1985) and Kacperczyk et al. (2019) closely and reads, in more compact form:

$$U(x) = r (W_t - x'p_t) + x'E_t[p_{t+1}^*] - \frac{\gamma}{2} x'\Sigma x,$$

where Σ is the (conditional) covariance matrix of the payoffs p_{t+1}^*. For simplicity, we assume that it is constant in time. The first order conditions imply that optimal allocations are

$$x^* = \gamma^{-1}\Sigma^{-1}(E_t[p_{t+1}^*] - rp_t).$$

The signal traders, who represent a share μ of the market, form their expectations $E_t[z_{t+1}]$ based on sustainability signals (e.g., ESG scores), which they observe in a fashion we will detail subsequently. The second type of agents are liquidity providers who serve as market makers. Equivalently, they can be considered as investors who trade based on information that is orthogonal to the signal mentioned above. They make for $1 - \mu$ of the market and their only purpose in the model is to supply shares to the signal traders for reasons that are unrelated to the signal. We write ν_t for the vector of this supply. Thus, the market clearing condition imposes $\mu x^* = (1 - \mu)\nu_t$, i.e.,

$$p_t = r^{-1}\left(E_t[p_{t+1}^*] - \frac{(1 - \mu)}{\mu}\Sigma\nu_t\right).$$

This implies that the equilibrium return vector of all assets can be decomposed as

$$r_{t+1} = \text{diag}(p_t)^{-1}(p_{t+1} - p_t)$$

$$= r^{-1}\left(\text{update in (relative) expectations} \right) - \gamma \frac{(1 - \mu)}{\mu} \text{supply shock} \left[\text{diag}(p_t)^{-1}(E_t[p_{t+2}^*] - E_t[p_{t+1}^*]) - \gamma \frac{(1 - \mu)}{\mu} \text{diag}(p_t)^{-1}(\nu_{t+1} - \nu_t)\right],$$

where $\text{diag}(v)$ is the diagonal matrix with vector v as diagonal elements. Essentially, supply shocks will be taken as innovations. The terms $\text{diag}(p_t)^{-1}E_t[p_{t+1}^*]$ and $\text{diag}(p_t)^{-1}E_t[p_{t+2}^*]$ are the one period-ahead and two period-ahead expected payoffs, relative to the current price level. The difference between the two is at the center of our model, as it will reflect how traders view ESG news both as signals and shocks. The next subsection is dedicated to this topic.

Naturally, one very important quantity in the above equation is μ. In Berk and van Binsbergen (2021), the share of green investors is shown to be an important driver of the cost of capital of firms. If μ is very small and ESG traders are scarce, they will not have sufficient impact.
to substantially move prices. In this case, the update in expectations in Equation (3) may be unlikely to affect asset returns. This will also depend on how inelastic the demands can be (see, e.g., Gabaix and Koijen (2021) for the aggregate market). Typically, it may occur that liquidity suppliers be inactive after an important signal, resulting in small magnitude ϵ_{t+1}, whereas the signal is actively used by ESG signal traders.

3.2 Price expectations

Signal traders form their expectations on ESG ratings via the following dividend growth model over the whole payoff (price plus dividend):

$$p^*_n(g_n) = \frac{c_n}{r_n(g_n) - \delta_n(g_n)}(1 + \kappa_n(g_n)),$$

where c_n is the cash-flow of firm n, $\delta_n(g_n)$ its growth rate, and $r_n(g_n)$ the cost of capital. We omit the time index for notational convenience. The last term of the equation pertains to expected dividends and κ_n is the dividend yield of firm n (dividend divided by price).

There are reasons to believe that the dividend yield does indeed depend on the level of sustainability of firms. For instance, Giese et al. (2019) and Cheung et al. (2018) show that dividend yields are increasing with ESG scores or CSR policy. Nevertheless, in our framework, what matters is the local shock to ESG scores, which occurs at high frequency (daily, in our empirical study). It is unlikely that dividend news be released concomitantly with ESG scores, meaning that, in practice, signal traders will only focus on the latter. Consequently, we will henceforth overlook the dividend issue in our model and equate payoffs with prices ($p = p^*$), or, equivalently, set $\kappa_n = 0$. Technically, this simplification could also be circumvented by considering that κ_n does not depend on g_n and acts as a scaling constant in the expression of payoffs.

Simply put, signal traders view sustainability scores as the only drivers of expected returns. The rationale is the following. In a world with environmentally-aware customers, news on sustainability are likely to affect the propensity of the public to purchase a firm’s goods or services. For instance, a negative signal (e.g., a severe downgrade in ESG rating linked to a scandal on emissions, $\Delta g \ll 0$) may lead clients to boycott the firm. Reversely, positive news, like pledges to Sustainable Development Goals, may incite new customers to buy products from the firm.

Both rates in Equation (4) are functions of the sustainability score g_n, and are assumed to
be C^∞ over their respective domains, which is the unit interval. As is customary, these rates are of course such that the price remains strictly positive.

If we further omit the firm index and resort to a second order application of the Taylor expansion, we have that a payoff subject to an ESG shock Δg satisfies

$$p(g + \Delta g) = p(g) + p'(g)\Delta g + \frac{p''(g)}{2}(\Delta g)^2 + R,$$ \hspace{1cm} (5)

where R is the residual of the expansion (third order and higher order terms). Because $g \in [0, 1]$, shocks to g can also only lie in the unit interval, so that powers of Δg become infinitesimally small. We have removed the star superscript * so that it does not interfere with the differential notation: henceforth, p will stand for payoffs or price, interchangeably. Furthermore, we have

$$p'(g) = -c(1 + \kappa) \frac{r'(g) - \delta'(g)}{(r(g) - \delta(g))^2} = -p(g) \times \frac{r'(g) - \delta'(g)}{r(g) - \delta(g)},$$

$$p''(g) = -c(1 + \kappa) \left[\frac{(r''(g) - \delta''(g))(r(g) - \delta(g)) - 2(r'(g) - \delta'(g))^2}{(r(g) - \delta(g))^3} \right]$$

$$= -p(g) \times \left[\frac{(r''(g) - \delta''(g))(r(g) - \delta(g)) - 2(r'(g) - \delta'(g))^2}{(r(g) - \delta(g))^2} \right].$$

We now make a strong analytical assumption. We posit a payoff model for signal traders such that payoffs in Equation (4) have the following form:

$$p = ce^{ag^2 + bg}$$ \hspace{1cm} (6)

The rationale for this choice is that it ensures positive payoffs that are non-linear in g. Because this parametrization is crucial for our model, we discuss it in more detail in Subsection 3.3 below.

We do not impose any sign on the parameters in order to leave room for payoffs that can be concave or convex and increasing or decreasing in g, and even non-monotonic. The first and second order sensitivities are then

$$p'(g) = (2ag + b) \times p(g)$$ \hspace{1cm} (7)

$$p''(g) = (4a^2g^2 + 4abg + 2a + b^2) \times p(g)$$ \hspace{1cm} (8)

Plugging these expressions into Equation (5), we get that traders expect relative changes to have the following shape:

$$\frac{p(g + \Delta g) - p(g)}{p(g)} = (2ag + b)\Delta g + \frac{1}{2}(4a^2g^2 + 4abg + 2a + b^2) \times (\Delta g)^2 + R.$$ \hspace{1cm} (9)
The above equation is very important because it implies that the reaction of payoffs to shocks in sustainability (Δg) is contingent on the initial level of sustainability, g. If we focus on the first order term only, it is plain that depending on the sign of $2ag + b$, the impact of the shock may change from positive to negative, or vice-versa.

Now, we can choose the level of approximation in the Taylor series. We consider two cases: either ignore the terms beyond the first order term or ignore the residual term R only. Then, if we allow for nonzero idiosyncratic supply shocks, the equilibrium relationship in Equation (3) can be written as

$$r_{t+1,n} = a_n + b_1 \Delta g_{t+1,n} + b_2 g_{t,n} \Delta g_{t+1,n} + e_{t+1,n}, \quad \text{(first order), or}$$

$$r_{t+1,n} = a_n + b_1 \Delta g_{t+1,n} + b_2 g_{t,n} \Delta g_{t+1,n}$$

$$+ d_0 (\Delta g_{t+1,n})^2 + d_1 g_{t,n} (\Delta g_{t+1,n})^2 + d_2 g_{t,n}^2 (\Delta g_{t+1,n})^2 + e_{t+1,n}, \quad \text{(second order)}$$

where $e_{t+1,n}$ encompasses the demeaned supply shocks of stock n and a_n equals their means.

The fact that expectations are positively linked to ESG shocks (i.e., $b_1 > 0$) is not straightforward. For instance, Pástor et al. (2021) propose a model in which expected returns are a decreasing function of sustainable scores. Avramov et al. (2022) contend that this argument can be mitigated by risk or ambiguity, when ESG ratings are subject to measurement uncertainty.

One very important novelty in Equation (10) is the inclusion of the interaction term between the level g and the change Δg. This implies that a shock to the sustainable score will heterogeneously impact firms, depending on their original rating. This makes sense: a firm with outstanding ESG credentials is much more at risk with respect to ESG scandals that a firm with an already brown reputation.

Technically, the model predicts that the errors, or innovations, in the model be correlated because of the links in the payoffs (via the covariance matrix Σ in Equation (3)). In order to mitigate this issue, we will propose two solutions in our empirical study. First, we will include control variables in the panel models to take into account the correlation arising from systematic risk. Indeed, we include the Fama and French (2015) factors, as well as the momentum factor. Several papers (e.g., Hou et al. (2015), Harvey et al. (2016), Green et al. (2017), Kelly et al. (2019), and Hou et al. (2020)) argue that a handful of characteristics-based factors (i.e., size, value, profitability, momentum, etc.), suffice to capture the variety of the cross-section of stocks returns. Moreover, Barillas and Shanken (2018) show that a family of 6 such factors is superior to other models in explaining cross-sectional returns. These are also the most common factors used in the literature. In addition to the control variables, to account for the correlation that may not be captured by the systematic factors, our second solution involves the clustering of errors in the computation of standard errors, by firms and by dates, as is advocated by Thompson.
(2011). Clustering standard errors is often useful (see for example Abadie et al. (2017)), and helps reduce bias in standard errors when dealing with a large enough number of clusters of each dimension (Petersen (2009)) - which will be the case in our sample. The combination of clustered errors and control variables is expected to improve the quality of inference in our results.

3.3 Comments

We now spend some time commenting on the terms in Equations (4), (5) and (6). First, in the first two, we have not specified any shape for the cost of capital function \(r \) nor for the growth rate of cash flows \(\delta \). Let us now assume, for simplicity, that they are either convex or concave on the unit interval. This implies that the traders anticipate a non-linear impact of \(g \) over valuation. While most studies assume linear impacts in panel models, this stylized property of non-linearity has been documented in the literature in relationship to various proxies of financial performance, notably in Barnett and Salamon (2006), Brammer and Millington (2008), Harjoto et al. (2017) and Gerged et al. (2021).

However, as is shown in Figure 1, this leaves room for several combinations, depending on where \(r \) and \(\delta \) reach their optimal values. In some cases, ‘average’ values of \(g \) may be optimal for prices (left panel): cost of capital is low and growth rate is high. In other configurations, extreme sustainability (or brownness) will be rewarded (center figure). Finally, intermediate combinations are also possible (right plot). We recall that these curves model the (shared) beliefs of the signal traders. With respect to financial performance, it is reasonable to assume that the net impact of both rates can be \(U \)-shaped, meaning that extremes perform better. Brown businesses (sin stocks) benefit from lucrative activities, while green firms are more resilient and have loyal customers and more stable cash-flows.

A key point in Equation (6) is that of the estimation of coefficients. For instance, there are at least two ways to exploit the links therein. First, in the specification \(p_{t,n} = c_n e^{a_n g_{t,n}^2 + b_n g_{t,n}} \) time-series for fixed \(n \) can be used to estimate the firm-specific coefficients \(a_n, b_n \) and \(c_n \) on the log-prices. This could be troublesome if \(g_{t,n} \) is released at very low frequencies (e.g., annually), thereby implying very small samples. More straightforwardly, the estimation could be directly performed on returns, as is suggested in Equation (10) for instance.

In a second specification, the coefficients would be kept constant in the cross-section of firms \((p_{t,n} = c e^{a g_{t,n}^2 + b g_{t,n}}) \), and a panel model would estimate an average exposure to the \(g \) and \(g^2 \) scores. This is the route we take in this paper, but with returns as dependent variables.
3.4 Indirect impacts: clientele and supply chain

Heuristically, a negative ESG shock for a firm is likely to cascade to its clients (Hartmann and Moeller (2014)), but also potentially to its suppliers. Reversely, being cautious with regard to the supply chain may prove beneficial (Sancha et al. (2015), Yawar and Seuring (2018), Subramaniam et al. (2020), and de Bodt et al. (2022)). In the cash-flow channel, lower sales for a firm (because of negative news coverage) may engender higher product stocks and thus lower purchases in the near future for its providers. This may trigger a diminished activity for the supply chain of the firm.

In this subsection, we propose a model that links the ESG shock of a given firm to the returns of its customers or suppliers. To this purpose, we generalize Equation (4) by assuming that growth and discounting rates depend not only on the sustainability score of the firm, but also on those of its suppliers or clients. We must now consider discount and growth rates such that

\[r \left(g_n + \sum_{i \in S_n} \eta_i g_i \right), \quad \text{and} \quad \delta \left(g_n + \sum_{i \in S_n} \eta_i g_i \right), \]

where \(S_n \) is the set of indices of the suppliers (or, alternatively, of the clients) of firm \(n \), and the \(\eta_i \) are scalars that code the heterogeneity in the importance of each supplier for the firm. Under
the same assumptions as above, the first order impact of a shock to the sustainability rating in Equation (10) then becomes:

\[r_{t+1,n} = a_n + b_1 \left(\Delta g_{t+1,n} + \sum_{i \in S_n} \eta_i \Delta g_{t+1,i} \right) + b_2 g_{t,n} \left(\Delta g_{t+1,n} + \sum_{i \in S_n} \zeta_i \Delta g_{t+1,i} \right) + e_{t+1,n}, \tag{13} \]

This specification is the one, up to coefficient names, that we will use in our empirical study. Given that updates in ESG scores are relatively rare, for one given date, the set of nonzero \(\Delta g_i \) often consists of only one firm (client or supplier).

4 Data

To investigate the direct and indirect spillover effects of ESG news to stocks’ return, we merge three data sets: Truvalue for ESG news data, FactSet Revere for the supply chain relationships, and finally FactSet Price data for prices and returns.

First, we collect daily prices (and returns) and share outstanding of all common stocks traded on NYSE, NASDAQ, NYSE American (formerly known as AMEX) exchange, from FactSet Price. Second, we gather the supplier and customer relationship data from FactSet Revere. FactSet Revere provides data on the links between supplier and customer for public companies worldwide. They also collect the percentage of revenue that a customer-firm contributes to the overall revenue of the supplier. FactSet Revere also ranks the importance of each customer (and each supplier) for a firm, based on several factors, such as: customer revenue contribution, the company disclosing the relationship, and other meta data. In our study, for tractability, we only focus on the main supplier and the main customer of US firms.

Next, we extract the ESG data for all US firms, as well as the ESG scores of their main supplier, and that of their main customer using TruValue Data. ESG data providers used to resort on companies’ annual reports as a main input to derive ESG profiles. In contrast to this practice, TruValue takes an outside-in approach and only uses information that is external to the companies: this decreases the self-reporting bias. In addition, TruValue collects and aggregates unstructured contents regarding a company’s ESG profile from more than 100,000 sources. This data is both semantic and quantitative for more than a dozen languages. The raw content is usually derived from article news, and reports from non-governmental organizations (NGOs), watchdog institutions, etc. Then, relevant metrics from this data is analyzed, and sorted into 26 categories defined by the Sustainability Accounting Standards Board (SASB). Finally, TruValue normalizes these indicators and generates sustainability performance scores from short-term to long-term.

In our study, we use the Pulse score which is a measure of near-term performance of the
companies’ sustainability. The Pulse score is disclosed at a daily frequency. It focuses on events of the day and provides a responsive signal when there is a shock to the company’s ESG profile. Hence, a shock to the Pulse score will serve as proxy for what we refer to Δg in the theoretical model.

ESG disagreement is an important issue widely reported in the literature.\(^5\) However, the providers that supply daily scores with no self-reporting bias are scarce, which is why we resort to TruValue data only. For example, MSCI, Sustainalytics, and Refinitiv either do not update their fields daily, or rely at least partially on company-provided information.

We use two main ESG measures in our study. The first is the *All Categories Pulse (ACP)*, which summarize the ESG scores of all 26 ESG categories following the nomenclature of the SASB. Another one is the *Materiality Pulse (MP)* score, which only summaries the ESG categories that the SASB considers financially material to that company. We standardize the ESG measures in the cross-section to have a score from 0 to 1. A score of 0.50 means a neutral impact, while values above (resp. below) 0.50 correspond to positive (resp. negative) news.

Unlike previous studies on the economic and financial ramifications of supply chains that rely on COMPUSTAT data,\(^6\) and hence focus only on the customer firms that are in the US, our sample is not hindered by such a restriction. For any US company in our sample, we are able to determine its main suppliers and its main customers, either in the US, or abroad. This feature is noteworthy because the supply chain network is increasingly global.

Upon the merger of our three data sets, we obtain three samples. The first sample consists of all US common stocks for which a TruValue score is available. We report the cross-section summary statistics of ACP and MP measures in Panel A of Table 1. The sample has on average around 2800 firms each day. We use this sample to study the direct effect of ESG news shock to stocks’ return.

The second sample consists of US firms and their main customers for which ESG scores are available. We report the summary statistics of ACP and MP of the customer firms in Panel B of Table 1. The sample has on average around 1,300 pairs each day. We use this sample to investigate the spillover effect of ESG news shocks to US suppliers, from their main customer.

The third sample pertains to US firms and their main suppliers (when they have well-defined ESG scores). We report the summary statistics of ACP and MP of the supplier firms in Panel C, Table 1. The sample has on average around 1,000 pairs each day. With this sample, we study the spillover effect of ESG news shocks to US customers from their main supplier.

All three samples encompass data from January 2007 to May 2021. From the last column

\(^5\)We refer for instance to Dimson et al. (2020), Gibson Brandon et al. (2021), Avramov et al. (2022), Berg et al. (2022), Christensen et al. (2022), and Serafeim and Yoon (2022a).

\(^6\)See, e.g., Barrot and Sauvagnat (2016), Banerjee et al. (2008), Cohen and Frazzini (2008), and Hertzel et al. (2008)
Table 1: Summary statistics of ESG measures for ACP (All Categories Pulse) and MP (Materiality Pulse) after normalization. We do a cross-sectional summary first for each day and then take the average across time. In the table, the abbreviation “sd” means standard deviation. “Q0.25”, “Q0.5”, and “Q0.75” correspond to the 25%, 50%, and 75% quantiles, respectively. The term Corr(t, t − 1) refers to the correlation between the measure and its first lag. We also report the summarized statistics of the changes in either ACP or MP in absolute terms, conditionally on the change being non-zero. In Panel A, we use the sample of all US firms and report the summary statistics of ESG measures. In Panel B, we use the sample that consists of main customers of US firms, while in Panel C, the sample pertains to main suppliers of US firms. All three samples consist data from January-2007 to May-2021.

Panel A: All US firms

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>Q0.25</th>
<th>Q0.5</th>
<th>Q0.75</th>
<th>Corr(t, t − 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>2795</td>
<td>0.53</td>
<td>0.21</td>
<td>0.51</td>
<td>0.01</td>
<td>1.00</td>
<td>0.99</td>
<td>-0.07</td>
<td>-0.34</td>
<td>0.40</td>
<td>0.40</td>
<td>0.51</td>
<td>0.68</td>
</tr>
<tr>
<td>MP</td>
<td>2486</td>
<td>0.54</td>
<td>0.22</td>
<td>0.52</td>
<td>0.00</td>
<td>1.00</td>
<td>0.99</td>
<td>-0.13</td>
<td>0.01</td>
<td>0.40</td>
<td>0.52</td>
<td>0.69</td>
<td>0.99</td>
</tr>
<tr>
<td>∆ACP</td>
<td>169</td>
<td>0.06</td>
<td>0.10</td>
<td>0.02</td>
<td>0.00</td>
<td>0.60</td>
<td>0.60</td>
<td>2.92</td>
<td>10.61</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>∆MP</td>
<td>114</td>
<td>0.07</td>
<td>0.10</td>
<td>0.03</td>
<td>0.00</td>
<td>0.57</td>
<td>0.57</td>
<td>2.73</td>
<td>9.07</td>
<td>0.01</td>
<td>0.03</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Main customer of US firms

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>Q0.25</th>
<th>Q0.5</th>
<th>Q0.75</th>
<th>Corr(t, t − 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>1248</td>
<td>0.53</td>
<td>0.15</td>
<td>0.52</td>
<td>0.03</td>
<td>0.98</td>
<td>0.95</td>
<td>-0.02</td>
<td>0.76</td>
<td>0.44</td>
<td>0.52</td>
<td>0.61</td>
<td>0.98</td>
</tr>
<tr>
<td>MP</td>
<td>1227</td>
<td>0.53</td>
<td>0.18</td>
<td>0.52</td>
<td>0.02</td>
<td>0.99</td>
<td>0.97</td>
<td>-0.08</td>
<td>0.33</td>
<td>0.43</td>
<td>0.52</td>
<td>0.64</td>
<td>0.98</td>
</tr>
<tr>
<td>∆ACP</td>
<td>488</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.39</td>
<td>0.39</td>
<td>5.68</td>
<td>47.87</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>∆MP</td>
<td>386</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.39</td>
<td>0.39</td>
<td>5.10</td>
<td>38.52</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Panel C: Main supplier of US firms

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>median</th>
<th>min</th>
<th>max</th>
<th>range</th>
<th>skew</th>
<th>kurtosis</th>
<th>Q0.25</th>
<th>Q0.5</th>
<th>Q0.75</th>
<th>Corr(t, t − 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>977</td>
<td>0.53</td>
<td>0.17</td>
<td>0.52</td>
<td>0.03</td>
<td>0.98</td>
<td>0.95</td>
<td>-0.07</td>
<td>0.42</td>
<td>0.44</td>
<td>0.52</td>
<td>0.63</td>
<td>0.98</td>
</tr>
<tr>
<td>MP</td>
<td>953</td>
<td>0.53</td>
<td>0.19</td>
<td>0.53</td>
<td>0.02</td>
<td>0.98</td>
<td>0.96</td>
<td>-0.10</td>
<td>0.06</td>
<td>0.42</td>
<td>0.53</td>
<td>0.66</td>
<td>0.99</td>
</tr>
<tr>
<td>∆ACP</td>
<td>316</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.38</td>
<td>0.38</td>
<td>5.11</td>
<td>37.49</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>∆MP</td>
<td>248</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.37</td>
<td>0.37</td>
<td>4.62</td>
<td>30.65</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

in the table, we notice that ESG measures are quite persistent in time: ESG scores only change when there are new shocks or news. This indicator of persistence is very high (above 0.98) for both ACP, and MP measures in all three samples. The first difference of the ESG measure \((\Delta g_{t,n})\) captures the ESG shock to company \(n\) at time \(t\) and is one of the focal quantities in our analysis. By construction, this indicator is much less autocorrelated.

5 Empirical results

As described above, TruValue provides ESG scores based on news that they have collected. The ESG score of each company is relatively persistent and only changes if there is new information about this company’s ESG profile. In Table 1, the average change in \(MP\), and \(ACP\) is small and never greater than 0.07 point in all of the three samples.

Given how changes in ESG scores are small in magnitude, it seems reasonable to assume that their squared value is negligible. Therefore, our empirical test will solely focus on the first order terms of the Taylor expansion in Equation (10) and we restrict our study to the following specification:
\[r_{t+1,n} = a_n + b_1 \Delta g_{t+1,n} + b_2 g_t \Delta g_{t+1,n} + \varepsilon_{t+1,n} \]

This expression allows to track the effect of ESG shocks on returns through the two parameters \(b_1 \) and \(b_2 \). The first coefficient \((b_1) \) links shocks to returns, while the second one \((b_2) \) focuses on the interaction between the shock and the level of sustainability - and its relationship with returns.

5.1 Direct impact of ESG news shocks to stocks’ return

To characterize the impact of ESG news shock to stocks’ return, we set-up a panel regression as follows:

\[
\begin{align*}
 r_{t,n} - r_f = & \gamma_n + \sum_{\tau=t-3}^{t} \theta_{\tau} \Delta g_{\tau,n} + \sum_{\tau=t-3}^{t} \beta_{\tau} g_{t-1,n} \times \Delta g_{\tau,n} + \alpha g_{t-1,n} + \delta' Z_t + \varepsilon_{t,n},
\end{align*}
\]

where

- \(r_{t,n} \) is the return of the firm \(n \), and \(r_f \) the risk-free rate.
- \(g_{\tau,n} \) is the ESG score of firm \(n \), either ACP (All Categories Pulse score) or MP (Materialized Pulse score only), normalized to lie between zero and one.
- \(Z_t \) is a vector of control variables: the Fama and French (2015) 5 factors, plus momentum (12 months to prior month return, in line with Jegadeesh and Titman (1993)).
- \(\gamma_n \) is the fixed effect term.
- finally, \(\varepsilon_{t,n} \) is the error term.

The inclusion of asset pricing factors in the regression can be thought of as a time effect that reflects current market conditions. The \(t \)-statistics of all coefficients are computed with errors clustered by date, firm, as in Thompson (2011). We investigate the impact of ESG news shocks released during the 3 days\(^7\) prior to the return. Implicitly, we assume that news may take time to diffuse into prices, though not too much time. We gather our baseline results in Table 2. For the sake of brevity and clarification, we only report the coefficients of the two terms \(\sum_{\tau=t-3}^{t} \theta_{\tau} \Delta g_{\tau,n} \) and \(\sum_{\tau=t-3}^{t} \beta_{\tau} g_{t-1,n} \times \Delta g_{\tau,n} \). These coefficients show the effect to returns if there is a change in ESG score. We provide two alternative specifications using both ESG measures which are ACP (All Categories Pulse) in model (1) and MP (Material Pulse) in model (2).

Our results show that the impact of shock on ESG news is priced instantaneously intra-day. The coefficient \(\theta_{\tau=t} \) in the terms \(\sum_{\tau=t-3}^{t} \theta_{\tau} \Delta g_{\tau,n} \) is positive and highly significant for both ESG

\(^7\)The results are not altered when using a 5 day lag and coefficients are not significant beyond 3 days. These additional results are available upon request.
Table 2: Panel regression of the effect of ESG shocks to returns. The model equation is:

\[r_{t,n} - r_f = \sum_{\tau=t-3}^{t} \theta_{\tau} \Delta g_{\tau,n} + \sum_{\tau=t-3}^{t} \beta_{\tau} g_{\tau-1,n} \times \Delta g_{\tau,n} + \alpha g_{t-1,n} + \gamma_0 + \delta' Z_t + \varepsilon_{t,n}, \]

where \(r_{t,n} \) is the return of the firm \(n \); \(g_{\tau,n} \) is the ESG score of firm \(n \) (ACP (All Categories Pulse score) or MP (Materialized Pulse score)). \(\gamma_0 \) is the fixed effect, \(Z_t \) is a vector of control for Fama and French (2015) 5 factors and momentum. \(\varepsilon \) is the noise term. The t-statistics are computed with clustered error by date, and firm, as in Thompson (2011). We only report the coefficients in two terms \(\sum_{\tau=t-3}^{t} \theta_{\tau} \Delta g_{\tau,n} \), and \(\sum_{\tau=t-3}^{t} \beta_{\tau} g_{\tau-1,n} \times \Delta g_{\tau,n} \). \(L(x_t,n) = x_{t-n} \) is the lag function: \(L(\Delta g_{\tau,n}) \)

<table>
<thead>
<tr>
<th>Variable (\Delta g) \times L((g))</th>
<th>Model: (g = ACP)</th>
<th>(g = MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L((\Delta g),3)</td>
<td>0.0008 (0.866)</td>
<td>0.0009 (0.815)</td>
</tr>
<tr>
<td>L((\Delta g),2)</td>
<td>0.002* (2.31)</td>
<td>0.002* (2.08)</td>
</tr>
<tr>
<td>L((\Delta g),1)</td>
<td>-7.88e-5 (-0.066)</td>
<td>0.0003 (0.234)</td>
</tr>
<tr>
<td>(\Delta g)</td>
<td>0.012** (6.91)</td>
<td>0.010** (4.91)</td>
</tr>
<tr>
<td>L((\Delta g),3) \times L((g))</td>
<td>-0.0004 (-0.281)</td>
<td>-0.002 (-0.953)</td>
</tr>
<tr>
<td>L((\Delta g),2) \times L((g))</td>
<td>-0.003* (-2.01)</td>
<td>-0.004* (-2.47)</td>
</tr>
<tr>
<td>L((\Delta g),1) \times L((g))</td>
<td>0.0004 (0.225)</td>
<td>0.0009 (0.467)</td>
</tr>
<tr>
<td>(\Delta g) \times L((g))</td>
<td>-0.025** (-8.02)</td>
<td>-0.018** (-5.28)</td>
</tr>
</tbody>
</table>

Fixed-Effects:
- Firm id: Yes
- VCOV: Clustered Firm & Date.

Observations: 10 089 466
R2: 0.03003
Within R2: 0.02961

Signif. Codes: **: 0.01, *: 0.05

measures. The magnitude of \(\theta_{\tau=t} \) is quite similar in both ACP and MP. For ACP, \(\theta_{\tau=t} = 0.012 \) (t-stat = 6.91) while for MP \(\theta_{\tau=t} = 0.010 \) (t-stat = 4.91). The positive sign implies that good (resp. bad) ESG news shock will push prices up (resp. down), after controlling for the traditional asset pricing factors. The coefficient \(\theta_{\tau=t} \) is also economically significant. For example, with the ACP measure, an increase in 0.10 points in ESG score will shift the daily return by +0.12%, on average.

However, to assess the total impact of ESG shocks to return, we have to also consider the coefficients of the cross terms, \(\beta_{\tau=t} \). The latter is negative for both models of ACP \((\beta_{\tau=t} = -0.025; \) t-stat: -8.02) \) and \(MP \) \((\beta_{\tau=t} = -0.018; \) t-stat: -5.28). The negative coefficient \(\beta_{\tau=t} \) will generate a mitigating effect on the impact of ESG shocks to the return, in addition to \(\theta_{\tau=t} \).

Given a positive ESG shock with the same magnitude, high ESG profile firms will react less positively (or even negatively), compared to low ESG firms. Depending on the ESG score, there is a different reaction toward a same ESG news shock. This makes sense heuristically: a firm

\[\text{Recall that ESG score is from 0 to 1, while 0.50 is neutral.} \]
with high ESG reputation has less to gain from incremental improvement in ratings.

To further illustrate this idea, we plot in Figure 2 the average impact of a *positive* shock of ESG news having magnitude 0.1 onto the firm return, as a function of the ESG score of the firm. This is given by the linear mapping \(\tilde{r}_t(g_{t-1}) = (\theta_t + \beta_t \times g_{t-1}) \Delta g_t \), where \(\tilde{r}_t \) is the part of return due to an ESG shock. Given \(\Delta g_t = 0.1 \), as well as the \(\theta_t \) and \(\beta_t \) values in Table 2, we plot \(\tilde{r}_t \) as an affine function of \(g_{t-1} \), the ESG level. Technically, the average of fixed effects is omitted.

![Figure 2: Impact to Return in (%) given an ESG shocks of +0.1 at the same date contingent on different firm’s ESG level, \(g_{t-1} \). The plot shows \(\tilde{r}_t(g_{t-1}) = (\theta_t + \beta_t \times g_{t-1}) \Delta g_t \), with \(\Delta g_t = 0.1 \), \(\theta_t \), and \(\beta_t \) from Table 2. The ESG measure is either ACP (full line) or MP (dashed line).](image)

We observe that low ESG firms react very favorably to positive ESG news. This confirms that a positive shock is more valuable for brown firms than it is for green firms. For most green firms, a positive shock in ESG is, surprisingly, even detrimental. Reversely, in the advent of a negative shock, green firms will be more resilient. Indeed, the negative impact from \(\theta_{t-1} \) is similar to all firms. However, with a negative \(\beta_{t-1} \), green firms will suffer less from negative news than brown firms.

In short, our results reveal that most of the effect of an ESG shock happens at high frequency and then fades away. Low ESG firms benefit from positive shock more than high ESG firms. However, counter-intuitively, high ESG firms suffer less from negative ESG shocks than low ESG firms.

17
5.2 ESG news shock to suppliers’ stock returns

In the previous section, we documented the instantaneous markets reaction to ESG news shocks. An interesting follow-up question is: is there any spillover effect along supply chain? In this section, we investigate this effect from customer-firm to supplier-firm.

We set up a panel regression in the spirit of Equation (14) as follows:

\[
 r_{t,n}^{\text{Sup}} - r_f = \sum_{\tau=t-3}^{t} \theta_{\tau}^{\text{Cus}} \Delta g_{\tau,n}^{\text{Cus}} + \sum_{\tau=t-3}^{t} \beta_{\tau}^{\text{Cus}} g_{t-1,n}^{\text{Sup}} \times \Delta g_{\tau,n}^{\text{Cus}} + \gamma_n + \delta' Z_t + \sum_{\tau=t-3}^{t} \theta_{\tau}^{\text{Sup}} \Delta g_{\tau,n}^{\text{Sup}} + \epsilon_{t,n} \tag{15}
\]

where the novel terms are

- \(r_{t,n}^{\text{Sup}} \) is the return of the supplier firm \(n \).
- \(g_{t,n}^{\text{Sup}} \) is the ESG score of supplier \(n \) (either ACP (All Categories Pulse score) or MP (Materialized Pulse score only)) - after normalization.
- \(g_{t,n}^{\text{Cus}} \) is the ESG score of the main customer of firm \(n \).

With this specification, we want to estimate the spillover effect of ESG news shock from customer to supplier, while controlling for the ESG shock of supplier itself and other common factors on the market. We only report the coefficients of the two terms \(\sum_{\tau=t-3}^{t} \theta_{\tau}^{\text{Cus}} \Delta g_{\tau,n}^{\text{Cus}} \) and \(\sum_{\tau=t-3}^{t} \beta_{\tau}^{\text{Cus}} g_{t-1,n}^{\text{Sup}} \times \Delta g_{\tau,n}^{\text{Cus}} \) in Table 3. These coefficients show the spillover effect from customer to supplier if there is a shock in ESG score from the customer side.

In Table 3, we observe a faint spillover effect of ESG news from customer to supplier. With the ACP measure, the estimate for \(\theta_{\tau}^{\text{Cus}} \) is equal to 0.003 (t-stat of 2.11). This effect is thus 4 times weaker than the direct effect of ESG news’ shock to the company return at the same day (0.012 in the previous section).

Therefore, a shock on ACP news from the customer side takes 3 days to diffuse to the supplier’s return. For example, an increase of 0.1 points in ACP from the customer-firm 3 days ago will increase the present day return of supplier-firm by 0.03% on average.

However, this spillover effect is mitigated by the coefficient \(\beta_{\tau}^{\text{Cus}} = -0.005 \) (t-stats equal to -2.08) in the cross terms. This moderation depends on the ESG profile of the supplier firm, \(g_{t,n}^{\text{Sup}} \): the higher \(g^{\text{Sup}} \) is, the stronger the mitigation effect is. Equivalently, a high ACP profile firm will be less positively impacted by a positive shock from their customer. In some cases, a high ACP firm even faces a negative impact when there is a positive shock in return from the customer side. The total impact on return from the customer ESG shock depends on the level of ESG of the supplier firm.
Table 3: Panel regression of the spillover effect of ESG news from customer to supplier. The model equation is

\[r_{t,n}^{Sup} - r_{f} = \sum_{\tau=t-3}^{t} \theta_{\tau}^{Cus} \Delta g_{\tau,n}^{Cus} + \sum_{\tau=t-3}^{t} \beta_{\tau}^{Sup} g_{t-1,n}^{Sup} \times \Delta g_{\tau,n}^{Sup} + \gamma_n + \delta' Z_t + \]

\[\sum_{\tau=t-3}^{t} \beta_{\tau}^{Sup} g_{t-1,n}^{Sup} \times \Delta g_{\tau,n}^{Sup} + e_{Cus}^{Sup} g_{t-1,n}^{Sup} + \sum_{\tau=t-3}^{t} \beta_{\tau}^{Sup} g_{t-1,n}^{Sup} \Delta g_{\tau,n}^{Sup} + \epsilon_{t,n}, \]

where \(r_{t,n}^{Sup} \) is the return of the supplier firm \(n \), \(g_{t,n}^{Sup} \) is the variable of ESG score of supplier \(n \) which can be ACP (All Categories Pulse score) or MP (Materialized Pulse score only) after being normalized to have value between zero and one. The notation is similar with \(g_{\tau,n}^{Cus} \) which is the main customer of firm \(n \). The term \(\gamma_n \) is the fixed effect, \(Z_t \) is a vector of control for Fama and French (2015) 5 factors and momentum. \(\epsilon \) is the noise. The t-stats is computed with clustered errors by date, and firm \(n \). We only report the coefficients in two terms \(\sum_{\tau=t-3}^{t} \beta_{\tau}^{Sup} g_{t-1,n}^{Sup} \times \Delta g_{\tau,n}^{Sup} \) and \(\sum_{\tau=t-3}^{t} \beta_{\tau}^{Sup} g_{t-1,n}^{Sup} \Delta g_{\tau,n}^{Sup} \).

Samples consist of data from January-2007 to May-2021.

<table>
<thead>
<tr>
<th>Variable \ Model:</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L(\Delta g_{Cus},3))</td>
<td>0.003* (2.09)</td>
<td>0.003 (1.73)</td>
</tr>
<tr>
<td>(L(\Delta g_{Cus},2))</td>
<td>-0.003 (-1.84)</td>
<td>0.0001 (0.069)</td>
</tr>
<tr>
<td>(L(\Delta g_{Cus},1))</td>
<td>-0.0007 (-0.458)</td>
<td>-0.005** (-2.90)</td>
</tr>
<tr>
<td>(\Delta g_{Cus})</td>
<td>-0.0004 (-0.224)</td>
<td>-0.002 (-1.26)</td>
</tr>
<tr>
<td>(L(\Delta g_{Cus},3) \times L(g_{Sup},1))</td>
<td>-0.005* (-2.08)</td>
<td>-0.004 (-1.44)</td>
</tr>
<tr>
<td>(L(\Delta g_{Cus},2) \times L(g_{Sup},1))</td>
<td>0.002 (0.651)</td>
<td>-0.0007 (-0.284)</td>
</tr>
<tr>
<td>(L(\Delta g_{Cus},1) \times L(g_{Sup},1))</td>
<td>0.0007 (0.297)</td>
<td>0.008** (2.96)</td>
</tr>
<tr>
<td>(\Delta g_{Cus} \times L(g_{Sup},1))</td>
<td>-2.61e-6 (-0.0010)</td>
<td>0.003 (1.14)</td>
</tr>
</tbody>
</table>

Fixed-Effects:
- Supplier ID: Yes
- Cluster: Supplier ID and Date
- Observations: 4 496 060
- R2: 0.1487
- Within R2: 0.14818

Signif. Codes: **: 0.01, *: 0.05

We also find a significant spillover effect from customer to supplier when using the MP (Materiality Pulse) measure. Similarly to ACP, the magnitude is less marked, compared to the direct effect. Indeed, \(\theta_{\tau=t-1}^{Cus} = -0.005 \) (t-stats: -2.90) is two times smaller in magnitude compared to the effect reported in the previous section (0.010). Importantly, it takes only one
day for the spillover to materialize with the MP measure. However, with a negative sign, a positive shock in MP from customer will have negative impact on its supplier. Similarly to the ACP metric, with the MP values, we find a mitigating force on the same day: \(\beta_{\text{Cus}}^{\text{Cus}} = 0.008 \) (t-stats: 2.96) will pull the effect of \(\theta_{\text{Cus}} = -0.005 \) in the opposite direction. Overall, the total effect will depend on the ESG profile of the supplier firm. High MP firm will react more favorably to positive news than low MP firm.

To summarize our findings, we plot average effects in Figure 3 in the same spirit as Figure 2. Given a positive ESG shock of 0.1 (\(\Delta g = 0.1 \)) from the customer side, the horizontal axis features the ESG score (ACP or MP) of the supplier firm, while the vertical axis shows the impact in return, in percentage. Again, the figure shows that the impact of news is contingent in the level of the ESG score, but also, importantly, on the type of measure (ACP versus MP).

![Figure 3: Impact to firm return in (%), given an ESG shock of +0.1 (\(\Delta g_{\text{Cus}} = 0.1 \)) from its customer firm, contingent on the ESG level of the firm. For the ACP measure (hard line), it is the total effect to return of day 3 after the shock date on customer side, which includes the significant interaction terms \(\Delta g_{\text{Cus}} \cdot \theta_{\text{Cus}}^{\text{Cus}} \) and \(\Delta g_{\text{Cus}} \beta_{\text{Cus}}^{\text{Cus}} \cdot g_{\text{Sup}}^{\text{Sup}} \). For the MP measure (dashed line), it is the total effect of day 1 after the shock on the customer side, which includes \(\Delta g_{\text{Cus}} \cdot \theta_{\text{Cus}}^{\text{Cus}} \) and \(\Delta g_{\text{Cus}} \beta_{\text{Cus}}^{\text{Cus}} \cdot g_{\text{Sup}}^{\text{Sup}} \).]

5.3 ESG news shock to customers’ stock returns

In this last subsection, we investigate the reverse effect, that is, from supplier to customer, i.e., when the ESG shock comes from the supplier side. Consistently with the previous sections, we set up a panel regression. Formally, we estimate the spillover effect from supplier to customer
through the following panel data regression:

\[
 r_{t,n}^{Cus} - r_f = \sum_{\tau=t-3}^{t} \theta_{t}^{Sup} \Delta g_{\tau,n}^{Sup} + \sum_{\tau=t-3}^{t} \beta_{t}^{Sup} g_{t-1,n}^{Cus} \times \Delta g_{\tau,n}^{Sup} + \gamma_n + \delta' Z_t + \\
 \sum_{\tau=t-3}^{t} \beta_{t}^{Cus} g_{t-1,n}^{Cus} \times \Delta g_{\tau,n}^{Cus} + \alpha g_{t-1,n}^{Cus} + \sum_{\tau=t-3}^{t} \theta_{t}^{Cus} \Delta g_{\tau,n}^{Cus} + \varepsilon_{t,n}
\]

(16)

In Table 4, we gather the estimated coefficients of the two terms \(\sum_{\tau=t-3}^{t} \theta_{t}^{Sup} \Delta g_{\tau,n}^{Sup}\) and \(\sum_{\tau=t-3}^{t} \beta_{t}^{Sup} g_{t-1,n}^{Cus} \times \Delta g_{\tau,n}^{Sup}\). When ACP is the ESG indicator, we find a significant spillover effect from supplier to customer 3 days after the shock. Surprisingly, \(\theta_{t=t-2}^{Sup} = -0.004\) (t-stat = -1.98): the negative sign means that markets react positively to a drop in ACP rating. However, we also need to consider the interaction effect, which has the opposite sign \(\beta_{t=t-3}^{Sup} = 0.005\), (t-stat = 1.72)). The latter will serve as a mitigation force to drag down the ESG shock’s impact from \(\theta_{t=t-2}^{Sup}\).

We also detect a slow spillover effect when considering MP as ESG measure. In this case, \(\theta_{t=t-2}^{Sup} = 0.004\) (t-stat = 2.38), but again this effect remains smaller than the direct effect \(0.012\), reported in Section 5.1).

In other words, if there is a shock in MP score from the supplier side of +0.1 points, the customer’s daily stock return will increase 2 days later by 0.04% on average. Nevertheless, this effect is moderated because \(\beta_{t=t-2}^{Sup} = -0.008\), (t-stat = 2.73). The dragging force is positively related with the ESG score of the customer. Hence, when there is a positive shock on the supplier side, the brown customer-firm is the one that has the most positive spillover impact. In contrast, when there is a negative shock from the supply side, then green customer-firm is the one that suffers less from that effect.

To illustrate this pattern, we plot in Figure 4 the average effect of a +0.1 \((\Delta g_{\tau,n}^{Sup} = +0.1)\) supplier shock on a firm’s return, as a function of the firm’s ESG score. Again, the type of news (ACP versus MP) has a major impact on the effect.

Our final comment pertains to the speed of diffusion, depending on the type of news. In Tables 3 and 4, the significant coefficients for the ACP variable occur for the maximum lag (3 days). However, the significant ones for the Materiality Pulse score occur are associated with smaller lags. This means that financially material news seem to be priced-in more rapidly than synthetic ESG news.
Table 4: Panel regression of the spillover effect of ESG news from supplier to customer.

\[r_{Cus,t,n} - r_f = \sum_{\tau = t-3}^{t} \theta_{\tau}^{Sup} \Delta g_{r,\tau}^{Sup} + \sum_{\tau = t-3}^{t} \beta_{\tau}^{Sup} g_{r-1,n}^{Cus} \times \Delta g_{r,\tau}^{Sup} + \gamma_n + \delta' Z_t + \sum_{\tau = t-3}^{t} \beta_{\tau}^{Cus} g_{r-1,n}^{Cus} \times \Delta g_{r,\tau}^{Cus} + \gamma_n \times \Delta g_{r,\tau}^{Sup} + \varepsilon_{t,n} \]

Where \(r_{Cus,t,n} \) is the return of the customer firm \(n \), \(g_{r,\tau}^{Sup} \) is the variable of ESG score of supplier to firm \(n \) which can be ACP (All Categories Pulse score) or MP (Materialized Pulse score only) after being normalized to have value between zero and one. The logic is similar with \(g_{r,\tau}^{Cus} \). The term \(\gamma_n \) is the fixed effect, \(Z_t \) is a vector of control for Fama and French (2015) 5 factors and momentum. \(\varepsilon \) is the noise. The t-stats is computed with clustered errors by date, and firm \(n \). We only report the coefficients in two terms \(\sum_{\tau = t-3}^{t} \theta_{\tau}^{Sup} \Delta g_{r,\tau}^{Sup} \) and \(\sum_{\tau = t-3}^{t} \beta_{\tau}^{Sup} g_{r-1,n}^{Cus} \times \Delta g_{r,\tau}^{Sup} \). These coefficients show the spillover effect from supplier to customer if there is a shock/change in ESG score from the supplier side. Samples consist data from January-2007 to May-2021.

Model: (1) (2)

\[g = ACP \quad g = MP \]

\[L(\Delta g^{Sup},3) \]	-0.004* (-1.98)	-0.004 (-1.43)
\[L(\Delta g^{Sup},2) \]	-4.43e-5 (-0.027)	0.004* (2.38)
\[L(\Delta g^{Sup},1) \]	-0.0002 (-0.074)	-3.37e-5 (-0.015)
\[\Delta g^{Sup} \]	0.003 (1.21)	0.0008 (0.402)
\[L(\Delta g^{Sup},3) \times L(g^{Cus},1) \]	0.005 (1.72)	0.005 (1.19)
\[L(\Delta g^{Sup},2) \times L(g^{Cus},1) \]	0.0004 (0.130)	-0.008** (-2.73)
\[L(\Delta g^{Sup},1) \times L(g^{Cus},1) \]	0.001 (0.309)	0.001 (0.369)
\[\Delta g^{Sup} \times L(g^{Cus},1) \]	-0.005 (-1.48)	-0.001 (-0.393)

Fixed-Effects:

Customer ID	Yes	Yes
Cluster	Customer ID and Date	Customer ID and Date
Observations	3 520 532	3 142 980
R2	0.09405	0.08975
Within R2	0.09326	0.0889

Signif. Codes: **: 0.01, *: 0.05

6 Subsample analysis: the evolution of investor awareness

The previous section has led us to conclude that ESG news create an instantaneous impact on stock returns, and spreads to supplier and customer returns in a matter of days. In this section, we investigate if those results are constant in time by splitting our sample in two, prior and posterior to 2017.

Sustainability is increasingly perceived as important by investors, hence it is likely that they
have paid more attention to ESG news in the most recent period. This, combined to improved telecommunication technologies and to the expansion of social media, brings us to assume that the diffusion of news to prices should have accelerated since 2017. The choice of 2017 as splitting date originates from the enforcement of the Paris Climate Accords in November 2016 (though they were signed in April). Empirically, we consequently re-estimate all our results using pre-2017 and post-2017 samples.

We report the the direct impact of ESG news to returns in Table 5. Panel A (left) consists of the results for the pre-2017 sample while panel B (right) contains the estimates of the post-2017 sample. The pricing in of ESG shocks is quicker and stronger intraday after 2017. For example, with the ACP measure, before 2017, the impact coefficients are significant at day 0 ($\theta_{t=0} = 0.008$, t-stat = 4.68) and less so at day 2 ($\theta_{t=2} = 0.002$, t-stat = 1.76) after the ESG news. The interaction coefficients surpass the threshold at day 0 only ($\beta_{t=0} = -0.018$, t-stat = -5.69). After 2017 however, all the ESG news impact concentrates intraday, and the magnitudes are more pronounced. Indeed, we obtain $\theta_{t=0} = 0.018$ with t-stat = 5.28 post-2017, versus $\theta_{t=0} = 0.008$ pre-2017. Moreover, we have $\beta_{t=0} = -0.037$ with t-stat = -5.93 post-2017 versus $\beta_{t=0} = -0.018$ pre-2017. With the MP variable, we have qualitatively similar results. In a nutshell, the direct effect of ESG news onto returns is quicker and stronger after 2017.

We perform the same exercise with the customer-to-supplier spillover effect pre- and post-
Table 5: Panel regression of the effect of ESG shocks to returns before and after 2017. The model equation is:

$$r_{t,n} - r_f = \sum_{t=t-3}^{t} \theta \Delta g_{t,n} + \sum_{t=t-3}^{t} \beta g_{t-1,n} \times \Delta g_{t,n} + \alpha g_{t-1,n} + \gamma \delta_t + \epsilon_{t,n}$$

where $r_{t,n}$ is the return of the firm n; $g_{t,n}$ is the ESG score of firm n (ACP (All Categories Pulse score) or MP (Materialized Pulse score)). γ is the fixed effect. Z_t is a vector of control for Fama and French (2015) 5 factors and momentum. ϵ is the noise term. The t-statistics are computed with clustered error by date, and firm, as in Thompson (2011). We only report the coefficients in two terms $\sum_{t=t-3}^{t} \theta \Delta g_{t,n}$, and $\sum_{t=t-3}^{t} \beta g_{t-1,n} \times \Delta g_{t,n}$. $L(x_t,n) = x_{t-n}$. Panel A consists data from January-2007 to Dec-2016. Panel B consists data from January-2017 to May-2021.

<table>
<thead>
<tr>
<th></th>
<th>Panel A: Before 2017</th>
<th>Panel B: After 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>(1) g = ACP</td>
<td>(2) g = MP</td>
</tr>
<tr>
<td></td>
<td>0.0006 (0.525)</td>
<td>0.001 (0.876)</td>
</tr>
<tr>
<td>L(Δ g,3)</td>
<td>0.002 (1.76)</td>
<td>0.003* (2.03)</td>
</tr>
<tr>
<td>L(Δ g,2)</td>
<td>0.0001 (0.102)</td>
<td>0.0010 (0.596)</td>
</tr>
<tr>
<td>Δ g</td>
<td>0.008** (4.68)</td>
<td>0.007** (3.70)</td>
</tr>
<tr>
<td>L(Δ g,3) × L(g,1)</td>
<td>-0.0002 (-0.089)</td>
<td>-0.0001 (-0.531)</td>
</tr>
<tr>
<td>L(Δ g,2) × L(g,1)</td>
<td>-0.002 (-1.36)</td>
<td>-0.004 (-1.84)</td>
</tr>
<tr>
<td>L(Δ g,1) × L(g,1)</td>
<td>-7.39e-5 (-0.034)</td>
<td>-0.0004 (-0.147)</td>
</tr>
<tr>
<td>Δ g × L(g,1)</td>
<td>-0.018** (-5.69)</td>
<td>-0.014** (-3.77)</td>
</tr>
</tbody>
</table>

Fixed-Effects:	Yes	Yes
Cluster	Firm ID and Date	Firm ID and Date
Observations	6 307 257	5 461 448
R2	0.0203	0.0182
Within R2	0.0196	0.01749

Signif. Codes **: 0.01, *: 0.05

2017 in Table 6. In panel A, we see no effect in the pre-2017 sample for both ACP and MP measures. After 2017, a shock in customer’s ACP takes three days to affect the supplier’s return. For the MP proxy, after 2017, it takes two days for an ESG shock from customer firm to spread to its supplier’s return. The impact coefficient is $\theta_{t=1} = -0.008$ with t-stat = -2.41 and the interaction coefficient is $\beta_{t=1} = 0.012$ with t-stat = 2.55. The results of both measures in the post-2017 sample are qualitatively similar to the the full sample estimates in Table 3. This means that most of the ESG spillover effect from customer to supplier concentrates in the post-2017 era.
Table 6: Panel regression of the spillover effect of ESG news from customer to supplier before and after 2017. The model equation is

\[r_{t,n}^{\text{Sup}} - r_{f,t} = \sum_{\tau=t-3}^{t} \beta_{r}^{\text{Sup}} \Delta g_{r,t,n}^{\text{Sup}} \times \Delta g_{r,t,n}^{\text{Cus}} + \gamma_{n} + \delta \varepsilon_{t} + \sum_{\tau=t-5}^{t} \beta_{r}^{\text{Sup}} \Delta g_{r,t,n}^{\text{Sup}} \times \Delta g_{r,t,n}^{\text{Cus}} + \alpha \gamma_{n} + \delta \varepsilon_{t,n}, \]

where \(r_{t,n}^{\text{Sup}} \) is the return of the supplier firm \(n \), \(g_{r,t,n}^{\text{Sup}} \) is the variable of ESG score of supplier \(n \) which can be ACP (All Categories Pulse score) or MP (Materialized Pulse score only) after being normalized to have value between zero and one. The notation is similar with \(g_{r,t,n}^{\text{Cus}} \) which is the main customer of firm \(n \). The term \(\gamma_{n} \) is the fixed effect, \(Z_{t} \) is a vector of control for Fama and French (2015) 5 factors and momentum. \(\varepsilon \) is the noise. The t-stats is computed with clustered errors by date, and firm \(n \). We only report the coefficients in two terms \(\sum_{\tau=t-3}^{t} \beta_{r}^{\text{Sup}} \Delta g_{r,t,n}^{\text{Sup}} \times \Delta g_{r,t,n}^{\text{Cus}} \) and \(\sum_{\tau=t-5}^{t} \beta_{r}^{\text{Sup}} \Delta g_{r,t,n}^{\text{Sup}} \times \Delta g_{r,t,n}^{\text{Cus}} \).

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g = ACP)</td>
<td>(g = MP)</td>
<td>(g = ACP)</td>
<td>(g = MP)</td>
<td></td>
</tr>
<tr>
<td>(g^{\text{Cus}}_{r,3})</td>
<td>0.002 (1.20)</td>
<td>0.001 (0.654)</td>
<td>0.005 (1.70)</td>
<td>0.005 (1.79)</td>
</tr>
<tr>
<td>(g^{\text{Cus}}_{r,2})</td>
<td>-0.003 (-1.55)</td>
<td>0.002 (0.889)</td>
<td>-0.003 (-0.924)</td>
<td>-0.002 (-0.863)</td>
</tr>
<tr>
<td>(g^{\text{Cus}}_{r,1})</td>
<td>0.0003 (0.163)</td>
<td>-0.003 (-1.68)</td>
<td>-0.003 (-0.926)</td>
<td>-0.008* (-2.41)</td>
</tr>
<tr>
<td>(\Delta g^{\text{Cus}}{r,3} \times L(g{r,1}^{\text{Sup}}))</td>
<td>-0.003 (-0.886)</td>
<td>-0.0004 (-0.129)</td>
<td>0.003 (0.386)</td>
<td>-0.003 (-1.09)</td>
</tr>
<tr>
<td>(\Delta g^{\text{Cus}}{r,2} \times L(g{r,1}^{\text{Sup}}))</td>
<td>0.0008 (0.251)</td>
<td>-0.001 (-1.20)</td>
<td>-0.01* (-1.98)</td>
<td>-0.009 (-1.92)</td>
</tr>
<tr>
<td>(\Delta g^{\text{Cus}}{r,1} \times L(g{r,1}^{\text{Sup}}))</td>
<td>-0.0004 (-0.159)</td>
<td>0.005 (1.63)</td>
<td>0.003 (0.673)</td>
<td>0.004 (0.841)</td>
</tr>
<tr>
<td>(\Delta g^{\text{Cus}}{r,3} \times L(g{r,1}^{\text{Sup}}))</td>
<td>0.001 (0.471)</td>
<td>0.003 (0.856)</td>
<td>0.003 (0.718)</td>
<td>0.012* (2.55)</td>
</tr>
</tbody>
</table>

Fixed-Effects:

<table>
<thead>
<tr>
<th>Supplier ID</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID and Date</td>
<td>Supplier ID and Date</td>
<td>Supplier ID and Date</td>
<td>Supplier ID and Date</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2 763 656</td>
<td>2 415 333</td>
<td>1 729 188</td>
<td>1 612 776</td>
</tr>
<tr>
<td>R2</td>
<td>0.16342</td>
<td>0.16001</td>
<td>0.1324</td>
<td>0.13404</td>
</tr>
<tr>
<td>Within R2</td>
<td>0.16289</td>
<td>0.15949</td>
<td>0.13128</td>
<td>0.13274</td>
</tr>
</tbody>
</table>

*Signif. Codes: ** 0.01, * 0.05*
Finally, we analyze the contagion of ESG news from supplier to customer’s return pre- and post-2017 in Table 7. For the ACP measure, we observe no spillover effect in the pre-2017 sample. In contrast, after 2017, a shock in supplier’s ACP news takes 3 day to spread to the customer’s return. The impact coefficient is $\theta_{Sup}^{\tau} = -0.006$ with t-stats= -2.03. This result is qualitatively similar to the full sample estimates in Table 4. Surprisingly, with the MP measure, we observe the opposite: the effect is only significant for the first sub-period.

Table 7: Panel regression of the spillover effect of ESG news from supplier to customer before and after 2017.

$$r_{t,n}^{Cus} - r_f = \sum_{\tau=t-3}^{t} \theta_{Sup}^{\tau} \Delta g_{t,n}^{Sup} + \sum_{\tau=t-3}^{t} \beta_{Sup}^{\tau} g_{t-1,n}^{Cus} \times \Delta g_{t,n}^{Sup} + \gamma_n + \delta' Z_t +$$

$$\sum_{\tau=t-5}^{t} \beta_{Cus}^{\tau} \Delta g_{t,n}^{Cus} + \alpha g_{t-1,n}^{Cus} + \sum_{\tau=t-5}^{t} \theta_{Cus}^{\tau} \Delta g_{t,n}^{Cus} + \varepsilon_{t,n}$$

Where $r_{t,n}^{Cus}$ is the return of the customer firm n. $g_{t,n}^{Sup}$ is the variable of ESG score of supplier to firm n which can be ACP (All Categories Pulse score) or MP (Materialized Pulse score only) after being normalized to have value between zero and one. The logic is similar with $g_{t,n}^{Cus}$. The term γ_n is the fixed effect, Z_t is a vector of control for Fama and French (2015) 5 factors and momentum. ε is the noise. The t-stats is computed with clustered errors by date, and firm n. We only report the coefficients in two terms $\sum_{\tau=t-3}^{t} \theta_{Sup}^{\tau} \Delta g_{t,n}^{Sup}$, and $\sum_{\tau=t-3}^{t} \beta_{Sup}^{\tau} g_{t-1,n}^{Cus} \times \Delta g_{t,n}^{Sup}$. These coefficients show the spillover effect from supplier to customer if there is a shock/change in ESG score from the supplier side. Panel A consists data from January-2007 to Dec-2016. Panel B consists data from January-2017 to May-2021.

<table>
<thead>
<tr>
<th>Model</th>
<th>Panel A: Before 2017</th>
<th>Panel B: After 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>($g = ACP$)</td>
<td>($g = MP$)</td>
<td>($g = ACP$)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,i})$</td>
<td>-0.001 (-0.706)</td>
<td>-3.27e-5 (-0.014)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,2})$</td>
<td>0.001 (0.522)</td>
<td>0.065* (2.09)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,1})$</td>
<td>0.0003 (0.081)</td>
<td>0.006 (0.181)</td>
</tr>
<tr>
<td>Δg_{Sup}</td>
<td>0.004 (1.62)</td>
<td>0.0008 (0.339)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,i}) \times L(g_{Cus,i})$</td>
<td>0.003 (0.987)</td>
<td>-0.0004 (-0.108)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,2}) \times L(g_{Cus,i})$</td>
<td>-0.002 (-0.496)</td>
<td>-0.010** (-2.59)</td>
</tr>
<tr>
<td>$L(\Delta g_{Sup,1}) \times L(g_{Cus,i})$</td>
<td>-0.0005 (-0.104)</td>
<td>-0.0009 (-0.154)</td>
</tr>
<tr>
<td>$\Delta g_{Sup} \times L(g_{Cus,i})$</td>
<td>-0.007 (-1.86)</td>
<td>0.0006 (0.162)</td>
</tr>
</tbody>
</table>

Fixed-Effects:

Customer ID	Yes	Yes	Yes	Yes
Cluster	Customer ID and Date			
Observations	1 987 743	1 708 304	1 530 145	1 432 228
R2	0.07738	0.06983	0.01395	0.12478
Within R2	0.07623	0.06589	0.12268	0.1235

Signif. Codes : **: 0.01, *: 0.05

To summarize the findings of this final section, we note that, in a large majority of the cases, both the direct impact of ESG news to a company’s return and the supply-chain spillover effect.
are more salient after 2017 than before 2017.

7 Conclusion

In this paper, we propose a theoretical model in which changes in ESG ratings affect firms’ returns. The baseline model relies on two key quantities: the variation in rating, as well as this variation, in conjunction with the level of the rating. This implies that updates in sustainability scores are not expected to impact returns uniformly in the cross-section of stocks.

Because we are agnostic with respect to the speed of diffusion of news, our empirical model incorporates lagged changes up to three days prior to the return. Our results, based on US firms, show that this is not useful in our baseline model, because updates in ratings are almost immediately priced in the markets. Indeed, the only coefficients that are significant are the ones that are synchronous with the returns, meaning that prices react to shocks intra-daily. Whether this can be interpreted as a confirmation of market efficiency remains an open question.

The second stage of the model is to consider economic links between firms. If a firm faces an ESG incident, it may propagate to its clients and to its suppliers. Heuristically, for the clients, the issue is that of reputation, whereas for suppliers, the risk is a reduction of future sales. Our second batch of results pertains to US firms and to their potentially international clients and suppliers. They show that there is some predictability between ESG shocks and subsequent returns for suppliers and clients, but effect sizes and t-statistics are smaller, compared to the direct effect. The speed of propagation is slower in this case, as responses only materialize two to three days after the shock. In addition, financially material ESG news diffuse to the supply chain quicker than common ESG news.

Another key finding of our study is the confirmation of the mitigating effect of the level of sustainability. In most cases, one cross term is indeed statistically significant, meaning that changes in ESG ratings do not affect firms uniformly in the cross-section of stocks. In particular, we find that positive shocks are much more beneficial to brown firms, whereas green stocks are, surprisingly, less sensitive to negative shocks. Overall, and in spite of minor differences, our results are relatively robust with respect to the choice of ESG indicator (ACP versus MP).

Our last batch of results supports our intuition that the impact of ESG news on stocks’ returns is more salient in the most recent years. With the advent of new reporting regulations and the increase in speed of information diffusion, it is likely that spillover effects will occur even faster in the coming years. This will have to be confirmed by future research.
References

