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Abstract

Climate change could impose systemic risks upon the financial sector, either via dis-

ruptions in economic activities resulting from the physical impacts of climate change or

changes in policies as the economy transitions to a less carbon-intensive environment.

We develop a stress testing procedure to test the resilience of financial institutions to

climate-related risks. Specifically, we introduce a measure called CRISK, systemic cli-

mate risk, which is the expected capital shortfall of a financial institution in a climate

stress scenario. We use the measure to study the climate-related risk exposure of large

global banks in the collapse of fossil-fuel prices in 2020.
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1 Introduction

Understanding the impact of climate change on financial systems is an important question

for researchers, central banks, and financial regulators across the world. Krueger et al.

(2020) find that institutional investors believe climate risks have financial implications for

their portfolio firms and that these risks have already begun to materialize. Many central

banks have recently started including climate stress scenarios in their own stress testing

frameworks.1 The Network of Central Banks and Supervisors for Greening the Financial

System (NGFS), which consists of 108 member countries as of February 2022, analyzes the

impact of climate change on macroeconomic and financial stability.2

How does climate change impose systemic risks on the financial sector? There are two

main channels. First, climate change can cause disruptions in economic activities directly

through its physical impacts. Second, climate change can also lead to changes in policies

as economies transition to a less carbon-intensive environment. The former is referred to

as the physical risk channel and the latter is referred to as the transition risk channel.3

Physical risks can affect financial institutions through their exposures to firms and households

that experience extreme weather shocks. On the other hand, transition risks can affect

financial institutions through their exposures to firms with business models not aligned

with a low-carbon economy. Fossil fuel firms are a prominent example: banks that provide

financing to fossil fuel firms are expected to suffer when the default risk of their loan portfolios

increases, as economies transition into a lower-carbon environment. If banks systemically

suffer substantial losses following an abrupt rise in the physical risks or transition risks,

1For example, the central banks and the regulators of Australia, Canada, England, France, and the
Netherlands have already begun performing climate stress tests, or have announced their intention to conduct
such tests.

2See https://www.ngfs.net/en for further details on NGFS.
3NGFS defines physical risks as financial risks that can be categorized as either acute—if they arise from

climate and weather-related events and acute destruction of the environment—or chronic—if they arise from
progressive shifts in climate and weather patterns or from the gradual loss of ecosystem services. NGFS
defines transition risks as financial risks which can result from the process of adjustment towards a lower-
carbon and more circular economy, prompted, for example, by changes in climate and environmental policy,
technology, or market sentiment (NGFS (2020)).

1

https://www.ngfs.net/en


climate change poses a considerable risk to the financial system.

How much systemic risk does climate change impose on the financial system? This

question is at the heart of understanding the impact of climate change on financial systems.

Yet, there are several challenges to testing the resilience of financial institutions to climate-

related risks. First, analyses based on past climate events may not effectively capture the

changes in the perception of risk. For instance, the market expectations may change without

a direct experience of climate change events, and asset prices today can reflect the changes

in future climate risk even though the damages are decades away. Second, climate risk itself

and how firms, banks, and markets respond to the perceived risk change over time. To

address these challenges, we develop a market-based climate stress testing methodology and

estimate the model dynamically. Specifically, we propose a measure called CRISK, which is

the expected capital shortfall of a financial institution in a climate stress scenario.

The stress testing procedure involves three steps. The first step is to measure the climate

risk factor. While there are many ways to measure the climate risk factor, we use stranded

asset portfolio return as a proxy measure for transition risk. The second step is to estimate

time-varying climate betas of financial institutions using the Dynamic Conditional Beta

(DCB) model. The third step is to compute CRISK, which is a function of a given financial

firm’s size, leverage, and expected equity loss conditional on climate stress. This step is

based on the same methodology as SRISK of Acharya et al. (2011), Acharya et al. (2012),

and Brownlees and Engle (2017), with the climate factor added as the second factor.

We apply the methodology to measure the climate risk of 27 large global banks, whose

aggregate oil and gas loan market share exceeds 80%. The stress scenario that we consider is

a 50% drop in the return on the stranded asset portfolio over six months. This corresponds to

the first percentile of historical return on the stranded asset portfolio. We find that, first, the

climate beta varies over time, highlighting the importance of dynamic estimation. Second,

climate betas of banks move together over time, and there was a common spike in climate
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betas as well as in CRISKs when energy prices collapsed in 2020.4 The measured CRISKs for

some of the banks were economically substantial. For instance, Citigroup’s CRISK increased

by 77 billion US dollars during the year 2020. In other words, the expected amount of capital

that Citigroup would need to raise under the climate stress scenario to restore a prudential

capital ratio5 increased by 77 billion US dollars in 2020. In a decomposition analysis, we find

that the increase in CRISK during 2020 is primarily due to decreases in the equity values

of banks, as opposed to decreases in debt values or increases in climate betas. Third, we

find evidence that banks with higher loan exposure to industries with high carbon emissions

tend to have higher climate betas, corroborating the economic validity of our climate beta

estimates.

Related Literature

This paper contributes to several strands of literature. First, it adds to the growing body

of literature on climate finance. Giglio et al. (2020) provide a review on the literature

regarding the pricing of climate risks across different asset classes. Studies including Bolton

and Kacperczyk (2020), Engle et al. (2020), and Ilhan et al. (2020) suggest that climate

risks are priced in the equity market. A few papers also have examined the effects of climate

change on banks’ loan pricing. Chava (2014) finds that banks charge a significantly higher

interest rate on the loans provided to firms with environmental issues. Ginglinger and

Quentin (2019) find consistent evidence that greater climate risk leads to lower leverage

after the Paris Agreement, partly because lenders increase the spreads when lending to firms

with the greatest climate risk. We add to the literature by quantifying the climate-related

risk exposure of financial institutions. Despite the evidence that banks do price climate risks,

our CRISK measures suggest that climate change could still lead to a substantial increase

4Of course, COVID likely played an important role in driving energy prices down in 2020. We exploit
this shock in our analyses, rather than controlling for the COVID effect because fossil fuel energy demand
is likely to fall as transition risk rises. To control for the effect of the overall market collapse, we include
market factor in the model.

5We set the prudential capital ratio as 8%.
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in systemic risks when transition risks rise sharply.

This paper also contributes to the literature on stress testing and systemic risk measure-

ment. In the context of climate-related stress testing, Reinders et al. (2020) use Merton’s

contingent claims model to assess the impact of a carbon tax shock on the value of corporate

debt and residential mortgages in the Dutch banking sector. Compared to other stress test-

ing methodologies, CRISK methodology inherits the benefits of the SRISK methodology of

Acharya et al. (2011), Acharya et al. (2012), and Brownlees and Engle (2017). First, CRISK

does not require any proprietary information, can be readily computed using publicly avail-

able data on the balance sheet and market information of each financial institution, and the

return on the stranded asset portfolio. Moreover, it can be estimated on a high-frequency

basis. Therefore, it is very easy to estimate and promptly reflects current market conditions.

It is thus a useful monitor that enables regulators to respond in a timely manner in case

intervention is necessary. Second, CRISK measures the expected capital shortfall condi-

tional on aggregate stress. That is, we are not measuring how much capital a bank would

need when the bank is under stress merely in isolation. Third, firm-level CRISK can be

aggregated to country-level CRISK, which provides early warning signals of macroeconomic

distress due to climate change. Fourth, by applying a consistent methodology to different

firms in different countries, the CRISK measure allows comparison across firms and across

countries. Lastly, implementing the CRISK measure offers value incremental to other stress

testing methodologies that are already in place. Previous studies including Acharya et al.

(2014) and Brownlees and Engle (2017) show that regulatory capital shortfalls measured

relative to total assets give similar rankings to SRISK. However, rankings are different when

the regulatory capital shortfalls are measured relative to risk-weighted assets, and they are

also different from those observed in the European stress tests.

4



Outline of the Paper

The remainder of the paper proceeds as follows: Section 2 describes the data. Section 3

develops our empirical methodology and reports the stress testing results. Section 4 analyzes

the CRISKs of large global banks during 2020. Section 5 tests the economic validity of our

estimates. Section 6 presents robustness results, and section 7 concludes.

2 Data

We estimate climate betas and CRISKs of large global banks in the U.S., the U.K., Canada,

Japan, and France for the sample period from 2000 to 2021. We focus on large global banks

as they hold more than 80% of syndicated loans made to oil and gas industry.6 We use the

return on an S&P 500 ETF as the market return. The stock return and accounting data

of banks are from Datastream. The summary statistics on the return data are reported in

Appendix A.

For the U.S. banks, we use FR Y-14Q and FR Y-9C to study the relationship between

climate beta estimates and bank loan composition as well as bank characteristics. FR Y-

14Q7 provides data on banks’ loan holdings, and FR Y-9C8 provides consolidated financial

statement data of bank holding companies. Both data are maintained by the Federal Reserve.

FR Y-14Q is the closest data to the credit registry in the U.S. Unlike commercially available

databases that cover only a subset of the loan market, FR Y-14Q covers more than 75% of

all corporate lending in the U.S. We use its sub-database “Schedule H.1”, which provides

granular information on all commercial and industrial loans over 1 million USD in size for

all stress-tested banks in the U.S. at a quarterly frequency. In the sample period between

2012:Q2 and 2021:Q4, we observe over 5 million loans for 21 listed banks. We make use of

6This is based on the syndicated loan data from LPC DealScan and Bloomberg League Table.
7https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoYJ+

5BzDZGWnsSjRJKDwRxOb5Kb1hL
8https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoYJ+

5BzDal8cbqnRxZRg==
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information on borrowers’ industries and their probability of default to explain the time-series

and cross-sectional variations in climate betas.

3 Methodology and Empirical Results

The climate stress testing procedure involves three steps. The first step is to measure the

climate risk factor by using the stranded asset portfolio return as a proxy measure for

transition risk. The second step is to estimate the time-varying climate betas of financial

institutions using the DCB model. The third step is to compute CRISK, which is a function

of a given firm’s size, leverage, and expected equity loss conditional on climate stress. This

step extends the SRISK methodology of Acharya et al. (2011), Acharya et al. (2012), and

Brownlees and Engle (2017) by adding the climate factor as the second factor.

3.1 Climate Factor Measurement

There are several ways to measure the climate risk factor, including the climate news index

constructed by Engle et al. (2020). We use a market-based measure, Litterman’s ”stranded

asset” portfolio return as a measure of transition risks. The stranded asset portfolio consists

of a long position in the stranded asset index comprised of 30% in Energy Select Sector

SPDR ETF (XLE) and 70% in VanEck Vectors Coal ETF (KOL), and a short position in

SPDR S&P 500 ETF Trust (SPY ). At the World Wildlife Fund where Litterman chairs the

investment committee, the stranded asset portfolio is used to protect the fund’s portfolio

against the risk of coal and oil becoming less valuable and the valuations of companies holding

those assets falling when incentives to reduce carbon emissions are instituted globally.9

9The stranded asset portfolio return acts as a proxy for the World Wildlife Fund stranded assets
total return swap. See http://www.intentionalendowments.org/selling_stranded_assets_profit_

protection_and_prosperity for further details.
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We directly use the return on stranded asset portfolio as the climate factor10:

CF Str = 0.3XLE + 0.7KOL− SPY

because it can be easily computed on a daily basis and naturally incorporates the changes

in market expectations. The portfolio is expected to underperform as economies transition

to a lower-carbon economy. A short position in the stranded asset portfolio is a bet on

the underperformance of coal and other fossil fuel firms; therefore, a lower value of CF Str

indicates underperformance of fossil fuel firms and hence higher transition risk. During the

time period in which VanEck Vectors Coal ETF is not available, we use the average return

on the top 4 coal companies instead.11 Figure 1 shows that the cumulative return on the

stranded asset portfolio has been falling since 2011.

3.2 Climate Beta Estimation

Following the standard factor model approach, we model bank i’s stock return as:

rit = βMkt
it MKTt + βClimate

it CFt + εit (1)

where rit is the stock return of bank i, MKT is the market return, and CF is the climate

factor, measured as the return on the stranded asset portfolio. The market beta and climate

beta, in this regression, measure the sensitivity of bank i’s return to market risk and to

transition-related climate risk, respectively. One would expect that banks with large amounts

of loans in the fossil fuel industry will be more sensitive to climate risk on average and will

have a positive climate beta.

We use the DCB model to estimate the time-varying climate betas on a daily basis. The

GARCH-DCC model of Engle (2002), Engle (2009), and Engle (2016) allows volatility and

10We use log returns. For instance, XLE denotes log return on Energy Select Sector SPDR ETF.
11VanEck Vectors Coal ETF started in 2008 and was liquidated in 2020
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correlation to vary over time. The details of estimation steps and the parameter estimates

are reported in Appendix D.

For stock markets with a closing time different from that of the New York market, we take

asynchronous trading into consideration by including the lags of the independent variables:

rit = βMkt
1it MKTt + βMkt

2it MKTt−1 + βClimate
1it CFt + βClimate

2it CFt−1 + εit

Assuming that returns are serially independent, we estimate the following two specifications

separately and sum the coefficients.

rit = βMkt
1it MKTt + βClimate

1it CFt + εit

rit = βMkt
2it MKTt−1 + βClimate

2it CFt−1 + εit

The sum, βMkt
1it + βMkt

2it , is the estimate of market beta and the sum, βClimate
1it + βClimate

2it , is

the estimate of climate beta.

We present the estimated climate betas of large global banks in the U.S., U.K., Canada,

Japan, and France in Figures 2–6. For illustration, we plot the six-month moving averages

of the estimates. We report the non-smoothed climate beta estimates and market beta

estimates in the Appendix.

Based on the estimation results, we summarize the main findings as follows. First,

climate betas vary over time, and it is therefore important to estimate the betas dynamically.

Second, we observe a common spike in the year 2020 as banks’ exposures to the transition

risk rose substantially due to a collapse in energy prices. It is likely that COVID played

an important role in driving energy prices down in 2020, and that demand for fossil fuel

energy falls as transition risk rises. Third, the average level of climate beta is different

across countries, and this could be due to differences in country-specific climate-related

regulations, or differences in climate-conscious investing patterns across countries. In the

U.S., the climate beta estimates range from −0.4 to 0.7, and were often not significantly
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different from zero before 2015. In terms of magnitude, a climate beta of 0.5 means that a

1% fall in the stranded asset portfolio return is associated with a 0.5% fall in the bank’s stock

return. The climate beta estimates’ proximity to zero could be related to the non-linearity

in climate beta as a function of the return on stranded asset portfolio. That is, we expect

that the values of bank stocks are relatively insensitive to fluctuations in the stock prices of

oil and gas firms as long as those firms are sufficiently far from default. On the other hand,

the estimates for UK banks were higher on average.

3.3 CRISK Estimation

Following SRISK methodology in Acharya et al. (2011), Acharya et al. (2012), Brownlees

and Engle (2017), CRISK for each financial institution is computed as:

CRISKit = k ·DEBTit − (1− k) · EQUITYit · (1− LRMESit) (2)

= k ·DEBTit − (1− k) · EQUITYit · exp
(
βClimate
it log(1− θ)

)
(3)

where βClimate
it is the climate beta of bank i, DEBT is book value of debt (book value of

assets less book value of equity), and EQUITY is market capitalization. LRMES is long-run

marginal expected shortfall, the expected stock return conditional on the systemic climate

event. We set the prudential capital fraction k to 8% (5.5% for European banks to account

for accounting differences) and the climate stress level θ to 50%. This corresponds to the

first percentile of six-month simple return on the stranded assets.12 Therefore, the climate

stress scenario that we consider is 50% fall in the return on the stranded asset portfolio over

6-month time period. Figures 7–11 present the estimated CRISKs of large global banks in

the U.S., U.K., Canada, Japan, and France.

As CRISK is the expected capital shortfall, a negative CRISK indicates that the bank

holds a capital surplus. The reason why the estimated CRISKs are often negative until 2019

12The 6-month return summary statistics are included in Appendix A
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is likely related to the non-linear relationship between climate beta and the performance of

fossil-fuel firms. A bank will not have a capital shortfall if its climate beta is small and will

therefore have a negative CRISK. In contrast, the CRISKs increased substantially across

countries in 2020.

Since CRISK is a function of climate beta, as well as a function of the size and leverage

of a bank, the ranking of CRISKs can differ from that of climate beta estimates. For

instance, while climate beta estimates of the U.S. banks were relatively low, their CRISKs

were substantial, as high as 95 billion USD for Citibank in June 2020. To put this into

context, Citibank’s SRISK, the expected capital shorfall in a potential future financial crisis,

was 125 billion USD in June 2020.13 In contrast, CRISKs of Canadian banks in June

2020 range from 6 billion to 33 billion USD, despite their high climate betas. We see high

CRISKs during the global financial crisis and European financial crisis because when banks

were undercapitalized, they are vulnerable to both market risk and climate risk. To isolate

the effect of climate stress from the effect of market stress, we analyze marginal CRISK in

the next section.

4 Discussion

Given that CRISKs increased substantially in 2020, we focus on the first half of 2020 and

analyze CRISKs in relation to banks’ loan exposure to the oil and gas industry. In this

section, we first provide suggestive evidence that our CRISK measure during 2020 roughly

aligns with the size of active loans made to the U.S. firms in the oil and gas industry. Then,

we decompose the CRISK estimates into the components due to debt, equity, and risk,

respectively. We find that the decline in the equity component contributed the most to the

overall increase in CRISKs.

13NYU’s V-lab (https://vlab.stern.nyu.edu/) provides systemic risk analysis.
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U.S. Banks

Figure 12 presents the CRISK measures of the top 10 U.S. banks, and Table 1 tabulates

the banks’ exposure to the oil and gas industry. LenderAmt is the sum of all active loans

from the bank to U.S. firms in the oil and gas industry as of April 2020. Figure 12 shows

that CRISKs jumped up around the first quarter-end, and their rankings are roughly aligned

with the banks’ gas and oil loan exposure shown in Figure 1.

To better understand what drives the substantial increase in CRISK, we decompose

climate SRISK into three components based on Equation 2:

dCRISK = k ·∆DEBT︸ ︷︷ ︸
dDEBT

−(1− k)(1− LRMESt+1) ·∆EQUITY︸ ︷︷ ︸
dEQUITY

+ (1− k) · EQUITYt ·∆LRMES︸ ︷︷ ︸
dRISK

where LRMES is long-run marginal expected shortfall, EQUITY is market capitalization,

and DEBT is book value of debt. The first component, dDEBT = k · ∆DEBT is the

contribution of the firm’s debt to CRISK. CRISK increases as the firm takes on more debt.

The second component, dEQUITY = −(1− k)(1− LRMESt) ·∆EQUITY is the effect of

the firm’s equity position on CRISK. CRISK increases as the firm’s market capitalization

deteriorates. The third component, dRISK = (1 − k) · EQUITYt−1 · ∆LRMES is the

contribution of increase in volatility or correlation to CRISK.

Table 3 decomposes the change in CRISK during the year 2020 into the three components.

The decomposition suggests that the decline in equity contributed the most to the increase

in CRISK. Does this imply that banks were already under stress in 2020 without any climate

stress? To answer this question, we disentangle the effect of climate stress and the effect

of market stress by analyzing marginal CRISK. The marginal CRISK is defined as the

difference between CRISK and non-stressed CRISK, where the non-stressed CRISK is simply
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the capital shortfall of bank without any climate stress (θ = 0). From Equation 2,

Marginal CRISK = (1− k) · Equity · LRMES (4)

Figure 13 plots the marginal CRISKs of the top 10 U.S. banks. It shows that the marginal

CRISKs opened up before 2020, and reached 70 –90 billion US dollars for the largest banks

at the end of 2020. The top four banks’ aggregate marginal CRISK is approximately 245

billion US dollars. These correspond to 20 – 30% of their equity.14 This suggests that the

effect of climate stress in 2020 was economically substantial, which was not the case for the

global financial crisis or the European financial crisis. Moreover, they remain high even after

the energy prices rebound to the pre-2020 level in late 2021.

U.K. Banks

We document similar findings for U.K. banks. Figure 14 and Table 2 present the results

for U.K. banks. Similar to U.S. bank results, the ranking of CRISK and gas and oil loan

exposure are consistent. In addition, Table 4 shows that the equity deterioration contributes

to more than 75% of the increase in CRISK during 2020. However, Figure 15 shows that the

marginal CRISKs are lower in the U.K. compared to the U.S. For completeness, we report

the results for Canadian banks, Japanese banks, and French banks in Appendix F.15

5 Climate Beta and Loan Portfolio of Banks

What explains the time-series and cross-sectional variations in climate betas? We link climate

beta estimates to bank characteristics and banks’ loan exposures to brown industries to

answer this question. The bank characteristics data come from FR Y-9C and the granular

14See Appendix F Figure 44 for marginal CRISKs scaled by equity.
15Their marginal CRISKs are much lower than U.S. banks; however, their marginal CRISKs increased

during 2020.
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information on loan holdings comes from FR Y-14Q. The summary statistics are reported

in Appendix A.

First, we hypothesize that banks with higher brown loan exposure have higher climate

betas. Based on 21 listed banks in FR Y-14Q for the sample period from 2012:Q2 to

2021:Q4, we confirm a positive relationship between banks’ climate betas and their brown

loan exposure (Figure 16). We define brown loans as loans made to a firm in the top 30

industries by scope 1 and scope 2 emissions.16

We formally test the hypothesis with the following OLS specification:

βClimate
it = α + β ·Brown Loan Shareit +Bank Controlsit + δi + γt + εit (5)

The dependent variable, βClimate
it is bank i’s time-averaged daily climate beta during the

quarter-end month. Brown Loan Shareit is bank i’s loan exposure to the top 30 industries

with highest emissions in quarter t. Bank control variables include: log assets, leverage, ROA,

loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-interest income/net

income, and market beta. The standard errors are clustered at the bank level. We expect β

to be positive, because a bank’s stock return is likely to be more sensitive to the transition

risk factor if the bank makes more loans to firms with high emissions.

Table 5 shows the results. Columns (2)–(4) include bank control variables, Columns (3)

and (4) add bank fixed effects to control for unobservable time-invariant bank characteristics.

Column (4) adds year fixed effects to control for any potential trends. Consistent with the

hypothesis, we find that β is positive and significant across specifications.

Second, we further hypothesize that climate betas are higher during the time period

when the risk of brown loans is high. Figure 17 shows that during the first two quarters

of 2020, the average probability of default increased for firms in brown industries as well

as non-brown industries; however, the average probability of default for the firms in brown

industries increased much more sharply.

16We use the industry rankings by emissions from Ilhan et al. (2020).
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To this end, we test whether the spread between the average probability of default for

the firms in brown industries and that for the firms in non-brown industries explains the

time-series variation in climate betas. We use the following OLS specification:

βClimate
it = α + βBrownLoanShare ·Brown Loan Shareit

+ βBrownLoanPD ·Brown PD Spreadt +Bank Controlsit + δi + γt + εit (6)

The quarterly climate beta, the brown loan share, and the bank characteristics are identical

to those in in Equation 5. Brown PD Spreadt is defined as the spread between the average

probability of default of firms in the 30 brown industries and that of firms in all other

industries, and it captures the time-series variation in the risk of brown loans relative to

non-brown loans. The sample period for this analysis is from 2014:Q4 to 2021:Q4, as the

data on the obligor probability of default are mostly available from 2014:Q4.

Table 6 presents the results. Consistent with the hypothesis, the coefficient on the

Brown PD Spreadt is positive and significant across specifications.17 Interestingly, the

coefficients on Brown Loan Shareit are still positive and significant even after including

Brown PD Spreadt. These results suggest that both exposure and risk of brown loans

explain variations in climate beta. In addition, we find that ROA and loan loss reserves,

both measures of risks, are also important variables explaining the climate beta. A natu-

ral explanation for the positive relationship between ROA and climate beta is that higher

ROA reflects a risk premium on bank’s brown loan holdings. Similarly, a higher loan loss

reserve ratio can be interpreted as a higher risk profile of the bank’s loan portfolio, and

therefore banks with higher loan loss reserve ratios have higher climate betas. Comparing

columns (2) and (3), leverage and deposits/assets across banks explain variations in the

climate beta; comparing columns (3) and (4), loans/assets and book/market are important

variables explaining time-series variations in the climate beta.

17We omit the coefficient on Brown PD Spreadt in specification (4) as we include year fixed effects.
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In untabulated results, we find that the results are robust to using the emission intensity

rankings, where emission intensity is emission divided by the market capitalization of the

firm.

6 Robustness Analysis

6.1 Robustness to Including Additional Factors

As banks manage a portfolio of interest-rate-related products, interest rate factors could

potentially be important in explaining the bank stock returns. Therefore, we test whether

our results are robust to including interest-rate factors. Following Gandhi and Lustig (2015),

we consider long-term government bond factor (LTG) and credit factor (CRD). We use excess

return on long-term U.S. government bond index for long-term interest rate factor and excess

return on investment-grade corporate bond index for credit factor. To test how these factors

affect the climate beta estimates, we first regress each bank stock return rit on LTGt and

CRDt, and then regress the residual on MKTt and CFt. In Figure 18, we plot the coefficient

on CFt, and it shows that the climate beta estimates based on the baseline specification (1)

is robust to including the interest-rate factors.

7 Conclusion

Climate change could impose systemic risk to the financial sector through either disruptions

of economic activity resulting from the physical impacts of climate change or changes in

policies as the economy transitions to a less carbon-intensive environment. We develop a

stress testing procedure to test the resilience of financial institutions to climate-related risks.

The procedure involves three steps. The first step is to measure the climate risk factor.

We propose using stranded asset portfolio returns as a proxy measure of transition risks.

The second step is to estimate the time-varying climate betas of financial institutions. We
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estimate dynamically by using the DCB model to incorporate time-varying volatility and

correlation. The third step is to compute the CRISKs, the capital shortfall of financial

institutions in a climate stress scenario. This step is based on the same methodology as

SRISK, but the climate factor is added as the second factor. We use this procedure to study

the climate risks of large global banks in the U.S., U.K., Canada, Japan, and France in

the collapse in fossil fuel prices in 2020. We document a substantial rise in climate betas

and CRISKs across banks during 2020 when energy prices collapsed. Further, we provide

evidence that banks with a higher exposure to the fossil fuel industry tend to have higher

climate betas, adding validity to our CRISK measure.

There are multiple directions for future research. First, our climate testing methodology

can be extended to incorporate physical risks. Specifically, a proxy measure for a common

physical risk factor could be included as the third factor in the second step. It would also be

interesting to test whether banks with high loan exposure to geographic regions with frequent

or severe extreme climate events have high physical-risk-related climate betas. Second, we

can estimate climate beta and CRISK of firms in other countries and other sectors, including

insurance sector to understand the country-level CRISK. It could be used as a warning signal

of macroeconomic distress due to climate risks.
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Figure 1: Stranded Asset Portfolio Cumulative Return Cumulative return on stranded
asset portfolio (0.3 XLE + 0.7 KOL - SPY) from June 2000 to Dec 2021. For the time period when
KOL ETF is not available, we use the average return on top 4 coal companies, denoted KOL’.
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Figure 2: Climate Beta of U.S. Banks Climate beta estimates from June 2000 to Dec 2021.
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Figure 3: Climate Beta of U.K. Banks Climate beta estimates from June 2000 to Dec 2021.
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Figure 4: Climate Beta of Canadian Banks Climate beta estimates from June 2000 to Dec
2021.
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Figure 5: Climate Beta of Japanese Banks Climate beta estimates from June 2000 to Dec
2021.

21



−.5

0

.5

1

1.5

cb
et

a 
(m

a)
, s

py
_s

tr
an

de
d_

sp
y

01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
date

ACA:FP BNP:FP

GLE:FP

Figure 6: Climate Beta of French Banks Climate beta estimates from June 2000 to Dec 2021.
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Figure 7: CRISK of U.S. Banks CRISK estimates from June 2000 to Dec 2021.
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Figure 8: CRISK of U.K. Banks CRISK estimates from June 2000 to Dec 2021.
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Figure 9: CRISK of Canadian Banks CRISK estimates from June 2000 to Dec 2021.
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Figure 10: CRISK of Japanese Banks CRISK estimates from June 2000 to Dec 2021.
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Figure 11: CRISK of French Banks CRISK estimates from June 2000 to Dec 2021.
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Figure 12: CRISK in 2020 (US Banks)

No Name Ticker LenderAmt
1 Wells Fargo WFC 46,939
2 JP Morgan JPM 38,792
3 BofA BAC 29,720
4 Citi C 28,072
5 US Bancorp USB 12,091
6 PNC Bank PNC 11,818
7 Goldman Sachs GS 11,597
8 Morgan Stanley MS 10,024
9 Capital One Financial Corp COF 9,621
10 Bank of New York Mellon BK 1,289

Table 1: Gas & Oil Loan Exposure (US Banks)
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Figure 13: Marginal CRISK of U.S. Banks Marginal CRISK is difference between the
stressed CRISK and non-stressed CRISK. The stressed CRISK is computed as: kD − (1 −
k) exp

(
βClimate log(1− θ)

)
W and the non-stressed CRISK is computed as: kD − (1− k)W where

k is prudential capital ratio, D is debt, and W is market equity of each bank.
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Figure 14: CRISK in 2020 (UK Banks)

No Name Ticker LenderAmt
1 Barclays BARC 19,893
2 HSBC Banking Group HSBC 7,546
3 Standard Chartered Bank STAN 3,945
4 Natwest NWG 1,361
5 Lloyds Banking Group LLOY 869

Table 2: Gas & Oil Loan Exposure (UK Banks)
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Figure 15: Marginal CRISK of U.K. Banks Marginal CRISK is difference between the
stressed CRISK and non-stressed CRISK. The stressed CRISK is computed as: kD − (1 −
k) exp

(
βClimate log(1− θ)

)
W and the non-stressed CRISK is computed as: kD − (1− k)W where

k is prudential capital ratio, D is debt, and W is market equity of each bank.
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Figure 16: Climate Beta and Brown Loan Share Binned scatterplot of climate beta and
brown loan share based on 21 listed banks in FR Y-14Q for the sample period from 2012:Q2 to
2021:Q4.

Figure 17: Average Probability of Default: Brown Firms vs. Non-brown Firms The
average probability of default of firms in brown industry and that of firms in non-brown industries.
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Figure 18: Climate Beta after Controlling for LTG and CRD First, we regress bank stock
return on LTG and CRD. Second, we regress the residual from the first step on MKT and CF and
plot the coefficient on CF. LTG is excess return on long-term U.S. government bond index and
CRD is excess return on investment-grade corporate bond index.

Tables

Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
BAC:US -60.5598 15.0086 75.5684 24.6334 54.9075 -4.4293
BK:US -8.6035 4.6776 13.2811 4.1082 9.8573 -0.89512
C:US 5.1582 81.9642 76.8061 17.4887 42.0878 15.939
COF:US -11.5581 -3.3809 8.1772 3.2452 6.1094 -0.61547
GS:US 9.0332 12.748 3.7147 9.8983 -1.0523 -5.3841
JPM:US -148.5589 -48.5246 100.0343 38.4204 73.4622 -14.1743
MS:US 2.0322 -21.5796 -23.6117 3.65 -23.7485 -3.9269
PNC:US -28.33 -12.5543 15.7758 3.8029 13.6699 -1.4535
USB:US -39.8808 -10.8763 29.0045 4.131 23.16 1.3047
WFC:US -48.1845 62.8932 111.0777 -0.84144 105.7064 5.3232

Table 3: CRISK Decomposition (US Banks) CRISK(t) is the bank’s CRISK at the end of
2020, and CRISK(t−1) is CRISK at the beginning of year 2020. dCRISK= CRISK(t)-CRISK(t−1)
is the change in CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK.
dEQUITY is the contribution of the firm’s equity position on CRISK. dRISK is the contribution
of increase in volatility or correlation to CRISK. All amounts are in billions USD.
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
BARC:LN 98.9833 119.6698 20.6865 19.4718 5.3932 -4.4813
HSBA:LN 82.446 159.3621 76.9161 31.6431 42.0261 2.4847
LLOY:LN 43.0653 64.955 21.8897 2.7404 16.4408 2.1367
NWG:LN 50.2635 61.2342 10.9707 5.2206 6.5596 -1.4021
STAN:LN 35.9336 43.6598 7.7262 5.2962 6.5074 -4.1083

Table 4: CRISK Decomposition (UK Banks) CRISK(t) is the bank’s CRISK at the end of
2020, and CRISK(t−1) is CRISK at the beginning of year 2020. dCRISK= CRISK(t)-CRISK(t−1)
is the change in CRISK during 2020. dDEBT is the contribution of the firm’s debt to CRISK.
dEQUITY is the contribution of the firm’s equity position on CRISK. dRISK is the contribution
of increase in volatility or correlation to CRISK. All amounts are in billions USD.
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(1) (2) (3) (4)
Climate Beta Climate Beta Climate Beta Climate Beta

Brown Loan Share (Emiss) 2.448∗∗∗ 1.862∗∗∗ 2.299∗∗ 0.869∗∗

(3.16) (2.89) (2.45) (2.58)

Log Assets 0.0140 0.478∗∗∗ 0.0501
(0.89) (5.44) (0.67)

Leverage 3.612∗∗∗ -1.314 -2.274∗

(4.26) (-0.83) (-2.00)

ROA 6.623∗∗∗ 3.039∗ 1.631
(3.12) (1.87) (1.52)

Loans/Assets -0.0646 -0.948∗∗ -0.577∗∗

(-0.76) (-2.29) (-2.49)

Deposits/Assets 0.527∗∗∗ 0.956∗∗ -0.182
(3.83) (2.39) (-0.75)

Book/Market 0.235∗∗∗ 0.237∗∗∗ 0.00956
(4.42) (5.95) (0.27)

Loan Loss Reserves/Loans 4.001∗ 7.216∗∗∗ 3.151∗

(1.93) (4.96) (1.82)

Non-interest Income/Net Income 0.00134∗∗∗ 0.00123∗∗∗ 0.00109∗∗∗

(3.93) (5.90) (5.68)

Market Beta 0.177∗∗∗ 0.0840∗∗∗ 0.00808
(4.90) (3.22) (0.42)

N 715 715 715 715
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.0557 0.292 0.518 0.677

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Climate Beta and Brown Loan Share The dependent variable, βClimate
it is bank i’s

time-averaged daily climate beta during quarter-end month. Brown Loan Shareit is bank i’s loan
exposure to the top 30 industries with highest emissions in quarter t. Bank control variables include
log assets, leverage, ROA, loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-
interest income/net income, market beta. Standard errors are clustered at bank level. The sample
period is from 2012:Q2 to 2021:Q4.
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(1) (2) (3) (4)
Climate Beta Climate Beta Climate Beta Climate Beta

Brown Loan Share (Emiss) 1.437∗∗ 1.107∗∗ 1.464∗∗ 0.626∗∗

(2.57) (2.77) (2.35) (2.12)

PD Brown - PD Non-brown 12.49∗∗∗ 8.973∗∗∗ 5.067∗∗∗

(13.06) (9.60) (6.18)

Log Assets -0.0176 0.425∗∗∗ 0.0317
(-1.68) (3.21) (0.38)

Leverage 3.304∗∗∗ -1.175 -2.696∗

(5.74) (-0.76) (-2.02)

ROA 6.146∗∗∗ 3.948∗∗ 3.764∗∗

(2.93) (2.19) (2.76)

Loans/Assets -0.165∗∗ -1.473∗∗∗ -0.533
(-2.64) (-4.37) (-1.60)

Deposits/Assets 0.365∗∗∗ 0.396 -0.221
(4.44) (1.09) (-0.85)

Book/Market 0.254∗∗∗ 0.224∗∗∗ -0.0160
(6.63) (7.27) (-0.36)

Loan Loss Reserves/Loans 6.472∗∗∗ 8.224∗∗∗ 3.814∗∗

(3.72) (3.27) (2.10)

Non-interest Income/Net Income 0.00199 0.00308 0.00342∗

(1.02) (1.71) (1.97)

Market Beta -0.0488 -0.0336 -0.0468∗∗

(-1.52) (-1.45) (-2.26)
N 551 551 551 551
Bank Controls N Y Y Y
Bank FE N N Y Y
Year FE N N N Y
Adj R2 0.300 0.449 0.555 0.690

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Climate Beta, Brown Loan Share, and Brown-Nonbrown PD Spread The
dependent variable, βClimate

it is bank i’s time-averaged daily climate beta during quarter-end month.
Brown Loan Shareit is bank i’s loan exposure to the top 30 industries with highest emissions
in quarter t. PD Brown − PD Nonbrownt is the spread between the average probability of
default of firms in the 30 brown industries Bank control variables include log assets, leverage,
ROA, loans/assets, deposits/assets, book/market, loan loss reserves/loans, non-interest income/net
income, market beta. Standard errors are clustered at bank level. The sample period is from
2014:Q4 to 2021:Q4, as the probability of default data are available from 2014:Q4.
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Appendices

A Summary Statistics

A.1 Return Data

count mean sd min max
SPY 5206 0.0002 0.0123 -0.1159 0.1356
ACWI 5206 0.0002 0.0123 -0.1190 0.1170
0.7KOL+0.3XLE 5206 -0.0002 0.0197 -0.1819 0.1233
0.7KOL+0.3XLE-SPY 5206 -0.0004 0.0139 -0.1259 0.0901

Table 7: Market Returns and Climate Factors Summary Statistics Daily log returns for
June 2000 – Dec 2021.

SPY ACWI 0.7KOL+0.3XLE 0.7KOL+0.3XLE-SPY
SPY 1
ACWI 0.945 1
0.7KOL+0.3XLE 0.715 0.766 1
0.7KOL+0.3XLE-SPY 0.128 0.249 0.785 1

Table 8: Market Returns and Climate Factors Correlation Daily log returns for June 2000
– Dec 2021.

count mean sd min p1 max
SPY 5080 0.0303 0.1123 -0.4634 -0.3425 0.4882
ACWI 5080 0.0361 0.1254 -0.5141 -0.3750 0.6137
0.7KOL+0.3XLE 5080 -0.0005 0.2336 -0.7838 -0.7001 0.9496
0.7KOL+0.3XLE-SPY 5080 -0.0357 0.1813 -0.6274 -0.5358 0.5185

Table 9: Stranded Asset Portfolio Return 6-month simple returns Dec 2000 – Dec 2021.
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count mean sd min p1 max
XLE 3252 -0.0001 0.0204 -0.2249 -0.0571 0.1825
KOL 3252 -0.0003 0.0243 -0.1979 -0.0880 0.1617
SPY 3252 0.0004 0.0132 -0.1159 -0.0430 0.1356
.3XLE+.7KOL-SPY 3252 -0.0007 0.0140 -0.1160 -0.0475 0.0964
.3XLE+.7KOL 3252 -0.0003 0.0220 -0.1720 -0.0798 0.1351
XLE-SPY 3252 -0.0005 0.0124 -0.1436 -0.0352 0.1210

Table 10: Return Summary Statistics Daily log return summary statistics during 2008 – 2020

Daily return correlations during 2008 – 2020:

XLE KOL SPY .3XLE+.7KOL-SPY .3XLE+.7KOL XLE-SPY
XLE 1
KOL 0.764 1
SPY 0.807 0.745 1
.3XLE+.7KOL-SPY 0.604 0.847 0.314 1
.3XLE+.7KOL 0.867 0.984 0.799 0.822 1
XLE-SPY 0.778 0.457 0.257 0.654 0.569 1

Table 11: Return Correlations

A.2 Bank Characteristics Data

(1)

Mean St.Dev. 25th percentile 75th percentile Count
Log Assets 19.66 1.18 18.69 20.62 768
Leverage 0.89 0.02 0.88 0.91 768
ROA 0.01 0.00 0.00 0.01 768
Loans/Assets 0.48 0.23 0.30 0.67 768
Deposits/Assets 0.65 0.19 0.58 0.78 768
Book/Market 1.02 0.35 0.76 1.22 768
Loan Loss Reserves/Loans 0.01 0.01 0.01 0.02 768
Non-interest Income/Net Income 2.91 14.13 1.43 3.39 768
Brown Loan Share (Emiss) 0.03 0.02 0.01 0.04 768
Brown Loan Share (Intens) 0.03 0.03 0.02 0.05 768
Market Beta 1.06 0.24 0.89 1.19 759
Climate Beta 0.12 0.24 -0.03 0.26 768
Observations 768
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(1)

Log Assets Leverage ROA Loans/Assets Deposits/Assets Book/Market Loan Loss Reserves/Loans Non-interest Income/Net Income Brown Loan Share (Emiss) Brown Loan Share (Intens) Market Beta Climate Beta
Log Assets 1.00
Leverage 0.25 1.00
ROA -0.03 -0.17 1.00
Loans/Assets -0.52 -0.62 0.15 1.00
Deposits/Assets -0.58 -0.34 0.13 0.56 1.00
Book/Market 0.17 -0.18 -0.37 0.05 -0.27 1.00
Loan Loss Reserves/Loans 0.12 -0.39 0.03 0.45 0.21 0.36 1.00
Non-interest Income/Net Income 0.05 0.10 -0.09 -0.12 -0.14 0.10 -0.07 1.00
Brown Loan Share (Emiss) 0.02 0.05 0.04 0.04 0.12 -0.00 0.15 -0.05 1.00
Brown Loan Share (Intens) -0.09 -0.09 0.07 0.21 0.26 -0.02 0.20 -0.07 0.96 1.00
Market Beta 0.21 0.21 -0.22 -0.32 -0.38 0.40 0.03 0.10 0.00 -0.07 1.00
Climate Beta 0.07 0.15 -0.07 -0.04 0.04 0.29 0.21 0.08 0.22 0.19 0.28 1.00

B Fixed Beta Estimation

For each firm i:
rit = α + βiMKTt + γiCFt + εit

The beta and gamma in this regression reflect the sensitivity of bank i to broad market
declines and to climate deterioration. One would expect that banks with many loans to
the fossil fuel industry will be more sensitive to CF than average and will have positive γ.
MKT is return on market SPY is used. For CF , the return on the stranded asset portfolio
CF Str is used. Full sample period is 01/01/2000–01/31/2021 and post-crisis sample period is
01/01/2010–01/31/2021. Standard errors are Newey-West adjusted with optimally selected
number of lags.

U.S. Banks

Focus on top 10 banks by average total assets in year 2019.

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofAmericaCorp BAC 0.09 1.98 1.54 13.8 −0.0001 −0.34 0.46 5,444
CitigroupInc C 0.07 1.63 1.67 16.98 −0.0005 −1.9 0.47 5,444
WellsFargoCo WFC 0.05 1.19 1.29 12.42 0 0.06 0.45 5,444
BankofNewYorkMellonCorpThe BK 0.04 1.16 1.35 19.22 −0.0001 −0.78 0.51 5,444
PNCFinancialServicesGroupIncThe PNC 0.01 0.22 1.25 12.81 0.0001 0.74 0.43 5,444
CapitalOneFinancialCorp COF 0 −0.08 1.59 18.33 0 −0.16 0.43 5,444
USBancorp USB −0.02 −0.53 1.15 15.25 0.0001 0.57 0.43 5,444
GoldmanSachsGroupIncThe GS −0.03 −0.93 1.37 29.19 0 0.16 0.53 5,444
MorganStanley MS −0.05 −1.19 1.82 16.61 −0.0002 −0.9 0.55 5,444
JPMorganChaseCo JPM −0.05 −1.25 1.47 20 0 0.25 0.56 5,444

Table 12: Large Banks, SPY
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Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CitigroupInc C 0.3 5.1 1.53 26.6 −0.0003 −1.16 0.61 2,832
BankofAmericaCorp BAC 0.24 4.7 1.47 25.09 −0.0003 −0.86 0.55 2,832
MorganStanley MS 0.23 4.89 1.53 26.79 −0.0002 −0.89 0.6 2,832
JPMorganChaseCo JPM 0.18 4.01 1.27 35.75 0 0.02 0.62 2,832
CapitalOneFinancialCorp COF 0.16 2.7 1.38 18 −0.0002 −0.64 0.52 2,832
GoldmanSachsGroupIncThe GS 0.15 3.86 1.25 31.64 −0.0003 −1.23 0.57 2,832
BankofNewYorkMellonCorpThe BK 0.14 3.5 1.15 31.74 −0.0003 −1.41 0.55 2,832
WellsFargoCo WFC 0.13 2.13 1.27 24 −0.0004 −1.63 0.57 2,832
PNCFinancialServicesGroupIncThe PNC 0.11 2.35 1.22 21.27 −0.0001 −0.33 0.58 2,832
USBancorp USB 0.09 1.77 1.15 21.62 −0.0002 −1.03 0.58 2,832

Table 13: Large Banks, SPY, Post-crisis

U.K. Banks

Focus on top 5 banks by average total assets in year 2019.

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
NatwestPLC NWG 0.29 4.74 0.87 11.37 −0.0006 −1.56 0.12 5,145
StandardCharteredPLC STAN 0.27 5.34 0.78 15.78 −0.0001 −0.43 0.19 5,145
BarclaysPLC BARC 0.25 4.43 0.96 11.72 −0.0003 −0.78 0.18 5,145
LloydsBankingGroupPLC LLOY 0.24 4.27 0.83 8.11 −0.0005 −1.47 0.14 5,145
HSBCHoldingsPLC HSBA 0.19 5.19 0.65 13.57 −0.0001 −0.35 0.24 5,145

Table 14: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.47 7.48 0.81 15.4 −0.0004 −1.36 0.25 2,768
BarclaysPLC BARC 0.46 7.15 1.13 13.62 −0.0004 −1.03 0.28 2,768
NatwestPLC NWG 0.41 6.55 0.95 10.34 −0.0004 −0.94 0.2 2,768
LloydsBankingGroupPLC LLOY 0.36 6.27 0.98 12.86 −0.0004 −0.92 0.23 2,768
HSBCHoldingsPLC HSBA 0.31 6.76 0.66 14.11 −0.0002 −1.06 0.29 2,768

Table 15: Large Banks, SPY, Post-crisis

To account for non-synchronous trading, I include a lagged value of each explanatory variable:

rit = α + β1iMKTt + β2iMKTt−1 + γ1iCFt + γ2iCFt−1 + εit

I report the bias-adjusted coefficients β1i + β2i (labeled as MKT), γ1i + γ2i (labeled as CF)
and their t-statistics below.

35



Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.26 4.95 1.31 14.46 −0.0002 −1 0.23 5,325
BarclaysPLC BARC 0.24 3.68 1.59 15.39 −0.0003 −1.04 0.23 5,325
NatwestPLC NWG 0.24 3.27 1.46 13.39 −0.0007 −1.85 0.16 5,325
LloydsBankingGroupPLC LLOY 0.18 2.87 1.34 12.73 −0.0005 −1.7 0.17 5,325
HSBCHoldingsPLC HSBA 0.14 4.11 0.96 17.65 −0.0001 −0.75 0.26 5,325

Table 16: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
StandardCharteredPLC STAN 0.49 6.97 1.2 17.91 −0.0006 −1.87 0.28 2,766
BarclaysPLC BARC 0.47 7.32 1.68 13.39 −0.0007 −1.65 0.32 2,766
NatwestPLC NWG 0.38 5.4 1.5 13.46 −0.0007 −1.61 0.24 2,767
LloydsBankingGroupPLC LLOY 0.31 4.66 1.48 12.23 −0.0007 −1.55 0.26 2,766
HSBCHoldingsPLC HSBA 0.3 5.94 0.88 15.84 −0.0004 −1.5 0.31 2,766

Table 17: Large Banks, SPY, Post-crisis

Canadian Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofNovaScotiaThe BNS 0.2 5.93 0.94 18.65 0.0002 1.5 0.38 5,120
RoyalBankofCanada RY 0.18 6.1 0.92 20.3 0.0003 1.9 0.41 5,120
NationalBankofCanada NA 0.16 4.59 0.94 12.58 0.0003 1.92 0.34 5,119
BankofMontreal BMO 0.15 3.96 0.93 14.62 0.0002 1.22 0.38 5,120
Toronto-DominionBankThe TD 0.15 5.53 0.96 22.08 0.0002 1.4 0.42 5,120
CanadianImperialBankofCommerceCanada CM 0.14 3.85 1.02 16.64 0.0002 0.93 0.4 5,120

Table 18: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
BankofNovaScotiaThe BNS 0.36 7.6 0.95 12.66 0 −0.24 0.51 2,753
NationalBankofCanada NA 0.32 7.32 1.01 7.56 0.0001 0.41 0.46 2,752
BankofMontreal BMO 0.31 8.63 0.99 8.57 0 −0.03 0.51 2,753
CanadianImperialBankofCommerceCanada CM 0.31 8.08 0.95 8.16 0 −0.06 0.48 2,753
Toronto-DominionBankThe TD 0.29 8.64 0.93 13.54 0.0001 0.42 0.53 2,753
RoyalBankofCanada RY 0.27 7.93 0.92 19.27 0 0.06 0.51 2,753

Table 19: Large Banks, SPY, Post-crisis
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Japanese Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
Sumitomo 8316 0.19 2.79 0.78 12.15 −0.0003 −0.85 0.11 4,345
Mizuho 8411 0.17 2.4 0.71 9.4 −0.0001 −0.29 0.09 4,283
MUFG 8306 0.13 2.55 0.73 10.96 −0.0003 −0.97 0.1 4,741

Table 20: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
MUFG 8306 0.23 4.32 0.77 12.79 −0.0003 −0.88 0.14 2,657
Sumitomo 8316 0.23 4.56 0.73 12.2 −0.0002 −0.65 0.14 2,657
Mizuho 8411 0.15 2.94 0.65 11.47 −0.0003 −1.02 0.11 2,657

Table 21: Large Banks, SPY, Post-crisis

French Banks

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CreditAgricoleSA ACA 0.26 3.02 1.47 16.68 −0.0003 −1.02 0.26 4,810
BNPParibasSA BNP 0.21 4.05 1.4 14 −0.0001 −0.55 0.27 5,189
SocieteGeneraleSA GLE 0.2 3.29 1.61 17.63 −0.0004 −1.36 0.28 5,189

Table 22: Large Banks, SPY

Bank Ticker CF tstatCF MKT tstatMKT CONS tstatCONS Rsq N
CreditAgricoleSA ACA 0.49 6.19 1.6 13.98 −0.0005 −1.25 0.31 2,795
SocieteGeneraleSA GLE 0.47 5.26 1.83 13.51 −0.001 −2.02 0.34 2,795
BNPParibasSA BNP 0.4 5.31 1.56 13.84 −0.0006 −1.64 0.33 2,795

Table 23: Large Banks, SPY, Post-crisis

C Rolling Window Beta Estimation

252-day rolling window regression.
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U.S. Banks

Figure 19: US Large Banks, SPY
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Figure 20: US Large Banks, SPY
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U.K. Banks
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Figure 21: UK Large Banks, SPY
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Figure 22: UK Large Banks, SPY
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Canadian Banks
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Figure 23: Canada Large Banks, SPY
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Figure 24: Canada Large Banks, SPY

Japanese Banks
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Figure 25: Japan Large Banks, SPY
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Figure 26: Japan Large Banks, SPY

French Banks
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Figure 27: French Large Banks, SPY
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Figure 28: French Large Banks, SPY

D DCB Model Estimation

rit = log(1 +Rit), rmt = log(1 +Rmt), rct = log(1 +Rct)

Conditional on the information set Ft−1, the return triple has a distribution D with zero
mean and time-varying covariance: ritrmt

rct

 ∣∣∣∣∣ Ft−1 ∼ D

0, Ht =

 σ2
it ρimtσitσmt ρictσitσct

ρimtσitσmt σ2
mt ρmctσmtσct

ρictσitσct ρmctσmtσct σ2
ct


We use GJR-GARCH volatility model and DCC correlation model. The GJR-GARCH model
for volatility dynamics are:

σ2
it = ωV i + αV ir

2
it−1 + γV ir

2
it−1I

−
i,t−1 + βV iσ

2
it−1, (7)

σ2
mt = ωV m + αV mr

2
mt−1 + γV mr

2
mt−1I

−
m,t−1 + βV mσ

2
mt−1, (8)

σ2
ct = ωV c + αV cr

2
ct−1 + γV cr

2
ct−1I

−
c,t−1 + βV cσ

2
ct−1 (9)

where I−it = 1 if rit < 0, I−mt = 1 if rmt < 0, and I−ct = 1 if rct < 0.

The correlation of the volatility adjusted returns eit = rit/σit, emt = rmt/σmt, and ect =
rct/σct is:

Cor

 εit
εmt

εct

 = Rt =

 1 ρimt ρict
ρimt 1 ρmct

ρict ρmct 1

 = diag(Qimct)
−1/2 Qimct diag(Qimct)

−1/2
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The DCC model specifies the dynamics of the pseudo-correlation matrix Qimct as:

Qimct = (1− αCi − βCi)Si + αCi

 eitemt

ect

 eitemt

ect

′ + βCiQimct−1 (10)

where Sit is the unconditional correlation matrix of adjusted returns.
The market beta βMkt

it and the climate beta βClimate
it and are:[

βMkt
it

βClimate
it

]
=

[
σ2
mt ρmctσmtσct

ρmctσmtσct σ2
ct

]−1 [
ρimtσitσmt

ρictσitσct

]
(11)

U.S. Banks

Estimation procedure:

1. For each bank i = 1 · · ·N , estimate GARCH parameters and DCC parameters.

2. Take the median DCC parameters, αC̄ = median(αCi) and βC̄ = median(βCi).

3. Compute βMkt
it and βClimate

it based on the median DCC parameters, αC̄ and βC̄ , and
the volatility parameters.

Estimated parameters:

Bank alpha alphaSE gamma gammaSE beta betaSE
BAC:US 0.0452 0.0128 0.0904 0.0206 0.9061 0.0198
BK:US 0.0327 0.0344 0.1337 0.0312 0.885 0.0359
C:US 0.0514 0.012 0.099 0.0186 0.8952 0.016

COF:US 0.0483 0.0194 0.0881 0.0302 0.897 0.0247
GS:US 0.0447 0.0202 0.0633 0.0261 0.9129 0.0271

JPM:US 0.037 0.013 0.1511 0.0258 0.8776 0.0222
MS:US 0.0427 0.0125 0.1011 0.0198 0.8991 0.0164

PNC:US 0.0582 0.0202 0.1807 0.0545 0.8379 0.0471
USB:US 0.0348 0.0178 0.1188 0.0209 0.9007 0.0249
WFC:US 0.0452 0.0178 0.1183 0.0322 0.8909 0.0306

Table 24: Volatility Parameters
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Bank alpha alphaSE beta betaSE
BAC:US 0.0361 0.0043 0.9509 0.0073
BK:US 0.0421 0.0061 0.9419 0.0105
C:US 0.038 0.0051 0.9499 0.0081

COF:US 0.0402 0.008 0.9445 0.0124
GS:US 0.0361 0.0044 0.9527 0.0072

JPM:US 0.0411 0.0051 0.9451 0.0081
MS:US 0.0376 0.0055 0.9482 0.0091

PNC:US 0.042 0.0055 0.9436 0.0091
USB:US 0.0393 0.0046 0.9484 0.0075
WFC:US 0.0406 0.0051 0.9476 0.008

Median 0.0397 0.9479

Table 25: DCC Parameters
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Figure 29: Climate Beta of U.S. Banks
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Figure 30: Market Beta of U.S. Banks
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Figure 31: Climate Beta (γ1it + γ2it), U.K. Banks
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Figure 32: Market Beta (β1it + β2it), U.K. Banks
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Canadian Banks
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Figure 33: Climate Beta (γ1it + γ2it), Canadian Banks, SPY
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Figure 34: Market Beta (β1it + β2it), Canadian Banks, SPY

Japanese Banks
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Figure 35: Climate Beta (γ1it + γ2it), Japanese Banks, SPY
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Figure 36: Market Beta (β1it + β2it), Japanese Large Banks, SPY

French Banks
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Figure 37: Climate Beta (γ1it + γ2it), French Banks, SPY
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Figure 38: Market Beta (β1it + β2it), Japanese Large Banks, SPY

E CRISK during the year 2020
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Figure 39: CRISK, Canadian Large Banks, SPY
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
BMO:CN 10.9548 21.3558 10.401 8.4648 2.4641 -0.60693
BNS:CN 4.9275 21.8717 16.9442 6.7029 4.3385 5.6732
CM:CN 10.7674 18.5225 7.7551 9.1872 -0.50982 -1.1118
NA:CN -0.60828 4.2192 4.8275 3.9944 0.19835 0.74084
RY:CN -7.1409 14.3521 21.4929 16.5501 1.551 2.6546
TD:CN 4.9256 31.6962 26.7706 22.0538 3.0312 0.93249

Table 26: CRISK Decomposition SRISK(t) is Climate SRISK at the end of the first half
of 2020, and SRISK(t-1) is Climate SRISK at the beginning of year 2020. dSRISK= SRISK(t)-
SRISK(t-1) is the change in Climate SRISK during the first half of 2020. dDEBT is the contribution
of the firm’s debt to Climate SRISK. dEQUITY is the contribution of the firm’s equity position
on Climate SRISK. dRISK is the contribution of increase in volatility or correlation to Climate
SRISK.
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Figure 40: CRISK, Japanese Large Banks, SPY
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
8306:JP 161.4586 201.7667 40.3081 32.6666 10.4818 -2.1514
8316:JP 103.1496 131.5891 28.4395 20.8576 7.4704 0.40342
8411:JP 108.9631 133.7225 24.7593 17.3518 5.8376 1.6632

Table 27: CRISK Decomposition SRISK(t) is Climate SRISK at the end of the first half
of 2020, and SRISK(t-1) is Climate SRISK at the beginning of year 2020. dSRISK= SRISK(t)-
SRISK(t-1) is the change in Climate SRISK during the first half of 2020. dDEBT is the contribution
of the firm’s debt to Climate SRISK. dEQUITY is the contribution of the firm’s equity position
on Climate SRISK. dRISK is the contribution of increase in volatility or correlation to Climate
SRISK.
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Figure 41: CRISK, Japanese Large Banks, SPY
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Bank CRISK(t-1) CRISK(t) dCRISK dDEBT dEQUITY dRISK
ACA:FP 118.5924 159.0539 40.4615 28.6049 6.7488 4.5746
BNP:FP 123.3387 200.166 76.8273 54.8439 12.2204 9.0397
GLE:FP 94.6865 128.1424 33.4559 19.4558 7.8485 5.7192

Table 28: CRISK Decomposition SRISK(t) is Climate SRISK at the end of the first half
of 2020, and SRISK(t-1) is Climate SRISK at the beginning of year 2020. dSRISK= SRISK(t)-
SRISK(t-1) is the change in Climate SRISK during the first half of 2020. dDEBT is the contribution
of the firm’s debt to Climate SRISK. dEQUITY is the contribution of the firm’s equity position
on Climate SRISK. dRISK is the contribution of increase in volatility or correlation to Climate
SRISK.
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Figure 42: US Banks Difference between CRISK and non-stressed CRISK: (1 −
k)
(
1− exp

(
βClimate log(1− θ)

))
W
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Figure 43: US Banks Difference between CRISK and non-stressed CRISK: (1 −
k)
(
1− exp

(
βClimate log(1− θ)

))
W when the climate factor is 0.3 XLE + 0.7 KOL.
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Figure 44: US Banks Difference between CRISK and non-stressed CRISK scaled by equity:
(1− k)

(
1− exp

(
βClimate log(1− θ)

))
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Figure 45: Marginal CRISK: Canada
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Figure 46: Marginal CRISK: Japan
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Figure 47: Marginal CRISK: France
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G Oil and Gas Loan Exposure of Global Banks

bank Country ShrRecent CumShr

1 JP Morgan US 0.08 0.08
2 Wells Fargo US 0.08 0.15
3 BNP Paribas France 0.07 0.22
4 BofA Securities US 0.06 0.28
5 Citi US 0.06 0.34
6 RBC Capital Markets Canada 0.05 0.39
7 TD Securities Canada 0.05 0.43
8 Mitsubishi UFJ Financial Group Inc Japan 0.04 0.47
9 Mizuho Financial Japan 0.04 0.51
10 Sumitomo Mitsui Financial Japan 0.04 0.55
11 Scotiabank Canada 0.04 0.59
12 BMO Capital Markets Canada 0.04 0.62
13 HSBC UK 0.03 0.66
14 CIBC Canada 0.03 0.68
15 Societe Generale France 0.03 0.71
16 Credit Agricole CIB France 0.02 0.73
17 Barclays UK 0.02 0.75
18 National Bank Financial Inc Canada 0.02 0.77
19 ING Groep Netherlands 0.01 0.78
20 First Abu Dhabi Bank PJSC UAE 0.01 0.8
21 Bank of China China 0.01 0.81
22 Natixis France 0.01 0.82
23 Banco Santander Spain 0.01 0.83
24 State Bank of India India 0.01 0.85
25 Goldman Sachs US 0.01 0.86
26 Standard Chartered Bank UK 0.01 0.87
27 UniCredit Italy 0.01 0.87
28 Credit Suisse Switzerland 0.01 0.88
29 United Overseas Bank Singapore 0.01 0.89
30 Deutsche Bank Germany 0.01 0.9
31 ANZ Banking Group Australia 0.01 0.91
32 PNC Financial Services Group Inc US 0.01 0.91
33 DBS Group Singapore 0.01 0.92
34 Oversea Chinese Banking Corp Singapore 0.01 0.92
35 Westpac Banking Australia 0.01 0.93
36 DNB ASA Norway 0 0.93
37 Jefferies US 0 0.94
38 Rabobank Netherlands 0 0.94
39 Banco Bilbao Vizcaya Argentaria Spain 0 0.94
40 Commerzbank Germany 0 0.95
41 African Export Import Bank Egypt 0 0.95
42 US Bancorp US 0 0.95
43 Industrial Comm Bank of China China 0 0.96
44 Nordea Finland 0 0.96
45 Citizens Financial Group Inc US 0 0.96
46 Lloyds Bank UK 0 0.97
47 Commonwealth Bank Australia Australia 0 0.97
48 Capital One Financial US 0 0.97
49 UBS Switzerland 0 0.97
50 National Australia Bank Australia 0 0.97

Table 29: Top 50 Global Banks by Exposure to Oil and Gas Loans ShrRecent is oil and
gas syndicated loan market share during Jan 2019 - June 2020. Source: Bloomberg Loan League
Table History
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