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Abstract 

This paper studies whether and why algorithmic traders exhibit one of the most broadly-

documented behavioral puzzles – the disposition effect. We use trade data from the NASDAQ 

Copenhagen Stock Exchange merged with the weather data. We find that on average, the 

disposition effect for humans is substantial and decreases significantly on warmer days, while for 

similarly-trading algorithms, it is insignificant and insensitive to the weather. This provides 

causal evidence of the link between human psychology and the disposition effect, and suggests 

that algorithms have the ability to reduce psychology-related human errors. Considering the ongoing 

AI adoption, this may have broad implications. 
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1. Introduction 

Artificial intelligence (AI) has been rapidly transforming the financial sector in general and 

algorithmic trading (AT) in particular (Buchanan, 2019; Bholat et al., 2020; Bholat and Susskind, 

2021). Arguably, one of the benefits of AT is the ability to reduce psychology-related human errors 

(Borch and Lange, 2017; Buchanan, 2019; Buckmann et al., 2021), yet, to our knowledge, there is no 

evidence on the extent to which AT actually achieves that.1 This paper provides such evidence by 

examining whether and why algorithmic traders (ATs), including high frequency traders (HFTs), 

exhibit one of the most robust and broadly-documented puzzles in behavioral finance – the 

disposition effect, i.e., the tendency to realize gains faster than losses (Shefrin and Statman, 1985).2  

This paper bridges the behavioral finance literature with the AT and HFT literature, and 

makes a twofold contribution. First, psychological biases help explain why investors behave 

differently than predicted by rational economic models (Barberis and Thaler, 2003), yet, evidence of 

the causal link between psychology and the disposition effect has started to emerge only recently and 

primarily from experimental studies (e.g., Frydman et al., 2014; Chang et al., 2016; Frydman and 

Camerer, 2016; Fischbacher et al., 2017).3 We provide novel identification of this causal link by 

using field trading data, exogenous weather variation and algorithms as a control group. More 

generally, we contribute by suggesting how algorithms can be used as a control group to help identify 

effects of human psychology. We also provide suggestive evidence on the link between psychology 

and the disposition effect by simply comparing the levels of the disposition effect among algorithms 

                                                            
1 E.g., algorithms may inherit various biases from developers or training data (e.g. Cowgill and Tucker, 2019). 
2 Barber and Odean (2013) review the literature that provides potential explanations for the disposition effect and 

documents it for different asset classes and investor types. The asset classes include stocks (Odean, 1998), stock 

options (Heath et al., 1999), commodity and currency futures (Locke and Mann, 2005), the real estate (Genesove 

and Mayer, 2001), while investors include individual (Odean, 1998) and institutional (Grinblatt and Keloharju, 

2001) investors, mutual funds (Cici, 2012), and professional day-traders of futures (Locke and Mann, 2005). The 

explanations include the prospect theory of Kahneman and Tversky (1979), the realization utility theory of Barberis 

and Xiong (2012), regret aversion and self-control issues (Shefrin and Statman, 1985), beliefs in mean-reversion or 

in private information (Ben-David and Hirshleifer, 2012), portfolio rebalancing and transaction costs (Odean, 1998). 
3 Using field data, Heimer (2016) finds causal peer effects, Frydman and Wang (2019) find causal salience effects 

and Li et al. (2021) find causal air pollution effects on the disposition effect.  
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and humans. If the disposition effect is driven primarily by emotions and cognitive biases rather than 

by rational reasons such as informed trading, portfolio rebalancing or transaction costs, we would 

expect to observe it for humans but less so for algorithms. Second, despite the prevalence of ATs and 

HFTs,4 the literature is silent on the disposition effect among them. We document for the first time 

the disposition effect for HFTs and examine which trading strategies it is associated with. This 

contributes to a better understanding of both the disposition effect and HFT.5 

We use two years, 2016-2017, of trade-level data from the NASDAQ Copenhagen Stock 

Exchange to measure the disposition effect as a percentage of gains realized (PGR) minus a 

percentage of losses realized (PLR) for every proprietary trading account of every member at every 

point in time. We focus on day-traders for comparability between algorithms and humans, and, in 

line with, e.g., Locke and Mann (2005), Coval and Shumway (2005), Baron et al. (2018), assume 

zero starting inventories every day. The data has two unique features. First, we see members’ 

addresses, which allows matching the data with the hourly weather data in traders’ locations, and 

thus, similarly to Goetzmann et al. (2014), to proxy for traders’ mood. Second, we observe the types 

of trading accounts issued by the exchange and thus can precisely identify humans and algorithms 

that trade “with no human involvement” (Nasdaq, 2019). Since algorithms are immune to mood 

shocks, we use them as a control group to account for weather-induced stock market movements 

(e.g., Saunders, 1993; Hirshleifer and Shumway, 2003; Goetzmann et al., 2014) that could potentially 

affect trading decisions for all traders, including algorithms. To further strengthen the identification, 

we control for interactive fixed effects, i.e., trader-day, stock-day and trader-stock fixed effects.  

Results. First, we find that by the end of the day, human traders realize 28% of gains (PGR) 

and only 17% of losses (PLR) on average. The average end-of-day disposition effect, i.e., PGR-PLR 

gap, equals 11 pp and is statistically different from zero at 1% significance level. For similarly-

                                                            
4 Algorithms generated around half of the trading volume in our dataset from the NASDAQ Copenhagen Stock 

Exchange in years 2016-2017. See SEC (2010) for the prevalence of HFT in the US and ESMA (2014) in Europe. 
5 See, e.g., O’Hara (2015) and Menkveld (2016) for the literature reviews on HFT. 
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trading algorithms,6 the disposition effect equals 1 pp and is not statistically significant (PGR=34% 

and PLR=33% on average). This suggests that the disposition effect is likely driven by unintentional 

causes specific to humans, e.g., emotions and cognitive biases, rather than by intentional profit-

maximizing motives that would be relevant for algorithms as well.  

Second, we find that warmer weather between 8 am and 9 am CET i.e., when traders travel to 

work and thus are the most likely to be exposed to the weather, reduces the disposition effect in the 

first trading hour. For human traders, the disposition effect at 10 am CET on average equals 7.1 pp 

on mornings that are warmer than monthly median and 10.2 pp, i.e., 43% more, on mornings that are 

colder than monthly median. The difference is statistically significant at 1% level. The result remains 

similar when using different fixed effects and error clustering, measuring temperature in degrees 

instead of the “higher-than-median” dummy, and controlling for other weather variables: sunshine 

duration, cloud cover, precipitation, air pressure, humidity, radiation and wind speed. No other 

weather variable shows such significant and robust effect. The effect of morning air temperature 

remains significant by 11 am but fades out by noon and, in line with Keller’s et al. (2005) evidence 

on the temperature-mood relation, is the most significant when temperatures are moderate, i.e., in 

spring and autumn. We find no impact of weather on the disposition effect for algorithms.  

Due to a well-documented link between the weather and human psychology (see, e.g., 

Denissen et al., 2008; Klimstra et al., 2011; Harley, 2018), we interpret these results as evidence of 

the causal effect of psychology on the disposition effect. Our setting does not allow for the 

identification of the precise psychological mechanism, but since warmer air is found to improve both 

mood (Cunningham, 1979; Howard and Hoffman, 1984; Keller et al., 2005) and cognition (Keller et 

al., 2005; Yeganeh et al., 2018), our results can be explained by both major preference-based theories 

on the disposition effect – realization utility (Barberis and Xiong, 2012) and prospect theory 

(Kahneman and Tversky, 1979). Firstly, according to realization utility, the disposition effect occurs 

                                                            
6 For comparability, we exclude algorithms that trade more frequently than the most frequently trading human. 
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because it is pleasant to realize gains and painful to realize losses. Realizing more gains than losses 

can thus be seen as a mood-repair technique, which becomes less relevant as the mood is improved 

by warmer weather.7 Secondly, if warmer weather improves cognition, this can help reduce cognitive 

biases that potentially cause the disposition effect, e.g., loss aversion and attachments to reference 

points which are at the heart of prospect theory (Kahneman and Tversky, 1979; Kahneman, 2011). 

Alternatively, the weather could impact the disposition effect through beliefs rather than preferences. 

There is evidence that better mood increases overconfidence (e.g., Au et al., 2003; Nofsinger, 2005; 

Ifcher and Zarghamee, 2014), and overconfidence is thought to strengthen the disposition effect 

through stronger beliefs in private information (Ben-David and Hirshleifer, 2012). Yet, we find a 

weaker disposition effect, which suggests that it is affected more through preferences than beliefs. 

Third, we find that 11 of the 22 most frequently trading algorithms (those with an average 

gap between trades of less than 100 seconds) persistently exhibit a strong disposition effect and this 

can be very well predicted by their engagement into price-reversal trading strategies. For every 

algorithm, we count stock-hour observations when a trader either increased or decreased a stock 

position significantly (by more than trader-stock average) and the stock price has either increased or 

decreased for two consecutive hours, i.e., during the same hour and one hour before. Then we 

calculate in how many of these cases a trader engaged in price-reversal trading, i.e. either purchased 

stock as the price decreased or sold stock as the price increased. All 11 algorithms with a significant 

disposition effect engaged in price-reversal trading more than 50% of the time, while 10 of the 

remaining 11 algorithms engaged in price-reversal trading less than 50% of the time. This provides 

evidence that beliefs in mean-reversion or private information may create the disposition effect (Ben-

David and Hirshleifer, 2012) for HFTs and helps to better understand directional HFT strategies 

(Brogaard et al., 2014; Van Kervel and Menkveld, 2019; Korajczyk and Murphy, 2019). 

                                                            
7  Craving for mood-repair has been shown to significantly affect behavior (see e.g., Morris and Reilly, 1987; Elliott, 

1994). Li et al. (2021) also use mood regulation to explain the link between air pollution and the disposition effect. 
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Overall, our results suggest that apart from the HFTs that favor price-reversal strategies, ATs 

on average avoid the disposition effect while similarly-trading humans do not, and this difference can 

at least partially be explained by psychology-related human errors that ATs manage to reduce. Given 

the ongoing ubiquitous adoption of AI, this may have broad implications for economic theory, 

financial markets, the real economy, and, potentially, the future of human behavior. For economic 

theory, our results suggest that decisions automated by algorithms are more consistent with rational 

economic models than on-the-spot decisions made by humans. Hence, as humans get replaced by AI, 

rational economic models, e.g., those based on Bayesian updating of beliefs, the Expected Utility 

theory (von Neumann and Morgenstern, 1947) or Subjective Expected Utility (Savage, 1964), might 

become more accurate in explaining the real world. Similarly, as human traders get replaced by 

algorithmic traders (see, e.g., Kirilenko and Lo, 2013), financial markets might become easier to 

explain with rational models. For the real economy, our evidence of algorithms’ ability to reduce 

psychology-related human errors may help to predict which industries will be affected more by the 

automation of decision-making.8 Finally, if people will be surrounded by automated decision-making 

(e.g. self-driving cars) that is more “rational”, they may either learn to behave more “rationally” or 

their “rationality” may atrophy due to the reliance on machines.9 

The rest of the paper is structured as follows. Section 2 highlights our contribution to the 

related literature. Section 3 presents the data. Section 4 describes the methodology. Section 5 

summarizes and discusses the results. Section 6 concludes. 

2. Literature and contribution 

This paper contributes to a few lines of literature, including on (1) AT and HFT, (2) the 

disposition effect, (3) weather effects on financial markets, (4) the algorithmic bias and (5) the debate 

on the rationality assumption in economics. 

                                                            
8 See, e.g., Autor (2015), Acemoglu and Restrepo (2018), Berg et al. (2018) for effects of automation on economy. 
9 See, e.g., North’s (1994) lecture on how environments shape people’s mental models of reality, and, in the long 

run, through collective learning, affect the behavior of future cultures. 
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First, the literature on AT so far has focused on studying ATs’ speed advantage (Budish et 

al., 2015; Baron et al., 2018), informational advantage (Biais et al., 2015; Chordia et al., 2018), 

trading strategies (Hagströmer and Nordén, 2013; Menkveld, 2013; Malinova et al., 2014; Brogaard 

et al., 2014; O’Hara, 2015; Van Kervel and Menkveld, 2019; Korajczyk and Murphy, 2019), and the 

impact on market quality, namely, liquidity (Hendershott et al., 2011; Hendershott and Riordan, 

2013; Brogaard et al., 2015; Ait-Sahalia and Saglam, 2017; Brogaard et al., 2018;), volatility 

(Hasbrouck and Saar, 2013; Kirilenko et al., 2017), and price efficiency (Carrion, 2013; Brogaard et 

al., 2014; Chaboud et al., 2014; Conrad et al. 2015; Weller, 2017; Brogaard et al., 2019). In a related 

paper, Abis (2022) finds evidence that algorithmic portfolio managers benefit from a higher learning 

capacity but suffer from a lower flexibility during recessions as compared to human portfolio 

managers. We contribute with evidence that besides other advantages, e.g., speed, informational, and, 

potentially, accuracy (see Kahneman et al., 2016), AT has the ability to reduce behavioral biases.  

Second, the literature on the disposition effect has documented the effect in different markets, 

e.g. stocks (Odean, 1998), options (Heath et al., 1999), currency and commodity futures (Locke and 

Mann, 2005), the real estate (Genesove and Mayer, 2001), and for different investors, e.g. individual 

investors (Odean, 1998), institutional investors (Grinblatt and Keloharju, 2001), mutual funds (Cici, 

2012), and professional futures’ day-traders (Locke and Mann, 2005). Our first contribution is to 

document the disposition effect for the widespread group of traders – ATs, including HFTs. 

Our second contribution is on the identification of causes of the disposition effect. The 

prospect theory (Kahneman and Tversky, 1979) paired with mental accounting (Thaler, 1985) 

provide a long-standing preference-based explanation of the disposition effect (e.g. Shefrin and 

Statman, 1985; Odean, 1998; Weber and Camerer, 1998; Henderson 2012; Li and Yang, 2013; 

Henderson et al., 2018; Meng and Weng, 2018): if investors view stocks as separate mental accounts, 

and are risk-seeking when facing losses but risk-averse when facing gains, they would prefer to 

gamble with losing investments and to sell winning investments. Realization utility theory (Barberis 
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and Xiong, 2009, 2012; Ingersoll and Jin, 2013; Frydman et al., 2014) provides another preference-

based explanation, whereby investors draw utility, e.g., pleasure and pain, directly from the 

realization of gains and losses. Recent empirical, mostly experimental, studies find evidence that the 

disposition effect is caused by specific psychological elements such as cognitive dissonance (Chang 

et al., 2016), pride and regret (Strahilevitz et al. 2011; Frydman and Camerer, 2016), self-control 

problems (Fischbacher et al., 2017), the salience of the stock purchase price (Frydman and Rangel, 

2014; Frydman and Wang, 2019; Dierick et al., 2019), mental accounting (Frydman et al., 2017), 

peer pressure (Heimer, 2016), mood regulation (Li et al., 2021) and affect (Loewenstein, 2005). The 

disposition effect can be potentially explained also by beliefs in mean-reversion or private 

information (see Ben-David and Hirshleifer, 2012), portfolio rebalancing (Odean, 1998; Kaustia, 

2010), transaction costs (Odean, 1998), the nature of limit orders (Linnainmaa, 2010), and earnings 

management (e.g., Beatty and Harris, 1999). We contribute with a novel identification of the causal 

link between psychology and the disposition effect, using field trading data, exogenous weather 

variation, and algorithms as a control group. Other related papers on the disposition effect examine 

its impact on asset prices (Grinblatt and Han, 2005; Frazzini, 2006; An, 2015; Birru, 2015). 

Third, this paper relates to the literature studying how the weather affects financial markets. 

For instance, the weather has been shown to affect stock returns (Saunders, 1993; Hirshleifer and 

Shumway, 2003; Goetzmann et al., 2014), the behavior of individual (Schmittmann et al., 2014) and 

institutional (Goetzmann et al., 2014) investors, and the behavior and performance of loan-officers 

(Cortés et al., 2016). We contribute with evidence that the weather affects the disposition effect for 

human traders. This adds to the psychology literature studying how the weather affects mood 

(Cunningham, 1979; Howard and Hoffman, 1984; Denissen et al., 2008; Klimstra et al., 2011) and 

cognition (Keller et al., 2005). For example, Keller et al. (2005) find that higher air temperature 

improves both mood and cognition but only in spring, when people spend more time outside and the 
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air temperature is neither too low nor too high. The link between air temperature and cognition is 

also studied in the engineering literature (for a review, see Yeganeh et al., 2018). 

Fourth, the paper also relates to the literature that studies algorithmic biases (Cowgill and 

Tucker, 2019). For instance, algorithms have been shown to make biased and discriminatory 

decisions in lending (Bartlett et al., 2022), criminal sentencing (Dressel and Farid, 2018) and ad 

targeting (Datta et al., 2015). We contribute with evidence that algorithms reduce behavioral biases.  

Finally, our evidence that decisions made by algorithms are more consistent with rational 

economic models than on-the-spot decisions made by humans contributes to the debate on the 

rationality assumption in economics (Hogarth and Reder, 1987; Hirshleifer, 2001; Thaler, 2016).10  

3. Data 

We use millisecond-stamped transaction-level trade data spanning from January 1, 2016, 9 

am., i.e. the stock market’s opening time, to December 31, 2017, 5 pm, i.e. the stock market’s closing 

time, provided by the NASDAQ OMX Copenhagen Stock Exchange. We observe the following 

details about every trade executed by every member of the stock exchange: (1) the execution date 

and time at millisecond precision, (2) the name of the traded stock, (3) the indicator of whether 

shares were bought or sold, (4) the share price of the traded stock, (5) the number of shares traded, 

(6) the indicator of whether a trade added or removed liquidity, (7) the indicator of whether a trade 

was executed on a trader’s own proprietary account or on behalf of the trader’s client (i.e., a trader 

acted as a broker), (8) the name of a trader’s institution, i.e., a member of the stock exchange, (9) the 

member’s address, (10) the indicator of whether a trader’s account is used by a human or an 

algorithm, (11) the user account name (first three letters of a trader’s name and surname for humans, 

and PTRxxx, AUTDxx or LPSxxx for algorithms), and (12) the organization name of a second 

                                                            
10 For various definitions, measures and interpretations of rationality see e.g. Machina (1987), Marschak (1950), 

Simon (1978), Apesteguia and Ballester (2015). 
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counterparty. Every trade enters the dataset twice, treating each counterparty as a primary one. The 

name of a trader’s institution combined with the user account name provides a unique trader’s id. 

NASDAQ Copenhagen issues “Algo” accounts to algorithms that “automatically determine 

individual parameters of orders such as whether to initiate the order, the timing, price or quantity of 

the order or how to manage the order after its submission” (Nasdaq, 2019). For example, the 

exchange specifies that a “PTRxxx account may be used for execution algo flow with no human 

involvement when placing Child Orders in the market” (Nasdaq, 2019), and an “AUTDxx account 

<...> is used for purely automated trading for algorithms with no human involvement in the 

investment decision and order execution” (Nasdaq, 2019). The Danish Financial Supervisory 

Authority report (Danish FSA, 2016), released in February 2016, i.e. at the beginning of our sample 

period, provides a broad overview of the algorithmic trading activity on the NASDAQ Copenhagen 

Stock Exchange. The report summarizes ATs’ strategies, benefits and risks posed to the market, the 

trends in trading volume of both algorithms and humans, relevant regulations, etc. 

Our dataset contains 102,160,854 (double-counted) transactions in all 159 stocks listed in the 

exchange throughout our sample period. Since we cannot identify traders that use the exchange 

members as brokers, we focus only on the proprietary trades of the members. This leaves us with 

39,703,660 transactions: 32,243,301 executed by 91 algorithmic trading accounts belonging to 33 

members and 7,460,359 executed by 597 human trading accounts belonging to 54 members. 

Throughout the 503 trading days in our sample, an average algorithm executed 704 trades per day, 

while an average human – less than 25. For comparability between the two groups, we focus on day 

traders, i.e., those that trade the same stock multiple times per day and, therefore, by the end of the 

day tend to realize some gains and/or losses. We keep traders with at least 30 non-zero end-of-day 

observations of the disposition effect.11 In this final dataset, there are 93 human trading accounts 

                                                            
11 The measure of the disposition effect is defined in the “Methodology” section as the gap between the proportion 

of gains realized and the proportion of losses realized. 
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(6,581,144 transactions) belonging to 26 members located in nine cities (32 accounts in London, 21 

in Copenhagen, 11 in Stockholm, 8 in Paris, 5 in Amsterdam, and 16 in other Danish cities) and 52 

algorithmic trading accounts (31,512,711 transactions) belonging to 24 members located in seven 

cities (28 accounts in London, 12 in Paris, 5 in Stockholm, 3 in Hamburg, 2 in Copenhagen, 1 in 

Dublin, and 1 in Zurich). Around 2/3 of traders (60 of 93 humans and 36 of 52 algorithms), trade for 

large international banks such as BNP Paribas, Deutsche Bank, Credit Suisse, etc. Others trade for 

local banks, small investment banks or proprietary trading firms. We provide summary statistics of 

trading patterns for humans and algorithms in the beginning of the “Results” section. 

We merge the trading data with the hourly weather simulation data, i.e., stored forecasts, 

provided by Meteoblue in the twelve cities where traders are located: Copenhagen, London, 

Stockholm, Paris, Amsterdam, Hamburg, Dublin, Zurich, Randers, Silkeborg, Aabenraa and 

Aalborg.12 According to the data provider, their weather simulation data is comparable to the 

measurement data collected by weather stations and has advantages of often being more complete, 

more frequent, more detailed, and, if weather stations are relatively remote, more precise than 

measurement data (Meteoblue, 2022). Our dataset includes the following weather variables: (1) air 

temperature (°C) two meters above ground, (2) relative humidity (%) two meters above ground, (3) 

mean sea level pressure (hPa), (4) precipitation (mm), (5) cloud cover (% of the sky area), (6) 

sunshine duration (minutes), (7) shortwave radiation (W/m2), and (8) wind speed 10 meters above 

ground (km/h). The hourly data frequency allows us to observe these variables exactly when traders 

are the most likely to be exposed to the weather – on their way to work before the opening of the 

stock market. We thus construct city-day-level weather variables by taking an average of two data 

points: at 8 am and at 9 am CET. Table 1 provides summary statistics for temperature – the variable 

that we find to have the most significant and robust impact on the disposition effect – and its 

                                                            
12 For a few traders that were located in small Danish towns we use weather data from the closest one of the 

following five Danish cities: Copenhagen, Randers, Silkeborg, Aabenraa and Aalborg. 
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correlation with the other weather variables that we use as controls. The median morning temperature 

across all cities and days in 2016 and 2017 was 9.2 °C. The 1st and 99th percentiles were -3.4 °C and 

23.2 °C, respectively. Temperature is the most correlated with radiation (correlation coefficient = 

0.680). With other variables, the absolute value of the correlation coefficient does not exceed 0.5.  

4. Methodology 

4.1.  The measure of the disposition effect 

To estimate the disposition effect, we assume zero starting inventories every day for every 

trader, which is in line with e.g. Locke and Mann (2005), Coval and Shumway (2005), and Baron et 

al. (2018), and construct traders’ intraday stock positions using observed trades. We estimate 

outstanding paper gain for every trader i, in every stock position s, at every point of time t as follows:  

𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑝𝑎𝑝𝑒𝑟_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 =  #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 ∗  (𝑠𝑡𝑜𝑐𝑘_𝑝𝑟𝑖𝑐𝑒𝑠,𝑡 − 𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡)    (1) 

where #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 is the number of shares outstanding in stock s held by 

trader i at time t, 𝑠𝑡𝑜𝑐𝑘_𝑝𝑟𝑖𝑐𝑒𝑠,𝑡 is the stock price in the latest transaction of stock s observed in the 

market up to time t, and 𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡 is the volume-weighted average purchase price paid for 

outstanding shares in stock s held by trader i at time t. 𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡 is updated every time when shares 

are bought and stays the same when shares are sold. For short positions, #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 

is negative and 𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡 is replaced by the weighted average selling price 𝑊𝐴𝑆𝑃𝑠,𝑖,𝑡. 

Every time when trader i closes stock position s either fully or partially, we observe a 

realization of a gain (or a loss, if negative). At that time t, the realized gain is calculated as follows: 

𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 =  #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 ∗  (𝑠𝑒𝑙𝑙𝑖𝑛𝑔_𝑝𝑟𝑖𝑐𝑒𝑠,𝑖,𝑡 −  𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡)             (2) 

where #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 is the number of shares sold by trader i in stock s at time t (for 

short positions – repurchased, hence, #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 is negative), and 𝑠𝑒𝑙𝑙𝑖𝑛𝑔_𝑝𝑟𝑖𝑐𝑒𝑠,𝑖,𝑡 is the 
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selling price of those shares (for short positions – repurchasing price). For short positions, 𝑊𝐴𝑃𝑃𝑠,𝑖,𝑡 

is replaced by 𝑊𝐴𝑆𝑃𝑠,𝑖,𝑡. 

We accumulate all realized gains up to time t for every trader in every stock: 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 =  ∑ 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑎𝑖𝑛s,i,n
𝑡
𝑛=0              (3) 

Total gain consists of outstanding paper gain and cumulative realized gain:  

𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 = 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑝𝑎𝑝𝑒𝑟_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 + 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡          (4) 

For every trader i at every point of time t, we aggregate 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 across stock positions 

considering only those with 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 > 0. We also aggregate 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 

across stock positions considering only those with 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 > 0. We divide 

these aggregated positive cumulative realized gains by the aggregated positive total gains to estimate 

the proportion of gains realized 𝑃𝐺𝑅𝑖,𝑡 for trader i at time t, and winsorize it if it exceeds one13: 

 𝑃𝐺𝑅𝑖,𝑡 =
∑ (𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 ∗ 𝑗𝑠,𝑖,𝑡)S

s=1

∑ (𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 ∗ 𝑘𝑠,𝑖,𝑡)S
s=1

               (5) 

where 𝑗𝑠,𝑖,𝑡 is equal to one if 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 > 0 and zero otherwise, and 

𝑘𝑠,𝑖,𝑡 is equal to one if 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 > 0 and zero otherwise. 

Similarly, we estimate the proportion of losses realized 𝑃𝐿𝑅𝑖,𝑡: 

𝑃𝐿𝑅𝑖,𝑡 =
∑ (𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 ∗ 𝑚𝑠,𝑖,𝑡)S

s=1

∑ (𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 ∗ 𝑛𝑠,𝑖,𝑡)S
s=1

                        (6) 

where 𝑚𝑠,𝑖,𝑡 is equal to one if 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 < 0 and zero otherwise, and 

𝑛𝑠,𝑖,𝑡 is equal to one if 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 < 0 and zero otherwise. 

Following Odean (1998), the disposition effect is the gap between 𝑃𝐺𝑅𝑖,𝑡 and 𝑃𝐿𝑅𝑖,𝑡: 

                                                            
13 𝑃𝐺𝑅𝑖,𝑡 > 1 is possible if, e.g., a trader had realized all gains but then re-opened the position and experienced some 

paper losses. The winsorization ensures that 𝑃𝐺𝑅𝑖,𝑡 𝜖[0; 1]. 
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𝐷𝐸𝑖,𝑡  = 𝑃𝐺𝑅𝑖,𝑡 − 𝑃𝐿𝑅𝑖,𝑡                (7) 

 We graphically depict an average intraday development of the disposition effect for humans 

and algorithms but in all regression analyses, we use daily observations either at end-of-day, i.e., at 5 

pm CET, or, when testing morning weather effects, after the first hour of trading, i.e., at 10 am CET. 

4.2.  Average disposition effect 

Separately for humans and algorithms, we estimate average end-of-day disposition effect 

(DE), proportion of gains realized (PGR) and proportion of losses realized (PLR) by regressing these 

trader-day-level variables on a constant and clustering standard errors at the trader level: 

PGR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡                         (8) 

PLR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡                         (9) 

DE𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡               (10) 

For robustness, we also estimate the following regression specification which exploits all 

three dimensions of our panel data, and, thus, allows controlling for interactive fixed effects: 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡              (11) 

where PR𝑠,𝑖,𝑡 is the proportion of either a gain or a loss realized in a stock position s held by 

trader i at the end of day t, and is calculated as: 

PR𝑠,𝑖,𝑡 =
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡

𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡
              (12) 

and Gain𝑠,𝑖,𝑡 is a dummy equal to one if 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 ≥ 0 and zero otherwise.14 Coefficient 

𝛽1 represents an average difference in PR𝑠,𝑖,𝑡 when gains are realized as opposed to losses, and thus 

measures the disposition effect. FE includes bank-stock, bank-time, and stock-day fixed effects. 

4.3.  The impact of air temperature on the disposition effect 

                                                            
14 PR𝑠,𝑖,𝑡 is winsorized if it exceeds 1. If PR𝑠,𝑖,𝑡 < 0 while 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 > 0, this suggests that a 

trader was eager to realize gains (while it was gaining) but lost overall. To reflect his eagerness to realize gains but 

not losses, in such cases, we replace PR𝑠,𝑖,𝑡 with 1 and Gain𝑠,𝑖,𝑡 with 1. Similarly, if PR𝑠,𝑖,𝑡 < 0 and 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 < 0, we replace PR𝑠,𝑖,𝑡 with 1 and Gain𝑠,𝑖,𝑡 with 0. Our results remain almost 

identical if instead we winsorize the variable PR𝑠,𝑖,𝑡 below zero or if we drop observations where PR𝑠,𝑖,𝑡 < 0. 
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To estimate the impact of weather conditions on the disposition effect we extend regressions 

(8)-(11) with the eight city-day-level weather variables defined in “Data” section and Table 1, where 

every observation is an average of two data points in every city: at 8 am and 9 am CET. Since we 

find only temperature to have a significant and robust impact on the disposition effect, we denote the 

temperature variable separately by T𝑖,𝑡 and treat the other seven weather variables as controls denoted 

by C𝑖,𝑡. Specifically, T𝑖,𝑡 is equal to an average temperature (°C) between 8 am and 9 am CET of day t 

in trader’s i city. To reduce the effects of yearly seasonality in temperature, in our regressions we 

primarily use a dummy variable T_dummy𝑖,𝑡 equal to one if T𝑖,𝑡 is above that month’s median in that 

city and zero otherwise, but we show that our results remain robust if we use variable T𝑖,𝑡 instead. 

The regressions are specified as follows: 

PGR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡                (13) 

PLR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡            (14) 

DE𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡             (15) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡       (16) 

All four trade-day-level dependent variables are observed at 10 am CET. The coefficient of 

interest in regression specification (16) is 𝛽3 on the interaction term. Its statistical significance would 

show that an average disposition effect measured by 𝛽1 in specification (11) depends on temperature. 

FE represents trader-fixed effects and day-fixed effects in specifications (13) to (15) and trader-day, 

stock-day and trader-stock fixed effects in specification (16). 

4.4.  The difference between humans and algorithms 

All regressions specified above are run for humans and algorithms separately. In order to test 

whether the disposition effect and the impact of temperature differ significantly between humans and 

algorithms, we extend specifications (10), (11), (15) and (16) with a dummy variable Human𝑖 equal 



15 
 

to one if trader i is a human and zero if an algorithm, and run the regressions for all traders jointly. 

Effectively, this splits traders into a treatment group (treated by the weather) and a control group:  

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝜖𝑖,𝑡                    (17) 

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Human𝑖×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡      (18) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2Human𝑖 + 𝛽3Gain𝑠,𝑖,𝑡×Human𝑖 + 𝐹𝐸 + 𝜖𝑖,𝑡              (19) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡×Human𝑖 + V&I𝑠,𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡            (20) 

V&I𝑠,𝑖,𝑡 denotes the three variables that constitute the triple interaction term in specification 

(20) and the three possible interactions among them. The dependent variables in specifications 

without weather variables, i.e., (17) and (19), are observed at 5 pm CET, while in the other two 

specifications – at 10 am CET. The coefficients of interest in regressions (18) and (19) are 𝛽3 on the 

interaction terms, and, in regression (20), 𝛽1 on the triple interaction term. 

5. Results 

5.1.  Comparability between human and algorithmic traders 

To ensure that humans and algorithms in our regression analysis are comparable, first we 

examine trader heterogeneity. Figure 1 plots an average disposition effect on the y-axis for every 

trader in our sample, i.e., 93 humans and 52 algorithms that have at least 30 non-zero end-of-day 

observations of variable DE𝑖,𝑡. Traders are sorted along the x-axis by a major dimension of 

heterogeneity – an average trading frequency, which is calculated for every trader as an average time 

gap (in seconds) between trades executed throughout the sample period. The disposition effect is 

estimated for every trader by regressing the variable DE𝑖,𝑡 (observed daily at 5 pm) on a constant with 

robust standard errors. Blue and red circles represent humans and algorithms, respectively. If the 

disposition effect is statistically different from zero at 99% significance level, the circles are colored.  

The figure shows that traders differ significantly in their average trading frequency, e.g. some 

algorithms trade once every few seconds, while some humans trade once every hour (not necessarily 
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the same stock). For comparability between humans and algorithms, we exclude 14 algorithms that 

trade more frequently than the most frequently trading human, i.e., every 54 seconds, from our 

regression analysis and label them “HFTs”. Moreover, to ensure enough within-trader variation in the 

disposition effect measured daily at 10 am for the weather impact analysis, as a baseline we consider 

“frequent traders”, i.e., 44 humans and 30 algorithms with an average gap between trades smaller 

than 10 minutes. The 10-minute threshold is chosen arbitrarily but we show that our main results 

remain robust when including all the remaining traders labeled “infrequent traders”.  

Figure 1 suggests that humans tend to exhibit a much larger disposition effect than algorithms 

that trade at similar frequencies, even though the share of traders that exhibit a statistically significant 

disposition effect equals one third for both groups (when disregarding HFTs). Interestingly, among 

algorithms that trade more frequently than once every 100 seconds, a large share, 11 out of 22, 

exhibit a significant disposition effect while 7 exhibit a significant inverse disposition effect. In 

section 6 we examine if this heterogeneity can be explained by trading strategies that HFTs pursue. 

To compare humans and algorithms in terms of other trading patters besides the disposition 

effect, we construct the following trader-day-level variables: (1) N_of_tradesi,t – the total number of 

trades executed by trader i in day t; (2) Turnover_EURi,t – total turnover expressed in euros generated 

by trader i in day t; (3) Portfolio_size_EURi,t – average portfolio size expressed in euros for trader i 

throughout day t;15 (4) Inventory_daysi,t – trading horizon for trader i in day t, calculated as a ratio of 

Portfolio_size_EURi,t over the total value of shares sold (repurchased, for short positions) by trader i 

in day t, valued at purchase prices (sale prices, for short positions); and (5) Turnover_top10i,t – the 

turnover generated in 10 most traded stocks by trader i in day t, divided by total turnover generated 

by trader i in day t. We regress these five variables on a constant and a dummy Humani equal to 1 for 

humans and 0 for algorithms. We cluster errors at the trader level. 

                                                            
15 For every trader, we assume zero daily starting inventories, and, based on trades, estimate long and short stock 

positions valued at purchase prices (sale prices, for short positions) at 5-minute intervals throughout a day. We sum 

up absolute values of long and short positions, and calculate an average of this sum across the 5-minute intervals. 
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Table 2, Panel A shows that among “frequent traders”, i.e., our baseline sample, humans and 

algorithms trade similarly as the dummy Humani is not statistically significant for any of the five 

dependent variables. On average, algorithms execute 604 trades per day while humans execute 119 

trades less, both humans and algorithms generate around EUR 4.1 m daily turnover, average portfolio 

size is EUR 0.9 m for algorithms and EUR 0.1 m more for humans, on average it takes 3.3 days to 

close all daily positions for algorithms and 1 day more for humans, and on average algorithms 

generate 87% of their turnover in their 10 most-traded stocks, while humans generate 4% more. The 

list of 10 most-traded stocks in terms of aggregate turnover is the same for humans and algorithms. 

Table 2, Panel B reports that when adding “infrequent traders” to the sample, turnover and portfolio 

size remains similar between algorithms and humans, but humans tend to trade significantly less 

frequently, with longer horizon, and with more concentration in favorite stocks than algorithms. To 

compare algorithms from our baseline sample with HFTs, we redo the analysis with dummy HFTi 

instead of Humani. HFTi equals 1 for HFTs and 0 for algorithms in the “frequent traders” group. 

Table 2, Panel C shows that HFTs are significantly different. They trade with more frequency, more 

turnover, larger portfolios, shorter horizons and less concentration on favorite stocks.  

5.2.  Average disposition effect 

To estimate an average disposition effect for humans and algorithms we run the regression 

specifications (8) to (11) for each group separately. Table 3 presents the results for humans in Panel 

A and for algorithms in Panel B. Odd columns consider only “frequent traders” and even columns 

include “infrequent traders”. On average, by the end of the day, human “frequent traders” realize 

28.2% of their daily gains and only 17.4% of their daily losses. The average disposition effect, i.e., 

the gap between PGR and PLR, equals 11.5 pp and is statistically different from zero at 1% 

significance level. When using the regression specification (11) saturated with trader-day, stock-day 

and trader-stock fixed effects, the average disposition effect drops to 6.6 pp but remains statistically 

significant at 1% level. All these figures become somewhat smaller but remain statistically 
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significant at 1% level when including “infrequent traders” in the even columns. Algorithmic 

“frequent traders” realize 34.4% of their daily gains and 32.9% of their daily losses by the end of the 

day on average. The average disposition effect is only 1.5 pp and is not statistically significant (p-

value=0.571). It remains insignificant when using the regression specification (11) saturated with 

fixed effects and when including “infrequent traders”. 

Figure 2 shows an average intraday development of PGR and PLR measured at the end of 

every hour for human and algorithmic “frequent traders”. The data points at 5 pm match the 

estimates from Table 3 described above. The figure shows that on average PGR and PLR gradually 

and stably increases throughout a day for both humans and algorithms. In the last trading hour, the 

realization of both gains and losses particularly intensifies, especially for algorithms. The gap 

between average PGR and PLR remains stable at around 2 pp throughout a day for algorithms but 

gradually and slightly increases for humans from 8.1 pp at 10 am to 10.8 pp at 5 pm. The graph 

suggests that the disposition effect for human “frequent traders” at 10 am is substantial and 

comparable to the end-of-day measure. We, therefore, use it in the analysis of the impact of the 

morning weather. An average disposition effect at 10 am for human “frequent traders” measured 

using the regression specification (10) equals 8.6 pp (p-value = 0.001). 

5.3.  The impact of air temperature on the disposition effect 

To evaluate the impact of air temperature on the disposition effect, we estimate regression 

specifications (13) to (16) using the dependent variables PGR𝑖,𝑡, PLR𝑖,𝑡, DE𝑖,𝑡, and PR𝑠,𝑖,𝑡 observed 

daily at 10 am. Table 4 presents the results for humans in Panel A and for algorithms in Panel B. 

Columns (1) and (2) indicate that human “frequent traders” realize on average 18.7% of gains and 

9.8 % of losses on mornings that are colder than the median of that city-month. On mornings that are 

warmer than the median, PGR is on average lower by 0.9 pp (i.e., by 5%) and PLR is on average 

higher by 0.7 pp (i.e., by 7%). Both differences are statistically significant at 10% level and point 
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towards a lower overall disposition effect. Column (3) shows that an average disposition effect for 

human “frequent traders” equals 9.6 pp on mornings that are colder than the median, and 2.1 pp less 

(i.e., 22% less) on mornings that are warmer than the median. The difference is statistically 

significant at 1% level. The estimated impact of temperature is stronger in column (4) when 

controlling for the other seven weather variables described in “Data” section and Table 1, and even 

stronger in column (5) when adding trader-fixed effects and day-fixed effects. When extending the 

sample with “infrequent traders” in column (6), the coefficient on T_dummy𝑖,𝑡 equals -2.1 pp again 

and is statistically significant at 5% level. When replacing T_dummy𝑖,𝑡 with T𝑖,𝑡, the coefficient 

equals -0.4 pp and is statistically significant at 5% level, which suggests that a 1 °C higher morning 

air temperature is associated with a 0.4 pp weaker disposition effect on average. In most 

specifications, including the latter, coefficients on the other weather variables are insignificant. 

The results are similar in columns (8) to (10) with three-dimensional panel data. Column (8) 

shows that the disposition effect for human “frequent traders” measured by the coefficient on 

Gain𝑠,𝑖,𝑡 in specification (11) is lower by 1.6 pp on mornings that are warmer than the median. This 

result is statistically significant at 1% level. The regression controls for the other weather variables 

and trader-day, stock-day and trader-stock fixed effects. The result becomes somewhat weaker but 

remains statistically significant at 1% level in column (9) which includes “infrequent traders”. When 

replacing T_dummy𝑖,𝑡 with T𝑖,𝑡 in column (10), the coefficient equals -0.1 pp and is statistically 

significant at 10% level.  

Table 4, Panel B shows that there is no statistically significant impact of air temperature on 

the disposition effect for algorithms. Having algorithms as a control group reassures that the 

estimated impact of the weather on the disposition effect for humans is not driven by weather-

induced stock market movements (e.g., Saunders, 1993; Hirshleifer and Shumway, 2003; Goetzmann 

et al., 2014), that would likely affect trading decisions for all traders, including algorithms. For 
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example, if an algorithm is programmed to pursue a mean-reversion strategy in which it trades stocks 

when prices cross certain thresholds, then a positive effect of the weather on the stock prices could 

generate more realized gains, and thus, lead to a stronger disposition effect for the algorithm. 

For human “frequent traders”, the impact of morning air temperature on the disposition effect 

remains significant by 11 am but fades out by noon. For example, re-estimating column (3) of Table 

4 with the variable DE𝑖,𝑡 observed daily at 11 am returns the coefficient on T_dummy𝑖,𝑡 equal to -1.1 

pp (p-value = 0.057).  The coefficient becomes equal to -1.7 pp (p-value = 0.007) when adding 

weather control variables (i.e., like in column (4)) and -2.6 pp (p-value = 0.039) when further adding 

trader-fixed effects and day-fixed effects (i.e., like in column (5)). The coefficient becomes 

insignificant if the variable DE𝑖,𝑡 is observed at 12 pm or later.  

In line with Keller’s et al. (2005) evidence on the temperature-mood relation, we find that the 

impact on the disposition effect is the most significant when temperatures are moderate, i.e., in spring 

and autumn. For example, re-estimating column (3) of Table 4 with observations for March, April 

and May returns the coefficient on T_dummy𝑖,𝑡 equal to -2.7 pp (p-value = 0.076), and for 

September, October and November – -3.6 pp (p- value = 0.030). For June, July, August the 

coefficient equals -1.4 pp (p-value = 0.335), and for December, January and February – only -0.7 pp 

(p-value = 0.534). These insignificant results could be explained by temperatures becoming 

uncomfortably high in summer and by a potential avoidance of weather exposure in winter.  

5.4.  The difference between humans and algorithms 

To test if the differences in the results between humans and algorithms in subsections 5.2 and 

5.3 are statistically significant, we estimate differential effects using a dummy variable Human𝑖 in 

regression specifications (17) to (20). Table 5 presents the coefficients of interest for “frequent 

traders”. Column (1) shows that the disposition effect is on average larger by 9.9 pp for humans than 

for algorithms and the difference is statistically significant at 5% level. In column (2), the coefficient 
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on the interaction term between T_dummy𝑖,𝑡 and Human𝑖 is negative and statistically significant at 

10% level, which suggests that a higher morning air temperature reduces the disposition effect for 

humans significantly more than for algorithms. This differential effect becomes stronger and 

statistically significant at 5% level when including weather controls in column (3) and somewhat 

weaker but still statistically significant at 10% level when further adding trader-fixed effects and day-

fixed effects in column (4).  

The results are similar with the three-dimensional panel data. Column (5) reports a positive 

and statistically significant coefficient at 10% level on the interaction term between Gain𝑠,𝑖,𝑡 and 

Human𝑖, which suggests that the disposition effect measured by 𝛽1 coefficient on variable Gain𝑠,𝑖,𝑡 in 

specification (11) is significantly larger for humans than for algorithms. Columns (6) and (7) show a 

negative and statistically significant coefficient at 5% level on the triple interaction term between 

Gain𝑠,𝑖,𝑡, T_dummy𝑖,𝑡 and Human𝑖 with and without trader-day, stock-day and trader-stock fixed 

effects. This suggests that the impact of air temperature on the disposition effect measured by the 

negative coefficient 𝛽3 on the Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡 interaction term in specification (16) is 

significantly stronger for humans than for algorithms. 

5.5.  Discussion 

The results indicate that on average algorithmic day-traders manage to avoid the disposition 

effect while similarly-trading human day-traders do not. This serves as suggestive evidence that the 

disposition effect is largely driven by unintentional causes specific to human traders, e.g., emotions 

and cognitive biases, rather than by intentional profit-maximizing motives, e.g., portfolio 

rebalancing, transaction costs, and private information, that would be relevant for algorithms as well. 

This notion is further strengthened by our causal evidence that an air temperature, potentially through 

mood and cognition, significantly affects the disposition effect for humans but not for algorithms. 
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Here we discuss potential explanations of how air temperature can affect the disposition effect for 

humans and how algorithms can avoid the disposition effect. 

How can air temperature affect the disposition effect for humans? The psychology 

literature documents the link between the weather and human psychology (see, e.g., Denissen et al., 

2008; Klimstra et al., 2011; Harley, 2018). In particular, higher air temperature is found to improve 

both mood (Cunningham, 1979; Howard and Hoffman, 1984; Keller et al., 2005) and cognition 

(Keller et al., 2005; Yeganeh et al., 2018). We therefore argue that our results can be explained by 

two major preference-based theories on the disposition effect – realization utility (Barberis and 

Xiong, 2012) and prospect theory (Kahneman and Tversky, 1979). First, according to realization 

utility, the disposition effect occurs because it is pleasant to realize gains and painful to realize 

losses. Realizing more gains than losses can thus be seen as a mood-repair technique (see, e.g., 

Morris and Reilly (1987), Elliott (1994) for theory and other examples of mood-repair techniques), 

which becomes less relevant as the mood is improved by warmer weather. Li et al. (2021) use the 

same mood-regulation argument to explain the link between air pollution and the disposition effect. 

Second, according to prospect theory, investors draw utility from gains and losses relative to 

a reference point, are risk-averse when facing gains but risk-seeking when facing losses, and 

experience losses more severely than equivalent gains, i.e., are loss averse (Kahneman and Tversky, 

1979). Hence, if investors view every stock as a separate mental account (see Thaler, 1985), they 

would prefer to continue gambling with losing investments and to sell winning investments. If higher 

air temperature improves cognition, this can help reduce cognitive biases such as loss aversion and 

attachments to reference points, which would reduce the disposition effect. 

The weather may also impact the disposition effect through beliefs rather than preferences. 

For example, Goetzmann et al. (2014) find that the weather-induced mood affects traders’ beliefs and 

behavior. According to Ben-David and Hirshleifer (2012), the disposition effect can be caused by 
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traders’ beliefs in their private information about the stock value,16 and these beliefs can stem either 

from genuine information or overconfidence.17 Since there is evidence that higher temperature 

enhances mood and that better mood increases overconfidence (e.g., Au et al., 2003; Nofsinger, 

2005; Ifcher and Zarghamee, 2014), one could expect warmer weather to strengthen the disposition 

effect. This prediction, however, is the opposite from our findings, which suggests that morning air 

temperature impacts the disposition effect primarily by affecting preferences rather than beliefs. 

The direct effects of the weather can potentially be amplified through social interactions, 

since mood is found to be contagious (Neumann and Strack, 2000). 

How can algorithms avoid the disposition effect? First, while human traders make on-the-

spot decisions under stress, developers have time to “think slow” (Kahneman, 2011) and deliberately 

polish decision-making principles in their algorithms. By “thinking slow”, i.e. using the slow System 

2, developers may avoid behavioral biases, heuristics and other cognitive features of the fast System 

1, such as attachments to reference points and loss aversion, which are at the core of prospect theory 

(Kahneman and Tversky, 1979; Kahneman, 2011) – the long-standing explanation of the disposition 

effect. However, despite claims (see, e.g., Borch and Lange, 2017), it is not obvious that developers 

manage to eliminate effects of mood, emotions and cognitive biases from their codes. For example, 

algorithms may inherit biases from biased developers or training data (Cowgill and Tucker, 2019). 

This can help explain why some algorithms in Figure 1 do exhibit a significant disposition effect. 

Second, while coding, developers are unlikely to experience feelings associated with the on-

the-spot realization of gains and losses. This arguably makes algorithms less affected by realization 

utility (Barberis and Xiong, 2012), i.e., pleasure and pain drawn from the realization of gains and 

losses, respectively, and by other related psychological mechanisms that help explain the disposition 

                                                            
16 Traders may view price hikes as the incorporation of their information into the price and price drops as temporary 

setbacks, and thus sell (hold) stock after price hikes (drops). Yet, the opposite may hold too: after price drops (hikes) 

traders may lose (gain) confidence in their information and sell (buy more) stock (Ben-David and Hirshleifer, 2012). 
17 Overconfidence is an extensively documented cognitive bias that affects beliefs (Barberis and Thaler, 2003). 
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effect such as pride and regret (Muermann and Volkman, 2006; Frydman and Camerer, 2016), the 

salience of the stock purchase price (Frydman and Wang, 2019) and affect (Loewenstein, 2005). 

Third, algorithms may serve as a pre-commitment device which can eliminate time-

inconsistent behavior stemming from, for example, self-control problems associated with the 

disposition effect. For example, Fischbacher et al. (2017) find that an option to pre-commit to a 

realization of losses using an automatic selling device significantly reduces the disposition effect. 

Fourth, coding can arguably be viewed as a delegation of trading decisions to an algorithm, 

which creates distance between the trading decisions and developers, and, thus, reduces the cognitive 

dissonance associated with the realization of losses. Chang et al. (2016) finds that the delegation of 

trading decisions, e.g., to mutual funds, is associated with a lower – and even reversed – disposition 

effect. According to the authors, this can be explained by cognitive dissonance: investors dislike 

admitting past mistakes but delegation allows blaming someone else. 

Other potential explanations for the difference in the disposition effect between humans and 

algorithms include belief-based explanations and purely rational explanations such as portfolio 

rebalancing, career concerns and transaction costs. We test these explanations in the next section as 

part of the robustness checks for our main results. 

5.6.  Robustness checks 

We re-estimate regression specifications (10) and (15) under five different assumptions. 

Namely, we consider only long positions, only short positions, only missed opportunities to gain and 

lose (i.e., mental gains and losses), and only full realizations of gains and losses. We also use the 

FIFO method instead of WAPP to estimate real gains and losses. Table 6 shows the results for human 

and algorithmic “frequent traders” separately. Besides providing robustness checks for our results, 

these alterations of the baseline setting test whether transaction costs, career concerns and portfolio 

rebalancing explain the difference in the average disposition effect between humans and algorithms. 
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Transaction costs. A stock price decline may relatively increase transaction costs for that 

stock, and, therefore, cause reluctance to sell losing positions. Algorithms may care less about 

transaction costs since market venues compete for algorithmic traders by offering favorable terms 

(Danish FSA, 2016). This could explain the difference in the disposition effect between humans and 

algorithms, but only for long positions. We test this explanation by comparing the disposition effect 

between long positions, short positions and our baseline setting which includes both. 

Assumption 1: we consider only long positions (see results in Table 6, columns (1) and (2)). 

Technically, if #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 and #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 in equations (1) and (2), 

respectively, are negative, we set them to zero. 

Assumption 2: we consider only short positions (see results in Table 6, columns (3) and (4)). 

Technically, if #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 and #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 in equations (1) and (2), 

respectively, are positive, we set them to zero.  

Career concerns. Human traders and developers of trading algorithms may have different 

incentives to report realized gains and losses due to potentially different career concerns or 

compensation schemes. For instance, banks have been shown to manage, e.g. smooth, their reported 

earnings by strategically realizing gains and losses from securities (see e.g. Dong and Zhang, 2017; 

Beatty and Harris, 1999; Ahmed and Takeda, 1995). However, these concerns should affect only 

reported gains and losses but not missed opportunities to gain and lose. For example, consider a 

trader who is long in 100 shares and sells one of them. If subsequently the stock price increases, the 

trader gains on the 99 shares, but misses the opportunity to gain on the sold one, which can mentally 

be perceived as a loss. This loss can be realized by repurchasing the share at the higher price.18 If the 

average disposition effect for these mental gains and losses is similar to the baseline, this would 

suggest that our main results are not driven by contract-induced incentives to realize gains and losses.  

                                                            
18 Similarly, Strahilevitz et al. (2011) study how regret affects the repurchase of stocks previously sold. 
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Assumption 3: we consider positions that are either long from the daily perspective, i.e., when 

assuming zero starting inventory every day, but short from the long-term perspective, i.e., when 

assuming zero starting inventory only on the first day, or short from the daily perspective but long 

from the long-term perspective (see Table 6, columns (5) and (6)). Technically, we first select trader-

stock-day positions that from the long-term perspective are either long or short throughout the whole 

day. Then, if a position from the long-term perspective is long, while #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 

and #_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 in equations (1) and (2), respectively, are positive, we set them to zero. If 

a position from the long-term perspective is short, while #_𝑠ℎ𝑎𝑟𝑒𝑠_𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑠,𝑖,𝑡 and 

#_𝑜𝑓_𝑠ℎ𝑎𝑟𝑒𝑠_𝑠𝑜𝑙𝑑𝑠,𝑖,𝑡 in equations (1) and (2), respectively, are negative, we set them to zero. 

Another explanation related to career concerns could be that after a stock price decline and an 

associated loss, human traders (more than algorithmic traders) may be incentivized to take extra 

risks, and if low-priced stocks are more volatile than high-priced stocks (see e.g. Ohlson and 

Penman, 1985; Dubofsky, 1991), traders might prefer to hold on to losing stocks. This explanation, 

however, again holds only for long positions, and, therefore can be tested by comparing the results 

for long and short positions in columns (1) and (3), respectively. 

Portfolio rebalancing. Gains (losses) increase (decrease) the weight of certain stocks in a 

portfolio, and to restore a well-diversified balance, investors may close a portion of their winning 

positions (increase their losing positions). If algorithmic traders care less about portfolio rebalancing, 

this could explain the difference in the disposition effect between humans and algorithms. According 

to Odean (1998), “investors who are rebalancing will sell a portion, but not all, of their shares of 

winning stocks. A sale of the entire holding of a stock is most likely not motivated by the desire to 

rebalance”. To test the portfolio rebalancing explanation, we check if the results remain similar to the 

baseline when we consider only full realization of gains and losses. 
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Assumption 4: consider the realization of gains and losses only for those trader-stock-day 

positions that were completely closed at least once throughout a day (see Table 6, columns (7) and 

(8)). Technically, in the numerator of equations (5) and (6), we set 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 to 

zero for those trader-stock-day positions that were never closed throughout the day. 

Finally, we check if our results are affected by the estimation method of real gains and losses. 

Assumption 5: use first-in-first-out (FIFO) method, instead of WAPP, to calculate realized 

gains and losses (see Table 6, columns (9) and (10)). 

The estimated constant in the odd columns of Table 6 indicate that under each of the five 

assumptions, the average disposition effect for humans remains similar and statistically significant at 

1% level, while for algorithms it is never statistically different from zero. This suggests that neither 

transaction costs, nor career concerns, nor portfolio rebalancing alone can fully explain the difference 

in the average disposition effect between humans and algorithms. The estimated coefficient on 

T_dummy𝑖,𝑡 in the even columns show that under every assumption, the impact of air temperature on 

the disposition effect for humans remains similar and statistically significant at least at 10% level, 

while for algorithms it is never statistically significant. This strengthens the robustness of our results. 

5.7.  Belief-based explanations 

Traders may purchase a stock because they believe to have superior information about its 

potential future price. As a result, they may view price hikes as incorporations of their information 

into the price (and thus sell) and price drops as temporary setbacks (and thus hold or buy more), 

which would create the disposition effect (Ben-David and Hirshleifer, 2012). Similarly, traders may 

believe in the mean-reversion of the stock price, and thus sell stock after the price hikes and buy it 

after the price drops, which would also lead to the disposition effect. Algorithms, having better 

access to information (Chordia et al., 2018; Biais et al., 2015), more computational power and 

learning capacity (Abis, 2022), and, possibly, being less subject to overconfidence, may have weaker 
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beliefs in these price-reversal trading strategies than humans, which would explain the lower 

disposition effect on average. 

To test whether humans pursue price-reversal strategies more often than algorithms, we 

implement the following exercise. First, we estimate the absolute value of hourly change in the 

number of shares, |∆𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠,𝑖,𝑡|, for every trader i, stock s, day-hour t, and find the 90th percentile 

of this variable for every trader-stock, 𝑝𝑒𝑟𝑐90𝑠,𝑖, considering only non-zero observations. Second, 

for every trader i, we count the number of stock-day-hour level observations, 𝑁𝑖, 

where |∆𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠,𝑖,𝑡| > 𝑝𝑒𝑟𝑐90𝑠,𝑖 and the stock price 𝑆𝑠,𝑡 has either increased or decreased for the 

second consecutive hour, i.e., either (∆𝑆𝑠,𝑡 > 0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡−1 > 0) or (∆𝑆𝑠,𝑡 < 0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡−1 < 0). 

Third, among these observations, we count the number of cases, 𝑁_𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑖, where a large change 

in inventory, ∆𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠,𝑖,𝑡 was in the opposite direction from ∆𝑆𝑠,𝑡, i.e., either (∆𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠,𝑖,𝑡 >

0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡 < 0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡−1 < 0) or (∆𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠,𝑖,𝑡 < 0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡 > 0 𝑎𝑛𝑑 ∆𝑆𝑠,𝑡−1 > 0). Finally, 

we estimate a proportion of stock-day-hours spent on price-reversal trading for every trader as: 

𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 =
𝑁_𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑖

𝑁𝑖
                     (21) 

We regress this variable on a constant and a dummy Humani equal to 1 for human and 0 for 

algorithmic “frequent traders”, and use robust standard errors. The constant equals 0.504 (p-value = 

0.000) and indicates that algorithms on average purse price-reversal and momentum trading equally 

often, i.e., 50% of the time. The coefficient on the dummy Humani equals 0.056 (p-value = 0.023) 

and suggests that humans pursue price-reversal trading significantly more often than algorithms, 

which helps explain why they exhibit a stronger disposition effect.  

It is not obvious, however, if the price-reversal trading, and the associated disposition effect, 

are rational or not (e.g. driven by overconfidence). According to Odean (1998), if the disposition 

effect helps perform better, it would be justified and rational, but if traders continue to exhibit it 

despite persistent evidence that doing so hurts their performance, this behavior would be irrational. 
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To measure the performance of human and algorithmic “frequent traders” we estimate every trader’s 

i return at the end of every day t: 

𝑟𝑖,𝑡 =  
∑ 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡

𝑆
𝑠=1

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜_𝑠𝑖𝑧𝑒𝑖,𝑡 
                (22) 

where 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡 is defined in equation (4), ∑ 𝑡𝑜𝑡𝑎𝑙_𝑔𝑎𝑖𝑛𝑠,𝑖,𝑡
𝑆
𝑠=1  is the sum of end-of-day 

profits across all stocks held by trader i in day t, and Portfolio_sizei,t is calculated in the same way as 

Portfolio_size_EURi,t defined in “Data” section and Table 2, but not converted to euros. We regress 

this variable on a constant separately for human and algorithmic “frequent traders”, and cluster 

standard errors at the trader level. For humans, the constant equals -0.0033 (p-value = 0.260), which 

translates to an average annualized return of -11.3%.19 The negative return is driven by traders that 

purse price-reversal strategies: for humans with 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 larger than median 

(i.e., 0.54), the average annualized return equals -31.2% (p-value = 0.011), while for the rest it is 

20.1% (p-value = 0.214). Similarly, for humans that on average exhibit a significant disposition 

effect, as shown in Figure 1, and for those who do not, the average annualized return equals -22.5% 

(p-value = 0.051) and 0.1% (p-value = 0.994), respectively. Hence, both the price-reversal trading 

and the disposition effect are associated with significant losses for human traders, which suggests 

that beliefs of human traders in price-reversal strategies are mostly not rational. 

For algorithms, the average annualized return equals 17.2% (p-value = 0.244). For traders 

with 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 larger than median (i.e., 0.50) the average annualized return 

equals 45.2%, while for the rest it is 2.2% (both p-values above 0.1). Similarly, for those that on 

average exhibit a significant disposition effect, as shown in Figure 1, the average annualized return 

equals 49.2%, while for the rest it is 1.7% (both p-values above 0.1). Hence, algorithms perform 

                                                            
19 Average annualized return is calculated as (1+average_daily_return)^365 – 1 
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better than humans on average, and particularly when pursuing price-reversal strategies, which 

suggests that their “beliefs” in price-reversal strategies might be mostly rational. 

Finally, to test whether the disposition effect has a causal effect on performance, we 

implement the following exercise. First, for every trader we observe the portfolio composition daily 

at 1 pm, i.e., in the middle of a trading day, and create a hypothetical “realization portfolio”, which, if 

acquired, would cancel out all losing positions, and thus, would realize all unrealized losses. At the 

end of a trading day, i.e., at 5 pm, we estimate the return on this “realization portfolio”. Second, we 

regress this trader-day level return on a constant separately for four groups of “frequent traders”: 

humans and algorithms that do and do not exhibit a significant average disposition effect, as shown 

in Figure 1. We cluster errors at the trader level. Assuming zero transaction costs and zero price 

impact, the estimated constant can be interpreted as an average daily return not earned due to not 

realizing one’s losses in the middle of a trading day. For humans that exhibit a disposition effect, this 

constant equals 0.000929 (p-value = 0.046), which translates to an average annualized return of 

40.3%. Hence, these traders would have benefited significantly from a full realization of losses daily 

at 1 pm, which suggests that the disposition effect for them was harmful and not driven by rational 

causes. For the other three groups, the estimated constant is positive but not statistically significant. 

6. The disposition effect for high-frequency traders 

Figure 1 shows that 18 out of the 22 algorithms that on average trade more frequently than 

once every 100 seconds, on average exhibit either a significant disposition effect or a significant 

inverse disposition effect. We explore if this can be explained by trading strategies of these HFTs. 

SEC (2010) describes four broad categories of HFT strategies, namely, (1) passive market 

making, (2) arbitrage, e.g., exploiting price inefficiencies across products or markets, (3) structural, 

e.g., exploiting co-location arrangements to increase the speed of data delivery, and (4) directional, 

e.g., price-reversal or price momentum strategies. As discussed in subsection 5.7, price-reversal 

strategies can generate the disposition effect, hence, trading in the opposite direction, i.e., pursuing 
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price momentum strategies, can create its inverse. Since HFTs have been shown to pursue directional 

trading in both directions (see, e.g., Brogaard et al., 2014; Van Kervel and Menkveld, 2019; 

Korajczyk and Murphy, 2019), we suspect that being persistently biased towards either one of the 

two directions may explain the observed patterns of disposition effect for HFTs. 

Figure 3, shows an example of a price-reversal trading pattern for an HFT that, according to 

Figure 1, on average exhibits a significant disposition effect, and a momentum trading pattern for an 

HFT that on average does not exhibit one. The figure plots, for the first ten days of our sample, 

hourly (end-of-hour) observations of the stock price of Pandora, one of the most traded stocks in the 

Copenhagen stock exchange, and inventory of Pandora stock held by the two different HFTs. We 

assume zero starting inventory on the first day. The price and inventory appears to correlate 

negatively for the HFT that exhibits the disposition effect and positively for the HFT that does not. 

To check how well the engagement in price-reversal strategies can predict the disposition 

effect among HFTs, we estimate a trader-level variable 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖, defined in 

sub-section “5.7. Belief-based explanations”, equation (21). The variable measures a proportion of 

stock-day-hours spent on price-reversal trading, i.e., either significantly increasing stock inventory as 

the price has decreased for the second consecutive period, or significantly decreasing stock inventory 

as the price has increased for the second consecutive period. Figure 4 plots a distribution of this 

variable across the 22 algorithms that, according to Figure 1, on average trade more frequently than 

once every 100 seconds. The red columns represent algorithms that, according to Figure 1, on 

average exhibit a statistically significant disposition effect, and white columns represent HFTs that 

do not. The histogram shows that all the algorithms with 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖 > 0.5 on 

average exhibit the disposition effect, while all the rest do not. This suggests that the engagement in 

price-reversal strategies can very well predict whether an HFT would exhibit the disposition effect. 
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In order to check whether the disposition effect among HFTs is associated with a lower 

performance, and, thus, irrational explanations, we estimate every trader’s daily return 𝑟𝑖,𝑡 defined in 

equation (22), and regress it on a constant separately for HFTs that on average exhibit the disposition 

effect and for HFTs that do not. We cluster standard errors at the trader level. The constant equals 

0.00073 (p-value = 0.007) and 0.00087 (p-value = 0.028) for the two groups, respectively. These 

average daily returns translate to average annualized return of 30.5% and 37.3%, respectively. The 

difference between them is not statistically significant as measured by a dummy variable splitting the 

data into the two groups. This suggests that for HFTs, the disposition effect is not associated with a 

lower performance and, thus, with irrational beliefs. In our dataset, we observe cases where two HFT 

algorithms belong to the same institution, and one algorithm exhibits a significant disposition effect 

while the other one exhibits a significant inverse disposition effect. This suggests that multiple 

algorithms are deliberately designed to purse opposite directional trading strategies, possibly for 

diversification purposes. 

7. Conclusion 

This paper studies whether and why algorithmic traders exhibit the disposition effect. First, 

by using exogenous weather variation and algorithms as a control group, we provide a novel 

identification of the impact of human psychology on the disposition effect. We find that warmer 

weather reduces the disposition effect for human traders but has no impact for algorithmic traders. 

This suggests that the disposition effect for humans is at least partially caused by psychological 

biases, and that algorithms can at least partially avoid these biases. 

According to the psychology literature, higher air temperature improves both mood and 

cognition, therefore, our results can be explained by the two major preference-based explanations of 

the disposition effect: realization utility (when traders’ mood is worse, they may regulate it more by 

seeking pleasure and avoiding pain from the realization of gains and losses, respectively) and 
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prospect theory (better cognition may help avoid cognitive biases such as loss aversion and the 

attachment to reference points). The belief-based explanation predicts the opposite: better mood may 

boost overconfidence, beliefs in private information and the disposition effect. This suggests that the 

weather impacts the disposition effect primarily though preferences rather than beliefs.  

Second, we find that on average human traders exhibit a significant disposition effect while 

similarly-trading algorithms do not, and that the difference between the two groups is statistically 

significant. Our robustness tests show that this cannot be explained by different transaction costs, 

career concerns and portfolio rebalancing practices between the two groups. This could be explained, 

however, by different beliefs in mean-reversion and private information as humans on average tend 

to rely on price-reversal strategies more than similarly-trading algorithms. Yet, we find that for 

humans, both the price-reversal trading and the disposition effect are associated with significant 

trading losses, which suggests that such beliefs are irrational. This supports the results of the weather 

impact analysis by providing suggestive evidence that the disposition effect for humans is driven by 

psychological biases, and that algorithms can at least partially avoid these biases. Essentially, one 

could argue that if the disposition effect was rational, it would be programmed in algorithms as well. 

Both sets of our results, i.e., on the average disposition effect and on the weather impact, are 

robust to including maximum fixed effects, using different error clustering, including the least 

frequently trading human and algorithmic day-traders, defining the temperature variable both as a 

higher-than-median dummy and as an actual temperature, controlling for other weather variables,  

and using specifications that exploit the three dimensions of our panel data, which allows adding 

trader-time, stock-time and trader-stock fixed effects. Moreover, the results remain similar when 

using only long positions, only short positions, only mental gains and loses (i.e., missed opportunities 

to gain and lose), only full (not partial) realizations of gains and losses, and the FIFO method instead 

of WAPP to estimate realized gains and losses. 
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Third, we find a high heterogeneity of the average disposition effect among the most 

frequently trading algorithms, HFTs, and that it can be very well predicted by their tendency to 

engage in price-reversal strategies. Unlike for human traders, we do not find evidence for HFTs that 

their price-reversal trading, and, thus, the disposition effect is associated with lower trading profits. 

This suggests that for HFTs, the disposition effect is not associated with irrational beliefs. 

Overall, we find evidence that algorithms make decisions that are more consistent with 

rational economic models than on-the-spot decisions made by humans. Given the speed and scale of 

adoption of AI around the world, these results may have broad implications for the real economy, 

financial markets and economic theory. For example, industries that require more rational decision-

making might replace humans with algorithms faster, affecting unemployment, productivity and 

economic growth. As the global reliance on algorithms increases, rational economic models might 

become more accurate in explaining financial markets and economy. 
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TABLE 1 

Summary statistics of morning air temperature 
Table 1 provides summary statistics of the temperature variable and correlation coefficients between the temperature and other 

weather variables. All weather variables are constructed at the city-day level by taking an average of two data points: at 8 am 

and 9 am CET in every city. The data includes every daily observation in years 2016 and 2017 from the following 12 cities: 

Copenhagen, London, Stockholm, Paris, Amsterdam, Hamburg, Dublin, Zurich, Randers, Silkeborg, Aabenraa and Aalborg. 

Number of 

observations 

1st percentile 25th 

percentile 

median 75th 

percentile 

99th 

percentile 

mean 

8,772 -3.4 °C 4.4 °C 9.2 °C 15.0 °C 23.2 °C 9.5 °C 

 

Correlation coefficient between temperature and: 

Relative humidity 

2 meters above 

ground (%) 

Mean sea 

level pressure 

(hPa) 

Precipitation 

(mm) 

Cloud cover 

(% of the sky 

area) 

sunshine 

duration 

(minutes) 

Shortwave 

radiation 

(W/m2) 

Wind speed 10 

meters above 

ground (km/h) 

-0.493 -0.072 0.017 -0.160 0.286 0.680 -0.2167 
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TABLE 2 

Comparison of trading patterns between algorithms and humans 
Panels A and B show the results of regressing five different trader-day-level variables on a constant and a dummy Humani, 

which is equal to 1 for humans and 0 for algorithms. The five dependent variables are: (1) N_of_tradesi,t – total number of 

trades executed by trader i in day t; (2) Turnover_EURi,t – total turnover expressed in euros generated by trader i in day t; (3) 

Portfolio_size_EURi,t – average portfolio size expressed in euros for trader i throughout day t (see the “Data” section for the 

detailed variable definition);  (4) Inventory_daysi,t – trading horizon for trader i in day t, calculated as a ratio of 

Portfolio_size_EURi,t over the total value of shares sold (repurchased, for short positions) by trader i in day t, valued at 

purchase prices (sale prices, for short positions); and (5) Turnover_top10i,t – the turnover generated in 10 most traded stocks 

by trader i in day t, divided by total turnover generated by trader i in day t. Panel A considers “frequent traders”, i.e., 44 

humans and 30 algorithms with an average gap between trades ranging from 54 seconds (the most frequently trading human) 

to 10 minutes.  Panel B includes “infrequent traders” and, thus constitutes 93 humans and 38 algorithms with an average gap 

between trades larger than 54 seconds. Panel C compares two types of algorithms and thus replaces the Humani dummy with a 

dummy HFTi, equal to 1 for algorithms with an average gap between trades smaller than 54 seconds and 0 for algorithms 

assigned to the “frequent traders” group. Standard errors are clustered at the trader level and reported in parentheses. 

 

 

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

Humani -119 -86,352 97,037 0.983 0.041

(100) (966,293) (196,820) (1.004) (0.025)

Constant 604*** 4,165,230*** 895,525*** 3.308*** 0.874***

(61) (558,959) (134,983) (0.739) (0.023)

Observations 20,315 20,315 20,315 16,516 20,313

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

Humani -199** -948,756 -155,442 1.803** 0.046**

(81) (664,781) (144,859) (0.899) (0.02)

Constant 459*** 3,232,470*** 706,042*** 3.899*** 0.902***

(67) (512,296) (117,588) (0.658) (0.019)

Observations 37,355 37,355 37,355 25,640 37,344

(1) (2) (3) (4) (5)

Dependent variable: N_of_tradesi,t Turnover_EURi,t Portfolio_size_EURi,t Inventory daysi,t Turnover_top10i,t

HFTi 4,800*** 29,621,417*** 2,442,565*** -2.462*** -0.087***

(1647) (9,880,467) (623,033) (0.79) (0.028)

Constant 604*** 4,165,230*** 895,525*** 3.308*** 0.874***

(61) (558,959) (134,983) (0.739) (0.023)

Observations 13,560 13,560 13,560 12,563 13,560

Robust standard errors are clustered at the trader level and reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel A: "frequent traders" - 44 humans and 30 algorithms

Panel B: "frequent traders" + "infrequent traders" - 93 humans and 38 algorithms

Panel C: 14 HFT algorithms and 30 algorithms from "frequent traders"
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TABLE 3 

Average disposition effect 
Table 3 presents estimates of average proportion of gains realized (PGR𝑖,𝑡), proportion of losses realized (PLR𝑖,𝑡), and 

disposition effect (DE𝑖,𝑡) for humans (Panel A) and algorithms (Panel B) obtained with regression specifications (8) to (11):  

PGR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡      (8) 
PLR𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡      (9) 

DE𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡    (10) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡   (11) 
Variables are observed daily at 5 pm CET. Subscripts s, i and t represent stock, trader and day, respectively. In specification 

(11), which uses three-dimensional panel data, a proportion of either a gain or a loss realized PR𝑠,𝑖,𝑡 is regressed on a dummy 

variable Gain𝑠,𝑖,𝑡 equal to 1 for non-losing positions and 0 for losing positions. Coefficient 𝛽1 estimates the disposition effect. 

Detailed descriptions of all variables are provided in section 4 “Methodology”. FE represents stock-day, trader-day and stock-

trader fixed effects. Odd columns consider only “frequent traders” and even columns include “infrequent traders”. 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8)

Depentent variable:

Regression specification:

Gains,i,t 0.066*** 0.052***

(0.000) (0.000)

Constant 0.282*** 0.223*** 0.174*** 0.150*** 0.115*** 0.079*** 0.257*** 0.227***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Fixed effects Yes Yes

Include "infrequent traders" Yes Yes Yes Yes

Observations 10,504 21,452 10,478 21,368 9,847 18,826 182,043 266,476

Adjusted R-squared 0 0 0 0 0 0 0.224 0.238

Number of traders 44 93 44 93 44 93 44 93

(10) (11)(8) (9)

Panel A: humans

PGRi,t PLRi,t DEi,t PRs,i,t

(1) (2) (3) (4) (5) (6) (7) (8)

Depentent variable:

Regression specification:

Gains,i,t 0.018 0.019

(0.307) (0.261)

Constant 0.344*** 0.321*** 0.329*** 0.304*** 0.015 0.019 0.416*** 0.398***

(0.000) (0.000) (0.000) (0.000) (0.571) (0.385) (0.000) (0.000)

Fixed effects Yes Yes

Include "infrequent traders" Yes Yes Yes Yes

Observations 8,468 11,042 8,454 11,008 8,159 10,286 167,524 183,980

Adjusted R-squared 0 0 0 0 0 0 0.291 0.297

Number of traders 30 38 30 38 30 38 30 38

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel B: algorithms

(8) (9) (10) (11)

DEi,t PRs,i,tPGRi,t PLRi,t
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TABLE 4 

The impact of air temperature on the disposition effect 
Table 4 shows an estimated impact of air temperature on the proportions of gains (PGR𝑖,𝑡) and losses (PLR𝑖,𝑡) realized and the 

disposition effect (DE𝑖,𝑡) for humans (Panel A) and algorithms (Panel B). We report coefficients of interest for specifications:  

PGR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡            (13) 

PLR𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡           (14) 

DE𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡           (15) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡       (16) 

Dependent variables are observed daily at 10 am CET. Temperature T𝑖,𝑡 and other weather variables C𝑖,𝑡 used as controls are 

observed daily between 8 am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was higher than median of that city-month. Subscripts s, i 

and t represent stock, trader and day, respectively. In specifications (13)-(15), FE represents trader-fixed effects and day-fixed 

effects. In specification (16), PR𝑠,𝑖,𝑡 is a proportion of either a gain or a loss realized, Gain𝑠,𝑖,𝑡 is a dummy variable equal to 1 

for non-losing positions and 0 for losing positions, and FE represents stock-day, trader-day and stock-trader fixed effects. 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Depentent variable: PGRi,t PLRi,t

Regression specification: (13) (14)

T_dummyi,t -0.009* 0.007* -0.021*** -0.028*** -0.038*** -0.021**

(0.051) (0.075) (0.001) (0.000) (0.001) (0.014)

Ti,t -0.004**

(0.027)

Gains,i,t × T_dummyi,t -0.016*** -0.011***

(0.002) (0.004)

Gains,i,t × Ti,t -0.001*

(0.095)

Constant 0.187*** 0.098*** 0.096*** 0.423 0.808 0.123 0.199 0.140*** 0.115*** 0.115***

(0.000) (0.000) (0.000) (0.413) (0.384) (0.823) (0.733) (0.000) (0.000) (0.000)

Weather controls Yes Yes Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes Yes

Include infrequent traders Yes Yes Yes Yes

Observations 7,843 7,707 7,101 7,101 7,101 11,325 11,594 71,778 99,145 101,745

Adjusted R-squared 0.000 0.000 0.001 0.008 0.114 0.101 0.102 0.168 0.166 0.166

Number of traders 44 44 44 44 44 93 93 44 93 93

DEi,t PRs,i,t

(16)(15)

Panel A: humans

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Depentent variable: PGRi,t PLRi,t

Regression specification: (13) (14)

T_dummyi,t -0.004 0.001 -0.004 -0.006 0.006 0.013

(0.469) (0.846) (0.578) (0.392) (0.674) (0.350)

Ti,t 0.003

(0.180)

Gains,i,t × T_dummyi,t -0.002 -0.001

(0.656) (0.850)

Gains,i,t × Ti,t -0.001

(0.542)

Constant 0.185*** 0.167*** 0.021 0.294 0.384 0.875 0.688 0.217*** 0.211*** 0.211***

(0.000) (0.000) (0.244) (0.554) (0.644) (0.223) (0.322) (0.000) (0.000) (0.000)

Weather controls Yes Yes Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes Yes

Include infrequent traders Yes Yes Yes Yes

Observations 7,359 7,284 6,847 6,847 6,846 7,837 7,988 95,596 101,100 103,186

Adjusted R-squared -0.000 -0.000 -0.000 0.000 0.067 0.055 0.057 0.270 0.273 0.273

Number of traders 30 30 30 30 30 38 38 30 38 38

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

DEi,t PRs,i,t

(15) (16)

Panel B: algorithms
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TABLE 5 

The difference between humans and algorithms 
Table 5 shows an estimated difference in the disposition effect and an estimated difference in the impact of air temperature on 

the disposition effect between human and algorithmic “frequent traders”. We report coefficients of interest for specifications:  

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝜖𝑖,𝑡                 (17) 

DE𝑖,𝑡 = 𝛼 + 𝛽1Human𝑖 + 𝛽2T_dummy𝑖,𝑡 + 𝛽3Human𝑖×T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡      (18) 

PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡 + 𝛽2Human𝑖 + 𝛽3Gain𝑠,𝑖,𝑡×Human𝑖 + 𝐹𝐸 + 𝜖𝑖,𝑡        (19) 
PR𝑠,𝑖,𝑡 = 𝛼 + 𝛽1Gain𝑠,𝑖,𝑡×T_dummy𝑖,𝑡×Human𝑖 + V&I𝑠,𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡            (20) 

Subscripts s, i and t represent stock, trader and day, respectively. Human𝑖 is a dummy variable equal to 1 for humans and 0 

for algorithms. DE𝑖,𝑡 is the disposition effect measured as the difference between a proportion of gains realized and a 

proportion of losses realized by trader i in day t. In specification (18), FE represents trader-fixed effects and day-fixed effects. 

In specifications (19) and (20), PR𝑠,𝑖,𝑡 is a proportion of either a gain or a loss realized, Gain𝑠,𝑖,𝑡 is a dummy variable equal to 

1 for non-losing positions and 0 for losing positions, and FE represents stock-day, trader-day and stock-trader fixed effects. 

Dependent variables in specifications without weather variables, i.e., (17) and (19), are observed at 5 pm CET, while in the 

other two specifications – at 10 am. Temperature T𝑖,𝑡 and other weather variables C𝑖,𝑡 used as controls are observed daily 

between 8 am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was higher than median of that city-month. V&I𝑠,𝑖,𝑡 denotes the three 

variables that constitute the triple interaction term in specification (20) and the three possible interactions among them. 

 
 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7)

Depentent variable:

Regression specification: (17) (19)

Humani 0.099** 0.075** 0.129 -0.990*

(0.011) (0.017) (0.855) (0.063)

Temp_dummyi,t × Humani -0.017* -0.022** -0.015* 0.008

(0.071) (0.027) (0.089) (0.174)

Gains,i,t × Humani 0.046* -0.317 -0.484

(0.062) (0.426) (0.191)

Gains,i,t × Temp_dummyi,t × Humani -0.014** -0.013**

(0.023) (0.019)

Constant 0.015 0.021 0.294 0.591 0.331*** 0.985** 0.180***

(0.565) (0.234) (0.547) (0.276) (0.000) (0.012) (0.000)

Weather controls Yes Yes Yes Yes

Fixed effects Yes Yes Yes

Observations 18,006 13,948 13,948 13,948 359,630 182,275 174,603

Adjusted R-squared 0.020 0.011 0.015 0.100 0.279 0.014 0.243

Number of traders 74 74 74 74 74 74 74

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

DEi,t PRs,i,t

(18) (20)
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TABLE 6 

Robustness checks 
Table 6 presents an average disposition effect (DE𝑖,𝑡) in odd columns (estimated by the constant) and an impact of temperature 

on the disposition effect (DE𝑖,𝑡) in even columns (estimated by coefficient 𝛽1 on variable T_dummy𝑖,𝑡) for human (Panel A) 

and algorithmic (Panel B) “frequent traders” obtained using regression specifications (10) and (15):  

DE𝑖,𝑡 = 𝛼 + 𝜖𝑖,𝑡    (10) 

DE𝑖,𝑡 = 𝛼 + 𝛽1T_dummy𝑖,𝑡 + C𝑖,𝑡 + 𝐹𝐸 + 𝜖𝑖,𝑡 (15) 

Variable DE𝑖,𝑡 is observed daily at 5 pm CET for specification (10) and at 10 am for specification (15). Temperature T𝑖,𝑡 and 

other weather variables C𝑖,𝑡 used as controls are observed daily between 8 am and 9 am. T_dummy𝑖,𝑡 equals 1 if T𝑖,𝑡 was 

higher than median of that city-month. Subscripts i and t represent trader and day, respectively. FE represents trader-fixed 

effects and day-fixed effects. We estimate the results under five different assumptions specified in row “Robustness check”: 

1) Columns (1) and (2) consider only long positions, i.e., assume that gains and losses in short positions were zero. 

2) Columns (3) and (4) consider only short positions, i.e., assume that gains and losses in long positions were zero. 

3) Columns (5) and (6) consider positions that are either long from the daily perspective (assuming every day starts 

with zero inventory) but short from the long-term perspective (assuming only the first day starts with zero 

inventory) or short from the daily perspective but long from the long-term perspective. 

4) Columns (7) and (8) consider the realization of gains and losses only for those trader-stock-day positions that were 

completely closed at least once throughout a day. 

5) Columns (9) and (10) use first-in-first-out (FIFO) method, instead of WAPP, to calculate realized gains and losses. 

 

 
 

 

 

 

 

Depentent variable: DEi,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Robustness check:

Regression specification: (10) (15) (10) (15) (10) (15) (10) (15) (10) (15)

T_dummyi,t -0.032** -0.030* -0.040*** -0.025** -0.025**

(0.030) (0.097) (0.010) (0.020) (0.020)

Constant 0.126*** 0.772 0.112*** 0.652 0.123*** 1.529 0.079*** 0.748 0.079*** 0.748

(0.000) (0.500) (0.000) (0.696) (0.000) (0.293) (0.001) (0.408) (0.001) (0.408)

Weather controls Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes

Observations 8,602 5,315 8,228 5,501 8,345 5,421 9,847 7,101 9,847 7,101

Adjusted R-squared 0 0.119 0 0.089 0 0.069 0 0.101 0 0.101

Number of traders 44 44 44 44 44 44 44 44 44 44

Panel A: humans

Only long positions Only short positions Mental gains/losses Only full realizations FIFO method

Depentent variable: DEi,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Robustness check:

Regression specification: (10) (15) (10) (15) (10) (15) (10) (15) (10) (15)

T_dummyi,t 0.001 -0.001 -0.031 -0.005 -0.005

(0.967) (0.949) (0.284) (0.679) (0.679)

Constant 0.015 1.360 0.031 1.548 0.023 1.039 0.010 0.801 0.010 0.801

(0.569) (0.379) (0.258) (0.266) (0.381) (0.416) (0.673) (0.229) (0.673) (0.229)

Weather controls Yes Yes Yes Yes Yes

Fixed effects Yes Yes Yes Yes Yes

Observations 7,209 5,585 7,249 5,523 7,267 5,485 8,159 6,846 8,159 6,846

Adjusted R-squared 0 0.115 0 0.108 0 0.051 0 0.068 0 0.068

Number of traders 44 44 44 44 44 44 44 44 44 44

Standard errors are clustered at trader level; p-values are reported in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Panel A: algorithms

Only long positions Only short positions Mental gains/losses Only full realizations FIFO method
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FIGURE 1 

Disposition effect for individual humans and algorithms sorted by trading frequency 
Figure 1 plots on the y-axis an average disposition effect estimated separately for every trader in our sample, i.e., 93 humans 

and 52 algorithms that have at least 30 non-zero end-of-day observations of disposition effect variable DE𝑖,𝑡. Variable DE𝑖,𝑡 is 

defined as the gap between the proportion of gains realized (PGR) and the proportion of losses realized (PLR) by trader i at 

time t (for more details, see “Methodology” subsection 4.1 “The measure of the disposition effect”). The average disposition 

effect is estimated for every trader by regressing the variable DE𝑖,𝑡 (observed daily at 5 pm) on a constant and using robust 

standard errors. Traders are sorted along the x-axis by an average trading frequency, which is calculated for every trader as an 

average time gap (in seconds) between trades executed throughout the sample period. Blue and red circles represent humans 

and algorithms, respectively. Colored circles represent estimates of the disposition effect that are statistically different from 

zero at 99% significance level. Algorithms that trade more frequently than the most frequently trading human, i.e., every 54 

seconds on average, are labeled “HFTs”. Traders that trade less frequently than every 600 seconds on average are labeled 

“infrequent traders”. The remaining traders in between are labeled “frequent traders”.  

  

FIGURE 2 

Intraday proportion of gains realized (PGR) and proportion of losses realized (PLR) 
Figure 2 plots an average intraday development of variables PGR𝑖,𝑡 and PLR𝑖,𝑡 observed at the end of every trading hour for 

human and algorithmic “frequent traders”. Every data point is an average across traders (i) and days (t). Variables PGR𝑖,𝑡 and 

PLR𝑖,𝑡 are described in detail in section 4 “Methodology”. The PGR-PLR gap provides an estimate of the disposition effect. 

  

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

3

1
5

2
3

3
0

5
0

5
5

7
1

7
9

8
4

9
6

1
0

4

1
1

3

1
3

2

1
3

8

1
5

6

1
8

9

2
2

5

2
3

8

2
4

7

2
6

6

2
9

8

3
0

7

3
7

7

4
0

9

4
3

0

4
6

2

4
9

1

5
1

6

5
3

3

5
9

9

6
7

9

8
1

7

8
3

5

8
5

4

9
2

3

1
0

4
7

1
1

3
3

1
2

4
7

1
2

8
0

1
3

3
0

1
4

0
0

1
4

8
3

1
6

3
3

1
8

7
0

2
1

5
3

2
6

9
9

2
8

4
3

3
3

0
0

3
6

9
4

A
ve

ra
ge

 d
is

p
o
si

tio
n 

ef
fe

ct
: 

P
G

R
-P

L
R

Average gap between trades (seconds)

Algorithms Humans

"frequent traders" "infrequent traders" 

"HFTs"

54 seconds 600 seconds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm

A
v
e
ra

g
e
 P

G
R

 a
n
d
 P

L
R

Time of the day

Humans - PGR Humans - PLR

Algorithms - PGR Algorithms - PLR



50 
 

FIGURE 3 

An example of price-reversal and momentum trading patterns for HFTs 
Figure 3 plots, for the first 10 days of our sample, hourly (end-of-hour) observations of the stock price (solid line, rhs) of 

Pandora, one of the most traded stocks in terms of average daily turnover, and inventory (dotted line, lhs) of Pandora stock 

held by two different HFTs: one that, according to Figure 1, exhibits a significant disposition effect on average (Panel A) and 

one that does not (Panel B). We assume zero starting inventory on the first day. In Panel A, the price and inventory appears to 

be correlated negatively, which hints towards a price-reversal trading strategy, while in Panel B, the correlation appears to be 

positive, which suggests a momentum trading strategy.  

   

 

 

FIGURE 4 

Price-reversal trading and the disposition effect among HFTs 
Figure 4 plots the distribution of a trader-level variable 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙_𝑡𝑟𝑎𝑑𝑖𝑛𝑔_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖, defined in sub-section “5.7. Belief-

based explanations”, equation (21), across HFTs. The variable measures a proportion of stock-day-hours spent on price-

reversal trading, i.e., either significantly increasing stock inventory as the price has decreased for the second consecutive 

period, or significantly decreasing stock inventory as the price has increased for the second consecutive period. The red 

columns represent HFTs that, according to Figure 1, on average exhibit a statistically significant disposition effect, and white 

columns represent HFTs that do not. We consider 22 algorithms that on average trade more frequently than once every 100 

seconds (see Figure 1). 
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