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1 Introduction

Modern exchanges are typically organized as limit order books with price and time priority rules
(Parlour and Seppi, 2008; O’Hara, 2015). Time priority implies that limit orders on a given price
level execute sequentially, with older orders executing before newer ones. A consequence of
sequential limit order execution is that it prevents perfect risk sharing among market makers. The
market maker at the front of the queue is the first to trade against any incoming market orders,
while market markers further back in the queue only trade after the queue has cleared. The classical
literature starts from the premise that the market making sector uniformly absorbs the incoming
order flow, implying strongly correlated inventories across market makers (e.g., Grossman and
Miller, 1988; Reiss and Werner, 1998; Hansch, Naik, and Viswanathan, 1998). In contrast, modern
exchanges with time priority mechanically generate inventory divergence across market makers, at
least at high-frequencies.

How well do high-frequency market-making algorithms share risks on fast-paced modern
markets with time priority? Unlike the human-driven markets of past decades, modern exchanges
are anonymous and dominated by fast-paced algorithms. This limits the potential to directly
share risks in real time. Indeed, for Canadian futures markets, we find that trading between
high-frequency market makers accounts for only 12.3% of volume, despite HFT market-makers
being involved in 76% of the trades. For comparison, inter-dealer trading activity ranges from
24% of volume in the London Stock Exchange in the 1990s (Reiss and Werner, 1998) to 28-42% in
electronic corporate bond markets between 2010-2017 (O’Hara and Zhou, 2021).

Our first contribution is to empirically document stylized facts on cross-sectional and time-series
patterns in market maker inventories. We use proprietary trade and quote data from January to
August 2021 on three futures products traded on the Montréal Exchange: 5- and 10-year Canadian
Government Bonds Futures and the S&P/TSX 60 equity index, respectively, and identify market
maker accounts using similar criteria as Brogaard, Hendershott, and Riordan (2014) and Kirilenko,
Kyle, Samadi, and Tuzun (2017). We document three stylized facts. First, inventory frictions are
important even at high frequencies. Market makers unwind their position often—the average
inventory half-life is below 10 minutes. At the same time, they end the day flat (i.e., with zero
inventory change) 72% of the time. Second, there is significant heterogeneity in inventories at high
frequencies. The average pairwise correlation between market maker inventories, sampled every
30 seconds, is only 11.3%. Third, market maker positions in the queue of limit orders is weakly
correlated with their inventory – the correlation coefficient is just 10.1% across snapshots. That is,
market makers with larger inventories to unwind do not seem to obtain better queue positions.

These three observations paint a striking picture: market makers seem to strongly care about
their risk positions as witnessed by the quick reversals and the desire to end the day flat. Yet, their
positions have a low cross-sectional correlation, suggesting imperfect risk sharing. Further, in a
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market with time priority, the market makers who would benefit the most of being early in the
queue to unwind positions do not seem to be able to do so. This raises several questions. How do
the market maker limit order strategies depend on queue position and on cross-sectional variation
in inventories? Is there an effect on aggregate liquidity provision? And, can we quantify the
magnitude of risk sharing inefficiency?

To answer these questions, our second contribution is a simple limit order book model, where
we extend the adverse selection framework of Sandås (2001) by introducing market maker inventory
costs. Rather than a competitive market making sector, we study imperfect competition between
a limited number of market makers who arrive sequentially to submit limit orders. To zoom in
on the role of time priority, we follow Parlour (1998) and assume a single-tick market with two
possible prices (a bid and an ask). The assumption is realistic for the many stocks that are tick size
constrained, which according to Yao and Ye (2018) happens 41% of the time for Nasdaq 100 stocks
in 2010.

Market makers face two exogenous frictions: adverse selection and inventory costs. Analyzing
them jointly is important, since adverse selection affects the cost of unwinding inventory with
limit orders. Incoming market orders are drawn from an exponential distribution, with larger
orders generating higher (linear) price impact due to adverse selection. Since larger market orders
are more informed on average (Hasbrouck, 1991),1 limit orders earlier in the queue face lower
adverse selection risk (Glosten, 1994). The second friction is inventory risk (Ho and Stoll, 1981): As
intermediaries, market makers aim to connect natural buyers and sellers without taking an extreme
position in the asset. Each market maker faces an inventory penalty over her squared (post-trade)
position, which implies a marginal inventory cost that increases linearly in the holdings.

The equilibrium condition is that each consecutive market maker places a limit order such
that the marginal share earns zero expected profits. In competitive limit order book models, this
condition only holds for the last share in the queue (Glosten, 1994; Back and Baruch, 2013; Biais,
Martimort, and Rochet, 2000). The equilibrium order size depends on the queue position of the
market marker (i.e., the depth already offered when he arrives to the exchange) and on his pre-
trade inventory holdings. Crucially, the solution can be directly mapped into an empirical linear
regression model that estimates the relative magnitude of inventory and adverse selection frictions
from the limit orders by market makers.

The solution shows that additional market makers submit smaller quantities. The quantities
reduce because adverse selection worsens deeper in the book, yet remain positive to the extent
that each additional market maker has a low initial marginal inventory cost. Models with perfect
competition between risk neutral market makers (e.g., Sandås, 2001) obtain that the first market
maker completely fills the book at each level. Introducing inventory concerns allows for multiple

1The increased adverse selection also holds for multiple small market orders trading in the same direction as the
price impact accumulates.
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market makers being present at the best price. An important model result is that heterogeneity in
market maker inventories, combined with a random arrival sequence, affects liquidity as measured
by market depth. The reason is that the inventory position of market makers early in the queue
impacts the adverse selection cost for market makers further back in the queue. Individual order
sizes, and by consequence aggregate depth, depend on the sequence with which market makers,
and their associated inventories, appear in the queue.

Depth is maximized when market makers with large inventories, and consequently pressing
trading needs, arrive at the back of the queue. The rationale is that such market makers post large
orders to mean-revert their position. If they would arrive early in the queue, their large orders
would increase adverse selection for subsequent market makers and crowd out their liquidity
provision. Instead, when the large orders appear last in the queue, the crowding out effect is
minimal – yielding larger quoted depth.

To maximize risk-sharing across market makers, the opposite arrival sequence is optimal.
Efficient risk sharing implies that the market maker most eager to unwind inventory appears first
in the queue of limit orders. That is, priority should be given to the market maker with the most
extreme inventory to minimize her penalty in expected utility. Precisely because this investor
is eager to unwind, she submits a large limit order. But the large limit order first in the queue
(optimal for risk-sharing) crowds-out liquidity provision by all subsequent market makers because
of adverse selection. To the extent that market makers arrive quasi-randomly, markets oscillate
between more effective risk sharing across market makers and better liquidity, as measured by
quoted depth.2

As our third contribution, we take the model to the data. We observe (anonymized) account
identifiers for all trades in the sample. In addition to trades, our data contains 30-second snapshots
of the top level in the limit order book for all futures contracts and maturities. For each snapshot,
we observe all orders with their respective time priority levels and account identifier. We identify
market maker accounts following Kirilenko, Kyle, Samadi, and Tuzun (2017) and further require
that accounts have a resting quote at the top of the book in at least 20% of the snapshots. We obtain
12 market-maker accounts, all of whom are high-frequency traders. To identify adverse selection
and inventory frictions, we regress the sizes of market makers’ limit orders on their queue position
and inventory holdings. The regression specification corresponds directly to the theoretical model,
which tells us that the coefficient on queue position represents the adverse selection component of
the marginal cost of liquidity supply, while the coefficient on the inventory holdings represents
the inventory component. Both variables have a statistically significant impact on limit order size
at the best price level. A one standard deviation increase in the queue position reduces quote

2In the model, we only allow market-makers to post limit orders. In practice, they can also use market orders to
reduce inventory risk, but this is costly as it requires paying the bid-ask spread. The bid-ask spread might serve as an
upper bound for the cost of inefficient risk sharing.
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size by 0.146 contracts (7.93% relative to the average quote size of 1.84 contracts). A one-standard
deviation increase in market maker inventory leads to orders being larger by 0.152 contracts (8.2%
in relative terms). These results give direct insight in the components of the marginal cost of
liquidity provision, and we see that both frictions appear about equally large in the liquid Canadian
futures markets.

Our theoretical framework allows us to map cross-sectional inventory divergence into a measure
of imperfect risk sharing. A back-of-the-envelope calculation showcases that aggregate inven-
tory costs (using the quadratic functional form in the model) are four times larger than under a
benchmark where market makers optimally share their inventory.3

Lastly, we test two predictions that are specific to our model and focus on the interaction between
the inventory and adverse selection frictions at high frequencies. In line with the model, we find
that aggregate depth increases if the market makers with the largest inventories to unwind arrive
at the back of the queue. Randomness in the market maker arrival sequence generates (predictable)
variation in market depth, up to a level of 8.4%. We further confirm the crowding-out effect of limit
orders early in the queue on the sizes of subsequent orders. The marginal impact of an inventory
shock on aggregate market depth is 13% higher for a market maker at the fourth position in the
queue than for a market maker at the top of queue. All results are highly symmetric across both
sides of the order book.

We relate to a literature aiming to estimate inventory and adverse selection costs. We believe
we are the first to estimate inventory frictions based on limit order sizes of individual market
makers. This contributes to the literature that estimates inventory effects based on transitory price
pressures (see, e.g., Kraus and Stoll, 1972; Brogaard, Hendershott, and Riordan, 2014; Hendershott
and Menkveld, 2014). Our analysis complements this work, as it offers an alternative identification
approach for the same economic mechanism. We also contribute to the literature that uses the slope
of the limit order book to estimate adverse selection (Sandås, 2001; Hollifield, Miller, and Sandås,
2004) by extending the theoretical framework to account for inventory frictions. Madhavan and
Smidt (1991, 1993) use trade prices for NYSE specialists to distinguish between the two frictions
and finds that adverse selection concerns are much stronger than inventory costs; we find that the
two frictions have similar magnitudes in Canadian futures quote data.

We also contribute to a growing literature exploring the role of priority rules in limit order
books. Parlour and Seppi (2008) provide an excellent survey of the early studies. More recently,
Yao and Ye (2018) and Li, Wang, and Ye (2021) argue that binding tick sizes constrain liquidity
provision and allocates rents to high-frequency traders who are well positioned to profit from time

3For this calculation, we assume the market makers continuously face an (unobservable) penalty on their squared
inventory holdings. Dividing the actual squared positions by the square of the theoretical position under perfect risk
sharing shows that the inventory cost could be four times lower. This calculation is adjusted for variation in market
maker risk aversion, as proxied by the standard deviation of their inventory holdings. The details are in Section 4.3.
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priority rules. Degryse and Karagiannis (2019) shows that if the tick size is tight, internalization
under price-broker-time priority improves welfare relative to price-time priority. Finally, Budish,
Cramton, and Shim (2015) argue that time priority rules in markets dominated by high-frequency
traders stimulates toxic arbitrage. We add to this literature by exploring the interaction between
(high-frequency) inventory frictions and adverse selection on modern markets with time priority.

Finally, our work contributes to the literature studying risk-sharing across intermediaries and
the impact of inventory constraints on liquidity. Reiss and Werner (1998) use data from London
Stock Exchange in 1991 (when the exchange operated as a dealer market) and show that inter-dealer
trading represents 24% of the aggregate volume. Further, more than 60 percent of all inter-dealer
trades are motivated by risk sharing, in that they simultaneously reduce inventory imbalances.
On the Canadian futures market, we find less risk sharing in the cross-section of high-frequency
market makers. Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010) show that
large inventory positions for NYSE specialists translate to wider spreads and lower liquidity.
Hendershott and Seasholes (2007) show that specialist inventories are negatively correlated with
returns across multiple days. We complement this literature by emphasising the impact of inventory
heterogeneity on aggregate depth.

2 Data and stylized facts

In this section, we first describe our trade-and-quote data, emphasizing how it allows us to sharply
identify inventories and queue position at high frequencies for each trader account. Next, we
identify market making accounts using a methodology derived from Kirilenko, Kyle, Samadi, and
Tuzun (2017). Consistent with existing literature (Menkveld, 2013), we show that market makers
tightly manage their inventory: they end most days completely flat and unwind their position
frequently throughout the day.

We document two novel stylized facts. First, there is substantial cross-sectional heterogeneity
in inventories for market makers with quotes at the top of the order book. Second, the arrival
sequence of market maker limit orders in the book is largely uncorrelated with their inventory. That
is, market makers with large positions to unwind are not more likely to be at the front of the queue.
Since the adverse selection cost is a function of the queue position of an order (Sandås, 2001), our
finding implies that adverse selection and inventory frictions are to a large extent orthogonal to
each other.

In Section 3, we start from these facts and build a simple model that leverages inventory
heterogeneity and random arrival to cleanly identify adverse selection and inventory frictions in
order book data. We test the empirical predictions of the model in Section 4.
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2.1 Data

We use trade and quote data from the Montréal Exchange between January 1st and August 18th,
2021 on three derivatives products: Ten-Year Government of Canada Bond Futures (CGB), Five-Year
Government of Canada Bond Futures (CGF), as well as S&P/TSX 60 Index Standard Futures (SXF).
All products are traded on a continuous-time limit order book with strict price-time priority.4

First, we observe masked trading account identifications (IDs) for each transaction, as well as the
trade price and quantity, a trade initiator flag (i.e., either maker or taker), and an order type flag
(i.e., whether the buyer and seller in each trade submitted a market order, a market-on-open
order, or a limit order). Importantly, the anonymized identities are the same across contracts and
over time. Trades have millisecond-level timestamps. Second, the quote data consists of 30-second
snapshots of the top level in the limit order book. Each snapshot contains all outstanding limit
orders at the best bid and ask prices. For each order, we observe its limit price, the submitter’s
trading account ID, as well as the order’s execution priority. Since all orders at the best bid (ask)
are identically priced, the execution priority corresponds exactly to the order’s time priority. The
data includes all iceberg orders (i.e., where only part of the order is visible to the market); there are
no fully dark orders on the Montréal Exchange.

The government bond futures are the most liquid bond instruments in Canada, and the five-
year and ten-year contracts in practise determine the yield curve. Each futures contract offers
an exposure to bonds of about CAD100,000 in our sample. The equity futures contract offers an
exposure of about CAD250,000 to the Canadian equity index.

2.2 Who are the market makers?

A natural first step in our analysis is to identify which ones out of the 3,511 unique accounts in our
data trade in a manner consistent with market-making strategies.

2.2.1 Market maker definition in our sample

Grossman and Miller (1988) define market makers (or market intermediaries) as “traders who can
fill gaps arising from imperfect synchronization between the arrival of buyers and sellers.” In
line with this definition, we follow the data-driven classification of Kirilenko, Kyle, Samadi, and
Tuzun (2017) (KKST) and Brogaard, Hendershott, and Riordan (2019) to identify firms operating as
intra-day intermediaries. We then identify the subset of market makers among the intermediaries
by adding a fourth criteria based on how frequently they post limit orders at the top of the book:

4While both Montréal Exchange (derivatives) and Toronto Stock Exchange (equities) both belong to the TMX Group,
they use different trading engines – that is, SOLA and Quantum, respectively. One key difference is that Toronto Stock
Exchanges matches orders based on price-broker-time priority, whereas Montréal Exchange uses price-time priority.
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(i) First, on average the account must participate in 50 or more daily trades in a particular
instrument. This criterion allows us to filter out small traders that do not have a sufficient
volume of activity to be labeled as market makers.

(ii) Second, the end-of-day net position for a market maker account should not exceed, on
average, 5% of her daily traded dollar volume. For a given account j, the relative net position
in instrument i at the end of day d is

Net positionijd =
‖
∑
qt,i,dpt,i,d‖

DollarVolumeijd
, (1)

where t runs over transactions by j in day d, pt,i,d is the transaction price of trade t and qt,i,d
is the signed quantity of trade t (i.e., q > 0 for buys and q < 0 for sells).

(iii) Third, KKST require market maker accounts to mean revert inventories at a relatively high
frequency (see, e.g., Ho and Stoll, 1983). That is, the average across days and instruments of
account j’s minute-by-minute inventory deviations from the end of day position should be at
most 2.5%. Formally, we require that market maker accounts satisfy

1

D × I

D∑
d

I∑
i


√√√√ 1

Mins

Mins∑
t

(
NPtjid −NPend-of-dayijd

DollarVolumeijd

)2
 ≤ 2.5%, (2)

where D and I is the number of days and traded instruments in the sample, Mins is the
number of minutes in the trading day, t runs over minutes, and NP is the account’s net dollar
position at a particular point in time.

(iv) The average daily top-of-the-book presence, defined as the share of snapshots where an
account has a resting limit order at either the best bid, the best ask, or both, is at least 20%.
That is,

1

D

D∑
d

∑Sd
s 1account at best bid or ask,s,d

Sd
≥ 20%, (3)

where d runs over the D days in the sample, Sd is the number of snapshots with at least one
resting quote in day d across all instruments, and 1account at best bid or ask takes the value one if
the account has at least one resting top-of-the-book limit order in a given snapshot and zero
else.

Based on the first three criteria from Kirilenko, Kyle, Samadi, and Tuzun (2017) we identify 22
candidate market-maker accounts. However, the three criteria focus on inventory patterns and
trading volume, while ignoring whether traders use mostly passive (i.e., resting limit) or aggressive
(i.e., market or marketable limit) orders. The fourth criteria captures this distinction, which is
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important in the context of our model as it focuses specifically on the quoting strategies of market
markers.

We find that 12 accounts out of 22 also fulfill the fourth top-of-book filter, which we label MM1

through MM12. While the last step leads to a seemingly large drop from 22 to 12 accounts, the
latter set amounts to 96.26% of the limit orders across the snapshots (i.e., for 8m out of 8.3m orders
over the full sample). In fact, four intermediaries accounts post fewer than 100 top-of-the-book
limit orders each (to compare, the most active three accounts post more than 1 million quotes each).
We cross-check the final sample with the Montréal Exchange and confirm that all MM accounts are
also high-frequency traders.

One limitation of our approach is that a single firm may use multiple trading accounts. For
example, each individual trader at the firm may have their own account to simplify performance
metrics. The concern is that some individual accounts may not meet the criteria of inventory
reversals, while the aggregation of accounts across the firm would. In this case, our analysis ignores
some accounts that in fact are market makers.

We are purposefully taking a conservative approach to defining market-makers accounts. That
is, we are requiring MM accounts to simultaneously fulfill the Kirilenko, Kyle, Samadi, and Tuzun
(2017) criteria and the top-of-the-book filter, on an instrument-by-instrument level. Ten accounts
fulfill the intraday intermediation criteria but have a low presence in the book; another 13 accounts
are present in at least 20% of the top-of-the-book snapshots, but take large intraday or end-of-day
positions. There is only one additional account that meets criteria 1,2, and 4; but not the intraday
mean-reverting criteria 3. Applying the criteria on an instrument-by-instrument level has the
drawback that it might leave out market makers that net their position across products: e.g., take a
long position in 10-year bonds and hedge it with a short position in 5-year bonds. However, we
argue this is not a first-order concern in our sample: the Montréal Exchange charges margins on a
product-by-product basis and does not provide relief for offsetting fixed income positions. That is,
end-of-day inventory is costly even if market makers offset their inventory across products, as they
need to post collateral on each individual position.

2.2.2 Market maker trading patterns

Table 1 shows summary statistics at the instrument-day-trading account level. These statistics are
used to classify accounts into MM and non-MM according to the criteria of Section 2.2.1. A salient
feature is that market maker accounts are significantly different from non-MM accounts across
a number of dimensions. On a median day, market-makers end completely flat (zero inventory)
and mean-revert often throughout the day (on average, the inventory deviates only 0.37% from
the end-of-day target). Further, market-makers have a resting quote at the top of the order book
more than half the time. In contrast, non-MM accounts trade much less than MMs (on average
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6% of market-maker volume, i.e., 229.78/3870.19) as well as more directional. On a median day,
non-market makers either only buy or only sell, leading to a net position that is equal to the trading
volume. Additionally, non-MMs do not continuously provide liquidity, as they have outstanding
quotes at the top of the book only throughout 2% of a typical trading day.

[ Insert Table 1 here ]

Figure 1 further illustrates the MM trading and quoting patterns. The left panel plots the
one-sided and two-sided presence in the top-of-the book for each market-maker. The most active
market-makers have resting quotes at the top of the book more than 80% of the time (50% of the
time on both sides of the book, and 30% on either the bid or the ask side of the book). Note that
one-sided market making is consistent with inventory frictions (i.e., a long MM might only offer
liquidity on the ask side).

Figure 1: Market-maker quote and trading patterns
This figure illustrates salient quote and trading patterns for market-maker accounts. The left panel plots, for each
MM account, the percentage of snapshots where the MM had a single-sided quote at the top of the book against the
percentage of snapshots where MM had a two-sided quote at the top of the book. The right panel plots, for each
market-maker, the instrument-day distribution of inventory half-lives (measured in minutes). For each box, we display
the mean (vertical line inside the box) and inter-quartile range (edges of the box). The whiskers extend to cover the rest
of the distribution.

The right panel of Figure 1 shows that the average half-life of inventory shocks is about 15
minutes, meaning that market-makers mean-revert their positions very quickly throughout the
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day. To estimate the half-life, we first sample inventories for each account with a 30 second
frequency. Then, for each account m, instrument i and day d in the sample, we estimate a one-lag
auto-regressive process for inventories (see, e.g., page 410 in Hendershott and Menkveld, 2014):

Inventorym,i,d,t+30 = φ0,m,i,d + φ1,m,i,dInventorym,i,d,t + error. (4)

The estimated inventory half-life is a function of the estimated AR coefficient φ̂1, that is,5

Half-Lifem,i,d = −
log (2)

log
(
‖φ̂1,m,i,d‖

) . (5)

A lower half-life corresponds to faster mean reversion of inventory. Figure 1 plots the MM
inventory half-life distribution across days and instruments. In our sample, the average inventory
half-life across accounts is only 15 minutes, which is quite similar to the 5-minute half-life for the
HFT studied in Menkveld (2013). Further, inventory mean-reversion speed is consistently high
across different MM accounts: six out of twelve accounts have an average inventory half-life of less
than 10 minutes. In other words, market-makers in our sample are relatively homogeneous and
turn over inventory at very similar frequencies. They all seem very concerned about managing
inventories.

2.2.3 Market-maker inventory divergence

Sequential trading and queue priority imply that market makers cannot perfectly share risks, i.e.,
absorb an equal share of every incoming market order. In this section, we show that intraday
market-maker inventories have very low correlations, which is suggestive of poor risk sharing.
Market maker inventories are set to zero at the start of the sample and subsequently tracked
through time.

To systematically study inventory divergence, we compute for each day and traded product in
the data the average pairwise correlation between market-maker inventories for three sampling
frequencies: 30 seconds, 30 minutes, and two hours. We show the results in the top-left panel
of Figure 2. The average inventory correlation is consistently low: between 10% with two-hour
sampling and 11.3% with 30-second sampling. This surprisingly low correlation is consistent with
the short half-lives of inventory shocks, in the sense that each market maker seems to quickly
build positions up and down—seemingly independent of other market makers. The top-right and
bottom-left panels in Figure 2 show that the pattern is consistent across products (the average

5To see this, consider a general demeaned AR(1) process yt = φyt−1. We are looking for the number of lags h where
the process halves the distance to its stationary mean: Etyt+h = 1

2
yt. However, since Etyt+h = φhyt, h is the solution to

φhyt =
1
2
yt.
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inventory correlation is 5.9% for equity index futures and 15.4% for 5-year bond futures) as well
as throughout our sample period between January and August 2021. We interpret this result as
cross-sectional inventory divergence. In a market where all MMs could trade with each incoming
order, such as a batch or double auction, market-maker inventories could move in perfect lockstep,
implying cross-sectional inventory correlations of 1.

Figure 2: Inventory divergence across market makers
This figure illustrates short-term inventory divergence across market-maker (MM) accounts. Panel (a) shows the
distribution of average pairwise correlations of market maker inventories, sampled over different frequencies: 30
seconds, 30 minutes, and 2 hours, respectively. The pairwise correlations are calculated daily for each contract and all
pairs of the 12 MMs. Panel (b) shows the 30-minute average pairwise correlation across market maker inventories across
the three futures contracts in the sample: equity index, 5-year, and 10-year Government of Canada bonds. Finally, Panel
(c) tracks the 30-minute average pairwise correlation across all days in our sample, i.e., between January 1st and August
18, 2021.

Figure 3 illustrates that cross-sectional variation in market maker inventory is orthogonal to the
position of their limit orders in the execution queue. This result suggests that, while market makers
have heterogeneous inventories, their limit orders arrive seemingly randomly to the exchange
queue – it is not the case, for example, that market makers with large inventories to unwind manage
to systematically enjoy better time priority. In the figure, we compute the rank correlation between
the queue position of each MM’s marginal order and their inventory conditional upon all orders
ahead of it being executed. The correlation coefficient between queue position and inventory is
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only -8.8% for ask orders and 11.5% for bid orders. To account for the fact that a market maker may
have multiple orders in the queue, we focus on the marginal limit order for each MM, that is the
order with the lowest time priority.

In Section 3 we build a model that leverages this queue arrival randomness to pin down adverse
selection and inventory frictions from order size data. The model also makes sharp predictions
about how aggregate depth depends in equilibrium upon the sequence with which market makers
with heterogeneous inventories arrive in the queue.

Figure 3: Correlation between queue priority and market-maker inventory
We plot the probability distribution of the Spearman correlation coefficient between the queue priority of the marginal
order of a market maker and the market maker’s inventory conditional upon all orders ahead of it being executed. This
correlation is calculated for 128,180 30-second order book snapshots with 9 or more active market-makers (i.e., with
presence of at least 75% of all market-maker accounts). We plot the distribution separately for ask-side and bid-side
snapshots.

3 A model of liquidity supply with heterogeneous inventories

3.1 Model primitives

Asset. Consider a three-period economy, where time is indexed by t ∈ {0, 1, 2}. There is a single
risky asset, which pays off a stochastic dividend ṽ at t = 2. At the start of the game t = 0, the
expected value of the stochastic dividend is E0ṽ = v.

Trading environment. The asset is traded on a limit order market with time priority and a two-
price grid (i.e., a one-tick market as in Parlour, 1998). A limit order is a price quote to either buy
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(a bid) or to sell (an ask) a particular number of contracts. A market order trades immediately
against the outstanding limit orders. Limit orders are queued under a time priority rule: that is, if
multiple limit orders are at the same price, the order with an earlier time trades first. The market is
transparent: Traders observe the state of the order book as well as the entire history of limit orders
and trades.

Traders can post buy and sell limit orders at one of two potential price levels: either p−1 or p1.
We assume that p−1 < v < p1, such that a trader with no private value or additional information
about the asset only submits buy orders at p−1 (earning v − p−1 > 0 per unit) and only submits
sell orders at p1 (earning p1 − v per unit following execution). It is straightforward to see that
submitting sell orders at p−1 or buy orders at p1 yields an expected loss, and is therefore not optimal
in the absence of private values or signals about ṽ.

Agents. There are two types of traders in the economy: J ≥ 2 market makers (MMs) and a mass
of impatient traders. At t = 0, each MM j starts with a position Ij in the risky asset, i.e., her
inventory. A positive (negative) Ij corresponds to a long (respectively, short) position in the asset.
Market makers start with zero wealth, do not have either private values or additional information
about the asset, and submit limit orders at t = 0 to maximize:

E0UtilityMM = E0

[
Wealtht=2 −

γ

2
I2t=2

]
, (6)

where γ > 0 is a measure of risk-aversion. Equivalently, market makers have a target inventory,
and It=2 represents the deviation over which they face a convex penalty at t = 2. The expected
wealth at t = 2 corresponds to the net cash flow from trading.

We model impatient traders as in Sandås (2001). An impatient trader arrives at the market at
t = 1 and is equally likely to submit a marketable buy order at the ask price p1 or a marketable sell
order at the bid price p−1. The order size x is drawn from a two-sided exponential distribution,

f (x) =


1

2φ
exp(−xt

φ
) if xt > 0 (market buy);

1

2φ
exp(

xt
φ
) if xt < 0 (market sell).

(7)

The expected impatient trader’s order size, E [‖x‖], is φ > 0, which is symmetric across buy and
sell orders. Further, the impatient trader’s order size is informative about the asset’s true value:

E [ṽ | x] = v + λx. (8)

The linear price impact parameter λ > 0 maps to the informational content of impatient traders’
orders: Buys typically contain positive information with respect to the fundamental value; similarly,
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sales contain negative information. Larger orders contain more information than small orders (at
rate λ), generating greater price impact.

Timeline. Figure 4 illustrates the timeline of the model. At t = 0, the J market makers arrive
sequentially to the market and and place limit orders in the book. Without loss of generality, we
index the market makers in order of their arrival, and therefore of their place in the queue. For
example, MM1 is the first market maker to arrive and place a limit order in the book.

Figure 4: Model timeline

t=0

1. MM j = 1 submits limit orders (Qbid
1 , Qask

1 ).

t=1

2. MM j = 2 submits limit orders (Qbid
2 , Qask

2 ).

3. MM j = 3 submits limit orders (Qbid
3 , Qask

3 ).

J. MM j = J submits limit orders (Qbid
J , Qask

J ).

. . .

1. Impatient trader submits

marketable order of size x.

2. The market clears.

t=2

Payoffs realized

We note that, since market makers only place buy orders at the bid price p−1 and sell orders at
the ask price p1, no trade occurs at t = 0. Let Qbid

j and Qask
j denote the size of the limit order placed

by market maker j at the best bid (i.e., at price p−1) and best ask (price p1), respectively. At t = 1,
an impatient trader arrives and submits a marketable limit order of size xt, equally likely to be a
buy or or a sell order. At t = 2, the stochastic dividend and market maker utilities are realized. All
limit orders still in the book expire.

Equilibrium. The only strategic decisions in the game occur at t = 0. An equilibrium in this
game is a sequence of quantity pairs

(
Q?,bid
j , Q?,ask

j

)
for each market maker j ∈ {1, 2, . . . , J} that

maximize the MM utility in (6) conditional on the initial inventory Ij and of the state of the order
book upon j’s arrival, that is all orders

(
Q?,bid
k , Q?,ask

k

)
for k < j.

The game is symmetric across buy and sell orders. For clarity of exposition, in the remainder
of the section we are going to focus on the ask side of the book (i.e., MM sell orders) and drop
superscripts referring to order direction.

Discussion. First, to derive sharp predictions on the impact of time priority, we shut down
price priority in our model by assuming a simple, two-price, grid. That is, market-makers in
our model cannot “jump” ahead of the queue by quoting a more aggressive price (Parlour, 1998).
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Consequently, our model best describes markets in highly-liquid assets, for which the tick size is
binding and market makers compete on queue position rather than prices.

Second, in the model market makers face inventory penalties after each trade. If the game were
to be played repeatedly, then our inventory penalty maps to a holding cost per unit of time as in
Du and Zhu (2017) or Duffie and Zhu (2017). Such inventory penalties can be motivated by risk
aversion and capital constraints: market makers need to unwind inventories by the end of the
trading day to avoid posting collateral on their position. A larger current inventory leads to a higher
cost of successfully unwinding it on time: we capture this mechanism with a single parameter
γ. Further, this assumption is consistent with the evidence of section 2.1, that high-frequency
market-makers have inventory half-lives of less than 15 minutes throughout the day.

Third, time priority introduces a first-mover advantage for MMs who happen to arrive early
in the queue. Each market maker submits an order size such that the profit on the last (marginal)
share is zero. Adding additional shares would yield an expected marginal loss, while adding
fewer foregoes expected profits. Note that the expected profit of the whole limit order is strictly
positive,6 because time priority prevents Bertrand competition between market makers. Therefore,
it is valuable to secure an early position in the queue. One implication is that our model is robust
to extending the strategy space: for example, a “staggered” strategy of submitting a limit order,
waiting for other market makers to arrive, and then submitting another limit order is sub-optimal.
In equilibrium, market makers will only submit limit orders once upon their first arrival, to
maximize the value of the queue position.

3.2 Equilibrium analysis

Consider the first market maker to arrive at the market at t = 0, that is MM1. The expected profit
for the last unit offered at the ask price, Q1, is

EUMM1 (Q1) =

∞∫
Q1

[p1 − v − λx+ γ(I1 −Q1)]
1

2φ
exp(−x

φ
)dx. (9)

First off, the order execution probability is

∞∫
Q1

1

2φ
exp(−x

φ
)dx =

1

2
exp

(
−Q1

φ

)
, (10)

6To see this, suppose the optimal order is 100 shares. The last marginal share of this limit order (at location 100) earns
zero expected profits. This means that shares 1 to 99 earn positive expected profits because they are earlier in the queue
and i) face lower adverse selection risk and ii) face a lower marginal inventory cost.
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that is, the probability that the impatient trader submits a buy order for more than Q1 units.
Conditional on execution, the market maker cashes in the ask price p1 and gives away a security
with expected payoff v + λx (the buy trade generates market impact). After selling Q1 units, the
market maker’s inventory becomes I1 −Q1, and she incurs a quadratic penalty for any non-zero
position at t = 2. Note that as the market maker is selling, a positive pre-trade holding will be
reduced towards zero which increases utility. Conversely, for negative holdings the additional
selling reduces utility. The marginal impact of a trade of size Q1 on the inventory penalty is

∂

∂Q1

(
−γ
2
(I1 −Q1)

2
)
= γ (I1 −Q1) . (11)

Finally, the expected order size x conditional on the marginal unit Q1 being executed is φ+Q1. We
can write the expected utility on the marginal unit for the first market maker as

uMM1 (Q1) =
1

2
exp

(
−Q1

φ

)
[p1 − v − λ(Q1 + φ) + γ (I1 −Q1)] . (12)

The first market maker is maximizing her profit, and therefore sets Q1 such that the marginal unit
breaks even. The equilibrium quantity Q?1 is pinned down by setting the expression in (12) equal to
zero:

Q?1 =
p1 − v + γI1 − λφ

γ + λ
. (13)

We turn next to the optimal quote for subsequent market-makers. For market maker j, the
marginal limit order is at location

∑j−1
k=1Q

?
k + Qj , behind the orders submitted by the first j − 1

market makers. Therefore, the expected profit on the marginal unit is

uMMj (Qj) =
1

2
exp

(
−
∑j−1

k=1Q
?
k +Qj
φ

)[
p1 − v − λ(

j−1∑
k=1

Q?k +Qj + φ) + γ (Ij −Qj)

]
. (14)

There are two key differences between equations (12) and (14). First, the execution probability
for market-maker j is lower since it requires a larger order from the impatient trader. Second,
conditional on execution, market maker j faces a larger adverse selection cost (i.e., λ(

∑j−1
k=1Q

?
k +

Qj + φ)). We equate the marginal utility to zero and solve for the optimal quote in Proposition 1.

Proposition 1. The market makers j = {1, . . . , J} arrive consecutively to the exchange, observe the state
of the limit order book upon arrival, and submit to the best ask price level an optimal limit order of size

Q?j =
p1 − v + γIj − λ

(∑j−1
k=1Q

?
k + φ

)
γ + λ

. (15)

This recursive solution can also be solved explicitly to obtain
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Q?j =
p1 − v − λφ

γ

(
γ

γ + λ

)j
+

γ

γ + λ
Ij︸ ︷︷ ︸

direct
effect

−
j∑

k=2

(
Ij−k+1

λ

γ

(
γ

γ + λ

)k−1)
︸ ︷︷ ︸

crowding-out effect if j ≥ 2

. (16)

Proposition 1 states the optimal ask quote size for any market maker (i) decreases in the
magnitude of adverse selection λ and inventory penalty γ, (ii) increases in inventory position
Ij making the market maker more eager to sell, and (iii) depends on the entire cross-sectional
distribution of inventories by market makers ahead in the queue in Equation (16). We note that
equation (15) is recursive, in that the optimal quantity for market maker j depends on the quantities
submitted by her predecessors, whereas Equation (16) shows the same solution as a function of the
individual inventory positions of the predecessors.

The solution reveals that adverse selection limits a market makers’ ability to perfectly unwind
inventories: for a one unit increase in initial inventory, she increases her sell quote by only γ

γ+λ < 1

units. For a higher price impact λ, she faces a larger cost to mean-revert inventory. Further, all
else fixed, market makers in the back of the queue post smaller orders. The rationale is that these
face higher adverse selection costs as they only execute against very large incoming market orders
which are more informed on average. If we switch off the inventory penalty (i.e., set γ = 0), the
result in Proposition 1 converges to the liquidity provision equilibrium of Sandås (2001), that is

Q1 =
p1 − v − λφ

λ
. (17)

In Sandås (2001), the market making sector is risk neutral and perfectly competitive: the first market
maker fills the book with the equilibrium quantity and therefore time priority becomes irrelevant.
Only by adding inventory frictions the sequence of arrivals matters.

Equation (16) re-states the equilibrium limit order size solved explicitly rather than recursively.
The first term, p1−v−λφγ is essentially the size of the (risk-adjusted) pie: the realized spread defined
as the ask price minus the expected asset value conditional on execution, scaled by the inventory

penalty. Each market maker gets a slice of the pie,
(

γ
γ+λ

)j
, which is decreasing in the queuing

order. The first market maker cannot capture the entire profit, as it requires submitting a large limit
order which gets too costly because of inventory risk. She scales back her order, leaving a slice for
her successor, who in turn does the same.

We decompose the impact of inventory on optimal quote size into a direct effect and a crowding-
out effect. The direct effect is the impact of a market maker’s own inventory on optimal quote size.
Intuitively, each market maker would like to fully offload their inventory position Ij , but needs
to make an adjustment for the adverse selection cost, which is reflected in the second term in
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equation (16). Indeed, fully unwinding inventory requires posting a large limit order which raises
the adverse selection cost, and therefore the market maker scales back.7

The third term illustrates a novel crowding-out effect: that is, the impact of inventories of market
makers ahead in the queue reduce market maker j’s optimal quote size. Note that last term
sums over the j − 1 predecessors. Each of them adjust their order size to manage inventory risk
proportional to γ

γ+λ , which is the inventory component of their marginal liquidity cost. In turn,
these changes in order sizes affect the queue location and adverse selection risk of subsequent market
makers, who adjust their quotes according to the last term. For example, the inventory shock of
market maker 1 affects Q1 directly, but also Q2 linearly through adverse selection. The changes in
Q1 and Q2 together affect Q3 quadratically in I1 (hence the power term (k − 1)).

In Corollary 1, we sum up individual order sizes over all j, to generate additional predictions
on the aggregate quoted depth.

Corollary 1. The aggregate quoted depth QJ =
∑J

j=1Q
?
j at the best ask price is

QJ =
J∑
k=1

[(
p1 − V − λvφ

γ
+ IJ−k+1

)(
γ

γ + λ

)k]
. (18)

Corollary 1 generates a sharp prediction on how aggregate quoted depth depends on the
queuing sequence of market makers and their initial inventory holdings. The key is that each
market makers’ inventory affects her own order and those of her successors, but not the orders by
market makers ahead in the queue. It is for this reason that the queuing sequence matters, which we
further illustrate with a numerical example in Figure 5. We consider three market makers, indexed
by their arrival order, across four different inventory distribution scenarios. For all scenarios, the
aggregate maker maker inventory is kept constant at six units.

In the first scenario (first bar in Figure 5), MM1 has a long position of six units. She posts a large
sell order (7 units) as she has a dual motive for trade: capture the bid ask spread and unwind the
large inventory. The large order increases the adverse selection risk for MM2 and MM3, who have
lower incentives to trade. Since MM2 and MM3 also have no inventory, they post very small quotes
to earn a small fraction of the bid-ask spread (0.5 and 0.25 units, respectively). The large inventory
position of MM1 crowds out the liquidity provision by MM2 and MM3, and the aggregate depth
in this scenario is 7.75 units.

Consider now the last scenario (fourth bar in Figure 5). The first market-maker is short two
units (I1 = −2). A large sell order would push her inventory further away from zero. However,
being first in the queue does generate an opportunity to capture the spread while bearing low

7Conversely, a short market maker wants to shrink his limit order. However, shrinking to the full extent of the
short position reduces the adverse selection cost, which in turn creates a profitable market making opportunity, thereby
increasing the limit order partially.
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adverse selection risk: MM1 posts an order to sell 3 units. The smaller-sized order reduces the
crowding-out effect for MM2 and MM3, incentivizing them to post larger orders. Moreover, MM2

and MM3 have long inventories that they wish to unwind, which further increases the sizes of their
sell orders. The aggregate depth in this scenario is 10.25 units, even though the aggregate inventory
for the market-making sector is unchanged.

An additional result of Corollary 1 and Figure 5 is that the highest liquidity level (i.e., largest
quoted depth) is achieved precisely when risk sharing across market makers is lowest. To maximize
depth, market makers with the largest inventories are placed at the back of the queue to minimize
the crowding-out effect on successors. However, as they are the least likely to trade, this leads to
further inventory divergence across market makers and less efficient risk sharing.

The last implication of Corollary 1 is that the marginal impact of an inventory shock for MMj

on total quoted depth is equal to
(

γ

γ + λ

)J−j
; i.e., the shock gets attenuated by the J−j successors.

Thus, the aggregate depth is more sensitive to the inventory of back-of-the-queue market makers.
The reason is that the crowding-out effect is stronger for investors earlier in the queue. A positive
inventory shock to a market maker early in the queue will be partially offset by a reduction in the
order sizes by many subsequent market makers who face higher adverse selection.
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Figure 5: Equilibrium ask limit order sizes as a function of inventory and queue position.
We show the equilibrium sizes of ask limit orders based on equation (16) for an economy with three market makers
who arrive sequentially, with MM1 being the first and MM3 being the last. In aggregate, they hold an inventory of 6
contracts. For each bar we vary the inventory positions across market makers. In the first bar, MM1 is long 6 contracts,
while MM2 and MM3 have zero. In the second bar they all have a medium inventory position of 2 contracts. In the
third bar MM1 and MM2 have zero, while MM3 has 6 contracts. In the fourth bar, MM1 is short two shares, while
MM2 and MM3 are long 2 and 6 shares, respectively. The best ask price is $10.01 and the ex ante expectation of the
fundamental value v = $10.00 and the average trade size φ is normalized to 1. The price impact parameter is λ = 1/900,
and inventory cost parameter is γ = 1/900. We tabulate the equilibrium quote sizes under the graph.

Market maker 1 2 3 Total

Case 1: Initial inventory holding 6 0 0 6
Equilibrium liquidity supply 7.00 0.5 0.25 7.75

Case 2: Initial inventory holding 2 2 2 6
Equilibrium liquidity supply 5.00 2.50 1.25 8.75

Case 3: Initial inventory holding 0 0 6 6
Equilibrium liquidity supply 4.00 2.00 4.00 10.00

Case 4: Initial inventory holding -2 2 6 6
Equilibrium liquidity supply 3.00 3.50 3.75 10.25
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Figure 6: Marginal impact of inventory at different queue positions
We show the marginal impact of an inventory shock of γ+λ

γ
units (which corresponds to a unitary increase in limit order

size) for the market maker at queue position j on aggregate depth. The baseline price impact parameter is λ = 1/900
and inventory cost parameter is γ = 2/900; the dashed line shows a setting with a higher level of adverse selection with
λ = 2/900. The figure reveals a crowding-out effect: the increase in limit order size of a market maker early in the queue
due to an inventory shock gets offset by a reduction of liquidity provision by market makers later in the queue due to
higher adverse selection. This crowding-out effect reduces the impact of the inventory shock on aggregate depth; and
the effect disappears for market maker #6, the last market maker in the queue.

Figure 6 illustrates this result for a six-MM queue. We shock, in turn, each market-makers’
inventory position by γ+λ

γ units, which results in a unit increase in limit order size. We notice that
the crowding-out effect is stronger for market makers earlier in the queue (i.e., those with many
successors), but much weaker for market makers later in the queue (who have only few successors).
The last market maker in the queue does not crowd out liquidity by any subsequent market makers,
and therefore impacts aggregate depth only through the direct (unitary) effect. The figure further
confirms that the crowding-out effect goes through adverse selection, and thus is larger when when
adverse selection is high (the dashed-line).
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3.3 Testable predictions

Proposition 1 and Corollary 1 yield four testable predictions, which we enumerate for clarity in this
section. We proceed to test these prediction in the next Section 4.

Prediction 1: The size of a market makers’ limit order decreases in the order’s queue position due
to adverse selection.

Prediction 2: The size of a market makers’ sell (buy) limit order increases (decreases) in her
inventory level.

Predictions 1 and 2 follow directly from Proposition 1. Back-of-the-queue market makers face
larger adverse selection costs, and therefore decrease their liquidity provision. Further, all market
makers aim to unwind their inventory: they want to sell more when they hold long positions and
buy more when they hold short positions. The two predictions claim that inventory effects and
adverse selection are individually important for liquidity provision, as measured by posted quote
sizes.

We generate two additional idiosyncratic predictions starting from Corollary 1. The following
two predictions focus on the interaction between adverse selection and inventory constraints on
markets with time priority. They correspond to the crowding-out results illustrated in Figures 5
and 6.

Prediction 3: Quoted depth is larger if the market-makers with the highest inventories to unwind
are located at the back of the queue.

Prediction 4: Quoted depth is more sensitive to the inventory of back-of-the-queue market makers.

4 Empirical evidence

4.1 Adverse selection and inventory effects

In this section we test two empirical implications of Proposition 1. From equation (15), the size of
market-maker limit orders: (i) decreases in the queue length ahead of the order, due to heightened
adverse selection risk and (ii) increases in the absolute magnitude of the MM’s long (short) inven-
tory for quotes on the ask (bid) side. Equivalently, market-makers weigh both adverse selection
and inventory concerns in setting the optimal order size.

The main panel. To test the two effects in the Montréal Exchange data, we build a panel across
snapshots and market makers. Each limit order book snapshot corresponds to a particular traded
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instrument, side of the book (i.e., bid or ask), and 30-second timestamp. Next, we transform the
data in four ways:

(i) Empirically, as trading progresses, a market maker may have multiple limit orders in the
queue of the best price level. Proposition 1 and the zero-profit condition (15) are defined in
terms of the marginal order size. To match the model, the unit of observation is the last limit
order in the queue (i.e., the marginal quote) for each snapshot and market maker account.

(ii) The challenge of multiple limit orders in the queue also requires a modification of the
inventory to correctly match the model. Let Ij denote the inventory of market maker with
queue priority j at the time of the snapshot. The modified inventory then is the inventory
conditional upon all orders by j earlier in the queue being executed:

Ĩj = Ij − dask ×
j−1∑
k=1

Qk × dj,k, (19)

where Qk is the quote size at priority k, dj,k is a dummy variable taking value one if order
k belongs to market maker j and zero else, and dask takes value one for ask-side snapshots
and negative one for bid-side snapshots (to reflect that the market maker is either selling or
buying).

(iii) Finally, we note that equation (15) can in principle yield negative optimal quote sizes. Since
in practice market-makers cannot submit negative quantities, we would empirically observe
that they do not submit limit orders. To deal with this selection bias, if a market-maker is only
active on one side of the book in a given snapshot, we add an order with a zero quantity at the
end of the queue on the inactive side. This replaces the selection bias with a censoring bias,
where we observe zero values even though the theoretical zero-profit order size is negative.

(iv) The panel only includes marginal quotes of market makers; that is, we do not study the
impact of adverse selection and inventory concerns on limit orders submitted by non-market
maker account. However, when computing the queue position and the quantity ahead of a
MM order, we take into account both MM and non-MM orders.

The resulting panel has about eight million snapshot-market maker quotes, over 158 trading
days, with 3,478 snapshots per day and 14.5 quotes per snapshot on average. We describe its main
summary statistics in Table 2. We see that there is very little variation in the sizes of submitted limit
orders, as indeed 82.4% of limit orders are either for 0, 1 or 2 contracts.

[ Insert Table 2 here ]
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Market-makers hold small inventories on average (0.64 contracts). However, the inventory
distribution is rather fat-tailed: with small probabilities, market-makers hold large inventories (up
to 1,000 contracts – either long or short). As a result, the inventory measure has a sizeable standard
deviation (48.94 contracts).

The three traded instruments in our sample are extremely liquid, as the bid-ask spread is 0.99
basis points on average with a book depth of 49.59 contracts (relative to an average trade size of
4.68 shares8). The tick size binds in 51.3% of order book snapshots.9 Finally, on average a market
maker resting quote sits behind 9 other limit orders with higher time priority.

In the remainder of the section, we use the snapshot-market maker panel to investigate the
impact of inventory concerns and adverse selection (as a function of queue priority) on quote sizes.

Inventory concerns. We turn first to a preliminary analysis of inventory concerns. Figure 7
showcases that market makers’ limit order size is strongly correlated with their inventory. We bin
market makers’ signed inventory into five quintiles. Market makers in the bottom quantile (i.e.,
holding large short positions) post significantly larger orders on the bid side of the book than on the
ask side. That is, they are primarily interested in buying the asset and converging towards a zero
net position. Conversely, market makers in the top quintile (i.e., holding sizeable long positions)
post larger orders on the ask side in an attempt to reduce their position. The difference between top
and bottom quintile is about 0.9 contracts, which is sizeable relative to the average limit order of
1.84 contracts. The left panel of Figure 7 illustrates the relationship using raw (modified) inventory
values, whereas the right panel uses the residuals from regressing inventory on the queue size
ahead of the MM’s quote (in contracts), the length of the queue for the given snapshot, market
depth, as well as instrument and date fixed effects.

8We consider all trades initiated by the same account, in the same direction, and with the same second timestamp as
coming from a single order.

9The tick size is CA$0.01 per CA$100 nominal value for bonds futures and 0.10 index points for equity futures.
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Figure 7: Market maker inventory and limit order sizes
This figure plots the difference between market maker ask and bid order sizes, as a function of the market maker’s
modified inventory. If, for a given snapshot, a market maker has a quote only on the bid (ask) side of the book, the ask
(bid) order size is set to zero. The market maker modified inventory is defined as in equation (19): it is negative if the
market maker has a short position and positive otherwise. In the left panel, we generate inventory quantiles based on
the raw modified inventory (in contracts). In the right panel, we use the residuals from the following regression model:

Mod. Inventory
it
= φ0 + φ1Queue aheadit + φ2Queue length

i
+ φ3Market depth

i
+ Entity F.E. + Date F.E. + error,

where i runs over market-makers, t runs over snapshot, the queue ahead a given quote is measured in contracts, queue
length for the snapshot is measured in number of orders, and the market depth is measured in contracts across both
sides of the order book.

Queue position. Next, we investigate how the market maker’s position in the queue affects quote
sizes. A key prediction of the model is that limit orders deeper in the book face higher adverse
selection risk and should therefore be smaller. Figure 8 provides preliminary evidence of adverse
selection by plotting the average limit order size as a function of queue priority. The left-side panel
shows the unconditional order size against the position in the time-priority queue. We notice an
U-shaped pattern: at first, orders further back in the queue are smaller, consistent with an adverse
selection mechanism. However, further back in the queue, the average order size increases in
the queue position. We find that the U-shaped pattern is explained away by controlling for the
length of the queue. We propose the following intuition: most snapshots have only a few orders
in the queue – indeed, 41% of snapshots have fewer than 5 orders. Snapshots with many orders
correspond to periods with attractive market making conditions (e.g., periods of low volatility and
adverse selection), meaning market-makers quote larger sizes. After controlling for this market
condition (total depth), we find that the quote size decreases monotonically in the queue position
(right-side panel of Figure 8). Moving from the first to the second position in the queue has the
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largest impact on quote size – approximately 0.87 contracts. On average, market-makers at front of
the queue submit orders 1.01 contracts larger than everyone else. The effect is comparable to the
quote size impact of moving from the top to the bottom quintile of inventory (i.e., 0.80 contracts, as
illustrated in the right panel of Figure 7).

Figure 8: Queue position and limit order size
This figure plots the average marginal quote size for market makers against the queue position. A larger queue position
corresponds to a lower execution priority. If, for a given snapshot, a market maker has a quote only on the bid (ask) side
of the book, the ask (bid) order size is set to zero. In the left panel, we plot raw quote sizes (in contracts). In the right
panel, we use the residuals from the following regression model:

Quote sizeit = φ0 + φ1Queue length
i
+ Entity F.E. + Date F.E. + error,

where i runs over market-makers, t runs over snapshots, and the queue length for the snapshot is measured in number
of orders.

Regression analysis. We formally test the model predictions by mapping the expression for
equilibrium order size in Proposition 1 to a linear regression framework. First, let QASKj and QBIDj

denote the last limit order (i.e., with the lowest priority) of market maker j on the best ask or bid
price level. From Equation (15), they satisfy:

QASKj =
p1 − V + γĨj − λ

(∑j−1
k=1Qk + φ

)
γ + λ

and QBIDj =
V − p−1 − γĨj − λ

(∑j−1
k=1Qk + φ

)
γ + λ

.

(20)
We note that the index j identifies a market maker according to the priority rank of his last limit
order in the queue in a particular snapshot and side of the book. In other snapshots, and on the
other side of the book, j might identify another market maker, depending on the queuing sequence
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of that particular snapshot and side.

To estimate a single regression model we sign the order size and introduce

Q̃j =

QASKj if quote on the ask side, and

−QBIDj if quote on the bid side.
(21)

After careful manipulation, we rewrite Equation (21) as a linear function of several variables,10

which can then be estimated directly with the following linear regression:

Q̃j,t = a+ bDask
t + c×Dask

t ×QuotedSpreadt + d×Dside
t ×

j−1∑
k=1

Qk,t + e× Ĩj,t + εj,t, (23)

where t runs over snapshots and j over market-makers active in the snapshot (in order of time
priority). The dummy Dside

t takes value one for ask limit orders and minus one for bid limit orders,
respectively. The dummy Dask

t takes value one for ask limit orders and zero otherwise. Each
regression coefficient maps to an exact quantity in the model. To bridge the gap between theory
and data, we add an error term such that the model prediction holds approximately. Finally, fixed
income and equity futures contracts have different average dollar settlement values.11 To be able to
meaningfully pool observations across asset classes, we standardize the queue ahead (

∑j−1
k=1Qk,t)

and inventory (Ĩj,t) variables at traded instrument level. Standardizing the key variable for each
asset allows us to control for the fact that different instruments might have different volatility levels,
which would impact the magnitude of risk-aversion (γ) and adverse selection (λ) coefficients.

Mapping the equilibrium order size in (20) to the regression model (23), we identify coefficients
d = − λ

λ+γ and e = γ
λ+γ .12 These correspond to two key predictions of the model: the limit order

size decreases in the length of the queue ahead due to adverse selection concerns (i.e., d < 0)
and increases in the magnitude of inventory to mean-revert (e > 0). We formally test the two
hypotheses and present the results in Table 3.

In Table 3, we document that both adverse selection and inventory concerns matter for the
size of marginal quotes posted by market-makers, with the expected signs. Queue sizes and

10Specifically, the model states that

Q̃j =
p1 − V + λφ

γ + λ
− 2λφ

γ + λ
Dask
t +

1

γ + λ
×Dask

t × QuotedSpreadt −
λ

γ + λ
×Dside

t ×
j−1∑
k=1

Qk,t +
γ

γ + λ
× Ĩj,t (22)

11For example, an S&P/TSX 60 futures contract (SXF) has a multiplier of 200 over the index value, corresponding
to a settlement value of approximately CA$250,000. In contrast, one contract in either five or ten-year Government of
Canada bond futures corresponds to for a nominal bond value of CA$100,000.

12The OLS regression only allows us to estimate the relative magnitudes of the inventory friction versus adverse
selection friction. Identifying γ and λ individually would require additional structure on the coefficients (for example,
with GMM). We prefer the OLS specification which has both a simple and a structural interpretation.
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inventories are standardized, for ease of interpretation. The coefficient on queue ahead× dside equals
-0.146: that is, a one-standard deviation increase in the queue size ahead of an order reduces the
order size by 0.146 contracts – a 7.9% drop relative to the sample average of 1.84 contracts. The
structural interpretation of this coefficient is − λ

λ+γ and reflects adverse selection (λ) scaled by the
total marginal cost of liquidity supply (λ+ γ).

The coefficient on Inventory is 0.152: if a market maker’s inventory increases by one standard
deviation, the limit order size on the ask (bid) side increases (decreases) by 0.152 contracts. The
structural interpretation of this coefficient is γ

λ+γ , reflecting the inventory component of the marginal
cost of liquidity supply. The two coefficient have similar magnitudes, suggesting that adverse
selection and inventory concerns are, on average, equally important factors in the Canadian
Government Bond and Equity Index futures market.13

The economic magnitudes we find are economically relevant. The signs are consistent with the
intuition of the model, although technically they violate it. According to the model, d = − λ

λ+γ and
e = γ

λ+γ , such that e − d = 1, while our estimates are 0.152 − (−0.146) = 0.298; or about 30% of
the theoretical prediction. We still think the 30% is sizeable, given that the theory makes strong
assumptions on the quadratic inventory penalty and ignores, for example, dynamic considerations
or that any trader may submit limit orders—not just the market makers.

[ Insert Table 3 here ]

4.2 Time priority and quoted depth

In Section 4.1, we document that adverse selection and inventory concerns individually impact
quote sizes. We argue that the interaction between the two channels is particularly relevant in
markets with time priority: adverse selection represents a cost to unwind inventory, and adverse
selection worsens for orders in the back of the queue. Our theoretical framework makes sharp and
novel predictions about the impact of time priority rules on liquidity. In particular, if market makers
have heterogeneous inventory levels then the aggregate best-price quoted depth depends on their
arrival sequence (i.e., on the time priority for execution). From Corollary 1, quoted depth on the ask
(bid) side of the book is maximized when the market-makers with largest long (short) inventories
are at the back of the queue. The intuition is that a limit order increases adverse selection of all
subsequent orders in the queue. When a market maker with a long inventory arrives early in the
queue, his large order will crowd out the orders by subsequent market makers.

To quantify the effect, we compute the Spearman rank correlation coefficient (ρ) between market-
maker modified inventory and the queue position of their marginal quote for each order book

13There is heterogeneity across asset classes. Adverse selection is more salient for stock futures (d = −0.176) than for
bonds (d = −0.095), whereas the opposite is true for inventory frictions—e = 0.195 for bonds and e = 0.07 for stock
futures.
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snapshot in our data – the same measure we used in Figure 3. We then test whether this correlation
is positively related to the quoted depth, as predicted by theory. To make sure the correlation is
estimated on sufficient observations in a given snapshot, we only select snapshots where at least
three-quarters of market makers are present at the market: that is, we require nine market makers
with resting quotes at the top level in the book. The final sample consists of 125,242 order book
snapshots across both the bid and the ask side (out of 1,697,746 snapshots).

Figure 9: Market-maker arrival sequence and aggregate depth
We plot the market depth posted by market-makers against ρ×dside, where dside is a dummy variable taking the value one
(minus one) for ask-side (bid-side) quotes. Market depth is defined as the sum of all quote sizes posted by market-makers
j in the respective order book side snapshot t (i.e.,

∑
tj Quote sizej) In the left panel, we use the raw depth in contracts.

In the right panel, we use the residuals from the following regression model:∑
tj

Quote sizej = φ0 + φ1Queue length
i
+ φ2Quoted spread + φ3Order imbalancei + Entity F.E. + Date F.E. + error,

where j runs over market-makers, t runs over snapshots, and the queue length for the snapshot is measured in number
of orders. The quoted spread (in basis points) is defined as the difference between prevailing ask and bid prices, scaled
by the midpoint. Order imbalance is defined as the the difference between ask and bid market depths, scaled by their
sum.

In Figure 9 we plot the market depth posted by MMs against the modified correlation coefficient,
and find a positive relation. Recall that in Section 2.2.3 and Figure 3, we documented that arrival
sequence is very weakly correlated with inventory, implying significant queuing randomness.
Does randomness in arrival sequence translate to predictable variation in market depth? Figure
9 suggests that it does. To facilitate interpretation, we pool observations on the bid and ask side
by multiplying the quote-inventory correlation by a dummy (dside) taking value one for ask-side
snapshots and minus one for bid-side snapshots. A higher value of the modified correlation now
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implies that MMs with largest inventory to mean-revert are at the back of the queue. In line with
the model, market depth increases in the modified correlation coefficient, both when looking at
raw values (left panel) and when we control for factors such as the queue size, quoted spread, and
order imbalance (right panel).

To formally test the model prediction, we estimate the following regression model:∑
j

Qj,s,t = ψ × ρs,t × dside + Controls + Symbol and Date FE + error, (24)

where j runs over market-makers, s is the side of the book (ask or bid), and t indexes snapshots. We
compute market depth by summing all quote sizes across market-makers j present at the market.
The dside dummy is one (or minus one) for ask-side (bid-side) snapshots.

We show the results in Table 4. In line with the model, the coefficient on ρ × dside is positive
and statistically significant. If we transition from a setting where market-makers arrive at random
(ρ = 0) to one where market-makers with highest incentive to trade are placed at the back of the
queue (ρ = 1), market depth would increase by 1.1 contracts. The magnitude corresponds to a 4.2%
increase relative to the average MM-posted depth of 26 contracts. Further, model (5) in Table 4
suggests the effect is highly symmetric across the bid and ask sides of the book.

[ Insert Table 4 here ]

From a normative lens, there is a 8.4% market depth gap between a priority sequencing that
maximizes market-maker utility (ρ = −1, i.e., MMs with the most pressing trading needs execute
first) and the sequencing that maximizes market depth (ρ = 1).

Corollary 1 yields a related testable prediction: the marginal impact of inventory on aggregate
depth is higher for limit orders at the back of the time priority queue. For each snapshot with at
least four MM resting limit orders, we regress the market-maker quoted depth on the modified
inventory for the first, second, third, and fourth market-makers in the queue:∑

j

Qj,s,t = δ1Ĩ1 + δ2Ĩ2 + δ3Ĩ3 + δ4Ĩ4 + Controls + Symbol and Date FE + error, (25)

where t runs over snapshots, j runs over market-makers active in the snapshot (in order of time
priority). We estimate the regression separately for the ask and bid sides of the book and show
the results in Table 5. As expected, all δ coefficients are positive for the ask-side regressions
(high inventory increases MM willingness to sell) and negative for the bid-side regressions (high
inventory reduces MM willingness to buy). In line with Corollary 1, the δ coefficient estimates
increase in absolute value, almost monotonically, for orders further back in the queue. For example,
a one-standard deviation increase in inventory for the first MM in the queue leads to a increase in
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ask-side depth of 0.287 contracts. However, the marginal effect of inventory is 13% higher for the
fourth market-maker in the queue: a one-standard deviation inventory jump translates to a 0.326
increase in depth.

[ Insert Table 5 here ]

4.3 A measure of risk sharing inefficiency

Inventory divergence likely translates to inefficient risk-sharing across market makers.14 We follow
the model of Section 3, and assume market makers constantly incur a linear penalty γj over their
quadratic holdings. A back-of-the-envelope measure of risk-sharing inefficiency is the ratio between
actual quadratic holdings (summed over all market makers) divided by the holdings if the market
makers would share risks perfectly:

RiskSharingInefficiencyi,d =

∑
s∈d
∑J

j=1 γjI
2
j∑

s∈d
∑J

j=1 γj

(∑J
j=1 ωjIj

)2 , (26)

where i, d, and s run over traded instruments, days, and 30-second snapshots respectively. There
are J market-makers indexed by j, with inventory penalty γj and inventory level Ij (measured
in contracts). Finally, ωj is the optimal share of the aggregate inventory held by MM j such that
inventory costs are minimized across the market maker sector.

The numerator in equation (26) stands for the sum of quadratic inventory penalties across all
market-makers j for all snapshots on day d. The denominator is the sum of counterfactual penalties,
assuming that the J market makers each take an equal share of the aggregate inventory. A value
larger than one indicates imperfect risk sharing, as the aggregate inventory costs are larger than
under the benchmark of equal inventories. By Jensen’s inequality, the measure is equal to one only
under perfect risk sharing.

One challenge is to appropriately choose values for the inventory penalty parameters γj . A
simple approach, following the model, is to assume all market makers are equally risk averse and
share the same γ. The advantage of this assumption is that the unknown parameter γ in (26) drops
out (to minimize aggregate costs, each MM holds a fraction ωj = 1

J of the aggregate inventory).
We compute the risk-sharing inefficiency for each product and day in the sample and obtain that
realized inventory costs are almost nine times as large as under perfect risk sharing.

14We admit that we do not observe the entire portfolio holdings of the market makers, so there may be offsetting
positions in correlated assets. We are not overly worried, since the market makers end the day with a flat inventory more
than 72% of the time. In case of offsetting positions in correlated assets there would be no need to end the day exactly
flat.
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However, assuming homogeneous inventory penalties is likely to over-estimate risk sharing
inefficiency. If some market makers are less risk averse, they naturally accommodate larger
inventory swings. To account for this effects, we assume that each γj is inversely proportional to
the standard deviation of inventory for account j, or γj = γ∗

SD(Ij)
, for a constant cost γ∗ that applies

to all. That is, market-makers with larger inventory swings are considered to be more risk tolerant
and therefore have a lower value of γj . To minimize aggregate costs, market maker j holds a
fraction ωj =

SD(Ij)∑
j SD(Ij)

of the aggregate inventory – that is, proportional to her risk tolerance. With
this approach, the unobservable γ∗ drops out. We find that the average “risk-tolerance weighted”
inefficiency is 4.13: that is, realized inventory costs are more than 300% larger than the case of
optimal risk sharing. In Figure 10, we show that average inefficiency is of similar magnitude
for future contracts on both bonds and the equity index. The right panel of Figure 10 plots the
distribution of our inefficiency measure across product-days and illustrates that large deviations
from optimal risk sharing (i.e., a 10-times larger cost) are not uncommon, particularly for equity
indices.

The market makers seem to share risks poorly, which is puzzling for two reasons. First, open
inventory positions are costly to market makers, and they put significant effort in closing the
positions as witnessed by the short half-lives of inventory shocks and market makers frequently
ending the day flat. The low level of risk sharing across market makers suggests an inefficiency. At
least partly, this inefficiency is caused by time priority, which prevents the market makers most
eager to trade to appear first in the queue. A second puzzle is that the literature often considers
the market making sector as a group of intermediaries who absorb the incoming order flow. Thus
implies that in periods of high buying (selling) demand, all market makers should be selling
(buying) together, generating positive time-series correlations in inventory positions. Our results
on high-frequency market makers cast doubts on this interpretation.
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Figure 10: Inefficient risk-sharing across market makers
This figure illustrates the average risk-sharing inefficiency, defined as in equation (26), across asset classes. In the left
panel, we compute an equally-weighted inefficiency (each market maker has the same inventory penalty γ) as well
as risk-tolerance-weighted inefficiency (for a market maker, γj is the inverse of her inventory standard deviation on a
given day). The right panel plots the distribution of the risk-tolerance-weighted inefficiency across products and days,
separately for each underlying asset class (bonds and equities).
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5 Conclusion

This paper sheds light on the cross-section of market maker inventories in modern markets. We
document that, while market makers quickly revert their positions within minutes, their inventories
are uncorrelated in the cross-section. To better understand the implications of cross-sectional
heterogeneity in inventories, we build a model to study the interaction between informational and
inventory frictions on high-frequency markets. The model includes time priority, which, unlike
other trading protocols, prevents market makers to perfectly share the risk of the incoming order
flow. The market makers arrive sequentially, and limit orders in the front of the time-priority queue
impose a negative adverse selection externality on back-of-the-queue quotes, as those trade with
more informed market orders on average. The magnitude of this externality, however, depends on
the inventory of market makers at the front of the queue. Those with large positions to unwind
post larger orders, generating higher adverse selection for subsequent arrivals.

We use a proprietary data set from Montréal Exchange to test our model. It offers a novel
identification approach to separate adverse selection from inventory frictions.

For the Canadian futures market, we find that both frictions have a similar quantitative impact
on order size. In support of our model, we document that depth is 4.1% larger when high-inventory
market-markers are at the back of the queue compared to a random arrival sequence. Further, a
simple and crude estimate of the risk-sharing inefficiency suggests inventory costs may be four
times larger than under an optimal risk-sharing benchmark.

Our model has potential implications for market design. Time priority prevents perfect compe-
tition between market makers and permit positive expected profits to fund their business model.
Yet, time priority also opens a wedge between the objectives of higher liquidity (maximum depth)
and optimal risk-sharing in the cross-section of market makers: the two objectives map to opposite
arrival sequences in the queue. We also note that time priority can, by itself, generate heteroge-
neous inventories. The first market maker in the queue executes her entire order before any market
makers trade, such that post-trade inventories tend to diverge. In contrast, optimal risk sharing
would entail that all market makers absorb a fraction of each incoming trade.15 An interesting
topic for future research is to determine whether alternative clearing rules (i.e., batch auctions
or price-quantity-time priority) can successfully eliminate the liquidity risk and align the two
objectives.

15Optimal risk sharing could be implemented in batch and double auctions, and in a pro-rata limit order book setting
common in some futures markets. There, each market maker executes a fraction of the incoming trade proportional to
the size of his limit order (see Field and Large, 2008, for a discussion).
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Table 1: Trading statistics for market maker (MM) and non-market maker (non-MM) accounts
This table displays trading summary statistics at the instrument-day-trading account level, separately for market makers
(top panel) and non-market makers (bottom panel). Volume is measured in contracts traded. Net position and inventory
variation are defined as in equations (1) and (2), respectively. Time at the best bid or offer (BBO) is computed as in
equation (3). The statistics in this table are used to classify accounts into MM and non-MM.

Panel (a): Market maker accounts

Statistic Trade count Volume Net pos. (%) Inventory variation (%) Time at BBO (%)

Mean 2,025.91 3,870.19 0.42 0.91 52.92
St. Dev. 2,321.61 4,833.90 2.66 2.32 19.53
Pctl(25) 323 621.5 0 0.16 33.17
Median 1,190 1,792 0 0.37 51.57
Pctl(75) 3,006.8 5,641.8 0.05 0.82 69.31
N 4,784 4,784 4,784 4,784 4,784

Panel (b): Non-market maker accounts

Statistic Trade count Volume Net pos. (%) Inventory variation (%) Time at BBO (%)

Mean 82.70 229.78 73.25 55.50 1.92
St. Dev. 258.77 802.75 38.61 31.00 4.32
Pctl(25) 3 5 39.3 27.0 0.14
Median 14 25 100 66.1 0.53
Pctl(75) 62 138 100 78.7 1.92
N 137,606 137,606 137,606 137,606 130,119

Table 2: Summary statistics for the market-makers’ marginal quote panel

Statistic Quote size Inventory Book depth Quoted spread (bps) Queue position

Mean 1.84 0.64 49.59 0.99 8.95
St. Dev. 3.62 48.94 57.95 0.48 7.51
Pctl(25) 0 −5 8 0.69 3.00
Median 1 0 34 0.79 7.00
Pctl(75) 2 6 71 0.97 13.00
N 8,002,806 8,002,806 8,002,806 8,002,790 8,002,798

Data from 30-second order book snapshots with active market-makers
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Table 3: Impact of queue length and inventory on limit order size
This table reports the coefficients of the following regression (equation 23):

Q̃j,t = a+ bDask
t + c×Dask

t × QuotedSpreadt + d×Dside
t ×

j−1∑
k=1

Qk,t + e× Ĩj,t + εj,t,

where the dependent variable Q̃j,t is the marginal quote of the market-maker with priority j in snapshot t, signed as in
equation (21). Quoted spread is measured in basis points, as the difference between the ask and the bid prices scaled by
the midpoint prevailing in the snapshot. Dask

t and Dside
t are two dummy variables taking value one for ask quotes and

zero (respectively, minus one) for bid quotes. The queue ahead of a marginal quote is measured in contracts. Ĩj,t is the
modified inventory for market-maker j, using the methodology in equation (19). We standardize both the queue ahead
and inventory variables at instrument-day level. The sample includes all marginal quotes from market-maker accounts,
sampled in 30 second snapshots, from January 1st to August 18th, 2021. The data covers all maturity contracts in three
futures instruments traded on the Montréal Exchange: on Five- and Ten-Year Government of Canada Bond futures, as
well as the S&P/TSX 60 blue-chip equity index.

Dependent variable:

Marginal quote size

(1) (2) (3) (4) (5)

dask 1.808∗∗ 1.808∗∗ 1.811∗∗ 1.817∗∗ 2.031∗∗∗

(3.147) (3.147) (3.168) (3.197) (3.743)
quoted spread ×dask 0.00005 0.00005 0.0002 0.0001∗∗

(1.506) (1.482) (0.155) (2.355)
queue ahead ×dside −0.146∗∗∗ −0.146∗∗∗ −0.145∗∗∗ −0.144∗∗∗

(−3.560) (−3.561) (−3.610) (−3.630)
order priority ×dside −0.034∗

(−2.212)
Inventory 0.152∗∗∗ 0.152∗∗∗ 0.153∗∗∗ 0.153∗∗∗ 0.144∗∗∗

(3.733) (3.733) (3.688) (3.681) (3.864)
queue length 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.086∗∗∗

(3.961) (3.964) (3.852) (3.676) (3.915)
book depth ×dside 0.009 0.009 −0.016

(0.108) (0.108) (−0.205)
order imbalance ×dside 0.018∗∗

(2.604)

Symbol FE Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes
Trader FE Yes Yes Yes Yes Yes
Observations 8,002,790 8,002,790 8,002,790 8,002,798 8,002,790
Adjusted R2 0.234 0.234 0.234 0.234 0.235

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered at symbol, date, and trader level.
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Table 4: Time priority sequence and market depth
This table reports the coefficients of the following regression (equation 24):∑

j

Qj,s,t = ψ × ρs,t × dside + Controls + Symbol and Date FE + error,

where the dependent variable
∑
j Qj,s,t is the sum of marginal quotes across all market-makers j in snapshot t on book

side s. ρs,t is the Spearman correlation coefficient between queue priority and modified market-maker inventory in
snapshot t on book side s. dask and dside are two dummy variables taking value one for ask quotes and zero (respectively,
minus one) for bid quotes. dbid is defined as 1− dask. The queue size is measured in contracts. Order imbalance is defined
as the the difference between ask and bid market depths, scaled by their sum. The aggregate inventory is defined as the
sum of modified inventories across market-makers (

∑
j Ĩj,s,t). The sample includes all order book snapshots where at

least 75% of market-making accounts are active, from January 1st to August 18th, 2021. The data covers all maturity
contracts in three futures instruments traded on the Montréal Exchange: on Five- and Ten-Year Government of Canada
Bond futures, as well as the S&P/TSX 60 blue-chip equity index.

Dependent variable:

Market-maker quoted depth (contracts) on book side

(1) (2) (3) (4) (5)

ρ̂(queue, inventory)× dside 0.520 0.981∗∗ 0.972∗∗ 1.100∗∗∗

(0.701) (3.617) (3.543) (4.356)
ρ̂(queue, inventory)× dask 1.118∗∗∗

(4.207)
ρ̂(queue, inventory)× dbid −1.082∗∗

(−3.960)
queue size 1.772∗∗∗ 1.772∗∗∗ 1.693∗∗∗ 1.693∗∗∗

(16.927) (16.906) (18.348) (17.955)
order imbalance 0.004 0.004 0.004

(1.913) (1.882) (1.859)
quoted spread (bps) 11.534∗∗∗ 11.534∗∗∗

(8.738) (8.738)
aggregate inventory (x 100) −0.122 −0.123

(−0.987) (−0.955)

Symbol FE Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes
Observations 125,242 125,242 125,242 125,242 125,242
Adjusted R2 0.188 0.677 0.678 0.690 0.690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered at symbol, date, and timestamp level
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Table 5: Time priority and the marginal impact of inventory on depth
This table reports the coefficients of the following regression (equation 25):∑

j

Qj,s,t = δ1Ĩ1 + δ2Ĩ2 + δ3Ĩ3 + δ4Ĩ4 + Controls + Symbol and Date FE + error,

where the dependent variable
∑
j Qj,s,t is the sum of marginal quotes across all market-makers j in snapshot t on book

side s. Ĩj is the modified inventory of market-maker j, defined as in equation (19). We standardize inventory at symbol
and trader level to account for the fact that some market-makers tolerate larger inventory swings than others. Priority
levels are defined across market-makers: that is, priority #4 implies this is the fourth market-maker in the queue and
not necessarily the fourth trader overall. Quoted spread is measured in basis points, as the difference between the ask
and the bid prices scaled by the midpoint prevailing in the snapshot. Order imbalance is defined as the the difference
between ask and bid market depths, scaled by their sum. The sample includes all order book snapshots where at least
four market-maker accounts are active, from January 1st to August 18th, 2021. The data covers all maturity contracts in
three futures instruments traded on the Montréal Exchange: on Five- and Ten-Year Government of Canada Bond futures,
as well as the S&P/TSX 60 blue-chip equity index.

Dependent variable:

Market-maker quoted depth
Ask side Bid side

(1) (2) (3) (4) (5) (6)

Inventory: Priority #1 0.187∗∗∗ 0.189∗∗∗ 0.287∗∗∗ −0.185∗∗∗ −0.186∗∗∗ −0.262∗∗∗

(3.411) (3.374) (5.301) (−3.519) (−3.666) (−5.797)
Inventory: Priority #2 0.212∗∗ 0.215∗∗ 0.303∗∗∗ −0.229∗∗∗ −0.232∗∗∗ −0.301∗∗∗

(3.166) (3.140) (4.471) (−5.239) (−5.481) (−6.924)
Inventory: Priority #3 0.240∗∗∗ 0.244∗∗∗ 0.316∗∗∗ −0.277∗∗∗ −0.280∗∗∗ −0.343∗∗∗

(4.098) (4.021) (5.155) (−5.012) (−5.267) (−5.627)
Inventory: Priority #4 0.251∗∗ 0.254∗∗ 0.326∗∗∗ −0.244∗∗ −0.247∗∗ −0.298∗∗∗

(3.118) (3.212) (3.740) (−3.137) (−3.238) (−4.013)
quoted spread (bps) 0.617 1.089 0.641 0.982

(0.724) (1.244) (0.727) (1.068)
order imbalance 0.023∗∗ −0.018∗

(2.876) (−2.200)

Symbol FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Observations 372,447 372,447 372,447 373,430 373,430 373,430
Adjusted R2 0.319 0.319 0.334 0.324 0.324 0.334

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered at symbol, date, and timestamp level

41


	Introduction 
	Data and stylized facts 
	Data 
	Who are the market makers?
	Market maker definition in our sample
	Market maker trading patterns
	Market-maker inventory divergence 


	A model of liquidity supply with heterogeneous inventories 
	Model primitives
	Equilibrium analysis
	Testable predictions

	Empirical evidence 
	Adverse selection and inventory effects 
	Time priority and quoted depth 
	A measure of risk sharing inefficiency 

	Conclusion 

