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Abstract

This paper proposes a framework to analyze the stability of stablecoins – cryptocur-

rencies designed to peg their price to a currency. We study the problem of a monopolist

platform earning seignorage revenues from issuing stablecoins and characterize equi-

librium stablecoin issuance-redemption and pegging dynamics, allowing for various

degrees of commitment over the system’s key policy decisions. Because of two-way

feedback between the value of the stablecoin and its ability to peg the currency, uncol-

lateralized (pure algorithmic) platforms always admit zero price equilibrium. However,

with full commitment, an equilibrium in which the platform maintains the peg also ex-

ists. This equilibrium is stable locally but vulnerable to large demand shocks. Without

a commitment technology on supply adjustments, a stable solution may still exist if the

platform commits to paying an interest rate on stablecoins contingent on its implicit

leverage. Collateral and decentralizing stablecoin issuance help stabilize the peg.
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1 Introduction

A stablecoin is a cryptocurrency with embedded smart contracts designed to maintain a

stable value vis-à-vis an official currency. It aims to avoid a fundamental drawback of

conventional cryptocurrency: being too volatile to be used as a means of payment or store

of value. Stablecoins therefore allegedly combine the benefits of the blockchain technology

with the stability of well-established currencies and have gained in popularity in the last

couple of years, with their combined market capitalization growing from $3 billion in 2019

to $181 billion in April 2022.1 Confronted with the rapid growth of stablecoin platforms,

legislators have become increasingly concerned about the financial stability risks posed by

stablecoins and have introduced new regulatory initiatives to balance the perceived risks

and benefits associated with this new technology.2

Stablecoin protocols rely on a wide variety of pegging mechanisms to fulfill their promise

of price stability: algorithmic supply adjustments (e.g., Terra), over-collateralization with

dynamic liquidation (e.g., Frax), and decentralization of the issuance process (e.g., DAI).

To this date, however, the academic literature provides little guidance about the efficiency

of these tools and their optimal design. This paper aims to fill this gap by developing a

general model of stablecoins to analyze the performance of various pegging mechanisms.

We propose a framework to study the dynamic problem of a stablecoin platform that

caters to a time-varying demand from investors. Investors, who value stability, enjoy

liquidity benefits from owning stablecoins when the price is stable. The platform acts as a

monopolistic issuer and taps in these liquidity benefits while trying to maintain a peg with

respect to some unit of account. The existence of seignoriage revenues and the focus on

price stability make a stablecoin platform similar to a central bank. Like a central bank

who may overprint money, a stablecoin platform has a tendency to overissue stablecoins,

which ultimately undermines the peg. A central bank’s ability to perform its tasks thus

relies to a large extent on its credibility. The main technological proposition of stablecoins

in this regard is the possibility to commit to specific key policies such as issuance and

redemption, interest rates and fees, and collateral liquidation rules via smart contracts.

Our objective is to characterize the stablecoin price, the value of the platform’s equity

1https://www.statista.com/statistics/1255835/stablecoin-market-capitalization/
2For instance, the US Congress is working on a STABLE (Stablecoin Tethering and Bank Licensing

Enforcement) Act while in the UK, the Treasury has launched the “UK regulatory approach to cryptoassets
and stablecoins: Consultation and call for evidence”.
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shares—referred to in the crypto-space as governance tokens— and provide conditions

under which the peg holds and under which it doesn’t. An equilibrium in our model

has two components. The monopolistic platform chooses a dynamic issuance-repurchase

policy, an interest policy paid in stablecoins and a collateralization policy. Investors price

the stablecoin competitively given the liquidity benefits they derive from owning stablecoins

and the interest paid by the platform. In our model the unique state variable is the demand

ratio between current stablecoin demand and supply by the platform.

We first study stablecoin protocols that can fully commit to issuance-redemption and

interest rate rules. In other words, all platform policies can be programmed ex-ante through

credible smart contracts. This analysis provides an upper bound for the value of algorithmic

stablecoin protocols that rely on programmable adjustments of the quantity of stablecoin

such as Terra, NuBits, and Basis. We show that even under full commitment, there exists an

equilibrium in which stablecoins and governance tokens are worth zero. This equilibrium

always arises because both stablecoin dividends, that is, liquidity benefits and interest

payments depend themselves on the value of stablecoins. As is known in other contexts,

the self-referential value of money implies zero value fixed point.

We also show that a second equilibrium exists in which the peg is locally stable. In this

equilibrium, the system generates seigniorage revenues and governance tokens have positive

value. The platform maintains a constant demand ratio and sets interest payments to peg

the price. To maintain the peg, the system reacts to a positive demand shock by creating

new stablecoins and distributing them to governance token holders as seigniorage dividends.

Conversely, it reacts to a negative demand shock by buying back stablecoins and, thereby,

reducing supply. In a pure algorithmic setting, the platform finances these repurchase

operations by issuing additional governance tokens and diluting legacy holders.

We show, however, that even in this favorable equilibrium the platform cannot implement

a strict peg. Like any financial institution, the platform is subject to limited liability as it

cannot force stablecoin owners to finance any repurchase beyond governance token dilution.

After a large negative demand shock, the value of future seignoriage revenues may be so

low that the platform cannot finance a buyback and restore the optimal demand ratio

even with full dilution. The peg is then broken as a too high stablecoin supply implies

that market clears at a price below par. Although the peg is lost and governance tokens

are worth zero, the stablecoin price may still be positive and fluctuates with demand as

investors “hope for resurrection”. At some point, stablecoin demand may recover enough
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so that governance token holders can recapitalize the platform to repurchase the quantity

of stablecoin that is necessary to re-establish the peg.

We then investigate the stability properties of a stablecoin scheme under a weaker form

of commitment. More precisely, we relax our initial assumption that all policies can fully

be programmed via smart contracts. In this setting, the platform can commit to an interest

rate rule but retains flexibility over its issuance-redemption policy. For a constant interest

rate rule, the leverage ratchet effect of Admati, DeMarzo, Hellwig, and Pfleiderer (2018)

and DeMarzo and He (2021) applies: it is never optimal for the system to reduce its

leverage and the peg cannot be maintained. We find, however, that an equilibrium with

local stability still exists if the interest rate payment decreases with the demand ratio.

Such a rule penalizes over-issuance and forces the platform to implement repurchase. We

stress that the strength of this punishment is purely endogenous as the interest is paid in

stablecoins and the platform faces no direct issuance cost.

Next, we study how escrowing an external collateral asset on which smart contracts can be

written—such as another crypto-currency—affects the system’s ability to maintain the peg.

This design is common in practice, with many stablecoins such as DAI or Frax partly relying

on external crypto-currency holdings to improve their stability. When the collateralization

rate falls below a certain threshold, a smart contract triggers the liquidation of the platform.

Imposing a minimum collateralization rate is a double-edged sword: On the one hand, it

improves the stability of the stablecoin price as guarantees a residual value for stablecoin

owners when the system liquidates its assets. On the other hand, locking crytpo-assets in

the platform is costly and future seigniorage revenues are lost when platform shuts down.

Last, we examine the stability of a stablecoin scheme that decentralizes the issuance and

redemption of its stablecoin. This feature is present in DAI: a stablecoin that anyone with

access to the Ethereum platform can mint freely. We find that this decentralization can

act as an effective substitute for a commitment technology on stablecoin redemption and

issuance. In this setting, investors acting as arbitrageurs prevents the price from moving

away from the peg by creating more (redeeming) stablecoins in reaction to a positive

(negative) demand shock. This decentralization allows the system to maintain the peg

because the decisions affecting that system’s leverage have been externalized to agents

that—unlike governance token holders—are not hurt by a reduction of leverage.
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Literature review Our paper contributes to an interdisciplinary literature on stable-

coins. From the computer sciences literature, Klages-Mundt and Minca (2019, 2020) de-

velop models featuring endogenous stablecoin price and an exogenous collateral and find

deleveraging spirals and liquidation in a system with imperfectly elastic stablecoin demand.

Gudgeon, Perez, Harz, Livshits, and Gervais (2020) simulate a stress-test scenario for a

DeFi protocol and find that excessive outstanding debt and drying up of liquidity can lead

the lending protocol to become undercollateralized. Our paper also relates to a descrip-

tive literature on stablecoins (Arner, Auer, and Frost, 2020; Berentsen and Schär, 2019;

Bullmann, Klemm, and Pinna, 2019; ECB, 2019; Eichengreen, 2019; G30, 2020). In closely-

related contemporaneous work, Li and Mayer (2022) study the peg dynamics of stablecoin

platforms under the assumption that stablecoins generate network externalities and the

systems’ reserves are subject to stochastic shocks. Our paper differs by considering various

commitment technologies and demand shocks that affect the system’s franchise value.

In studying the stabilization mechanisms across stablecoin types and the failure of gov-

ernance incentives to recapitalize undercollateralized systems, our paper draws from the

corporate finance literature which examines firm shareholders’ attitudes towards leverage.

Black and Scholes (1973) first documented that, in a frictionless capital structure setting

of Modigliani and Miller (1963), firm shareholders do not have incentives to voluntarily

buy back debt and reduce leverage as this always implies a transfer of wealth to existing

creditors, and they will give up their default option. Myers (1977) attributes this resis-

tance to the reduction in dilution of existing debt since shareholders do not internalize

the benefits from lower bankruptcy costs accruing to debtholders but rather pay a higher

post-recapitalization price. Admati, DeMarzo, Hellwig, and Pfleiderer (2018) generalize

these findings to multiple asset classes of debt and with agency frictions and document

a “leverage ratchet effect”, whereby shareholders have no incentives to delever the firm

and instead always find it optimal to further increase leverage by issuing new debt, even

when leverage exceeds its optimal level. The results are consistent with agency cost mod-

els where debt overhang distorts incentives, for instance, through under-investment as in

Myers (1977), or asset substitution as in Jensen and Meckling (1976)—where shareholders

shift risk towards debtholders by engaging in riskier projects—or under the “control hy-

pothesis” for debt creation in Jensen (1986), in the presence of free cash flow agency costs.

DeMarzo and He (2021) also show delevering resistance effects, although in their model

leverage mean-reverts to a target because of asset growth and debt maturity. Our paper
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contributes to this literature by considering cases in which the firm (stablecoin platform

in our setting) can commit or decentralize the buybacks and coupon payment decisions

through a smart contract algorithm. These features can be seen as an extreme form of

debt-convenants as studied in Smith and Warner (1979), Bolton and Scharfstein (1990),

Aghion and Bolton (1992), and Jason Donaldson and Gromb (2020) that would apply in

each state of the world.

More broadly, our paper contributes to the literature applying corporate finance and

asset pricing models to model digital platforms and token valuations. While not mainly

focusing on stablecoins, Cong, Li, and Wang (2020a) develop a continuous-time model

of token-based platform economy with network effects and endogenous token price and

also document conflicts of interests between platform owners and users, resulting in an

under-investment outcome. In their model as in ours, platform insiders restrict the supply

of token to preserve the franchise value, a mechanism stabilizing its price. We highlight

the existence of limitations to such a quantity adjustment mechanism. Cong, Li, and

Wang (2020b) build a dynamic asset pricing model with network effects and inter-temporal

linkages in endogenous token price and user adoption, and analyze the Markov equilibrium

with platform productivity as the state variable.

2 General Environment

In this section, we describe our model of stablecoins. The premise of our analysis is that

investors enjoy liquidity benefits from holding stablecoins issued by the platform, as they

would do for money or bank deposits. Investors value stablecoins to the extent that their

price is stable. Hence, the stablecoin platform can generate seignoriage revenues if it can

maintain a peg between the stablecoin price and some target unit of account. We describe

the formal building blocks of the model below.

2.1 Stablecoin Demand

Let (Ω,F ,P) be a probability space that satisfies the usual conditions. All agents are risk

neutral with an exogenous discount rate of r > 0.3 Time is continuous with t ∈ [0,∞).

3Alternatively, we can interpret the model as written under a fixed risk-neutral measure that is inde-
pendent of the stablecoin platform policies.
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We consider a platform that issues stablecoins. Stablecoins are a liability of the platform

that trade at (endogenous) price pt expressed in the unit of account. The outstanding stock

of these stablecoins at date t is Ct. Stablecoins have value because investors enjoy direct

utility from holding them: at date t, holding stablecoins generates utility flow pt`(At, ptCt)

per unit with At an exogenous driver of stablecoin value. To fix ideas, we say that variable

At represents the value of some cryptoassets, which proxies for investors’ demand for alter-

native means of payment. The liquidity benefit from holding stablecoins can be thought

as a convenience yield investors derive because stablecoins are a form of money.4

Assumption 1. The convenience yield of stablecoins `(A, pC) is (i) positive and contin-

uously differentiable in both arguments; (ii) strictly increasing in A; (iii) bounded with

0 ≤ `(A, pC) ≤ r; (iv) homogeneous of degree 0 and (v) equal to 0 if the stablecoin price p

is not pegged to 1. Finally, (vi) the product of the convenience yield with the total value of

stablecoins `(A, pC)pC is single-peaked with limx→∞ `(A, x)x = 0

Property (i) is standard. Property (ii) states formally that the value of stablecoins in-

creases with demand driver At. Property (iii) and (iv) are technical assumptions ensuring

respectively that the stablecoin price is well-defined and that the problem ultimately econ-

omizes on one state-variable. Property (v) states that stablecoin owners enjoy a liquidity

benefit only if it is pegged to the unit of account. This assumption is meant to capture in a

simple way a trust element whereby investors value the stablecoin as means of transactions

to the extent that issuers can maintain a pre-announced peg.5 The peg at 1 is chosen for

convenience and because it corresponds to market practice but our results do not depend

upon it; only the real value of stablecoin holdings matters. Finally, Property (vi) will en-

sure that the optimal amount of stablecoins is interior. An example of a class of functions

that satisfy Assumption 1 is `(A,C) = r exp(−αC/A) for α > 0.

The cryptoasset value At that drives stablecoins’ demand has the following law of motion

dAt = µAtdt+ σAtdZt +At-(St − 1)dNt, (1)

4Our reduced-form specification can be microfounded assuming that stablecoins are essential to carry
some transactions. The utility flow from this liquidity service would then be a function u(At, ptct) of the real
value of stablecoin holdings, ptct. A representative investors’ marginal utility for stablecoins (in addition to
any dividend payment) is then given by pt`(At, ptCt) ≡ ptuc(At, ptct), equating the representative investor’s
holdings ct with the total stock of stablecoins Ct.

5We can relax this “extreme-peg” assumption by assuming that the liquidity benefit is still positive for
small deviations from the peg, but decreasing in price volatility.
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where dZt is the increment of a standard Brownian motion and dNt is a standard Poisson

process with constant intensity λ > 0 adapted to F . The size of a downward jump,

− ln(S) is exponentially distributed with parameter ξ > 0 and the expected jump size is

E[S − 1] = −1/(ξ + 1). The Poisson process generates large negative shocks to stablecoin

demand that can be thought of as speculative attacks. Overall, the expected growth rate

of stablecoin demand is given by µ−λ/(ξ+1), which we assume is lower than the discount

rate r. We use notation At− to denote the cryptoasset’s value before a jump.6

Finally, there exists a safe asset the platform can hold as collateral to back the issuance

of stablecoins. This collateral trades in a perfectly competitive market at price pkt with

dpkt = µkpkt dt, (2)

with µk the price drift. Collateral can be thought as safe asset with rate of return µk ≤ r.
We interpret the difference between the discount rate and the rate on collateral, r − µk as

a convenience yield enjoyed by collateral owners. As we will see, this feature generates a

cost from holding collateral for the stablecoin platform.7

2.2 Platform Operation

We will analyze both a centralized and a decentralized platform. For clarity, we post-

pone the description of a decentralized platform to Section 5. The main policy choice of

a centralized stablecoin platform is its issuance/redemption policy {dGt}t≥0. A positive

(negative) value of dGt means the platform issues (repurchases) stablecoins. The platform

also chooses its coupon policy {δt}t≥0 paid in stablecoins, with δt > 0, and its collateral

purchase policy {dMt}t≥0. Finally, the platform may default at stochastic time τD.

To describe these policies, consider an analogy between the stablecoin platform and a

central bank. When it issues stablecoins (dGt > 0), the platform receives a payment ptdGt
from investors in the unit of account. Similarly, when it credits the account of a depository

institution with reserves, the central bank receives an asset in exchange. The stablecoin’s

6At- denotes the left limit At- = limh→0At−h. Also note that At-dt = Atdt as the set {Tk}k≥1 of jump
times has zero measure of length.

7Our assumption of a safe collateral asset comes with some loss of generality because some stablecoin
protocols are implicitly or explicitly backed by cryptoassets. In this case, the collateral price would likely be
correlated with demand process At. It is intuitive, however, that such correlation would reduce the useful-
ness of collateral as a hedge against demand fluctuations. In addition, introducing correlation significantly
complicates the analysis.
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coupon policy whereby every stablecoin investor is credited with δt units of free stablecoins

per unit owned is akin to an interest payment on reserves. Finally, collateral holdings of

the platform correspond to a central bank’s asset holdings.

Law of Motions The platform’s policies imply the following law of motions for the

amount of stablecoin outstanding, Ct and the value of its collateral, denoted Kt

dCt = δtCtdt+ dGt, (3)

dKt = µkKtdt+ dMt. (4)

Consider first law of motion (3) for stablecoins. The first term on the right-hand-side

captures the contribution of the coupon policy δt to stablecoin issuance. It is treated

separately from the active issuance component dGt, however, because the platform is not

paid when transferring stablecoins as coupon payments. Equation (4) is the law of motion

for the value of collateral. The first term on the right-hand side corresponds to the passive

change in collateral value. The last term corresponds instead to the active change in value

from purchases or sales of collateral by the platform expressed in the unit of account.8

Jump Notation There are both Brownian shocks and jumps to the value of cryptoassets

in our model. The platform’s policies can also feature jumps. A jump represents a discrete,

instantaneous change of a variable. We denote the value of a variable X just before and

after the jump by Xt- and Xt, respectively. It is useful to decompose the stablecoin issuance

and collateral purchase policies into their absolutely continuous and jump parts as9

dGt = Gtdt+ (Gt − Gt-),

dMt = Mtdt+ (Mt −Mt-).

8This law of motion can be alternatively written dKt = Skt dp
k
t +pkt dS

k
t with Skt the quantity of collateral

held by the platform. The term dMt in (4) corresponds to pkt dS
k
t .

9By Lebesgue decomposition of a right-continuous function f : I → R of bounded variation where I is
an interval, we can can represent f as a sum of three functions fa+fc+f j , which is unique up to constants,
where f j is a jump function, fc is a singular function, and fa is an absolutely continuous function. Going
forward, we abstract from the presence of singular functions fc (e.g., a “devil’s staircase”). We refer the
reader to Appendix C.3. of DeMarzo and He (2021) for a discussion.
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2.3 Stablecoin Pricing and Platform’s Objective

Stablecoin Pricing Formula Investors price the stablecoin competitively taking as

given the platform’s policies. They enjoy two dividend streams from holding stablecoins:

the direct utility benefits when the price is pegged and coupon payments when the stable-

coin platform pays interest, with resective value `tpt and δtpt per unit. Should the platform

default, a standard bankruptcy procedure applies in which stablecoin owners are treated

as pari-passu debt creditors. They thus receive any platform’s collateral up to the parity

value of stablecoins. The platform shareholders receive any residual proceeds. At date t,

the competitive stablecoin price given the platform’s continuation policies is thus

pt = E

[∫ τD

t
e−r(s−t) (`s + δs) psds+ e−r(τD−t) min {KτD/CτD , 1}

∣∣∣∣∣At, {dGs, dMs, δs}s≥t

]
(5)

Platform’s Objective The platform’s objective is to maximize its date-0 value E0,

which is the sum of the issuance benefits net of the collateral purchases.

E0 = max
τD,{δt,dGt,dMt}t≥0

E0

[ ∫ τD

0
e−rt

(
ptdGt − dMt

)
+ e−rτD max {0,KτD − CτD}

]
(6)

where the price pt is given by equation (5). When it defaults, the platform enjoys the

residual value of collateral, if any, after stablecoin owners have been paid. As a monopolistic

issuer, the platform has price impact. Hence, it pays the post-issuance (post-repurchase)

price when it issues (repurchases) stablecoins. As we will see, this feature is important

when studying the platform’s problem under limited commitment because it weakens the

platform’s incentives to buy back blocks of debt.

2.4 Discussion of the Environment

Monopolistic Stablecoin Platform We focus on the analysis of a single stablecoin

platform for simplicity. In practice, several stablecoins would compete to cater to investors’

demand for alternative means of payment. We refrain from modeling competition and entry

of platforms for simplicity; one can interpret the platform’s convenience yield as investors’

residual demand for one platform’s stablecoins after accounting for supply from other

platforms. All that is needed is that the platform enjoys some market power. A source of
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market power in this context is network effects as in Cong, Li, and Wang (2020a).

Commitment Problem and Smart Contracts Our analysis will reveal that stable-

coin platforms face a fundamental commitment problem. Policies that have been chosen

at date 0 may not be optimal at date t from the point of view of the platform’s equity

holders. A key technological proposition of stablecoins is that rules and procedures can

be programmed within transparent algorithms, so-called smart contract. In many cases,

however, platforms retain flexibility over parts of the algorithm for technical maintenance,

future adaptability, or to decrease the vulnerability to hacking. To reflect these considera-

tions, we will characterize optimal policies under various degree of commitment to identify

robust tools that can foster stability of stablecoin platforms.

3 Credible Smart Contracts

In this section, we analyze the problem of a stablecoin platform that can commit to all

future policies. A platform with commitment can be viewed as a stablecoin protocol with

credible smart contracts governing issuance, repurchase, coupon and collateral policies.

The analysis under full commitment provides minimal necessary conditions for a stablecoin

platform to have positive value and to be able to maintain its peg. This analysis delivers two

main results. Stablecoins may have no value even under commitment. Second, when they

have positive value, the platform is vulnerable to large shocks unless it is fully collateralized.

Inspired by market practice, we focus on a constant collateralization rule for the platform:

Kt = ϕCt, (7)

that is, the platform must maintain a constant ratio ϕ ∈ [0, 1] between the value of its

collateral and the par value of stablecoins. This specification means that the platform’s

other policies {dGt, δt} fully determines its collateral purchase policy dMt = ϕdCt. The

case ϕ = 0 (ϕ = 1) corresponds to a so-called algorithmic stablecoin (narrow bank).

For this analysis, the only constraint on the platform’s policy choices at date 0 is that its

equity cannot become negative at some future date t, that is, limited liability applies. To

clearly highlight the role of this constraint, we first consider a benchmark with unlimited

liability in Section 3.1 and then reintroduce limited liability in Section 3.2.
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3.1 Unlimited Liability Benchmark

We first assume the platform’s equity value may become negative. In this case, the platform

never has to default so we set default time τD to infinity. The platform chooses a stablecoin

issuance-redemption policy {dGt}t≥0, an interest policy {δt}t≥0 and a collateralization rate

ϕ to maximize the value of the platform at date 0 given by

E0 = max
ϕ,{δτ ,dGτ}τ≥0

E

[∫ ∞
0

e−rt (ptdGt − ϕdCt)

∣∣∣∣∣A0, C0 = 0

]
(8)

subject to (5), (3) and (7).

As it owns no asset, the platform’s payoff is the net present value of issuance proceeds.

Equation (3) is the law of motion for stablecoins implied by the issuance policy and the

initial condition C0 = 0. Equation (5) is the competitive pricing function for stablecoins

at any date t, given policies chosen by the platform for dates τ ≥ t.

Our first result is that even under full commmitment, there exists an equilibrium with

zero stablecoin price and zero platform value if the platform does not hold collateral.

Proposition 1. For an uncollateralized platform with ϕ = 0, there always exists a zero-

price equilibrium in which pt = 0, ∀t ≥ 0.

The zero-price equilibrium arises because there is no anchor between the stablecoin and

the unit of account for an uncollateralized platform. In particular, the coupon is paid in

stablecoins, not in the unit of account. To see why this implies a zero-price equilibrium

exists, suppose the price is indeed 0. Then both components of the stablecoin dividend in

pricing function (5) are equal to 0. Stablecoin owners enjoy no liquidity benefit because

the price is not pegged to 1 and the real coupon δp is also worth 0 even if the platform

promises a very large nominal coupon payment δ. Finally, without collateral, the price is

not supported by an external asset. Hence, the the initial conjecture that the price is zero

is valid. The platform has no value because it captures no stablecoin issuance benefits.

Proposition 1 highlights that stablecoins, like any form of fiat money, is fragile: stable-

coins may be worth zero even when issuance and repurchase can be fully programmed with

credible smart contracts. We show below that there also exists an equilibrium in which the

stablecoin has value and the platform enjoys seigniorage revenues.
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Proposition 2. With full commitment and unlimited liability, the equilibrium with positive

stablecoin price features a constant demand ratio At
Ct

= At
C?(At)

= a∗ for all t with

C?(A) = arg max
C

{
`(A,C)C

}
. (9)

The coupon policy at demand ratio a∗ is δ? = r− l(a?) to peg the stablecoin price to 1 and

the platform sets the collateralization ratio ϕ? = 0.

As we show formally in the proof, the platform value is the present value of liquidity

benefits enjoyed by investors net of the collateral holding costs,

E0 = E

[∫ ∞
0

e−rt
(
`(At, Ct)Ct1{pt=1} + (µk − r)ϕCt

)
dt

∣∣∣∣∣A0

]
, (10)

with `(A,C)C the instantaneous total seignoriage revenues for the platform when the price

is pegged. This is intuitive because the platform captures all gains from trade. Maximizing

the platform value E0 becomes a static optimization problem if it can maintain the peg. In

this case, the optimal collateralization rate is ϕ? = 0 because holding collateral is costly.

Given demand A, an interior optimum C?(A) for stablecoin supply exists under Assumption

1. Homogeneity of the liquidity benefit, `(A,C) further implies that C?(A) is linear in A;

we call a? the constant demand ratio. The platform issues (buys back) stablecoins when

demand, captured by At increases (decreases) to maintain this optimal demand ratio.

It remains to show that the platform can maintain the peg using its coupon policy as

stablecoin owners enjoy no liquidity benefit otherwise. In equilibrium, the demand ratio

at is constant, so we only need to specify δ? ≡ δ(a?). It is easy to verify that the peg holds

when δ? is given as in Proposition 2 because

pt =
`(a?) + δ?

r
= 1. (11)

3.2 Limited Liability: Preliminary Analysis

The full commitment policy with unlimited liability requires the platform to conduct large

stablecoin repurchases when the underlying cryptoasset value drops in order to restore an

optimal demand ratio. For a large drop, however, the repurchase cost might exceed the

post-repurchase platform value. In practice, the platform would then be unable to finance
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the repurchase by issuing new equity even if it fully dilutes current equity.

To capture these concerns, we now assume that policies must satisfy limited liability.

That is, the platform’s equity value must be positive in all contingencies. In other words,

even credible smart contracts cannot force the platform to conduct repurchases if the

platform’s net continuation value is negative. The limited liability constraint, Et ≥ 0 can

be expressed as follows, using similar steps as in Proposition 2

Et = E

[∫ ∞
t

e−r(s−t)
(
`(As, Cs)Cs + (µk − r)ϕCs

)
ds

∣∣∣∣∣At, Ct = 0

]
− (pt − ϕ)Ct- ≥ 0. (12)

This expression is compatible with the expression for the date-0 value of the platform,

Equation (10), because he platform starts with zero stablecoins (C0- = 0). In Equation

(12), the term, (pt−ϕ)Ct- , is the net cost of repurchasing all outstanding stablecoins.10 The

net cost is pt − ϕ because buying back one stablecoin frees up collateral value ϕ. Limited

liability constraint (12) admits the usual interpretation that the unlevered platform value

given current demand At must exceed the net value of outstanding stablecoins (debt value).

After a large enough negative shock to At, the platform’s equity value can thus become

negative if the platform were to implement the policy in Proposition 2.

We now analyze the solution under full commitment and limited liability, which is prob-

lem (8) adding constraint (12). In doing so, we focus on the following set of policies.

dG(at, Ct-) =

G(at, Ct-)dt if at < a,

At
a?L
− Ct- if at ≥ a

, δ(at) =

δ if at < a,

δ? if at ≥ a
, (13)

where policy parameters θ = {a, a?L, δ, δ?, G} are chosen by the platform at date 0. We

remind that collateral holdings Kt must still satisfy collateralization rule (7). The policy set

described by equation (13) includes the optimal policy under unlimited liability. In target

region [a,∞), the platform implements a constant demand ratio a∗L but it stops targeting

a∗L when the demand ratio falls below a threshold a. Intuitively, this new feature helps to

ensure that limited liability can be satisfied after a large negative shock to demand. We

note that in region [0, a] the issuance policy is smooth, that is, of order dt by opposition

10As shown by our analysis with unlimited liability, the policy is not to repurchase all stablecoins. The
formulation in (12) simply breaks down the optimal policy into two steps which happen simultaneously at
the same price: (i) repurchase all outstanding stablecoins Ct−, and (ii) issue new stablecoins to the optimal
level, Ct = C?(At). Both transactions would take place at the post-issuance price pt.
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to discrete jumps over [a,∞). Because this region is visited with positive probability in

equilibrium, we also need to specify the coupon policy when a ∈ [0, a].

Our motivation to focus on the set of policies described by Equation (13) is twofold. First,

the policy set is directly inspired by the optimal policy under unlimited liability. Second,

the policy is Markovian in that it only depends on the value of state variables (At, Ct-),

not on the full history of demand shocks up to period t. This last feature considerably

simplifies our analysis in the presence of limited liability constraints.11

Given the set of policies considered, we can define functions E(A,C) and p(A,C) for

the platform’s equity and the stablecoin price, now omitting the time index. Given the

homogeneity of the problem, the ultimate state variable for equity and price is a = A
C so

we define e(a) ≡ E(A,C)/C and p(a) ≡ p(A,C) where e(a) is the platform’s equity value

per stablecoin oustanding.

We guess and verify that the price function satisfies p(a) = 1 for a ∈ [0, a] and p(a) < 1

for a ∈ [0, a), that is, investors enjoy liquidity benefits only in the target region. We first

characterize the optimal repurchase policy in the region in which the peg is lost.

Lemma 1. An optimal policy under commitment and limited liability satisfies δ = 0 and

g(a) ≡ G(at, C
-
t )

C-
t

= − µkϕ

p(a)− ϕ
, (14)

that is, the platform does not pay coupon when the peg is lost and it uses collateral proceeds

to repurchase stablecoins. Under repurchase policy (14), e(a) = 0 for all a ∈ [0, a].

The intuition for this result is as follows. As shown by (10), the platform’s value rests

on its ability to capture investors’ liquidity benefits. As a result, the platform seeks to

minimize the time it will spend in region [0, a] where the peg is lost. To increase at = At
Ct

when at ∈ [0, a], stablecoin issuance should be minimized in this region. This involves

paying no coupon to investors, δ = 0 and using returns on collateral to buy back stablecoins.

To see why the latter condition yields equation (14), observe that each stablecoin is backed

by an collateral value ϕ that grows at rate µk. The downpayment for a stablecoin is p−ϕ
11The general problem is not standard because limited-liability constraints (12) are forward-looking,

which means equity value Et is not the solution to a standard Hamilton-Jacobi-Bellman (HJB) equation.
Techniques developed by Marcet and Marimon (2019) do not apply to our problem; the additional com-
plexity comes from the term (pt − ϕ)Ct- on the right-hand side of (12) as a state variable Ct- multiplies
forward-looking variable pt, which depends on all future policy choices. Our focus on Markovian policies
ensure the equity value and the stablecoin price solve HJB equations.
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because buying back a stablecoin frees up collateral value ϕ. Hence, the maximum rate at

which the platform can repurchase stablecoins is given by (14). The fact that the platform’s

equity value is equal to 0 when the peg is lost is intuitive. Given the platform’s objective

to maximize time spent in the peg region [a,∞), it should avoid any slack in the limited

liability constraint in the region in which the peg is lost.

We are left to solve for the subset {a, a?L, δ?} of policy parameters θ0. This second step

requires characterizing the equilibrium price p(a) and the equity value e(a) over the state

space [0,∞] for given values of these parameters.

Lemma 2. Under a policy characterized by (13) and Lemma 1, the following holds

1. The platform’s equity value is characterized by the following two equations

e(a) =

0 if a ≤ a[
e(a?) + (p(a?)− ϕ)

]
a
a? − (p(a?)− ϕ) if a ≥ a

(15)

(r + λ− µ)e(a?) = µkϕ+ µ(p(a?)− ϕ) + λE[e(Sa?)] (16)

2. The coupon policy to maintain the peg p(a?) = 1 in target region [a,∞] is

δ? = r − l(a?) + λ (1− E[p(a?S)]) (17)

3. For a ≤ a, the equilibrium price function satisfies the following equation

(r + λ)p(a) = (µ− g(a))ap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)] (18)

where g(a) is given by (14).

Consider first the platform’s equity value. We already showed in Lemma 1 that the

equity value should be zero when the peg is lost. In the peg region [a,∞), the platform

issues or repurchase stablecoins to maintain a constant demand ratio a?. By definition,

equity value is then given by

E(A,C) = E(A,C?(A)) + (p(a?)− ϕ)(C?(A)− C) (19)

where p(a?) = p(A,C?(A)). Equation (15) obtains from (19) by dividing each side by

the stablecoin quantity C. Equation (16) is the Hamilton-Jacobi-Bellman (HJB) equation
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for equity value at the constant demand ratio a?. Equity holders receive two cash flows:

interest on collateral and expected issuance proceeds, respectively µkϕ and µ(p(a?) − ϕ)

per unit of collateral. Expected issuance proceeds are positive if demand At grows on

expectation (µ > 0) and if the platform is less than fully collateralized (ϕ < 1).

The second part of Lemma ?? characterizes the coupon policy necessary to maintain

the peg in region [a,∞). In the absence of Poisson shocks (λ = 0), equation (17) is the

same as in Proposition 2 with unlimited liability. Large negative demand shocks force the

platform to abandon the peg, in which case the stablecoin price drops below 1. This effect

requires the platform to pay a larger coupon in order to compensate for this expected price

devaluation as shown by the last term of (17).

Finally, the third part of Lemma ?? characterizes the equilibrium price dynamics in the

region [0, a] where the peg is lost. Note that the optimal repurchase policy derived in

Lemma 1 enters HJB equation (18) because it governs the rate at which the demand ratio

at increases in region [0, a]. As shown by equation (14), the stablecoin repurchase rate

depends itself on the price.

3.3 Limited Liability: Optimal Platform Design

We may now consider the optimal platform design under limited commitment. The plat-

form chooses remaining policy parameters {a?, a} so as to maximize its date-0 value,

E0 = A0
e(a?) + p(a?)− ϕ

a?
,

where δ, G are given by Lemma 1 and e(), p() and δ? are characterized by Lemma 2.

Lemma 2 provides an explicit solution for e(a?) as a function of policy parameters {a?, a}.
Solving for p(a?) analytically, however, proves impossible in most cases because of the

feedback loop in dynamic price equation (18) via the repurchase decision g(a) given by

(14). While we provide numerical solutions in other cases below, two cases of interest

allow for an explicit characterization of the platform’s policy choice: the uncollateralized

platform (ϕ = 0) and the fully-collateralized platform (ϕ = 1).

Consider first an uncollateralized platform with ϕ = 0. Equation (14) then shows that

the optimal repurchase policy is g = 0 in the smooth region [0, a]. This is intuitive because

the platform receives no collateral proceeds to finance stablecoin repurchases in this case.
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Hence, it can only hope for positive exogenous shocks to demand to recover the peg. This

feature allows us to provide an explicit solution for p over the whole state space and thus

to characterize the optimal platform policy choice.

Proposition 3. Consider an uncollateralized (purely-algorithmic) stablecoin platform with

commitment. The following results apply

1. In the region [0, a] in which the peg is lost, the equilibrium stablecoin price is given

by p(a) =
(
a
a

)−γ
where γ < −1 is the unique negative root of

r + λ = −µγ +
σ2

2
(1 + γ)γ +

λξ

ξ − γ
. (20)

2. The optimal policy θ?0 is characterized by Lemma 1 and 2 and {a, a?} that solve

max
{a,a?}

E0 =
`(a?)

r + λ
ξ+1 − µ+

(
λξ
ξ+1 −

λξ
ξ−γ

) (
a?

a

)−(ξ+1)

1

a?
(21)

subject to
aE0

a?
≥ 1 (22)

The optimal policy has a non-empty inaction region, that is, a > 0 in which the platform’s

equity value is 0. The optimal interest rate policy is δ = 0 and δ? = r− λγ
ξ−γ

(
a?L
a

)−ξ
−`(a?L).

Furthermore, there exists Ω < 0 such that the optimal demand a?L > a? is characterized by

`′(a?L)a?L = `(a?L) + λΩ (23)

The first key finding with limited liability is that there must be an inaction region.

When demand At falls suddenly to a very low level, the platform would need to repurchase

a large quantity of stablecoins to restore the optimal demand ratio a?L. On the other hand,

the future value of seignoriage revenues is low in this case because current demand At

predicts future demand. Hence, the platform’s future value is not sufficient to finance the

repurchase, even if it fully dilutes equity. To satisfy limited liability, the platform thus

stops buying back stablecoins when at is too small.

The existence of the inaction region under limited liability affects the optimal demand

target a?L. In particular, in the peg region, the platform issues less stablecoins per cryp-

toasset, that is, a?L > a?. Remember that with unlimited liability, the optimal demand
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ratio is determined by equation (23) setting Ω = 0. With limited liability, equation (23)

implies the optimal demand ratio a?L is higher than a? because `′′ < 0 by assumption. The

platform issues less stablecoins in the peg region to protect itself against large negative

demand shocks that take it to the inaction region. Consistent with this interpretation, the

second term is positive if and only if demand At is subject to negative jumps (λ > 0).

Without Poisson jumps, the platform would never have to buy large blocks of debt to

restore its target demand, which means limited liability would have no bite.

The optimal coupon policy has two components. In the peg region, the coupon is set

again to ensure that the price p(a?L) is pegged to one. In the inaction region [0, a], the

optimal coupon is 0. In this case, the stablecoin value is driven by the probability that

the demand ratio at reaches the peg region [a,∞). Paying stablecoin coupons increases

the stock of stablecoins, which decreases at and delays the time before the peg region is

reached. Hence, paying no coupon in the inaction region is optimal.

Finally, observe that the platform’s equity value is zero in the inaction region as the

limited liability constraint binds. Ex-post, the platform is indifferent between defaulting

or staying in operation. From an ex-ante perspective, however, it is important that the

platform stays open. In the inaction region, positive shocks to the cryptoasset value can

improve the position of the platform until it reaches threshold a. Then, the platform

repurchases a block of stablecoins and regains the peg. The possibility of a resurrection

implies stablecoins have a positive value in the inaction region. This feeds back into the

price in the peg region and thus increases the platform’s value at date 0.

Our analysis characterizes conditions on liquidity benefits for an equilibrium to exist

under commitment and limited liability. We report necessary and sufficient conditions in

the proof of Proposition 3 and report an intuitive condition here.

Corollary 1. With full commitment and limited liability, an equilibrium with positive

platform equity value exists only if

lim
a→∞

`(a) ≥ r − µ+
λ

ξ + 1
, (24)

This new condition must hold for a policy with limited liability to exist. Informally, it

requires that the value of liquidity benefits is large enough to compensate for repurchase

costs.12 This condition implies that a stablecoin platform is feasible only if the growth

12Formally, as we show in the proof of Proposition 1, this condition must hold for there to be a policy
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rate of stablecoin demand µ is high enough to compensate large negative shocks. To see

this, remember that the liquidity benefit can be no greater than the discount rate, that is,

`(a) ≤ r. For condition (24), the growth rate of the demand for stablecoins must satisfy

µ ≥ λ

ξ + 1
. (25)

We illustrate our results under full commitment in Figure 1. In both cases, the equilib-

rium variable only depends on the current level of demand At and the outstanding stock of

stablecoins Ct. Furthermore, due to homogeneity of `, these variables only depend on the

demand ratio at, that is, for any variable X, we have X(A,C) = x(a)C. As we showed, the

peg can be maintained in all circumstances only under full commitment. The first panel

shows that limited liability protects equity holders, as their equity value is always positive

after large negative shocks. From an ex-ante perspective, however, the inability to conduct

large repurchases lowers the initial platform value. In both cases, the initial platform value

is given by the rightmost panel of Figure 1 taking a→∞.
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Figure 1: Full-Commitment Solution with limited liability (blue) and unlimited liability (black).
The set of parameters is given by r = 0.06, µ = 0.05, σ = 0.1, `(A,C) = r exp(−C/A), ξ = 6,
λ = 0.10.

4 Centralized Protocols

In this section, we relax our full-commitment assumption. In other words, we now con-

sider the case in which policies cannot be fully programmed via smart contracts at date

(a, a?L) such that the present value of liquidity benefit at demand ratio a?L exceeds the cost of buying back
all the debt when at ratio a
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0. In particular, the platform now chooses its issuance policy sequentially without com-

mitment. Motivated by market practice, we assume that the platform may still commit to

two policies: its coupon policy {δt}t≥0 and a minimum collateralization rule {Kt}t≥0. The

collateralization rule specifies the minimum amount of cryptoassets the platform should

hold as collateral at any point in time. We can show that if the platform cannot commit

to any policy, no equilibrium with non-negative stablecoin price exists.13

In what follows, we introduce our equilibrium concept under partial commitment in

Section 4.1. We then first analyze the case of an uncollateralized platform in Section 4.2

and then consider a minimum collateralization rule in Section 4.4.

4.1 Equilibrium Concept with Partial Commitment

Under limited commitment, the issuance-repurchase policy must be sequentially optimal,

that is, the continuation policy {dG}τ≥t a date t of the sequence {dG}t≥0 must be optimal

for the platform at t. With full commitment instead, the platform could choose a sequence

that was ex-post suboptimal in order to increase its value at date 0.

The platform’s incentives to follow a given policy depends on investors’ reaction to a

deviation from that policy. In our competitive model, this reaction is embedded in the

stablecoin pricing function out of equilibrium. To discipline our analysis with respect to

out-of-equilibrium behaviors, we focus on Markov-perfect equilibria. In a Markov equi-

librium, the platform’s strategies and the pricing function depend only on the value of a

restricted set of state variables, rather than on the complete history of the economy.

The state variables for a Markov equilibrium are the market value of cryptoassets A, the

stock of stablecoins C, and the value of cryptoassets collateral owned by the platform K.

For consistency, we also specify coupon and collateralization policies as a function of these

state variables. Our equilibrium concept under partial commitment is defined as follows.

Definition 1. Given an interest rate rule δ(A,C) homogeneous of degree 0 and a minimum

collateral requirement K(A,C), a Markov equilibrium is given by an equity owner value

function E(A,C,K), a stablecoin pricing function p(A,C,K), a governance token owner’s

stablecoin issuance policy dG(A,C,K), collateral purchase policy dM(A,C,K), and optimal

default time τD(A,C,K) such that the platform owners maximize the platform’s equity value

13See Appendix U for a proof of this claim.
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at any date

E(At, Ct- ,Kt-) = max
τD,dG,dM

Et
[ ∫ τ

t
e−r(s−t)

(
psdGt − dMt

)
+ e−r(τ−t) max {0,Kτ − Cτ}

]
(26)

given collateral requirement K(A,C), coupon policy δ(A,C), the law of motion for stable-

coins (3), the law of motion for collateral (4), and debt pricing function

p(At, Ct- ,Kt-) = Et
[ ∫ τ

t
e−r(s−t)(`s + δs)psds+ e−r(τ−t) min {Kτ/Cτ , 1}

∣∣∣∣At, Ct−,Kt−

]
,

(27)

where the expectation in (27) is taken under the law of motions implied by the platform’s

policies. The stopping time τ is ≡ τD ∧ τK where τK is the first time the mimimum

collateralization rule Kt ≥ K(At, Ct-) is violated.

The key equilibrium object is the stablecoin pricing function p(A,C,K). Stablecoins are

priced competitively given the continuation policies of the platform. Should the owners

“deviate” from a policy, they would face the same price map, that is, the price may change

only if state variables change as a result of a deviation, not because it is a deviation.

Under partial commitment, the platform chooses at date 0 its coupon policy and its

minimum collateral policy for all future dates. In doing so, the platform takes into account

that the issuance policy, the collateral policy and the default policy form part of a Markov

equilibrium. The key difference with the commitment case is thus that the latter policies

must be sequentially optimal, a requirement stronger than date-0 optimality.

4.2 Uncollateralized protocols

We first consider uncollateralized protocols with no minimum collateralization rule. While

the platform may still hold collateral voluntarily, we show in Section 4.4, that it would

choose not to hold any, that is, Kt = 0. The only state variables are thus At and Ct.

Under our homogeneity assumptions for the liquidity benefit ` and the coupon payment δ,

the demand ratio at = At
Ct

introduced in Section 3 is the ultimate state variable.

The first step of the analysis is to characterize an equilibrium stablecoin issuance pol-

icy dG(A,C) for the platform given a coupon policy δ chosen at date 0. There are two
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differences with the full-commitment case. First, by definition, the equilibrium issuance

policy must be Markovian. Second, and most importantly, the issuance policy must be

sequentially optimal. As we will show, these two features simplify the analysis, and we

can provide a tight characterization of the equilibrium issuance policy. In the commitment

case, instead, we had to assume a specific class of issuance policies.

Our first objective is to show that an issuance policy that forms part of a MPE must

belong to the following class of stable debt policies defined below.

Definition 2 (Stable Issuance Policy). A stablecoin issuance policy is stable if there

exists a default boundary a, a repurchase boundary a > a, a demand ratio target a? ≥ a,

and a mapping G(at, Ct-) = g(a)Ct- such that

dG(at, Ct-) =


0 if at < a,

G(at, Ct-)dt if a ≤ at < a,

At/a
? − Ct- if at ≥ a.

The policy we assumed under full commitment forms part of this class. A stable debt

policy features a target a? for the stablecoin demand ratio. There exists a peg region

[a,∞) in which the platform implements the target ratio via issuance or repurchases. In

the region [a, ā], the peg is abandoned. In this region, we say that the platform issues

stablecoins smoothly because the quantity issued is of the order dt. We thus call this

region the smooth region. In general, we refer to such an issuance policy as a smooth

policy. Below demand ratio a, the platform neither issues, nor repurchases and defaults.

We will show that if the coupon policy is optimally chosen at date 0, the equilibrium

issuance policy that forms part of a MPE must be a stable debt policy. We proceed with a

series of preliminary results. The following Lemma shows that the debt policy may not be

smooth everywhere in an equilibrium with positive platform and stablecoin value. It also

provides sufficient conditions for the equilibrium policy to be smooth.

Lemma 3 (Issuance Policy). First, if the equity value in a MPE is strictly convex in C

over some region, the equilibrium debt policy is smooth in that region. Second, there is no

MPE with positive stablecoin price if the equilibrium issuance policy is smooth everywhere.

For the first result, observe that for any two stablecoin levels C and C ′, the issuance
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policy form part of an equilibrium if

E(A,C) ≥ E(A,C ′) + p(A,C ′)(C ′ − C) (28)

Equation (28) simply states that by definition of E(A,C), the platform should weakly

prefer its equity value at C than a discrete jump at C ′. If E is strictly convex in C,

it can further be shown inequality (28) which means any discrete stablecoin issuance or

repurchase is dominated. Hence, the issuance policy should be smooth.

The second result from Lemma 3 is a consequence of the “leverage ratchet effect”. If

the equilibrium issuance policy is smooth, platform owners may not capture any of the

liquidity benefits from stablecoin issuance. This result is similar to DeMarzo and He

(2021) who study a dynamic debt issuance problem. The leverage ratchet effect implies

that the protocol value in any equilibrium with a smooth issuance policy is equal to its

value without stablecoins, which is zero, because the protocol owns no asset. In our model,

we can further show that the platform is unable to maintain a peg, which implies the

stablecoin has no value in equilibrium if the issuance policy is smooth everywhere.

The second preliminary result is the counterpart of Lemma 3. It shows that if the equity

value is linear over some segment, the equilibrium issuance policy must feature jumps.

Lemma 4. If the equity value e(a)is linear over some interval [aL, aU ], the equilibrium

issuance policy features a a target demand ratio ajump ∈ [aL, aU ] such that the issuance

policy for any a ∈ [aL, aU ] is to jump at ajump.

Lemma 3 and 4 restrict the set of issuance policies compatible with an equilibrium with

strictly positive stablecoin value. They show that the issuance policy must feature jumps,

but leave open the possibility that there could be several non-overlapping regions with

discrete issuance or repurchase. We can show however that the equilibrium issuance policy

must be part of the class of stable issuance policies.

Proposition 4 (Equilibrium Issuance Policy). An issuance policy dG that forms part

of a Markov equilibrium induced by an optimal coupon policy (chosen at date 0) must be a

stable debt policy with default boundary a = 0.

The first standard step of the proof consists in showing that the equilibrium equity value

must be weakly convex. It implies that on any segment, the equity value is either strictly

convex or linear. We then show that the only possibility is that the equity value is strictly
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convex close to 0 and there is only one linear segment [ā,∞). This second step requires

using the optimality of a coupon policy chosen at date 0. In other words, there could be

coupon policies and associated MPEs in which the properties of Proposition 4 do not hold

but our argument then shows that these coupon policies may not be optimal. Given these

two steps, the result follows from Lemma 3 and 4.

Proposition 4 also shows that the platform never defaults, that is, a = 0. This result arises

because the platform is never forced to make payments in the unit of account. It chooses

its issuance-repurchase policy ex-post, and can thus always choose not to repurchase debt.

Second, the only transfer to stablecoin owners via the coupon policy is made in stablecoins,

not in the unit of account. As the platform can issue stablecoins at no cost, it cannot gain

from defaulting. Hence, it is always preferable to hope for resurrection.

Knowing that a MPE with positive stablecoin value must feature a stable debt policy,

we can provide conditions on the equilibrium equity value and the stablecoin price.

Proposition 5. Let δ(a) be an optimal coupon policy chosen at date-0. A non-zero MPE

induced by this coupon policy satisfies the following properties

1. Equity value e(a) is strictly convex in a for a ∈ [0, a] and linear for a ≥ a with

(r + λ)e(a) = −δ(a)p(a) + µae′(a) +
σ2

2
a2e′′(a) + λE[e(Sa)], ∀a ≤ a. (29)

2. The stablecoin price p(a) is strictly increasing (equal to 1) for a ∈ [0, a] (a ≥ a) with

(r + λ)p(a) = δ(a)p(a)− (g(a) + δ(a)− µ)ap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)], ∀a ≤ a.

(30)

3. In the smooth region [0, a], the platform’s issuance rate is equal to

g(a) =
δ′(a)p(a)

p′(a)
(31)

and the platform’s equity value is the same as if it issued no debt.

4. The coupon policy must satisfy

δ(a) ≥ (r + λ) + λE[e(Sa)]− (`(a?) + λE[e(Sa?) + p(Sa?)])
a

a?
for all a ≥ a. (32)
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We show in the proof of Proposition 4 that a stable debt issuance policy is only compatible

with equity value and stablecoin price functions that satisfy Conditions 1 and 2. When the

platform is in the peg region, it implements a constant demand ratio a?. In this region,

from any debt level C the platform issues a discrete block of stablecoins C?(A)−C at price

p(A,C?(A)). Hence, equity value is given by

E(A,C) = E(A,C?(A)) + p(A,C?(A))(C?(A)− C)

e(a) =
[
e(a?) + p(a?)

] a
a?
− p(a?) (33)

which implies e(a) is linear in a. As before, the platform sets the coupon policy δ(a?) to

ensure p(a?) = 1 as otherwise stablecoin owners would not enjoy liquidity benefit.

In the smooth region, that is, when a falls below a, the platform abandons the peg. The

stablecoin price is strictly positive and increasing in the smooth region although stablecoin

owners do not currently enjoy liquidity benefits. As the peg may be restored following

a series of positive demand shocks, however, future stablecoin owners will enjoy liquidity

benefits, which supports the price today. Equations (29) and (30) are the Hamilton-Jacobi-

Bellman equations in the smooth region for equity value and stablecoin price respectively

Equilibrium requirement 3 states that the platform is indifferent between issuing stable-

coins and staying idle in the smooth region. A smooth debt policy can be optimal only if

the return to issuance is zero. This result is similar to the leverage ratchet effect of DeMarzo

and He (2021) in a similar context. Because the platform can freely and continuously issue

stablecoins, it is unable to capture any issuance benefit under limited commitment because

it competes against its future self, a version of the Coase (1972) problem for monopolists.

Unlike in DeMarzo and He (2021), however, our equilibrium also features a peg region in

which the platform does enjoy issuance benefits.

The result that the platform is indifferent about stablecoin issuance in the smooth region

does not mean that the platform does not issue stablecoin in this region. Stablecoin

issuance may be necessary to support the equilibrium price.14 Equation (31) shows that

the issuance policy is determined by the endogenous price function and the coupon policy.

The steepest the price function (high p′(a)), the largest the platform’s price impact and the

lower issuance or repurchase is. The platform issues (repurchases) if δ′(a) > 0 (δ′(a) < 0),

14A good analogy is with a mixed-stategy Nash equilibrium in which a player is indifferent between
options but one specific randomization should be chosen to support the equilibrium.
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that is, it the ex-post equilibrium issuance policy leans against the coupon policy chosen

ex-ante. In particular, if the coupon decreases with a, δ′(a) > 0, so as to penalize low

demand ratios, the platform repurchases debt to avoid the increase in coupon payments.

Finally, Criterion 4 is a condition on the coupon payment policy such that no deviation

to a smooth debt policy is preferred to the equilibrium policy in the target region. To get

some intuition about this condition, consider a demand ratio a = A
C ∈ [a, a?] in the peg

region for which the platform is supposed to jump to a?. Instead of the equilibrium policy,

suppose the platform deviates by not jumping and then revert back to the equilibrium

policy after an interval dt. We show that this deviation is unprofitable if15

(r + λ)(C − C?(A))︸ ︷︷ ︸
gain from

postponing repurchase

≤ δ(a)C − δ(a?)C?(A) +λ(E[E (SA,C?(A))]− E[E(SA,C)])︸ ︷︷ ︸
protection against

large negative shocks

(34)

The left-hand-side of (34) is the gain from postponing the repurchase, equal to the effective

interest rate r+λ multiplied by the equilibrium repurchase quantity C−C? at equilibrium

price of 1. The right-hand side of (34) corresponds to the punishment from the deviation.

The first term is the difference in coupon payments evaluated at the stablecoin price of 1.

The second term is the benefit from implementing a larger demand ratio a? vs. a which

protects against large negative demand shocks. Condition (32) follows directly from (34).

The platform chooses the coupon policy at date 0 under the constraint δ(a) ≥ 0. It

is thus always possible to specify a coupon policy such that (32) is satisfied because the

coupon policy on a ∈ [a,∞)\{a?} does not impact equilibrium objects. Indeed, the optimal

issuance policy is to jump to a? when a ∈ [a,∞), which implies states a ∈ [a,∞)\{a?}
are not visited in equilibrium. Hence, given equilibrium objects, one can always set δ on

[a,∞)\{a?} so as to satisfy (32). The coupon policy on [a,∞)\{a?} plays the role of an

out-of-equilibrium threat to discourage deviations in the target region.

Having characterized the MPE without commitment to the issuance policy, we may now

analyze the optimal coupon policy δ(a) chosen to maximize the date-0 platform value. At

date 0, the platform takes as given the equilibrium played by its future selves who have

full discretion over the repurchase-issuance policy. Hence, unlike in the full commitment

case, the coupon policy plays a new role: it can help discipline the platform in the future

15The same condition applies if instead a ≥ a? but in this case the platform is supposed to issue
stablecoins rather than repurchase them, which means the commitment problem does not bind.
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to act in its own interest at date 0. To simplify the analysis, we assume the coupon policy

is fixed in the smooth region, similar to the restriction imposed under full commitment.

Assumption 2. The coupon policy in the smooth region is such that δ(a) = δ for a ≤ a.

Assumption 2 simplifies the problem because we can provide analytical functional forms

for the MPE equity value and price in the smooth region. Setting δ(a) = δ in HJB equations

(29) and (30), we can guess and verify the following functional forms

e(a) =

{ ∑3
k=1 ck(a/a)−γk if a < a,

(e? + 1)a/a? − 1 if a ≥ a,
, (35)

p(a) =

{ ∑3
k=1 bk(a/a)−γk if a < a

1 if a ≥ a,
. (36)

where γks are roots of the characteristic equation

r + λ− δ = −(µ− δ)γ +
σ2

2
(1 + γ)γ +

λξ

ξ − γ
. (37)

We may now characterize the optimal choice of the paltform at date 0. Under Assumption

2 optimization problem over the coupon policy can be thought as a choice over θ0 =

{δ, δ?, a, a?}. The platform chooses the optimal policy θ?0 to maximize the platform’s value

at date 0 subject to the requirement that the stable issuance policy with parameters θ?0 is

part of an MPE. We show that the optimization problem can be characterized as follows.

Lemma 5 (Optimal Policy). The optimal date-0 policy θ?0 for a centralized uncollater-

alized platform is the solution to the following maximization problem

E0/A0 = max
{a,a?,δ}

`(a?)/a?

r + λ
ξ+1 − µ+

(
λξ
ξ+1 −

λξ
ξ−γ

) (
a?

a

)−(ξ+1)
, (38)

subject to
γ

1 + γ

1

a
=

`(a?)/a?

r + λ
ξ+1 − µ+

(
λξ
ξ+1 −

λξ
ξ−γ

) (
a?

a

)−(ξ+1)
, (39)

a ∈ [0, a?] (40)

with γ the only negative root of equation (37).
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Observe first that δ? does not appear in the maximization program. As before, the

only role of this parameter is to ensure the price is pegged at one in the target region,

that is, p(a?) = 1. We thus substituted for the corresponding value of δ? to write the

platform’s objective function (38). The second constraint is the smooth-pasting condition

for the equity value between the target and the smooth regions. This constraint reflects

the requirement that the issuance policy must be optimal ex-post for the platform. In

particular, the platform chooses optimally to switch from the peg to the smooth region.

This feature generates condition (97). We show in the proof of Lemma 5 that this constraint

implies that limited liability is satisfied for all values of a. Finally, the last constraint must

be satisfied for a MPE to exist by definition of a stable debt policy.

Unlike in the full commitment case, a precise analytical characterization of the solution

is difficult. The proof of Lemma 5 reports partial characterization for some cases. In

the main text, we provide a numerical illustration of the dominant MPE in Figure 2.

For each panel, the solution without commitment is compared to the solution where the

only constraint is limited liability. We show that under limited commitment, the protocol

chooses a lower target inverse supply a? and it abandons the peg for a higher value of

a. These differences are reflected in a lower value of equity and of total protocol value

compared to the commitment case.
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Figure 2: Solution with commitment and limited liability (black) and without commitment (blue).
The set of parameters is given by r = 0.06, µ = 0.05, σ = 0.1, `(a) = r exp(−C/A), ξ = 6, λ = 0.10.

4.3 Centralized Platform with Collateral

[Preliminary.]
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In this section, we consider a minimum collateralization rule as a tool to improve the sta-

bility of a centralized stablecoin protocol. This analysis sheds lights on crypto-collateralized

protocols, for which we provide a balance sheet representation in Figure ??. Unlike an un-

collateralized protocol with no asset, a collateralized protocol holds the cryptoasset on its

balance sheet to back stablecoin issuance. The difference between the market value of the

cryptoasset and the par value of stablecoins is akin to overcollateralization. Overcollater-

alization creates a buffer in case the collateral asset suddenly looses its value.

In the following section, we solve for equilibrium issuance, collateralization, and default

strategies dG, dM, and τD given commitment to the interest policy δ(a) and a minimum

collateralization rule K = ϕC. The collateralization rule forces the protocol to maintain a

minimum ratio between its cryptoasset holdings and the stock of stablecoins issued. The

protocol shuts down automatically when he collateralization rule, given by Kt ≤ K, is

breached, which happens at stochastic time τK

4.4 Stability Benefits of Collateral

In this section, we characterize the optimal collateral policy of the protocol. The collateral

policy dM specifies the change in the value of collateral held by the protocol as a function

of current state variables Kt− , Ct, At. The law of motion for collateral is given by (4).

Our first result is that in equilibrium, the protocol’s equity value is linear in the amount

of collateral it holds.

Lemma 6. In any MPE in (A,C,K), E(A,C,K) is linear and increasing in K. Hence,

∀K,K ′ ≥ ϕC, E(A,C,K) = E(A,C,K ′) +K −K ′. (41)

The intuition for Lemma 6 is that the protocol can freely add or remove collateral to the

platform subject to the collateralization constraint, and the protocol has no influence on

the cryptoasset price. These features imply that the equilibrium equity value is linear in

the value of collateral held by the platform.16 To form intuition about (41), it is useful to

remember the optimality decision for debt , given by equation (??) in Proposition 5. The

derivative of the equity value with respect to stablecoin issuance is equal to the price of

16The cryptoasset price is not equal to one, but Kt is the value of collateral held by the protocol, as
opposed to the amount of collateral. Hence, a change from K to say K′ > K costs K′−K to the platform.
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stablecoins. Equation (41) shows the same equation holds with respect to collateral with

the only difference that the collateral price is exogenously given.

Lemma 6 motivates the following conjecture for the optimal collateral policy. For any

value (A,C) of cryptoasset value and stablecoin stock, there exists a collateral target

such that the protocol buys/sells collateral discretely to reach that target from any level

K ≥ ϕC. Formally, we define the following class of policies

Definition 3 (Class of Targeted Collateral Policies). A collateral policy is part of

the class of targeted collateral policies T if it is characterized by a lower bound ã and a

collateral target function k?(a) such that, denoting k ≡ K
C ,

dM(at, kt- , Ct-) =


0 if at < a,

(ϕ− kt-)Ct if a ≥ at ≥ ã.
(k?(at)− kt-)Ct if at > ã.

(42)

Equation (41) shows that if the protocol considers a discrete collateral change from any

level Kt, any adjustment is weakly optimal by the linearity of the equity value function. In

particular, an adjustment to some specified target K?(A,C) is optimal. To characterize the

target k?(a) = K∗(A,C)
C , we provide conditions such that there is no smooth deviation - of

the order dt - from the discrete adjustment policy. We obtain the following characterization

Lemma 7 (Equilibrium Collateral Policy Characterization). A targeted policy is

part of a MPE with positive stablecoin price if

λ
∂Et[E(SA,C, SK]

∂K

∣∣∣∣
K=K?(A,C)

= r + λ− µ (43)

Any equilibrium collateral policy is part of the class of targeted collateral policies.

Condition (43) captures the trade-off that pins down the optimal collateral targetK∗(A,C).

The right-hand-side is the marginal cost of adding one unit of cryptoasset as collateral for

the protocol. It is equal to the effective opportunity cost, r + λ, of the protocol minus the

growth rate of the cryptoasset µ. As explained before, this difference can be interpreted

as the cost of locking up the cryptoasset as collateral. The left-hand-side of (43) is the

marginal benefit of adding one unit of collateral evaluated at the target K?(A,C). Collat-

eral protects the protocol against the risk that a negative Poisson shock to the cryptoasset
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triggers a breach of the minimum collateral requirement. The right-hand-side is indeed

proportional to the probability of such as shock. Intuitively, if the protocol sets collateral

equal to the minimum requirement ϕC, any negative discrete shock triggers a shutdown.

Setting too high a collateral target is not optimal either as the protocol finds it optimal

not to fight some very negative Poisson shocks under limited liability.

5 Decentralized Protocols

[To be completed.]

In this section, we adapt our general model to account for decentralized stablecoin proto-

cols. Such protocols—with Dai as its most prominent example—allow for the decentralized

creation of new stablecoins by anyone with enough collateral. To do so, individual investors

have to lock some collateral asset in a smart contract generated by the protocol—a vault—

and can issue some stablecoins against it. Once the stablecoins are sold to outside investors,

the vault represents for its owner a leveraged position in the collateral asset. Moreover, the

newly issued stablecoins are not tied to a particular vault and are fully indistinguishable

from other stablecoins—i.e., decentralized stablecoins are perfectly fungible. Vault owners

can unlock their collateral assets by repurchasing and “burning” enough stablecoins to

liquidate the vault. The system’s stability, therefore, relies on providing the right set of

incentives for individual investors to adopt prudent risk management practices and not to

over-extend the supply of stablecoins. As in the centralized case, the protocol also issues

governance tokens with voting rights on the system’s key parameters and claims to the

system’s seigniorage revenues.

5.1 Tokens Valuation

In a decentralized crypto-collateralized protocol, individual vaults indexed i ∈ [0, 1] are

created using collateral value Ki
t in exchange for a quantity Cit of stablecoins with price

pt. When the loan is repaid by the vault owner, the stablecoin is “burned” and removed

from the supply. As for centralized crypto-collateralized protocols, a vault with the value

of its collateral Ki
t below the threshold ϕCit is liquidated. In such a case, the vault owner

receives the value of the collateral after repayment of the stablecoins, if any. As there is no

heterogeneity across infinitesimal vault owners, the state variables of the system is given
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by total stock of collateral, stablecoins, and the market capitalization of crypto-assets:

Kt =
∫
Ki
tdi, Ct =

∫
Cidi, and At.

We differentiate vault-specific variables from their aggregate counterparts by the super-

script i. Thus, the value of a vault (decentralized equity) can be written as

V (At, Ct- , C
i
t- ,Kt- ,K

i
t-) = max

τ i,dGi,dMi
Et
[ ∫ τ i

t
e−r(s−t)

(
psdGis − dMi

s

)
+ e−r(τ

i−t) max{Ki
τ i − C

i
τ i , 0}

]
such that

dCit = stC
i
tdt+ dGis, and dKi

t = µKi
tdt+ σKi

tdZt +Ki
t-(SNt − 1)dNt + dMi

t.

Fees accrue through time between the different investors according to predetermined

parameters. Stablecoin holders receive the convenience yield `C as well as some interest rate

paid in stablecoins by the governance system δ. Besides paying this interest to stablecoin

holders, the governance system charges vault owners the stability fee—denoted s. As a

result, the net nominal spread earned by the governance token is (s − δ)C. Whenever a

vault is liquidated, the platform must dilute the equity of the system to sustain the loss at

time t given by
∫

min{Ki
t − Cit , 0}1{τ i = t}di. Thus, an equity token value is given by

E(At, Ct- ,Kt-) = max
τ,δ,s

Et
[ ∫ τ

t
e−r(s−t)

((
ss − δs

)
ps −

∫
min{Ki

s − Cis, 0}1{τ i = s}di
)
ds

]
.

Finally, the price of one stablecoin per unit of debt is given by

p(At, Ct- ,Kt-) = E
[ ∫ τ

t
e−r(s−t) (`(As, Cs) + δsps) ds+ e−r(τ−t) min{Kτ/Cτ , 1}

]
.

5.2 Arbitrage

Given any amount of stablecoin issued by an individual vault Ci, vault owners have the

option to adjust to C̃i by issuing C̃i − Ci at the price of p(A,C,K). Therefore, the value

of the vault must be at least as high as the value of the vault after the adjustment:

V (A,C,Ci,K,Ki) ≥ V (A,C, C̃i,K,Ki) + p(A,C,K)(C̃i − Ci).
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Contrarily to the centralized setting, the price of the stablecoin is not a function of leverage

of the individual vault and the previous equation must hold with equality. The same

argument holds for the collateral and we get that the value of a vault must be linear in Ci

and Ki:

V (A,C,Ci,K,Ki) = V (A,C, C̃i,K, K̃i) + p(A,C,K)(C̃i − Ci)− (K̃i −Ki).

for all and Ki ≥ ϕCi ≥ 0 and K̃i ≥ ϕC̃i ≥ 0. Furthermore, because the value of creating

an empty vault must be 0, otherwise there are arbitrage opportunities, we get

V (A,C,Ci,K,Ki) = Ki − p(A,C,K)Ci. (44)

This has non-trivial consequences. Whenever the discounted value of owning a vault devi-

ates from that equality, arbitrage opportunities arises to either create or burn vaults and

stablecoins. By adjusting the stability fee s, the maker can incentivize arbitrageurs to

adjust the supply to a desired target. As atomistic agents, vault owners cannot capture

any value from the option to default and do not internalize the impact of their issuance on

the stablecoin price.

Another consequence of condition (44) is that the minimum collateral requirement must

be at least as high as the value of stablecoin issued: ϕ ≥ 1. Otherwise, a vault owner

might issue more stablecoin than the value of the collateral and dispose of the vault. In the

following lemma, we establish that if the minimum collateralization rate is not too high,

it is never optimal to inject more collateral than the strict minimum to protect the vault

against unintended liquidation due to large negative demand shocks.

Lemma 8. If

ϕ ≤ 1 +
1

ξ + 1
,

then Ki(A,C,K,Ci) = ϕCi.

Thus, we can simplify the notation by defining the value of a vault per unit of stablecoin

issued:

V (A,C,Ci,K(A,C),Ki(A,C,Ci)) ≡ v(a)Ci = (ϕ− p(a))Ci. (45)

If the stability fee s(a) is too high or the price of the stablecoin p(a) is too low such that
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v(a) < ϕ − p(a), vault owners will be able to make arbitrage profits by purchasing and

burning stablecoins to get back the collateral in their vault. Equity holders then internalize

that any deviation from the pair of stability fee s(a) and interest payment δ(a) such that

the arbitrage condition (45) is not satisfied triggers immediate changes in the supply of

stablecoins. In the following proposition, we characterize the unique MPE policies for a

decentralized platform.

Proposition 6 (Targeted MPE). The unique MPE policies s(at) and δ(at) are such

that dGt =
∫
dGitdi is given by

dG(at, Ct-) =

{
0 if at < a,

C?(At)− Ct- if at ≥ a.

where C?(At) ≡ At/a? is defined by

C?(A) = arg max
C

{
`(A,C)C − (r + λ− µ)ϕC + λE[SϕC − C]

}
. (46)

At a?, the policies are given by

s(a?) = µϕ− (r + λ)(ϕ− 1) + λE[max(0, Sϕ− 1)]

and

δ(a?) = r − `(a?).

The value of equity is given by

E(A) =
`(a?)− (r + λ− µ)ϕ+ λE[Sϕ− 1]

a?
A

r − µ
.

The key insight is that in the presence of arbitrageurs, equity holders are able to target

an optimal ratio a? with the stability fee and the interest payment policies without incen-

tives to deviate. Any deviation from the equilibrium policies s(a?) and δ(a?) triggers an

immediate adjustment of the supply of stablecoins to a suboptimal level. Thus, a decen-

tralized platform does not require commitment to any of its policies to enforce a stable

equilibrium.
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6 Conclusion

In this work, we propose a general model of stablecoins and examine the merit and vulnera-

bility of various stabilization mechanisms. Our analysis points out that stablecoin protocols

share some—but not all—features with conventional financial institutions such as mutual

funds, banks, and central banks. In particular, collateralization and liquidation covenants

play a crucial role in the stabilization of crypto-collateralized protocols. We demonstrate

that these schemes are highly dependent on the market liquidity of their collateral assets

and are vulnerable to fire-sales spirals of the type observed during the 2008 financial cri-

sis. In contrast, uncollateralized algorithmic schemes rely on irredeemable stablecoins and

quantity adjustments with alleged inspiration from central banks. As for a central bank,

we show that issuing irredeemable liabilities does not dispense from holding tangible as-

sets. Otherwise, there is always a limit to how many stablecoins can be withdrawn when

facing a negative demand shock, and the scheme loses its control over prices. Importantly,

decentralizing the issuance and redemption of stablecoins to atomistic agents resolves the

commitment issues of the platform. Overall, our work has practical implications for the

design and regulation of future stablecoins. In particular, we point to collateralization,

automatization, and decentralization as essential stabilization tools.
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Appendices

A Proof of Proposition 2

Integrating the first term of (8) by parts, we obtain

E0 = max
{δt,dGt}t≥0

E0

{[
ptCte

−rt]∞
0
−
[∫ ∞

0
e−rtCt (dpt − rptdt)

]}
= max
{dGt}t≥0

E0

[∫ ∞
0

e−rt`(At, Ct)Ctdt

]
,

To obtain the second line, we guess and verify that limt→∞ E0[ptCte
−rt] = 0 and we use the

pricing equation to substitute for E0[dpt − rpt]. Finally, δt is only determined to the extent

that it maintains the price peg. The platform’s problem under full commitment is thus

static and the optimal issuance rule is such that Ct maximizes `(At, Ct)Ct. By Property

(iii) in Assumption 1, this maximizer exists, is unique, and is given by (9). The fact that

C?(A) = A
a? follows from Assumption 1. Finally, our conjecture limt→∞ E0[ptCte

−rt] = 0

and the fact that the objective function is bounded follows from the fact that At grows at

a rate inferior to r.

To conclude, the optimal issuance-repurchase policy {dGt}t≥0 features a jump from 0 to

C∗(A0) at date 0 and is such that dGt + δtCtdt = dAt for t > 0.

B Proof of ??

In this section, we first solve for the value of equity and the stablecoin price given the

following policies for δt and Gt:

dGt =

{
0 if At/Ct- < a,

C?(At)− Ct- if At/Ct- ≥ a.

where C?(At) ≡ At/a?L and

δt =

{
δ if At/Ct- < a?L,

δ? if At/Ct- = a?L.
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There is no need to specify the value of δ(At, Ct-) for At/Ct- ∈ [a, a?L) ∪ (a?L,∞) as the

platform never stays in that state. A policy θ0 = {a, a?L, δ, δ?} chosen at date 0 is thus

given by four parameters. For ease of notation, we write a? instead of a?L in this proof.

In the first step of the proof, we solve for the equity value and the stablecoin price over

the whole state space a ∈ [0,∞). We then derive the platform value at date 0 and maximize

over the policy

B.1 Equity Value

As explained in the main text, the relevant state variable is a = A/C. Hence, we only need

to characterize e(a) ≡ E(A,C)/C.

We conjecture then verify that the equity value per unit of stablecoin is given by

e(a) =

{ ∑3
k=1 cka

−γk if 0 ≥ a < a,

(e(a?) + p(a?))a/a? − p(a?) if a ≥ a,
(47)

where γks (ordered in decreasing order) are the roots of the characteristic equation

r + λ− δ = −(µ− δ)γk +
σ2

2
(1 + γk)γk +

λξ

ξ − γk
. (48)

The roots of that polynomial are given by

γk = − 1

2t1

(
t2 + ζνR+

∆0

ζνR

)
where

∆0 = t22 − 3t1t3, ∆1 = 2t32 − 9t1t2t3 + 27t21t4,

R =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
, ζ =

−1 +
√
−3

2
, ν = {0, 1, 2},

t1 = −σ
2

2
, t2 = µ− δ +

σ2

2
(ξ − 1), t3 = −(µ− δ)ξ +

σ2

2
ξ + r − δ + λ, t4 = −(r − δ)ξ.

According to Descartes’ rule of sign, this polynomial has 2 positive roots and 1 negative

root if δ < r and 1 positive root and 2 negative roots if r < δ < r + λ. We can show

numerically that for {r, σ, λ, ξ, µ, δ} ∈ (0, 1)×R+× (0, 1)×R>0× [−∞, r+λ/(ξ+ 1)]×R+,
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it always holds that γ2 > −1, γ3 < −1, and ∂γ3/∂δ < 0. (If λ = 0, it can be shown

algebraically that only 1 root is strictly lower than 1 and the derivative of that root with

respect to is negative.)

No-Active-Issuance Region a ∈ [0, a) Given that the policies depends only on the

state (A,C), we can solve the value of Et = E(At, Ct) recursively thanks to the Hamilton-

Jacobi-Bellman equation (HJB). The HJB is given by

(r + λ)E(A,C) = µAEA(A,C) + δCEC(A,C) +
σ2

2
A2EAA(A,C) + λE[E(SA,C)].

Given E(A,C) = e(a)C,

(r + λ)e(a) = µae′(a) + δ(e(a)− e′(a)a) +
σ2

2
a2e′′(a) + λE[e(Sa)]. (49)

We will use equation (49) to determine the coefficients of our functional guess in (47).

We first need to compute term E[e(Sa)] using the conjectured e(a). We have

E[e(Sa)] =

∫ ∞
0

{
e(e−sa)ξe−ξs

}
ds =

∫ ∞
0

{
3∑

k=1

cke
sγka−γk

}
ξe−ξsds =

3∑
k=1

ckξa
−γk

ξ − γk
.

We then plug in guess (47) into the HJB to obtain

(r + λ− δ)e(a) = −(µ− δ)
3∑

k=1

γkcka
−γk +

σ2

2

3∑
k=1

(1 + γk)γkcka
−γk + λE[e(Sa)]. (50)

Equation (48) is a necessary condition for (101) to hold, which confirms our characterization

of γ is satisfied. Next, we used standard boundary conditions. The first boundary condition

is that equity value should be equal to 0 when a = 0, that is,

3∑
k=1

cka
−γk

∣∣∣∣∣
a=0

= 0.

This is only possible if coefficients c1 and c2 associated with positive roots of (48), re-

spectively γ1 and γ2 are equal to 0. The second boundary condition is a value matching

condition at the boundary a between the no-issuance region [0, a] and the target region
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[a,∞). Given c1 = c2 = 0, we have

c3a
−γ = e(a) ≡ (e(a?) + p(a?))a/a? − p(a?),

where, with a slight abuse of notation, we also denote e for the equity value function in the

target region. We will prove the second equality below in the analysis of the target region.

Putting our results for the no-issuance region together, we have

∀ a ≤ a, e(a) =

(
(e(a?) + p(a?))

a

a?
− p(a?)

)(a
a

)−γ
(51)

Target Region a ∈ [a,∞) By definition when (A,C) is such that a = A/C ≥ a, the

platform issues a discrete amount of debt C?(A)− C. Hence, any such (A,C), the equity

value satisfies

E(A,C) = E(A,C?(A)) + p(A,C?(A))(C?(A)− C) (52)

e(a) =
[
e(a?) + p(a?)

] a
a?
− p(a?) (53)

where to obtain the second equation, we divided the first by C. To determine the optimal

policy θ∗0, we need to solve for the equity value at the target demand ratio a? = A/C?(A).

The recursive equation for the equity value is

E(a?Ct- , Ct-) = (1− rdt)E [E(a?Ct- + dAt, Ct- + dCt)]

= (1− rdt)(1− λdt)E [E(a?Ct- + dAt, Ct- + dCt)| dNt = 0]

+ (1− rdt)λdtE [E(a?Ct- + dAt, Ct- + dCt)| dNt = 1] . (54)

We first derive the expectation if no jumps occur in the interval [t, t+ dt] (i.e., dNt = 0).

Using equation (52), we have

E [E(a?Ct- + dAt, Ct- + dCt)| dNt = 0]

= E [e(a?)C?(a?Ct- + dAt) + p(a?)(C?(a?Ct- + dAt)− Ct- − dCt)| dNt = 0] .

By Ito’s Lemma

E [C?(a?Ct- + dAt)| dNt = 0] = Ct-(1 + µdt).
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We thus obtain

E [E(a?Ct- + dAt, Ct- + dCt)| dNt = 0] = e(a?)Ct-(1 + µdt) + p(a?)Ct-(µ− δ?)dt. (55)

Now we consider the last term of (54) that corresponds to Poisson jumps to A. If

the jump dAt/At- = St − 1 is such a?St > a, then the equity holders compensate this

jump and the state returns to a?. Thus, they repurchase Ct-(1 − St) units of debt and

dGt = Ct-(St − 1). Similarly,

E
[
C?(a?Ct- + dAt)

∣∣∣∣dNt = 1, St ≥
a

a?

]
= Ct-(St + µdt).

Thus,

E
[
E(a?Ct- + dAt, Ct- + dCt)

∣∣∣∣dNt = 1, St ≥
a

a?

]
= e(a?)Ct-(St + µdt) + p(a?)Ct-(St − 1)

+ p(a?)(µ− δ?)dt.

Suppose now St < a/a?, by definition of the policy, there are no instantaneous adjustments

and we cannot use the identity in (52). Therefore,

E
[
E(a?Ct- + dAt, Ct- + dCt)

∣∣∣∣dNt = 1, St <
a

a?

]
= E(a?Ct-St, Ct-) + EA(a?Ct-St, Ct-)µdt

+
σ2

2
EAA(a?Ct-St, Ct-)dt+ EC(a?Ct-St, Ct-)δ(a

?St)dt

Note that all terms except the first one are of the order dt. When plugged back into (54),

these terms multiply λdt and are thus of order (dt)2. Keeping only terms of order dt in

(54), we obtain

e(a?)Ct- = p(a?)Ct-(µ− δ?)dt+ (1− rdt− λdt)e(a?)Ct-(1 + µdt)

+ λdtCt-

∫ ln(a?/a)

0

(
e−s(e(a?) + p(a?))− p(a?)

)
ξe−ξsds

+ λdtCt-

∫ ∞
ln(a?/a)

e(a?e−s)ξe−ξsds
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Scaling by Ct-dt, we get

(r + λ− µ)e(a?) = p(a?)(µ− δ?) + λ

∫ ln(a?/a)

0

(
e−s(e(a?) + p(a?))− p(a?)

)
ξe−ξsds

+ λ

∫ ∞
ln(a?/a)

e(a?e−s)ξe−ξsds. (56)

Using equation (51), which gives e(a) for a ≤ a, we can solve for the last term of (56),∫ ∞
ln(a?/a)

e(a?e−s)ξe−ξsds =

∫ ∞
ln(a?/a)

(
(e(a?) + p(a?))

a

a?
− p(a?)

)(
a?e−s

a

)−γ
ξe−ξsds

=

(
(e(a?) + p(a?))

a

a?
− p(a?)

)
ξ

ξ − γ

(
a?

a

)−ξ
.

Solving for all integrals, we get

(r + λ− µ)e(a?) = p(a?)(µ− δ?) +
λξ

ξ + 1

(
1−

(
a?

a

)−(ξ+1)
)

(p(a?) + e(a?))− λp(a?)

(
1−

(
a?

a

)−ξ)

+ λ

(
(e(a?) + p(a?))

a

a?
− p(a?)

)
ξ

ξ − γ

(
a?

a

)−ξ
Putting all terms in e(a?) on the left hand side gives(
r +

λ

ξ + 1
− µ+

λξ

ξ + 1

(
a?

a

)−(ξ+1)
)
e(a?) = p(a?)

(
µ− δ? − λ

ξ + 1
− λξ

ξ + 1

(
a?

a

)−(ξ+1)

+ λ

(
a?

a

)−ξ)

+ λ

(
(e(a?) + p(a?))

a

a?
− p(a?)

)
ξ

ξ − γ

(
a?

a

)−ξ
or (

r +
λ

ξ + 1
− µ+

(
λξ

ξ + 1
− λξ

ξ − γ

)(
a?

a

)−(ξ+1)
)
e(a?)

= p(a?)

(
µ− δ? − λ

ξ + 1
−
(

λξ

ξ + 1
− λξ

ξ − γ

)(
a?

a

)−(ξ+1)

− λγ

ξ − γ

(
a?

a

)−ξ)
. (57)

Denoting

c ≡ r +
λ

ξ + 1
− µ, b(γ) ≡ λξ

ξ + 1
− λξ

ξ − γ
(58)
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we can rewrite this last equation as follows

e(a?) + p(a?) =
r − δ? − λγ

ξ−γ
(
a?

a

)−ξ
c+ b(γ)

(
a?

a

)−(ξ+1)
p(a?) (59)

B.2 Stablecoin Price

Similarly, we conjecture then verify that the price of a stablecoin is given by

p(a) =

{ ∑3
k=1 bka

−γk if 0 ≤ a < a,

p? if a ≥ a.

Smooth Region a ∈ [0, a) In the smooth region, the HJB is given by

(r + λ− δ)p(a) = (µ− δ)ap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)]. (60)

Let us compute the integral using the conjectured p(a):

E[p(Sa)] =

∫ ∞
0

p(e−sa)ξe−ξsds =

∫ ∞
0

3∑
k=1

bke
sγka−γkξe−ξsds =

3∑
k=1

bkξa
−γk

ξ − γk
.

We can plug in the guess into the HJB and solve for the undetermined coefficients:

(r + λ− δ)p(a) = −(µ− δ)
3∑

k=1

γkbka
−γk +

σ2

2

3∑
k=1

(1 + γk)γkbka
−γk + λE[p(Sa)].

For the previous equation to hold, it must be that characteristic equation (48) holds.

Imposing the boundary conditions p(0) = 0 and p(a) = p?, we obtain that the coefficients

with roots bigger than −1 are equal to 0 and

∀ a ≤ a, p(a) = p(a?)
(a
a

)−γ
, (61)

where γ is the same parameter as above, that is, the unique negative root smaller than −1

of equation (48).
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Target Region a ∈ [a,∞) Using the same steps as for the equity value, we can derive

the HJB for the target price at a?. We obtain

(r + λ)p(a?) = `(a?)1p(a?)=1 + δ?p(a?) + λp(a?)

∫ ln(a?/a)

0
ξe−ξsds+ λ

∫ ∞
ln(a?/a)

p(a?e−s)ξe−ξsds.

(62)

Given the expression for p on [0, a], it clear that the price can only be positive if is is equal

to 1 as otherwise the liquidity benefit term is equal to 0. Using equation (61), we can

express the last term of the equation above as follows∫ ∞
ln(a?/a)

p(a?e−s)ξe−ξsds =

∫ ∞
ln(a?/a)

p(a?)

(
a?e−s

a

)−γ
ξe−ξsds = p(a?)

ξ

ξ − γ

(
a?

a

)−ξ
or (

r + λ

(
a?

a

)−ξ)
p(a?) = `(a?)1p(a?)=1 + δ?p(a?) + p(a?)

λξ

ξ − γ

(
a?

a

)−ξ
⇔

(
r − λγ

ξ − γ

(
a?

a

)−ξ)
p(a?) = `(a?)1p(a?)=1 + δ?p(a?). (63)

Hence, the target price is pegged to 1 if

δ? = r − λγ

ξ − γ

(
a?

a

)−ξ
− `(a?). (64)

B.3 Optimal Policy

The maximization problem over the set of policy variables θ0 = {a, a?, δ, δ?} at time 0 is

given by

E0 = max
θ0

{
e(a?) + p(a?)

a?
A0

}
(65)

subject to ∀A,C ≥ 0 E(A,C) = Ce(a) ≥ 0,

a ∈ [0, a?], δ ≥ 0, δ? ≥ 0.
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Equations (51) and (52) show that the limited liability constraint e(a) ≥ 0 is satisfied for

all values of a if and only if it is satisfied for a = a, that is, if

e(a?) + p(a?)

a?
≥ 1

a
. (66)

Observe also that δ? ≥ 0 holds because r − ` > 0 by assumption and the second term of

(95) is positive because γ < 0. Finally, using equations (59) and (95) that ensures a price

peg, we can rewrite the objective as follows

e(a?) + p(a?)

a?
=
r − δ? − λγ

ξ−γ
(
a?

a

)−ξ
c+ b(γ)

(
a?

a

)−(ξ+1)
p(a?) =

`(a?)

c+ b(γ)
(
a?

a

)−(ξ+1)

1

a?

with c = r + λ
ξ+1 − µ and b(γ) = λξ

ξ+1 −
λξ
ξ−γ as defined in (58). Hence, we can rewrite the

optimization problem as follows:

E0/A0 = max
{a,a?,δ}

{
`(a?)

c+ b(γ)
(
a?

a

)−(ξ+1)

1

a?

}
,

subject to 1 ≤ `(a?)

c+ b(γ)
(
a?

a

)−(ξ+1)

a

a?
, (67)

a ∈ [0, a?], δ ≥ 0

Optimality Conditions Consider first the optimal choice of δ ≥ 0. This variable enters

the objective function or constraints only via the value of γ and equation (48) shows

this is the only policy variable in θ0 that determines γ. The objective function increases

and constraint (67) is relaxed when γ increases because b′(γ) < 0. The implicit function

theorem applied to (48) yields

∂γ

∂δ
=

1 + γ

µ− δ − σ2

2 − σ2γ − λξ
(ξ−γ)2

< 0, (68)

where the inequality follows from γ < −1. This implies δopt = 0.

Next, consider the optimal choice of a. The objective function strictly decreases with a,

but constraint (67) is violated for a = 0. Hence, this constraint must hold as an equality.

Let aopt(a?) be the minimum value of a ∈ (0, a?], if any, that satisfies the constraint as an
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equality. To characterize aopt(a?), it is convenient to denote H(a, a?) for the right-hand-

side of constraint (67). Computing the first-order derivative of H with respect to a, we

obtain

Ha(a, a
?) ∝ c− bξ

(
a

a?

)ξ+1

,

which is strictly positive for a = 0 (because c > 0 by assumption) and decreasing with a.

If Ha(a
?, a?) > 0 (Ha(a

?, a?) < 0), H attains its maximum at a = a? (a = a? (c/(ξb))
1
ξ+1 ).

A necessary and sufficient condition for aopt(a?) to exist is that this maximum is above 1,

that is,

`(a?) ≥
c+ bmin

{
1, cbξ

}
min

{
1, cbξ

} 1
ξ+1

. (69)

A necessary condition for a solution to exist is that lima→∞ `(a) is above the right-hand-side

of (69) because ` is strictly increasing by assumption. If that latter condition is satisfied,

constraint (69) can be written as a? ≥ a?lb, again because ` strictly increases with a?.

The platform’s objective is to minimize aopt(a?) with respect to a? subject to a? ≥ a?lb.

Two cases are possible. Suppose first a? > a?lb. Then optimality requires ∂aopt(a?)
∂a? = 0

where

∂aopt

∂a?
= −

`′(a?)
`(a?) H(aopt, a?)− aopt

(a?)2
Hx(aopt, a?)

Hx(aopt,a?)
a?

∝ aopt

a?
− `′(a?)aopt

`(a?)

c+ b
(
aopt

a?

)ξ+1

c− bξ
(
aopt

a?

)ξ+1

=
aopt

a?

1− `′(a?)aopt

c− bξ
(
aopt

a?

)ξ+1

 . (70)

with Hx the first-order-derivative of H with respect to x = a/a?. Setting the right-hand-

side of (70) to 0, one obtain an implicit characterization for a?, and is left to verify that this

value satisfies a? ≥ a?lb, with a?lb the lower bound imposed by (69). The second case is when

a? = a?lb. Then we have aopt = a?lb min
{

1, cbξ

}
. This case arises if the right-hand-side of

(70) is strictly positive for a? = a?lb, as otherwise the platform could increase a? to achieve

its objective to decrease a = aopt(a?).

In the first case discussed above, the optimal value of a? is interior, the solution is
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characterized by

`′(a?)aopt = c− bξ
(
aopt

a?

)ξ+1

,

`(a?)
aopt

a?
= c+ b

(
aopt

a?

)ξ+1

.

We thus obtain

`′(a?)a? = c
a?

aopt
− bξ

(
aopt

a?

)ξ
,

c
a?

aopt
= `(a?)− b

(
aopt

a?

)ξ
.

Hence, we get

`′(a?)a? = `(a?)− b(ξ + 1)

(
aopt

a?

)ξ
= `(a?) + λξ

1 + γopt

ξ − γopt

(
aopt

a?

)ξ
where we used the definition of b to obtain the last equation.

C Proof of Corollary 1

Observe that the denominator of the right-hand-side of (69) is above 1. Hence, equation

(69) can be satisfied only if

lim
a→∞

`(a) ≥ c = r +
λ

ξ + 1
− µ.

where the equality is by definition of c in (58).

D Proof of Lemma 3

We first show that if the equity value is strictly convex in C over some interval, the issuance

policy is smooth in this region. Given any debt level Ĉ, equity holders have the option to

adjust the stock of stablecoins to C by issuing C − Ĉ at the price of p(A,C). Therefore,
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by optimality of the debt issuance policy, the equity value at Ĉ must satisfy

E(A, Ĉ) ≥ E(A,C) + p(A,C)(C − Ĉ), (71)

To show that discrete repurchases are suboptimal, we prove that inequality (71) is strict

if the equity value is strictly convex with respect to its second argument. Suppose to the

contrary there exists C ′ 6= C such that E(A,C ′) = E(A,C) + p(A,C)(C − C ′). By strict

convexity of E, we get that for all x ∈]0, 1[

E(A, xC + (1− x)C ′) < xE(A,C) + (1− x)E(A,C ′) = E(A,C) + (1− x)p(A,C)(C − C ′).
(72)

Using then condition (71) for Ĉ = xC + (1− x)C ′, we obtain

E(A, xC + (1− x)C ′) ≥ E(A,C) + (1− x)p(A,C)(C − C ′),

which is a contradiction with (72). Thus, it must be that

E(A,C ′) > E(A,C) + p(A,C)(C − C ′).

Hence, any discrete issuance with |C −C ′| > 0 would be suboptimal for shareholders, that

is, the debt policy must be smooth everywhere E is strictly convex in C

Second, we show that equity value is equal to 0 everywhere if the debt policy is smooth

everywhere. With a smooth debt policy, dGt = gtCtdt where gt = Gt/Ct, the HJB for e is

given by

(r + λ)e(a) = max
g(a)

{
g(a)p(a) + µae′(a) + (g(a)− δ(a))(e(a)− e′(a)a) +

σ2

2
a2e′′(a) + λE[e(Sa)]

}
.

(73)

where e(a) = E(A/C, 1) by homogeneity. The smooth debt policy to be optimal, if the

firs-order condition with respect to g is satisfied, that is, if

p(a) = e′(a)a− e(a). (74)
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Thus, equation (73) simplifies to

(r + λ)e(a) = −δ(a)p(a) + µae′(a) +
σ2

2
a2e′′(a) + λE[e(Sa)]. (75)

Equity owners’ dividend is weakly negative and it is strictly negative when δ(a)p(a) > 0.

Hence, given limited liability, equity owners strictly prefer to default if δ(a)p(a) > 0 on any

part of the state space visited with positive probability. This implies e(a) = 0. Besides

for the stablecoin to have value, it is necessary that there exists a subset of values of a

visited with positive probability such that δ(a)p(a) > 0. Indeed, the liquidity benefit is

only captured if the price is pegged to one on such subset, but pegging the price requires

δ(a) > 0 on that subset. We showed, however, that the platform then strictly prefers to

default so the stablecoin cannot have strictly positive value.

E Proof of Lemma 4

We first show that if the equity value e is linearly increasing in a over some segment

a ∈ [aL, aU ], the equilibrium issuance policy cannot be smooth over this interval. We then

show that for any such interval [aL, aU ], there is a single jump point.

Step 1 Non-smooth issuance The proof is by contradiction. Suppose dGt = G(a)dt

over [aL, aU ] with g(a) ≡ G(a)/C the stablecoin issuance rate per unit of stablecoins. We

showed in the proof of Lemma 3 that a smooth issuance policy is optimal over this interval

if and only if

p(a) = −e(a) + e′(a)a. (76)

Thus, p′(a) = e′′(a)a = 0 where the second equality follows from the linearity of e. Hence,

the price is constant over the interval [aL, aU ], that is, p(a) = p. Rewriting HJB equation

(75) in this case, we obtain

(r + λ)e(a) = −δ(a)p+ µae′(a) + λE[e(Sa)]. (77)

Taking the first-order-derivative of the expression above, we respect to a, we obtain

e′(a) = −δ′(a)pµe′(a) + λE[e′(Sa)S] (78)
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The HJB equation for the stablecoin price is given by

(r + λ)p(a) = `(a) + δ(a)p(a)− (g(a) + δ(a))ap′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)].

(79)

which, in this case, simplifies to

(r + λ)p = `(a) + δ(a)p+ λE[p(Sa)], (80)

because the price is constant. Combining equations (77), (78) and (78), we obtain

0 = (r + λ)(p(a) + e(a)− e′(a)a) = `(a) + δ(a)p(a) + λE[p(Sa)]− δ(a)p(a) + µae′(a)

(81)

+ λE[e(Sa)] + δ′(a)ap(a)− µae′(a)− λE[e′(Sa)Sa],

= `(a) + δ′(a)ap(a) + λE[p(Sa) + e(Sa)− e′(Sa)Sa],

= `(a) + δ′(a)ap(a). (82)

The last equality follows from equation (76). We proved this relationship for segments

where the equilibrium issuance policy is smooth. For segments over which the issuance

policy features jumps, equation (52) shows that for any a, a′ in this segment, we have

e(a′) =
[
e(a) + p(a)

]a′
a
− p(a) (83)

Taking the first-order derivative with respect to a′ and then setting a = a′ we obtain

equation (76).

We now establish a contradiction. First, for relationship (83) to hold over [aL, aU ], it

must be aL > 0. Indeed, the left-hand-side of (83) can be no lower than 0 by limited

liability. The limit when a → 0 of the right-hand side is −p where p is the constant price

over [aL, aU ]. Hence, aL > 0.

We now consider two cases for price p. Suppose first p(a) = p 6= 1 in which case `(a) = 0

by definition of the liquidity benefit. Equations (82) and (80) then imply that δ′(a) = 0

and

δ(a) = δ = (r + λ)p− λE[p(Sa)] (84)
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for a ∈ [aL, aU ]. As aL > 0, there must be an interval to the left of aL over which e(a)

is strictly convex. As p′(a) = e′′(a) by equation (76), p(a) is strictly increasing on this

interval. Hence, for a ∈ [aL, aU ], the term E[p(Sa)] cannot be constant in a because the

random variable Sa may take any value on [0, a]. This is incompatible with equation (85).

Second, suppose p(a) = 1. Equations (80) and (82) imply together that

`(a)− `′(a)a

a
= λE[p′(Sa)S]. (85)

We have

E[p′(Sa)S] =

∫ ∞
0

p′(e−sa)ξe−s(ξ+1)ds

=

∫ ∞
ln(a/aL)

p′(e−sa)ξe−s(ξ+1)ds = κ

(
a

aL

)−(ξ+1)

where κ ≡
∫∞

0 p′(e−saL)ξe−s(ξ+1)ds is a positive constant. To obtain the second line, we

used the fact that p is constant over [aL, aU ]. Thus, we must have

`(a) = `′(a)a+ λκ

(
a

aL

)−(ξ+1)

for a ∈ [aL, aU ]. A general solution to this equation is of the form

`(a) = αa+ β + fa−ξ−1

with f ≥ 0. Hence, assuming the issuance policy is smooth pins down a function form for

`. This leads to a contradiction because `(.) is an exogenous function in this problem.

Step 2 Single jump point We want to show that there can only be one jump point

ajump ∈ [aL, aU ] when the equilibrium issuance policy features jump over segment [aL, aU ].

Suppose there are two such jump points (the argument generalizes for more jump points)

labeled a1
jump and ajump2 . Then, there must be one jump point, say, a1

jump for which liquidity

benefits l(a)/a ∗ A are larger given the single-peak property in Assumption 1. Hence, to

maximize its date-0 value, the platform would strictly prefer jumping to a1
jump from any

point in [aL, aU ] rather than to a2
jump.

We are left to show that jumping to a1
jump instead of a2

jump is compatible with the
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equilibrium issuance policy. By Lemma 3 and 4, the issuance policy features jumps on

[aL, aU ] only if equity value is linear and price is constant. Hence, from any state a with

jump point a2
jump, we have

e(a) =
[
e(a2

jump) + p(a2
jump)

] a

a2
jump

=
[
e(a1

jump) + p(a1
jump)

] a

a1
jump

Hence, jumping to a1
jump is also an optimal equilibrium issuance policy. This equality

simply reflects the fact that the platform is indifferent ex-post between all points in [aL, aU ].

At date-0, however, the platform would choose jump point a1
jump as the sole jump point.

F Proof of Proposition 4

In this section, we show that if a coupon policy δ(a) is optimally chosen at date 0, then

a Markov equilibrium with positive stablecoin value must feature a stable issuance policy.

In this proof, we write equilibrium variables as functions of the state variable a.

The result that the default boundary is a = 0 is trivial. The platform does not have to

make payments in the unit of account because the coupon is paid in stablecoins. Second,

because the issuance policy is chosen ex-post, the platform can always choose to issue or

to stay inactive if a repurchase is too costly. Hence continuting always weakly dominates

defaulting.

To prove the main part of the result about stable debt policies, we will show that the

equity value is strictly convex over some interval [0, a] and linear over [a,∞). Then we use

Lemma 3 and 4 to prove the result.

Step 1 The equity value e(a) is weakly convex, continuously differentiable, and stablecoin

price function p(a) is continuous and increasing.

These properties follow from the same arguments of Lemma A.1 in DeMarzo and

He (2021).

Since the equity value e(a) is weakly convex, there must be a strictly ordered

sequence {a(n)}n≥0 such that a(0) = 0 and limn→∞ a
(n) = ∞ such that on each

segment [a(n), a(n+1)], e is either strictly convex or linear, with different convexity

on two consecutive segments.
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Step 2 If e is strictly convex over some interval [aL, aU ], the price function is strictly

increasing.

If e is strictly convex, Lemma Lemma 3 shows that the equilibrium issuance policy is

smooth over [aL, aU ] and that equation (74) holds. Taking the first-order-derivative

of this expression with respect to a, we obtain p′(a) = e′′(a)a and thus p is strictly

increasing over [aL, aU ].

Step 3 There is at least 1 segment with e strictly convex, and one segment with e linear.

Equity value cannot be linear on segment [0, a(1)].

If the equity value e(a) is strictly convex everywhere, Lemma 3 shows that e(a) = 0

and p(a) = 0 for all a. Hence, for a Markov equilibrium with positive stablecoin

value to exist, there must be a segment on which e is linear.

Suppose that e is linear on [0, a(1)]. By Lemma 4 and ??, there must be ajump ∈
[0, a(1)] such that the issuance policy is to jump at ajump from any point in [0, a(1)].

For the jump to ajump to be optimal, it must be that for any a ∈ [0, a(1)], we have

e(a) =
[
e(ajump) + p(ajump)

] a

ajump
− p(ajump)

which becomes negative as a → 0. Hence, there is a contradiction. The equity

value is strictly convex on [0, a(1)].

Step 4 The last step of the proof is to show there exists ā such that the equity value

is strictly convex over [0, ā] and linear over [ā,∞). The characterization of the

equilibrium issuance policy as a stable issuance policy then follows from Lemma 3,

4 and ??.

Let δ(a) be an interest policy that induces a non-zero Markov equilibrium with is-

suance policy dG such that there exists a segment [a(2), a(3)] over which e is strictly

convex—the original (interest) policy. We want to show that there exists an alter-

native coupon policy δ̂(a) that induces a Markov equilibrium with issuance policy

dĜ such that e has the desired properties and the date-0 platform value if strictly

higher.

(a) We first construct an alternative policy and its induced equilibrium. Let a?

be the target value in the first linear region [a(1), a(2)] for equity in the equi-

librium induced by the original policy. Construct the alternative policy and
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the induced equilibrium as follows. Set δ̂(a) = δ(a) and dĜ(a,C) = dG(a,C)

for all a ≤ a? and conjecture a linear equity value ê and a constant price p̂

for all a ∈ [a(1),∞) with a(1). In the equilibrium induced by the alternative

policy, the issuance policy is to jump at a∗ for all a ≥ a(1).

We argue that the issuance policy dĜ(a,C) forms part of an equilibrium in-

duced by the alternative coupon policy. The subspace [0, a?] is absorbing for

the alternative policy, so the specification of δ̂(a) for a ≥ a? is irrelevant. This

is also an absorbing subspace for the equilibrium induced by the original policy

because there are only downward jumps to A and the equilibrium issuance pol-

icy is such that a ≤ a? when a ∈ [a(1), a(2)]. Hence, the fact that dG(a,C) for

a ∈ [0, a(2)] is an equilibrium issuance policy induced by the original coupon

policy implies that dĜ(a,C) for a ∈ [0, a(2)] is also an equilibrium issuance

policy induced by the alternative coupon policy. The fact that dĜ(a,C) is an

equilibrium issuance policy on the rest of the state space, a ∈ [a(2),∞) fol-

lows from the observation that ê is linear over a ∈ [a(1),∞) and p is constant.

This implies that jumping to any point in a ∈ [a(1),∞) including a∗ is an

equilibrium issuance policy.

The argument above also implies that ê(a) = e(a) and p̂(a) = p(a) for all

a ∈ [0, a?]

(b) Second, we show that p(a) = 1 for a ∈ [a(1), a(2)] in the equilibrium induced

by the original policy, and thus p̂(a) = 1 for all a ∈ [a(1),∞) by Step 4a.

The equity value is linear over [a(1), a(2)] and the equilibrium issuance policy

is to jump at a? ∈ [a(1), a(2)] when a ∈ [a(1), a(2)]. Hence, the price p(a) = p

must be constant over [a(1), a(2)]. Since [0, a?] is an absorbing subspace for

the equilibrium induced by the original policy, it must be that p = 1. If

not, investors never enjoy any liquidity benefit for a ∈ [0, a?] and thus p(a) =

e(a) = 0 for all a ∈ [0, a?], which is a contradiction. To see this, suppose first

p < 1. By monotonicity of p, we have p(a) < 1 for all a ∈ [0, a(2)] which implies

investors never enjoy the liquidity benefit. Conversely, if p > 1 over [a(1), a(2)],

we have p(a) = 1 for a unique a ∈ [0, a(1)) because p is strictly increasing

over [0, a(1)) since e is strictly convex (Step 2). Given the smooth equilibrium

issuance policy on [0, a(1)] this state is not visited with positive probability and

thus investors enjoy liquidity benefit with zero probability, which again leads
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to a contradiction. Hence p(a) = 1 for a ∈ [a(1), a(2)]. This implies p̂(a) = 1

for all a ∈ [a(1),∞) in the equilibrium induced by the alternative policy.

(c) We can now show that the platform value at date 0 is higher under the alter-

native policy than under the original policy. The platform’s value at date 0 is

given by equation (10), which we rewrite here for convenience.

E0 = E

[∫ ∞
0

e−rt`(At, Ct)Ct1p(At,Ct)=1dt

∣∣∣∣∣A0, C0 = 0

]

By Step 4b, liquidity benefits are only enjoyed when a ∈ [a(1), a(2)] because

p(a) = 1 for a ∈ [a(1), a(2)]. Under the alternative policy a? ∈ [a(1), a(2)]

is reached immediately at date 0 by design because the equilibrium issuance

policy is to jump to a? when no stablecoins are outstanding (a = ∞). In the

equilibrium induced by the original policy, the optimal choice at date 0 is some

a > a(2) by design of the original policy. Denote τf the first (stochastic) time

the platform enters the region [a(1), a(2)] under the original policy. We have

E0 = E[E−rτf ]Ê0 < E0

because no liquidity benefit is enjoyed before the platform reaches [a(1), a(2)].

The inequality follows from the fact that E[τf ] > 0 by design of the original

policy.

We showed that the original policy is strictly dominated. Hence, in an equilibrium

induced by an optimal coupon policy, the issuance policy must belong to the class

of stable policies.

This concludes the proof of Proposition Proposition 4.

G Proof of Proposition 5

Points 1 and 2 The properties of e and p in Points 1 and 2 follow directly from the

proof of Proposition 4 in Appendix F. The HJB equation (29) for the equity value follows

from equations (75) in the proof of ??. The HJB equation for the price is given by equation
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(79) in the proof of Proposition 4. For future reference, we also provide the smooth-pasting

condition at the boundary a between the smooth region and the target region. We have

e′(a) =
e? + p?

a?
, (86)

with e the value of equity in the region [0, a]. The right-hand side is the derivative of the

equity value in the target region. We showed in the proof of Proposition 4 that equation

(76). must hold in this region. Computing the derivative with respect to a yields the

right-hand-side of (86).

Point 3 Next, we derive the equilibrium stablecoin issuance rate in the smooth region.

From HJB equation (73) and the optimality of a smooth debt policy, we obtained equation

(74) in the proof of Lemma ??. Taking the first-order derivative of e in equation (73) at

g = 0, we obtain

(r+λ)e′(a) = µe′(a)+µae′′(a)−δ′(a)p(a)−p′(a)δ(a)+
σ2

2
a2e′′(a)+σ2ae′′′(a)+λE[Se′(Sa)]

The HJB for the stablecoin price is given by

(r + λ)p(a) = `(a) + δp(a)− (g(a) + δ(a))ap′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)].

with `(a) = 0 because the price p is strictly below one by construction. We can then use

(74) to obtain a condition on g. We have

0 = (r + λ)(p(a) + e(a)− e′(a)a),

= δ(a)p(a)− (g(a) + δ(a))p′(a)a+ µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)],

− δ(a)p(a) + µae′(a) +
σ2

2
a2e′′(a) + λE[e(Sa)],

+ δ(a)p′(a)a+ δ′(a)p(a)a− µa2e′′(a)− µae′(a)− σ2

2
a3e′′′(a)− σ2a2e′′(a)− λE[e′(Sa)Sa],

= −g(a)ap′(a) + δ′(a)ap(a) + µa (p′(a)− e′′(a))︸ ︷︷ ︸
=0

+
σ2

2
a2 (p′′(a) + e′′(a)− ae′′′(a))︸ ︷︷ ︸

=0

+ λE[p(Sa) + e(Sa)− e′(Sa)Sa︸ ︷︷ ︸
=0

]

= −g(a)ap′(a) + δ′(a)ap(a)
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The terms above can be set to 0 because equation (74) was shown to hold for all values

of a in the proof of Proposition 4. This implies directly that the last term is equal to 0.

Besides, taking derivatives of equation (74), we also have

p′(a) = e′′(a)a,

p′′(a) = e′′′(a)a+ e′′(a),

which allow us to set other terms to 0. This proves out claim.

Point 4 . We showed in ?? that a smooth issuance is strictly optimal when the equity

value is convex. Hence, we are left to show that the jump to a∗ is optimal when a ∈ [a,∞).

By Point 1 and ??, equity value is linear and price is constant. Hence, from any value of

a ∈ [a,∞) the platform is ex-post indifferent about jumping to any value in [a,∞). In

particular, jumping to a? is weakly optimal.

We are left to characterize conditions such that for any a ∈ [a,∞), deviating with

a smooth issuance policy is suboptimal under condition (32). Let us derive the value

∆E(At, Ct) of selling a quantity of stablecoins ∆Ctdt instead of repurchasing C?t − Ct

where C?t = At/a
? over the time interval dt for At/Ct ∈ [a,∞]:

∆E(At, Ct) = ∆Ctp(At, Ct)dt+ (1− rdt)Et [E(At+dt, Ct+dt)]− E(At, Ct).

Using Ito’s lemma, we get

Et [E(At+dt, Ct+dt)] = E(At, Ct) + µAtEA(At, Ct)dt+ (∆Ct + δ(At, Ct))EC(At, Ct)dt

+
σ2

2
EAA(At, Ct)dt+ λdt(Et [E(SAt, Ct)]− E(At, Ct)). (87)

From equation (76), we get

E(At, Ct) =
e(a?) + p(a?)

a?
At − Ctp(a?), EA(At, Ct) =

e(a?) + p(a?)

a?
, EC(At, Ct) = −p(a?),

EAA(At, Ct) = ECC(At, Ct) = EAC(At, Ct) = 0.
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Substituting in (87), we get

Et [E(At+dt, Ct+dt)] = E(At, Ct) + µ(E(At, Ct) + p(a?)Ct)dt− (∆Ct + δ(At, Ct)Ct)p(a
?)dt

+ λdtEt [E(SAt, Ct)− E(At, Ct)] .

We can follow the same steps as in Appendix B to obtain

(r + λ)E(At, C
?
t ) = −δ(At, C?t )p(a?)C?t + (p(a?)C?t + E(At, C

?
t ))µ+ λE[E(SAt, C

?
t )].

Consequently,

(r + λ)E(At, Ct) = −δ(a?)p(a?)C?t + (p(a?)C?t + E(At, C
?
t ))µ+ λE[E(SAt, C

?
t )] + (r + λ)p(a?)(C?t − Ct).

Also note that p(At, Ct) = p(At, C
?
t ) = p(a?). Hence, the net benefit of a smooth deviation

is

∆E(At, Ct) = −δ(at)p(a?)Ctdt+ δ(a?)p(a?)C?t dt− (r + λ)p(a?)(C?t − Ct)dt

+ λ(E[E(SAt, Ct)]− E[E(SAt, C
?
t )])dt.

Thus, as p(a?) = 1, a deviation is optimal if

−δ(at) + δ(a?)at/a
? − (r + λ)p(a?)(at/a

? − 1) + λ(E[e(Sat)]− E[e(Sa?)at/a
?]) > 0.

In other words, to ensure time-consistency, it must be that

δ(at) ≥ (r + λ)p(a?) + (δ(a?)− (r + λ)p(a?)− λE[e(Sa?)])
at
a?

+ λE[e(Sat)]

for at ≥ a. We have p(a?) = 1 and by the HJB for p at a?, equation (62), we have

(r + λ)p(a?) = `(a?)p(a?) + δ(a?)p(a?) + λE[p(Sa?)].

Thus we obtain the following condition to rule out a smooth deviation:

∀a ∈ [a,∞), δ(a) ≥ (r + λ) + λE[e(Sa)]− (`(a?) + λE[e(Sa?) + p(Sa?)])
a

a?

which is equivalent to (32) in the main text.
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H Proof of ??

Maximization Program We first show that the solutions for e and p are as derived

in the proof of Proposition ?? for the commitment case. The statement is obvious in

the target region in which equity is linear and the price is constant and equal to 1. For

the smooth region, observe that the stablecoin issuance rate is g(a) = δ′(a)p(a)/p′(a) by

Proposition 5. By Assumption 2, δ′(a) = 0, which implies g(a) = 0. This feature implies

that HJB equations (29) and (30) for the equity value and the price in the smooth region

are the same as in the commitment case, respectively (49) and (60).

Hence, given a policy set θ0 = {δ, δ∗, a, a?}, the only difference when constructing the

equity value and price function is the smooth pasting condition (86) at a derived in the

proof of Proposition 5. Using the functional form for e(a) in the smooth region given by

(51), this condition becomes

− γ

a

([
e(a?) + p(a?)

] a
a?
− p(a?)

)
=
e(a?) + p(a?)

a?
⇔ e(a?) + p(a?)

a?
=

γ

1 + γ

p(a?)

a
(88)

We can now characterize the program of the platform at date 0. The platform maximizes

its date-0 value subject to the limited liability constraint, the smooth-pasting condition

(88), and the relevant conditions on parameter. We obtain

E0 = max
θ0

e(a?) + p(a?)

a?
A0 (89)

subject to
e(a?) + p(a?)

a?
=

γ

1 + γ

p(a?)

a
(90)

e(a) ≥ 0, ∀ a ≥ 0, (91)

p(a?) = 1, (92)

a ∈ [0, a?], δ ≥ 0, δ? ≥ 0. (93)

Equations (51) and (52) show that limited liability constraint (91) is satisfied if and only

if [
e(a?) + p(a?)

]
a− p(a?)a? ≥ 0. (94)

This condition is implied by equality (88) because γ < −1 which means (91) is redundant.
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Next, observe that peg constraint p(a?) = 1 pins down δ?. Equation (63) shows that to

ensure p(a?) = 1, we must have

δ? = r − λγ

ξ − γ

(
a?

a

)−ξ
− `(a?). (95)

Using then equation (57) to substitute for e(a?), we obtain the following program

E0/A0 = max
θ

p(a?)a?

r − δ? − λγ
ξ−γ

(
a?

a

)−ξ
r + λ

ξ+1 − µ+
(
λξ
ξ+1 −

λξ
ξ−γ

) (
a?

a

)−(ξ+1)

 . (96)

The stablecoin price in the target region must be pegged because investors enjoy no liquidity

benefit otherwise. E Furthermore, because γ < −1, the sequential optimality of a contraint

implies that the limited liability constraint is always satisfied. Plugging (95) into (96) and

using p(a?) = 1 we can rewrite the optimization problem as follows:

E0/A0 = max
{a,a?,δ}

`(a?)/a?

c+ b(γ)
(
a?

a

)−(ξ+1)
,

subject to
γ

1 + γ

1

a
=

`(a?)/a?

c+ b(γ)
(
a?

a

)−(ξ+1)
, (97)

a ∈ [0, a?],

γ is the lowest negative root of (37).

where c and b(γ) are the reduced-form parameters given in equation (58).

Optimal Policies

Building on our analysis in Section B, constraint (97) can be written H(ā, a∗) = γ
1+γ > 1

where H is defined in (??). We now call aopt(a
∗, γ) the lowest value of a if any that satisfies

constraint (97). Following similar steps as in Section B, this value exists only if

`(a?) ≥ γ

1 + γ

c+ bmin
{

1, c
b(γ)ξ

}
min

{
1, c

b(γ)ξ

} 1
ξ+1

. (98)

This condition is more restrictive than condition (69) which obtains under full commitment.

To see this, observe first that γ/(1 + γ) > 1 for all γ < −1. The second term on the right-
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hand-side of (98) is decreasing with γ because it is increasing with b and b′(γ) < 0. Hence,

it is higher than the term on the right-hand-side of (69) because γ is equal to its maximum

value under full commitment.

We showed in Section B that the variable δ only affects γ and that γ strictly decreases

with δ. Hence, we can write the problem as if the platform directly chose γ.

max
{a?,γ}

γ

1 + γ

1

aopt(a?, γ)
,

subject to aopt(a
?, γ) ∈ [0, a?].

In what follows, we derive optimality constraints with respect to a? and γ, assuming the

constraint does not bind. The optimality condition with respect to a? writes

0 =
∂aopt(a

?, γ)

∂a?

⇔ 0 = `′(a?)aopt −
γ

1 + γ

[
c− ξb(γ)

(
a

a?

)ξ+1
]

using the implicit characterization for aopt(a
?, γ) and the steps for the derivation from

Section B. The optimality condition with respect to γ is

0 =
1

(1 + γ)2

1

aopt(a?, γ)
− γ

1 + γ

∂aopt(a?,γ)
∂γ

(aopt(a?, γ))2 . (99)

Applying the Implict Function Theorem to the equation H(a, a?), we obtain

∂aopt(a
?, γ)

∂γ
=

b′(γ)
(
a
a?

)ξ+1 H(a,a?)

c+b(γ)( a
a? )

ξ+1 + 1
(1+γ)2

Hx
a?

=

b′(γ)( a
a? )

ξ+1

c+b(γ)( a
a? )

ξ+1
γ

1+γ + 1
(1+γ)2

Hx
a?

with Hx the derivative of H with respect to x = a
a? .

The first term on the right-hand-side of (99) is strictly positive. If the derivative of

aopt(a
?, γ) is negative, it is optimal to maximize γ subject to constraint (98) as in the

full commitment case. If not, there exists a counteracting force implying that the highest
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possible γ and thus the lowest possible δ are not optimal.

I Proof of ??

The condition for a is given by

−γ
a

(
(e(a?) + 1)a

a?
− 1

)
=
e(a?) + 1

a?
.

Thus,

a

a?
=

γ

1 + γ

a?

e(a?) + 1
.

If λ = 0,

a

a?
=

γ

1 + γ

r − µ
`(a?)

.

Since

lim
µ→r

γ = −1,

we can use the Hospital’s rule

lim
µ→r

a

a?
= lim

µ→r

1

γµ`(a?)

where

γµ =
1− (µ−δ−σ2/2)√

(µ−δ−σ2/2)2+2σ2(r−δ)

σ2
.

As

γ =
µ− δ − σ2/2−

√
(µ− δ − σ2/2)2 + 2σ2(r − δ)

σ2
,
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the implicit function theorem yields

lim
µ→r

γµ =
1− r−δ−σ2/2

r−δ+σ2/2

σ2
=

1

r − δ + σ2/2
.

Thus,

lim
µ→r

a

a?
=
r − δ + σ2/2

`(a?)
.

For an equilibrium, we need a ≤ a?, which is satisfied if and only if ≥ r − `(a?) + σ2/2.

J Solution for Centralized Equity Price with Collateral

We assume that ϕ ≤ 1 so there is never residual value of collateral for equity holders after

liquidation. We conjecture then verify that the equity value per unit of stablecoin is given

by

e(a, k) =

{
0 if k < ϕ,

e(a) + k − k?(a) if k ≥ ϕ,

and

e(a) =


0 if a < a,

c0 +
∑3

k=1 cka
−γk if a ≤ a < a,

e(a?)a/a? + p(a?)(a/a? − 1) + k(a)− k?a/a? if a ≥ a.

where γks are roots of the characteristic equation

r + λ = −µγ +
σ2

2
(1 + γ)γ.

Smooth Region a ∈ [a, a] Given the optimal collateral policy k(a) and the result of

Lemma 6, we can define E(A,C) +K −K(A,C) ≡ E(A,C,K). In the smooth region, the
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HJB is given by

(r + λ)E(At, Ct) = p(At, Ct)Gt −Mt + µAtEA(At, Ct) +
σ2

2
A2
tEAA(At, Ct)

+ (Gt + δtCt)EC(At, Ct) + λE[E(SAt, Ct) + SK(At, Ct)−K(SAt, Ct)].

where E[dMt|dNt = 0] = Mtdt and E[dMt|dNt = 1] = E[(k(Sat)− Sk(at))Ct- ]. Given the

definition of e(a)C ≡ E(A,C), we can rewrite

(r + λ)e(a) = max
g

{
gp(a)−m+ µae′(a) + (g + δ)(e(a)− e′(a)a) +

σ2

2
a2e′′(a) + λE[e(Sa) + Sk(a)− k(Sa)]

}
.

Thus, mt is such that

dKt = Ctdk(At/Ct) + k(At/Ct)dGt + k(At/Ct)Ctδtdt.

Since

dKt = µKt-dt+ σKt-dZt + dMt,

we get

Mtdt = k′(At/Ct)(µAtdt−At(gt + δ)dt) + k′′(At/Ct)
σ2

2
A2
t /Ctdt+ k(At/Ct)(gt + δt)Ctdt− µk(At/Ct)Ctdt

and

mt = µatk
′(at) +

σ2

2
a2
tk
′′(at) + (gt + δ)(k(at)− k′(at)at)− µk(at).

Plugging it in the HJB yields

(r + λ)e(a) = max
g

{
µk(a) + gp(a) + (g + δ)(e(a)− e′(a)a− k(a) + k′(a)a) + µa(e′(a)− k′(a))

+
σ2

2
a2(e′′(a)− k′′(a)) + λE[e(Sa) + Sk(a)− k(Sa)]

}
.

The first order condition for g(a) becomes

p(a) = −e(a) + e′(a)a+ k(a)− k′(a)a. (100)

67



Thus, we get

(r + λ− δ)e(a) = (µ− δ)k(a) + (µ− δ)a(e′(a)− k′(a)) +
σ2

2
a2(e′′(a)− k′′(a)) + λE[e(Sa) + Sk(a)− k(Sa)].

Assume k(a) = ϕ. We get

(r + λ− δ)e(a) = (µ− δ)ϕ+ (µ− δ)ae′(a) +
σ2

2
a2e′′(a) + λE[max(0, Sϕ− 1)].

We can plug in the guess into the HJB and solve for the undetermined coefficients:

(r + λ− δ)e(a) = (µ− δ)ϕ− (µ− δ)
3∑

k=1

γkcka
−γk

+
σ2

2

3∑
k=1

(1 + γk)γkcka
−γk + λE[max(0, Sϕ− 1)]. (101)

Let us compute the expectation E[e(Sa)] assuming that ϕ ≥ 1:

E[max(0, Sϕ− 1)] =

∫ ln(ϕ)

0

{
(ϕe−s − 1)ξe−ξs

}
ds

=
ξϕ

ξ + 1

(
1− ϕ−(ξ+1)

)
−
(

1− ϕ−ξ
)

=
ξϕ

ξ + 1
− 1 +

ϕ−ξ

ξ + 1
.

For the previous equation to hold, constant terms must be such that

(r + λ− δ)c0 = (µ− δ)ϕ+ λE[max(0, Sϕ− 1)].

Additionally, terms in cka
−γk must be such that

r + λ− δ = −(µ− δ)γk +
σ2

2
(1 + γk)γk.
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Thus, γks must be the roots of that characteristic equation. The first boundary condition

is given by

c0 +
2∑

k=1

cka
−γk = 0. (102)

The second boundary condition is given by

c0 +

2∑
k=1

cka
−γk = e(a). (103)

Thus, the two coefficients cks must satisfy conditions (102) and (103).

Target Region The value of equity at a? is equal to:

E(a?Ct- , Ct-) = p(a?)E [dGt]− E [dMt]

+ (1− rdt− λdt)E [E(a?Ct, Ct)| dNt = 0]

+ (1− rdt)λdtE [E(a?Ct, Ct)| dNt = 1] .

If no jumps occur in the interval [t, t + dt] (i.e., dNt = 0), then the equity holders is-

sue/repurchase debt to compensate for all Brownian shocks and reissue maturing debt so

that

dat/at- = dAt/At- − dGt/Ct- − δ?dt = 0.

Thus,

E [dGt| dNt = 0] = E [Ct-(dAt/At- − δ?dt)] = Ct-(µ− δ?)dt.

Furthermore, they need to issue/repurchase collateral at market value such that

dkt/kt- = dKt/Kt- − dGt/Ct- − δ?dt = 0.

Thus,

E [dMt| dNt = 0] = E [dGtKt-/Ct- + δ?Kt-dt− µKt-dt] = 0.
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The continuation value in this case is equal to

E [E(a?Ct, Ct)| dNt = 0] = E [e(a?)Ct| dNt = 0] = e(a?)Ct-(1 + µdt).

If there is a Poisson jump dAt/At- = St − 1 so that k?St > ϕ, then the equity holders

compensate this jump so that the state returns to a?. Thus, they repurchase Ct-(1 − St)
units of debt and dGt = Ct-(St − 1). In that case,

E[E(a?Ct, Ct)|dNt = 1, St = S̃] = E[e(a?)Ct|dNt = 1, St = S̃t] = e(a?)Ct-S̃.

Therefore, we can write

E [E(At, Ct)| dNt = 1] = e(a?)Ct-

∫ ln(k?/ϕ)

0
e−sξe−ξsds.

Also,

E [dGt] = µCt-dt+ λdt

∫ ln(k?/ϕ)

0
(e−s − 1)Ct-ξe

−ξsds

= µCt-dt− λCt-dt

(
ξe−(ξ+1)s

ξ + 1
− e−ξs

)∣∣∣∣∣
ln(k?/ϕ)

0

= µCt-dt+ λCt-dt

(
ξ

ξ + 1

(
1−

(
k?

ϕ

)−(ξ+1)
)
−

(
1−

(
k?

ϕ

)−ξ))
.

In the case of a Poisson jump, the collateral value jumps by the same amount as the crypto

asset. Thus, there is no need to adjust the value of the collateral as the debt level is also

adjusted for. Therefore,

E [dMt] = 0.
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Regrouping all terms and scaling by Ct- , we get

e(a?) ≡ e(a?) = p(a?)(µ− δ(a?))dt+ p(a?)λdt

∫ ln(k?/ϕ)

0
(e−s − 1)ξe−ξsds

+ (1− rdt− λdt)e(a?)(1 + µdt)

+ (1− rdt)λdt

(
e(a?)

∫ ln(k?/ϕ)

0
e−sξe−ξsds

)
.

Removing terms in dtdt and scaling by dt, we have

(r + λ− µ)e(a?) = p(a?)(µ− δ(a?)) + λ

∫ ln(k?/ϕ)

0
(p(a?)(e−s − 1) + e−se(a?))ξe−ξsds.

Another useful way to write that equation is

(r − µ)e(a?) = p(a?)(µ− δ(a?)) + λ(E[e(Sa?)]− e(a?)).

Solving for the integral, we get

(r + λ− µ)e(a?) = p(a?)(µ− δ(a?)) +
λξ

ξ + 1

(
1−

(
k?

ϕ

)−(ξ+1)
)

(p(a?) + e(a?))− λp(a?)

(
1−

(
k?

ϕ

)−ξ)
.

Putting all terms in e(a?) on the left hand side gives(
r +

λ

ξ + 1
− µ+

λξ

ξ + 1

(
k?

ϕ

)−(ξ+1)
)
e(a?) = p(a?)

(
µ− δ(a?)− λ

ξ + 1
− λξ

ξ + 1

(
k?

ϕ

)−(ξ+1)

+ λ

(
k?

ϕ

)−ξ)
.

K Solution for Centralized Stablecoin Price with Collateral

We conjecture then verify that the price of a stablecoin is given by

p(a) =


0 if a < a,

b0 +
∑2

k=1 bk(a/a)−γk if a ≤ a < a,

p(a?) if a ≥ a.
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where γks are roots of the characteristic equation

r + λ = −µγ +
σ2

2
(1 + γ)γ.

Smooth Region a ∈ [a, a] In the smooth region, the HJB is given by

(r + λ)p(a) = `(a) + δ(a)p(a)− g(a)ap′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)].

To solve for g(a), we need the first order derivative of e(a)

(r + λ)e′(a) = µk′(a)− δp′(a) + µae′′(a) + µe′(a) +
σ2

2
a2(e′′′(a)− k′′′(a)) + σ2a(e′′(a)− k′′(a))

+ λE[e′(Sa) + Sk′(a)− k′(Sa)S]

together with the first order condition for g(a) from equation (??) and its derivatives:

p(a) = −e(a) + e′(a)a+ k(a)− k′(a)a,

p′(a) = e′′(a)a− k′′(a)a,

p′′(a) = e′′′(a)a+ e′′(a)− k′′′(a)a− k′′(a).

Thus, we get

0 = (r + λ)(p(a) + e(a)− e′(a)a− k(a) + k′(a)a),

= `(a) + δp(a)− (g(a) + δ)ap′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)]

+ µk(a)− δp(a) + µae′(a) +
σ2

2
a2(e′′(a)− k′′(a)) + λE[e(Sa) + Sk(a)− k(Sa)]

− µk′(a)a+ δp′(a)a− µa2e′′(a)− µe′(a)a− σ2

2
a3(e′′′(a)− k′′′(a))− σ2a2(e′′(a)− k′′(a))

− λE[e′(Sa)Sa+ k′(a)Sa− k′(Sa)Sa]

− (r + λ)(k(a)− k′(a)a)

= (µ− r − λ)(k(a)− k′(a)a) + `(a)− g(a)ap′(a) + λE[S](k(a)− k′(a)a).
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That is,

g(a) =
(µ− r − λ+ λE[S])(k(a)− k′(a)a) + `(a)

ap′(a)
.

Then, the HJB for p(a) becomes

(r + λ)p(a) = (r + λ− µ− λE[S])(k(a)− k′(a)a) + δp(a)− δp′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)].

Note that

E[S] =

∫ ∞
0

e−sξe−ξsds =
ξ

ξ + 1
.

Assume k(a) = ϕ. Thus we get

(r + λ)p(a) = (r + λ− µ− λE[S])ϕ+ δp(a)− δp′(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[Sϕ].

We can plug in the guess into the HJB and solve for the undetermined coefficients:

(r + λ− δ)p(a) = (r + λ− µ− λE[S])ϕ− (µ− δ)
2∑

k=1

γkbka
−γk

+
σ2

2

2∑
k=1

(1 + γk)γkbka
−γk + λE[p(Sa)]. (104)

For the previous equation to hold, the constant must be such that

(r + λ− δ)b0 = (r + λ− µ)ϕ.

Furthermore, terms in bka
−γk must be such that

r + λ− δ = −(µ− δ)γk +
σ2

2
(1 + γk)γk.

The first boundary condition is given by

b0 +
3∑

k=1

bka
−γk = ϕ. (105)
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The second boundary condition is given by

b0 +
3∑

k=1

bka
−γk = p(a?). (106)

Thus, the two coefficients bks must satisfy conditions (105) and (106).

Target Region a ∈ [a,∞)] At the target demand ratio a?, the HJB for the price of a

stablecoin is given by

p(a?) ≡ p(a?) = `(a?)dt+ δ(a?)p(a?)dt+ (1− rdt− λdt)E [p(a?)| dNt = 0]

+ (1− rdt)λdtE [p(a?Ct/Ct-)| dNt = 1] .

If no jumps occur in the interval [t, t + dt] (i.e., dNt = 0), then the equity holders is-

sue/repurchase debt to compensate for all Brownian shocks and reissue maturing debt so

that

dat = dAt/At − dGt/Ct − δ?dt = 0.

The continuation value in this case is equal to

E [p(a?)| dNt = 0] = p(a?).

If there is a Poisson jump dAt/At- = St− 1, then there is immediate default the stablecoin

holders get the collateral. Therefore, we can write

E [p(a?)| dNt = 1] =

∫ ∞
0

ϕξe−ξsds =
ϕξ

ξ + 1
.

Regrouping all terms, we get

p(a?) = `(a?)dt+ δ?p(a?)dt+ (1− rdt− λdt)p(a?) + (1− rdt)λdt ϕξ

ξ + 1
.

Removing terms in dtdt and scaling by dt, we have

(r + λ− δ?)p(a?) = `(a?) + λ
ϕξ

ξ + 1
.
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L Optimal a? for Centralized Platform with Collateral

We have to find a? defined as

a? = arg max
a?

{
e(a?; a?) + p(a?; a?)

a?

}
= arg max

a?

{
`(a?) + λE[e(Sa?; a?) + p(Sa?; a?)]

a?

}
where we write e(a) = e(a; a?) and p(a) = p(a; a?) to be explicit about the fact that a? also

enters as a parameter in the price functions. Note that because a is implicitly defined by

−
2∑
1

γkcka
−γk−1 =

e(a?) + p(a?)

a?

we get that
∂a

∂a?
≈ ∂

∂a?
e(a?) + p(a?)

a?
= 0.

That is, a is already maximizing the value of (e(a?) + p(a?))/a?. Assume that k(a)/ϕ ≤
a?/a. The expectation is given by

E[e(Sa?; a?) + p(Sa?; a?)] =
ξ

ξ + 1

(
1−

(
k(a?)

ϕ

)−(ξ+1)
)

(e(a?) + p(a?)) +

(
k(a?)

ϕ

)−(ξ+1) ξk(a?)

ξ + 1
.

The partial derivative of that expectation is given by

∂E[e(Sa?; a?) + p(Sa?; a?)]

∂a?
≈ ∂k(a?)

∂a?
≈ ∂

∂a?
e(a?) + p(a?)

a?
= 0.

Thus, the first order condition for a? is given by

`′(a?)a? = `(a?) + λE[e(Sa?; a?) + p(Sa?; a?)].

M Proof of Lemma 6

Given any collateral level K, governance token owners have the option to adjust collateral

to K ′ by buying K −K ′ at cost of K −K ′. Therefore, the value of the governance token

given K must be at least as high as the value that governance token owners would obtain
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by changing the collateral level to K ′

E(A,K,C) ≥ E(A,K ′, C) +K −K ′.

Thus, 1 is the constant subgradient of E(A,K,C) and E(A,K,C) is linear and increasing

in K.

N No-Deviation in Target Region with Collateral

Consider (A,C,K) such that the platform is in the target region. Let Ẽ(A,C,K) be the

value of deviating to a smooth issuanced ∆Cdt before reverting back to the conjectured

equilibrium policy. For simplicity we denote K?
t for K?(At, Ct) as an argument of the

value function. Both along the equilibrium path and in the deviation, it is assumed that

the optimal collateral policy is K?(A,C) = ϕC. Let p = p(a?) be the price in the target

region.

The equity value in the deviation is

Ẽ(At, Ct,K
?
t ) = p∆Ctdt− dMt + (1− rdt)E[E(At+dt, Ct+dt,K

?
t+dt)]

= (p− ϕ)∆Cdt+ (1− rdt)

{
E(At, Ct,K

?
t ) + µAEAdt+ ∆Ct EC︸︷︷︸

−p

dt+ EK︸︷︷︸
1

(
µkϕCtdt+ ϕ∆Cdt

)

+ λdtE
[
E(SAt, Ct,K

?
t ) +K?(At, Ct)(1 + ρ(S − 1))−K?(SAt, Ct)− E(At, Ct,K

?
t )
]}

In the region where equity is flat, we have

E(At, Ct,Kt) = E(At, C
?,K?

t ) + p(C?(A)− Ct)− (K?(At, Ct)−Kt)

= At
e(a?)

a?
+ p

At
a?
− pCt − ϕ

At
a?

+Kt

We have

AEA = C?(A) [e(a?) + p(a?)]− ϕC?(A)

Substituting for AEA, the deviation is not profitable, that is, Ẽ(At, Ct,K
?
t ) ≤ E(At, Ct,K

?
t )
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if and only if

(r+λ)E(At, Ct,K
?
t ) ≥ µ(e(a?)+p(a?))C?(A)dt+(µk−µ)ϕCtdt+λE

[
E(SAt, Ct,K

?
t )+ρ(S−1)ϕCt

]
We now replace the LHS of the inequality above. The conjectured equilibrium is to jump

to C?(At). Hence we have

E(At, Ct,K
?
t ) = E(At, C

?(At),K
?
t ) + p(C?(At)− Ct) +K?(At, Ct)−K?(At, C

?(At))

= E(At, C
?(At),K

?
t ) + (p− ϕ)(C?(At)− Ct)

To substitute for the value of equity at the target E(At, C
?(At),K

?
t ), we use the derivations

from the analysis without collateral. Adapting equation (54), we have

(r+λ)E(At, C
?(At),K

?
t ) = µ(e(a?)+p(a?))C?(A)+(µk−µ)ϕC?(At)+λE[E(SA,C?(At),Kt)+ρ(S−1)ϕC?(At)]

Replacing for (r + λ)E(At, Ct,K
?
t ), we get

µ(e(a?) + p(a?))C?(A)dt+ (µk − µ)ϕC?(At)dt+ λE
[
E(SA,C?(At),Kt) + ρ(S − 1)ϕC?(At

]
)

+ (r + λ)(p− ϕ)(C?(At)− Ct) ≥ µ(e(a?) + p(a?))C?(A)dt+ (µk − µ)ϕCtdt+ λE
[
E(SAt, Ct,K

?
t ) + ρ(S − 1)ϕCt

]
Hence, overall the no-deviation condition becomes[
(r+λ)(p−ϕ)+(µk−µ)ϕ

]
(C−C∗(A)) ≤ λE

[
E[SA,C?(A),K?]−E[SA,C,K?]

]
+λρϕE[1−S](C−C?(A))

We can rewrite this expression as follows[
(r+λ)(p−ϕ)+(µk−µ)ϕ−λρϕE[1−S]

]
(C−C∗(A)) ≤ λE

[
E[SA,C?(A),K?]−E[SA,C,K?]

]
When ϕ = 0, we obtain the same expression as in the uncollateralized case for δ = 0. To

get some intuition about the condition suppose C?(A) < C so that the equilibrum policy is

to repurchase C−C?(A) units of stablecoins. The LHS is the sum of three terms. The first

one is the net cost of the repurchase proportional to p−ϕ. A repurchase frees up collateral.

Hence, the net cost if equal to p−ϕ. The second term corresponds to the net benefit from

owning collateral. As collateral value grows at rate µk but stablecoin issuance only grows

at rate µ together with stablecoin demand, there is a net windfall (µk−µ)ϕ from each unit
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of stablecoin. If µk − µ > 0, this force pushes against repurchasing stablecoins. The last

term on the right-hand-side is negative. It says that when holding more stablecoins and

thus more collateral, the effect of a Poisson shock is more severe.

O Proof of ??

Let us derive the value ∆E(At, Ct,∆Kt) of staying at a higher level of collateral Kt+ ∆Kt

instead of jumping directly to K?(At, Ct) when the issuance policy dGt is smooth:

∆E(At, Ct,Kt + ∆Kt) = ptGtdt+ (1− rdt)Et [E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)]− E(At, Ct,Kt).

Using Ito’s lemma, we get

Et [E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)] = E(At, Ct,Kt + ∆Kt) + µAtEA(At, Ct,Kt + ∆Kt)dt

+GtEC(At, Ct,Kt + ∆Kt)dt

+ µ(Kt + ∆Kt)EK(At, Ct,Kt + ∆Kt)dt

+
σ2

2
EAA(At, Ct,Kt + ∆Kt)dt+

σ2

2
EKK(At, Ct,Kt + ∆Kt)dt

+ λdt(Et[E(SAt, Ct, S(Kt + ∆Kt))]− E(At, Ct,Kt + ∆Kt)).

Following Lemma 6, we have that

E(At, Ct,Kt + ∆Kt) = E(At, Ct,Kt) + ∆K.

Thus,

EA(At, Ct,Kt + ∆Kt) = EA(At, Ct,Kt),

EAA(At, Ct,Kt + ∆Kt) = EAA(At, Ct,Kt),

EC(At, Ct,Kt + ∆Kt) = EC(At, Ct,Kt),

EK(At, Ct,Kt + ∆Kt) = 1,

EKK(At, Ct,Kt + ∆Kt) = 0,
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and

Et[E(SAt, Ct, S(Kt + ∆Kt))] =

∫ ln((Kt+∆Kt)/(ϕCt))

0
E(e−sAt, Ct, e

−s(Kt + ∆Kt))ξe
−ξsds.

Thus,

Et[E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)] = Et [E(At+dt, Ct+dt, Ct+dt)] + ∆Kt + µ∆Ktdt

+ λdt(Et[E(SAt, Ct, S(Kt + ∆Kt))]− Et[E(SAt, Ct, SKt)]−∆Kt).

Putting all of these together, we get

∆E(At, Ct,Kt + ∆Kt) = (1− rdt)(∆Kt + µ∆Ktdt)

+ (1− rdt)λdt(Et[E(SAt, Ct, S(Kt + ∆Kt))]− Et[E(SAt, Ct, SKt)]−∆Kt))−∆Kt

= −(r + λ− µ)dt∆Kt + λdt(Et[E(SAt, Ct, S∆Kt)]− Et[E(SAt, Ct, SKt)]).

Furthermore,

lim
∆K→0

Et[E(SAt, Ct, S(Kt + ∆Kt))]− Et[E(SAt, Ct, SKt)]

∆Kt

=
E(AtϕCt/Kt, Ct, ϕCt)ξ

Kt

(
Kt

ρCt

)−ξ
+

ξ

ξ + 1

(
1−

(
Kt

ϕCt

)−(ξ+1)
)

=
(E(AtϕCt/Kt, Ct) + ϕCt −K(AtϕCt/Kt, Ct))ξ

Kt

(
Kt

ρCt

)−ξ
+

ξ

ξ + 1

(
1−

(
Kt

ϕCt

)−(ξ+1)
)

=
(e(atϕ/kt) + ϕ− k(atϕ/kt))ξ

kt

(
kt
ϕ

)−ξ
+

ξ

ξ + 1

(
1−

(
kt
ϕ

)−(ξ+1)
)
.

Thus, no infinitesimal deviation from the level k(a) is optimal if and only if

λ
(e(aϕ/k(a)) + ϕ− k(aϕ/k(a)))ξ

k(a)

(
k(a)

ϕ

)−ξ
+

λξ

ξ + 1

(
1−

(
k(a)

ϕ

)−(ξ+1)
)

= r + λ− µ.
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We can derive k′(a) as

k′(a) = −Fa
Fk

= −
e′(aϕ/k)−k′(aϕ/k)

k

(
k
ϕ

)−(ξ+1)

− e′(aϕ/k)−k′(aϕ/k)
k

a
k

(
k
ϕ

)−(ξ+1)
+ 1

k

(
k
ϕ

)−(ξ+1)
− e(aϕ/k)+ϕ−k(aϕ/k)

k2

(
k
ϕ

)−ξ
= − e′(aϕ/k)− k′(aϕ/k)

−(e′(aϕ/k)− k′(aϕ/k))ak + 1− (e(aϕ/k) + ϕ− k(aϕ/k))/ϕ

=
e′(aϕ/k)− k′(aϕ/k)

(e′(aϕ/k)− k′(aϕ/k))ak + (e(aϕ/k)− k(aϕ/k))/ϕ

Assume that the optimal policy is at the lower bound. That is, k(a) = ϕ. The left-hand

side (marginal benefit) becomes

λ
e(a)ξ

ϕ
.

Since e(a) = 0, it is always optimal to be at the lower bound at a = a.

Assume that the optimal policy is at the upper bound. That is, k(a) = ϕa/a. The

left-hand side becomes

λξ

ξ + 1

(
1−

(
a

a

)−(ξ+1)
)

= λE[S1{S ≥ a/a}],

where E[S1{S ≥ a/a}] is the expected residual value of the collateral after a Poisson shock.

If the probability of hitting the default boundary is close to zero, that is,(
a

a

)−ξ
≈ 0,

then it is optimal to deviate from the upper bound to a lower collateral level as r > µ− λ
ξ+1 .

As λE[S1{S ≥ a/a}] ≤ λξ
ξ+1 , it is never optimal to be at the upper bound.

When the issuance policy dGt is not smooth, the continuation value conditional on no

Poisson shock is equal to

Et [E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)| dNt = 0] = Et [E(At+dt, Ct+dt,Kt+dt) + ∆Kt+dt| dNt = 0]

= Et [E(At+dt, Ct+dt,Kt+dt)| dNt = 0] + ∆Kt(1 + µdt).
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If there is a Poisson shock, we get

Et [E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)| dNt = 1] = Et [E(SAt, Ct, S(Kt + ∆Kt))] .

Thus,

Et [E(At+dt, Ct+dt,Kt+dt + ∆Kt+dt)] = Et [E(At+dt, Ct+dt,Kt+dt)] + ∆Kt(1 + µdt)

+ λdt(Et[E(SAt, Ct, S(Kt + ∆Kt))]− Et[E(SAt, Ct, SKt)]−∆Kt).

Therefore, the condition is exactly the same as when the issuance policy dGt is smooth.

P Proof of ??

The condition for a is given by

−γ
a

(
(e(a?) + 1− ϕ)a

a?
− (1− ϕ)− φϕ

)
=
e(a?) + 1− ϕ

a?
.

Thus,

a

a?
=

γ

1 + γ

1− (1− φ)ϕ

e(a?) + 1− ϕ
.

If λ = 0,

a

a?
=
γ(r − µ)

1 + γ

1−
(

1− µ−
r−

)
ϕ

`(a?)− (r − µ)ϕ
.

−γ(r − µ)

1 + γ

r−µ
r− ϕ

`(a?)− (r − µ)ϕ

Since

lim
µ→r

γ = −1,
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we can use the Hospital’s rule

lim
µ→r

a

a?
= lim

µ→r

1

γµ`(a?)

and we get the same result as in Appendix I.

Q Proof of Lemma 5

Given any debt level C̃, vault owners have the option to adjust debt to C̃ ′ by buying C̃−C̃ ′

at cost of p(A,C). Therefore, the value of the vault given C̃ must be at least as high as

the value that vault owners would obtain by changing the debt level to C̃ ′

E(A,C, C̃) ≥ E(A,C, C̃ ′) + (p(A,C)− ϕ)(C̃ ′ − C̃).

Thus, p(A,C)− ϕ is the constant subgradient of E(A,C, C̃) and E(A,C, C̃) is linear and

decreasing in C̃.

R Proof of Lemma 8

S Proof of Proposition 6

In this section, we solve for the value of the vault given that Ki(At, Ct, C
i
t) = ϕCit . The

value of a vault at a? is equal to:

V (a?Ct- , Ct- , C
i
t-) = p(a?)E

[
dGit
]
− E

[
dMi

t

]
+ (1− rdt− λdt)E

[
V (a?Ct+dt, Ct+dt, C

i
t+dt)

∣∣ dNt = 0
]

+ (1− rdt)λdtE
[
V (a?Ct+dt, Ct+dt, C

i
t+dt)

∣∣ dNt = 1
]
.

If no jumps occur in the interval [t, t + dt] (i.e., dNt = 0), then the vault owners is-

sue/repurchase collateral at market value such that

dkit/k
i
t- = dKi

t/K
i
t- − dGit/Cit- − s(at) = 0.
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Thus,

E [dMt| dNt = 0] = dGitKi
t-/C

i
t- + s(at)K

i
t- − µKi

t-dt.

The continuation value in this case is equal to

E
[
V (a?Ct, Ct, C

i
t)
∣∣ dNt = 0

]
= E

[
v(a?)Cit

∣∣ dNt = 0
]

= v(a?)(Cit- + s(a?)Cit-dt+ dGit).

If there is a Poisson jump, the vault is liquidated. In that case,

E[V (a?Ct, Ct, C
i
t)|dNt = 1] = E[max(0, Sϕ− 1)Cit- ].

Regrouping all terms and scaling by Cit- , we get

v(a?) = p(a?)dGit/Cit- − ϕdGit/Cit- − s(at)ϕdt+ µϕdt

+ (1− rdt− λdt)v(a?)(1 + s(a?)dt+ dGit/Cit-) + (1− rdt)λdtE[max{0, Sϕ− 1}].

Removing terms in dtdt and scaling by dt, we have

(r + λ− s(a?))v(a?) = (p(a?)− ϕ+ v(a?))dGit/Cit- + ϕ(µ− s(a?)) + λE[max(0, Sϕ− 1)].

Given that v(a?) = ϕ− p(a?), we get

(r + λ)(ϕ− p(a?)) = µϕ− s(a?)p(a?) + λE[max{0, Sϕ− 1}].

Thus, with p(a?) = 1, we need

s(a?) = µϕ− (r + λ)(ϕ− 1) + λE[max(0, Sϕ− 1)]

Similarly, the value of an equity token at a? is equal to:

E(a?Ct- , Ct-) = (s(a?)− δ(a?))p(a?)Ct-dt

+ (1− rdt− λdt)E [E(a?Ct, Ct)| dNt = 0]

+ (1− rdt)λdtE [max{0, E(a?Ct, Ct) + min{Sϕ− 1, 0}Ct}| dNt = 1] .

If no jumps occur in the interval [t, t + dt] (i.e., dNt = 0), then the vault owners is-
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sue/repurchase stablecoins such that

dat/at = dAt/At − dGt/Ct- − s(at) = 0.

Thus,

E [dGt| dNt = 0] = (µ− s(at))Ct-dt.

The continuation value in this case is equal to

E [E(a?Ct, Ct)| dNt = 0] = E [e(a?)Ct| dNt = 0] = e(a?)(1 + µdt)Ct- .

If there is a Poisson jump, all vaults are liquidated before new ones are reopen and the

equity token owners need to pay for the losses. In that case, equity after losses is equal to

0 when

s = log(ϕ/(1− e(a?)).

Thus, if e(a?) < 1,

E [max{0, E(a?Ct, Ct) + min{Sϕ− 1, 0}Ct}| dNt = 1]

=

∫ log(ϕ/(1−e(a?))

0

(
e(a?) + min{e−sϕ− 1, 0}

)
Ct-ξe

−ξsds

=

∫ log(ϕ)

0
e(a?)Ct-ξe

−ξsds+

∫ log(ϕ/(1−e(a?))

log(ϕ)

(
e(a?) + e−sϕ− 1

)
Ct-ξe

−sξds

= e(a?)Ct-
(

1− ϕ−ξ
)

+ (e(a?)− 1)Ct-

(
ϕ−ξ −

(
ϕ

1− e(a?)

)−ξ)
+

ϕξ

ξ + 1
Ct-

(
ϕ−(ξ+1) −

(
ϕ

1− e(a?)

)−(ξ+1)
)
.

Otherwise, if e(a?) ≥ 1,

E [max{0, E(a?Ct, Ct) + min{Sϕ− 1, 0}Ct}| dNt = 1] = E(a?Ct, Ct) + E [min{Sϕ− 1, 0}]Ct.

Assuming that e(a?) ≥ 1, and regrouping all terms and scaling by Cit- , we get

e(a?) = (s(a?)− δ(a?))p(a?)dt+ (1− rdt− λdt)e(a?)(1 + µdt) + (1− rdt)λdt (e(a?) + E [min{Sϕ− 1, 0}]) .
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Removing terms in dtdt and scaling by dt, we have

(r − µ)e(a?) = (s(a?)− δ(a?))p(a?) + λE [min{Sϕ− 1, 0}] .

Since p(a?) = 1 and

s(a?) = µϕ− (r + λ)(ϕ− 1) + λE[max{0, Sϕ− 1}],

we get

(r − µ)e(a?) = µϕ− δ(a?)− (r + λ)(ϕ− 1) + λ

(
ξϕ

ξ + 1
− 1

)
.

Furthermore, as δ(a?) = r − `(a?), we get

(r − µ)e(a?) = `(a?)− (r + λ− µ)ϕ+ λ
ξϕ

ξ + 1

= `(a?)−
(
r +

λ

ξ + 1
− µ

)
ϕ.

T No Loss of Generality for Policies without Brownian Com-

ponent

In this section, we show that considering a policy function dGt = gtCtdt instead of a more

general functional form dGt = gtCtdt+ κtCtdZt is without loss of generality. We proof the

case for the centralized uncollateralized protocol in the smooth region but the proof can be

adapted to any case. The intuition of the results is straightforward: If fighting brownian

shocks with κt has any expected impact on the value of equity, it will also be taken into

account in the smooth issuance decision gt and cancel out. With a stochastic term in dGt
we can write the value of equity in the smooth region as

E(At, Ct) = E[p(At + dAt, Ct + dGt)dGt]

+ (1− rdt− λdt)E[E(At + dAt, Ct + dGt)] + (1− rdt)λdtE[E(SAt, Ct)].
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Using Ito’s lemma and the fact that terms in dtdt converge to 0 faster than terms in dt,

we can get

E[p(At + dAt, Ct + dGt)dGt] = E
[
p(At, Ct)gtCtdt+ σApA(At, Ct)κtCtdt+ κ2

tC
2
t pC(At, Ct)dt

]
and

E[E(At + dAt, Ct + dGt)] = E[E(At, Ct) + µAEA(At, Ct)dt+ gtCtEC(At, Ct)dt

+
σ2

2
A2
tEAA(At, Ct)dt+

κ2
t

2
C2
t ECC(At, Ct)dt+ σAtκtCtEAC(At, Ct)dt]

The first order condition for gt is still given by

p(A,C) + EC(A,C) = 0

while the first order condition for κt is given by

σApA(A,C) + κCpC(A,C) + κCECC(A,C) + σAEAC(A,C) = 0.

As

pA(A,C) + EAC(A,C) = 0

and

pC(A,C) + ECC(A,C) = 0

the first order condition for κt is satisfied if and only if the first order condition for gt is

satisfied. The HJB for p(A,C) becomes

(r + λ− δ(A,C))p(A,C) = µApA(A,C) + (g(A,C) + δ(A,C))CpC(A,C)

+
σ2

2
A2pAA(A,C) +

κ2

2
C2pCC(A,C) + σAκCpAC(A,C) + λE[p(SA,C)].
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Given that p(A/C) = p(A,C), we get

(r + λ− δ(a))p(a) = `(a) + µap′(a)− (g(a) + δ(a))ap′(a)

+
σ2

2
a2p′′(a) +

κ(a)2

2
(p′′(a)a2 + 2p′(a)a)− σκ(a)(p′(a)a2 + p′(a)a) + λE[p(Sa)].

Similarly,

e(a) = −δ(a)p(a) + µae′(a) +
σ2

2
a2e′′(a) + λE[e(Sa)]

and

e′(a) = −δ′(a)p(a)− δ(a)p′(a) + µae′′(a) + µe′(a) +
σ2

2
a2e′′′(a) + σ2ae′′(a) + λE[e′(Sa)].

Using the first order condition for g(a) and its derivatives:

p(a) = −e(a) + e′(a)a,

p′(a) = e′′(a)a,

p′′(a) = e′′′(a)a+ e′′(a),

we get

0 = (r + λ)(p(a) + e(a)− e′(a)a),

= `(a) + δ(a)p(a)− (g(a) + δ(a))ap′(a) + µap′(a) +
σ2

2
a2p′′(a)

+
κ(a)2

2
(p′′(a)a2 + 2p′(a)a)− σκ(p′(a)a2 + p′(a)a) + λE[p(Sa)]

− δ(a)p(a) + µae′(a) +
σ2

2
a2e′′(a) + λE[e(Sa)]

+ δ′(a)ap(a) + δ(a)p′(a)a− µa2e′′(a)− µae′(a)− σ2

2
a3e′′′(a)− σ2a2e′′(a)− λE[e′(Sa)a]

= `(a) + δ′(a)ap(a)− g(a)ap′(a) + κ(a)2/2(p′′(a)a2 + 2p′(a)a)− σκ(a)(p′(a)a2 + p′(a)a).

Thus, in the smooth part of the equilibrium, it must be that

g(a) =
`(a) + δ′(a)ap(a) + κ(a)2/2(p′′(a)a2 + 2p′(a)a)− σκ(a)(p′(a)a2 + p′(a)a)

ap′(a)
.
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Therefore, the HJB for p(a) is given by

(r + λ)p(a) = δ(a)p(a)− δ′(a)ap(a) + µap′(a) +
σ2

2
a2p′′(a) + λE[p(Sa)]

and none of the equilibrium price functions are affectec by κ(a).

U No Commitment

In the main text, we assume that a centralized platform has some commitment power with

respect to the coupon policy and the collateralization rule. As claimed in Section 4, we

show that the platform has no value if it cannot commit at all.

Lemma 9. Without commitment, there is no MPE with striclty positive equity value

E(A,C,K) > 0 and stablecoin price p(A,C,K) > 0.

The problem of a platform without any commitment to policies is similar to that of

a firm that can choose whether or not to make coupon payments on perpetuity debt

without defaulting. Once stablecoins/debt are issued, the firm strictly prefers not to make

coupon payments because it already captured any benefits from issuance. As a result, the

platform would always set the coupon payment to 0 ex-post, which means that stablecoin

have no value ex-ante because the peg is not guaranteed. Lemma 9 thus shows that some

commitment to a coupon policy is necessary; otherwise the platform and the stablecoin it

issues have no value.

Proof of Lemma 9. Note that we have

dCt = δtCtdt+Gtdt+ (Gt − Gt-)

and

dKt = µKtdt+ σKtdZt +Mtdt+Kt−(St − 1)dNt + (Mt −Mt-).
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If (Gt − Gt-) and (Mt −Mt-)
17, using Ito’s lemma we get

(r + λ)E(At, Ct- ,Kt-) = p(At, Ct,Kt)Gt −Mt + µAtEA(At, Ct,Kt)

+ (Gt + δtCt)EC(At, Ct,Kt) + (Mt + µKt)EK(At, Ct,Kt)

+
σ2

2
A2
tEAA(At, Ct,Kt) +

σ2

2
K2
t EKK(At, Ct,Kt) + σ2AtKtEAK(At, Ct,Kt)

+ λE[E(SAt, Ct, SKt)].

Therefore, if EC(A,C,K) is strictly negative, given a strategy δ(A,C), there is always an

optimal deviation to a lower interest payment δ(A,C)−∆ where δ > 0 until ∆(A,C) = 0.

By Proposition I of DeMarzo and He (2021), E(A,C,K) is strictly decreasing in C when

p(A,C,K) > 0.

Similarly, without commitment to K(At, Ct-), it is always optimal to put no collateral

in the platform as r < µ− λ
ξ+1 and K(A,C) = 0. (See Appendix O.)

If δ(A,C) = 0, then p(A,C, 0) < 1 as `(A,C) < r.

17Otherwise, we get

E(At, Ct- ,Kt-) = E(At, Ct- + Gt − Gt- ,Kt- +Mt −Mt-) + p(At, Ct- + Gt − Gt- ,Kt- +Mt −Mt-)(Gt − Gt-)− (Mt −Mt-),

which is not impacted by δt.
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