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Abstract

This paper develops a multi-firm equilibrium model of information acquisition based
on differences in firms’ characteristics. It is shown that higher economic uncertainty
attracts investor attention to firm-level earnings announcements. Increased investor
attention magnifies the earnings response coefficients of all announcing firms. However,
reactions to increased attention differ by firm characteristics (e.g., firms with higher
systematic risk attract more investor attention, and their prices react more to earnings
announcements). More importantly, heightened investor attention caused by high eco-
nomic uncertainty implies a steeper CAPM relation and higher betas for announcing
firms. Empirical tests using firm-level attention measures yield support to the model’s
predictions.
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1 Introduction

We explore the impact of economic uncertainty and investor attention on asset prices in

a multi-firm equilibrium model of information acquisition. The motivation for this inquiry

starts with a large body of theoretical and empirical research that studies the tradeoffs im-

posed by the limited attention theory (Sims, 2003; Hirshleifer and Teoh, 2003; Peng, 2005).

Limited attention models can explain a wide array of phenomena, such as the home bias puz-

zle (Van Nieuwerburgh and Veldkamp, 2009), investment and attention allocation behavior

(Van Nieuwerburgh and Veldkamp, 2010), the attention allocation of mutual fund managers

(Kacperczyk, Van Nieuwerburgh, and Veldkamp, 2016), or the comovement of asset returns

(Peng and Xiong, 2006; Veldkamp, 2006). Nevertheless, the question remains whether these

attention choices are priced in equilibrium. In other words, do firms’ prices react to investors’

attention decisions; and if so, does the Capital Asset Pricing Model reflect these reactions?

This question is important given that the CAPM is a paradigm of modern finance and that

attention has a first-order effect on financial markets (Da, Engelberg, and Gao, 2011; Andrei

and Hasler, 2015).

To answer the question, we develop an equilibrium model of information acquisition. Our

model is a multi-firm variant of Grossman and Stiglitz (1980), in which firms make earnings

announcements and investors tailor their attention to any combination of firms’ announce-

ments. We focus on earnings announcements because they are salient information releases

by firms that convey firm-specific and, potentially, macroeconomic/systematic information.

We allow for investors’ attention decisions to depend on the economic uncertainty investors

face. This facilitates predictions about how aggregate uncertainty affects information ac-

quisition, investor demand for shares, and the intertwined CAPM pricing of both corporate

announcements and macroeconomic risk.

The first prediction of our model is that investors’ attention to earnings announcements

increases in uncertainty. In turn, increased investor attention magnifies stock price reac-

tions to the earnings announcements, hereafter referred to as earnings response coefficients

(ERCs). Furthermore, the effect varies predictably with firm-specific factors: ERCs increase

incrementally more for firms that have (i) a stronger exposure to systematic risk; (ii) more

informative earnings announcements; (iii) a more volatile idiosyncratic component in their

earnings; and (iv) more noise trading. The intuition behind all these four cases is that

the benefit of collecting information outweighs its cost for these firms, which attracts more

investor attention to their announcements.

One central goal of our multi-asset framework is to study how investor attention impacts

the CAPM. The model predicts that when a firm announces earnings, its beta increases pro-
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portionally to the fraction of investors who pay attention to its announcement. Furthermore,

the model predicts a higher risk premium and thus a steeper CAPM relation on days of

heightened investor attention caused by high uncertainty. While the increase in the market

risk premium due to higher uncertainty is an obvious equilibrium outcome in asset pricing

models, the higher risk premium caused by heightened investor attention is a novel result.

In our model, investors earn a risk premium by paying attention because they are rewarded

for resolving uncertainty (Robichek and Myers, 1966; Epstein and Turnbull, 1980).

In extensions of the model, we show that the impact of uncertainty on attention is more

substantial for investors with lower information processing costs (e.g., institutional investors).

We also show that the relation between uncertainty and attention is preserved in a dynamic

version of the model. Thus, although in our main model we obtain results using the standard

setting from Grossman and Stiglitz (1980), the static information choice imposed by that

setting is not critical for our findings.

We test the model’s predictions using the VIX as a time-varying measure of economic

uncertainty and SEC EDGAR downloads to proxy for investor attention.1 The results gen-

erally support our predictions. First, we find that investors pay more attention to earnings

announcements on days with higher VIX. Second, we find that ERCs are larger for firms

that announce on days with higher VIX. We attribute this effect primarily to the increase in

investor attention. Third, we show that our ERC results are concentrated in firms with high

CAPM beta (whose announcements are more likely to convey systematic information), firms

with higher institutional ownership (whose cost of information acquisition is likely lower),

firms with higher idiosyncratic volatility, and firms with more noise trading (captured by

trading volume). Finally, we find strong empirical support for a steeper CAPM relation

on days with heightened investor attention. Our findings indicate that investor attention is

responsible for increased market betas on earnings announcement days.

Our study extends previous theories of attention in two ways, and offers rational expla-

nations for several empirical findings in the literature that were attributed to behavioral

factors. First, in our setting, firm-level announcements provide valuable information about

the prospects of the announcing firms and the entire economy. In contrast, extant theo-

ries ignore such information spillovers and limit investors’ attention to either systematic or

idiosyncratic news (e.g., Peng and Xiong, 2006; Kacperczyk et al., 2016). In our model, in-

formation spillovers lead to a positive relation between uncertainty and attention and to an

impact of attention on firms’ market betas on announcement days. Information spillovers also

lead to weaker ERCs when more firms are announcing: with a greater number of announce-

1As an alternative attention proxy, we confirm our results using Google stock ticker searches attributable
to investors (deHaan, Lawrence, and Litjens, 2021).
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ments, prices reveal more market-wide information for free, weakening attention incentives.

This spillover effect contrasts with the explanation advanced in Hirshleifer, Lim, and Teoh

(2009) that ERCs are weaker because multiple announcements compete for investors’ limited

attention (a cognitive constraint effect). Finally, related theories study information spillovers

in similar contexts (Patton and Verardo, 2012; Savor and Wilson, 2016), but are silent about

the interaction between information spillovers and investor attention and the impact of at-

tention on ERCs and the CAPM equilibrium.

Second, the aggregate amount of attention in our economy fluctuates with incentives tied

to economic uncertainty, whereas previous models bind attention to a fixed capacity con-

straint (Sims, 2003; Peng and Xiong, 2006; Kacperczyk et al., 2016). Our setup relaxes this

constraint and instead assumes that investors face disclosure processing costs (Blankespoor,

deHaan, and Marinovic, 2020). As a result, the aggregate amount of attention increases on

days with higher uncertainty, which explains the steepening of the securities market line. Con-

versely, attention decreases on days with lower uncertainty or less informative announcements.

This latter finding offers an alternative and rational explanation for investors’ inattention to

Friday announcements (DellaVigna and Pollet, 2009; Louis and Sun, 2010; Michaely, Rubin,

and Vedrashko, 2016b). That is, Friday announcers may have different firm characteristics

than non-Friday announcers, a prediction consistent with the empirical findings of Michaely,

Rubin, and Vedrashko (2016a).

In a related empirical paper, Hirshleifer and Sheng (2022) also challenge the idea of fixed

attention capacity constraints. They provide evidence that investors can potentially devote

more or less attention to both macro and micro news (see also Eberbach, Uhrig-Homburg, and

Yu, 2021). While our empirical findings are consistent with those in Hirshleifer and Sheng

(2022), different from that study, we build a theory to explain these findings. In addition,

we derive and analyze the cross-sectional implications of investors’ rational responses to

heightened uncertainty using EDGAR (Google) searches.2

Our study adds to the rapidly growing literature that documents a robust beta-return

relation on various occasions: on macroeconomic announcement days; when investor attention

is strong; in months after the U.S. midterm elections; on leading earnings announcement days;

or overnight (Savor and Wilson, 2014; Ben-Rephael, Carlin, Da, and Israelsen, 2021; Chan and

Marsh, 2021a,b). We contribute to this literature by showing theoretically that heightened

investor attention leads to a steeper beta-return relation and increases firms’ market betas

on the days of their announcements.

2Several recent studies use EDGAR data to explore different issues in corporate finance and asset pricing
(e.g., Loughran and McDonald, 2011; DeHaan, Shevlin, and Thornock, 2015; Lee, Ma, and Wang, 2015;
Drake, Roulstone, and Thornock, 2015; Bauguess, Cooney, and Hanley, 2018; Chen, Cohen, Gurun, Lou, and
Malloy, 2020; Chen, Kelly, and Wu, 2020; Gao and Huang, 2020).
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Overall, our paper shows that economic uncertainty is an essential driver of investors’

attention to firm-level information and that investors’ rational attention behavior has critical

asset pricing implications. First, attention is the primary channel through which stock prices

react to earnings announcements. Second, heightened attention leads to higher market betas

for the announcing firms and a steeper securities market line. Investor attention, thus, might

be an overlooked factor in explaining the cross-section of asset returns.

The rest of the paper proceeds as follows. Section 2 describes our model and its main

predictions, and Section 3 examines extensions and other implications. Section 4 tests our

model’s predictions for investor attention and market pricing around earnings announcements

and CAPM pricing on days with high versus low investor attention. Finally, Section 5 provides

concluding remarks.

2 Model

Consider an economy populated by a continuum of investors, indexed by i ∈ [0, 1]. The econ-

omy has three dates t ∈ {0, 1, 2}. At t = 0, each investor makes an information acquisition

decision that we will describe below. At t = 1, investors trade competitively in financial

markets. At t = 2, financial assets’ payoffs are realized, and investors derive utility from

consuming their terminal wealth. Investors trade a riskless asset and N risky assets indexed

by n ∈ {1, ..., N}. The riskless asset is in infinitely elastic supply and pays a gross interest

rate of 1 per period. Each risky asset (“firm”) has an equilibrium price Pn at t = 1 and pays

a risky dividend at t = 2:

Dn = bnf + en, for n ∈ {1, ..., N}. (1)

The payoff Dn has a systematic component f and a firm-specific component en. The param-

eters bn, which are heterogeneous across firms and known by investors, dictate the exposures

of firms’ payoffs to the systematic component. Without loss of generality, we assume that

the average of bn across firms is 1.

We denote by D the N × 1 vector of asset payoffs, by P the N × 1 the vector of asset

prices, and by Re ≡ D − P the vector of dollar excess return of the risky assets.3 We fix

the total number of shares for all assets to M (hereafter the market portfolio), an equally-

weighted vector whose elements are all equal to 1/N . The future market return is then

Re
M ≡ M′Re. The assumption of an equally-weighted market portfolio M does not affect

3Throughout the paper, we will adopt the following notation: we use letters in plain font to indicate
univariate variables and bold letters to indicate vectors and matrices; we use subscripts to indicate individual
assets and superscripts to indicate individual investors. Appendix A.1 provides further details.
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our results. However, it is useful for interpreting the results in terms that are empirically

measurable (as discussed in detail below).

At t = 0, all investors have a common information set F0 that consists of the prior

distributions of f and en:

f ∼ N (0, U2) (2)

en ∼ N (0, σ2
en), for n ∈ {1, ..., N}. (3)

We allow for variances σ2
en to vary in the cross-section of firms. Firm-specific components en

are independent across firms, and f and en are independent, ∀n ∈ {1, ..., N}.
We refer to U as uncertainty for the rest of the paper. It represents investors’ expected

forecasting error conditional on information available at time 0, U2 ≡ Var[f |F0]. As we will

show below, in our model U is closely related to investors’ pre-announcement uncertainty

about the future return on the market, which helps us confront the theory with the data.

Defining U as uncertainty is the simplest way to derive theoretical predictions. Alterna-

tively, we could be more specific about the information set F0, without any impact on the

results. Assuming, for instance, that before time 0 investors hold the prior f ∼ N (0, σ2
f ), and

that at time 0 they observe public information about f under the form of a signal G = f + g

with g ∼ N (0, σ2
g), Bayesian updating implies

U2 = Var[f |F0] =
σ2
fσ

2
g

σ2
f + σ2

g

. (4)

A higher variance σ2
f of the fundamental or a higher variance σ2

g of the noise in public infor-

mation increases investors’ uncertainty at time 0. Thus, our results come through whether

U measures uncertainty in macro fundamentals or captures noise in the available public

information at time 0. We, therefore, keep our model agnostic about what determines U .4

A total of A ≤ N firms issue earnings announcements at t = 1. We denote the set of

announcing firms by A ≡ {1, ..., A}. As in Teoh and Wong (1993), earnings announcements

convey information about firms’ future dividends:

Ea = Da + εa, for a ∈ A, (5)

where the earnings noise shocks εa are independently distributed, εa ∼ N (0, σ2
εa), and drawn

independently from f and en, ∀a ∈ A and ∀n ∈ {1, ..., N}.
At t = 0, each investor i chooses whether or not to be attentive to the earnings announce-

4We discuss the introduction of an additional layer of information acquisition in Section 3.2 using a
dynamic version of the model. We show that including this feature does not qualitatively change our results.
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ments. Investor i can pay attention to announcements made by the firms in any of the 2A

possible subsets of A. (The set of all subsets of A represents the power set of A, or P(A),

and includes the empty set ∅ and A itself.) Thus, there are potentially 2A investor types,

indexed by k ∈ P(A). For instance, investors who choose to stay uninformed are of type

k = ∅; investors who pay attention to all earnings announcements are of type k = A. We use

the dummy variable Ika , with a ∈ A and k ∈P(A), to indicate type k investor’s decision to

pay attention to Ea: if a ∈ k, then Ika = 1; otherwise, Ika = 0.

Each investor starts with zero initial wealth and maximizes expected utility at time 0,

max
k∈P(A)

E0

[
max

qk
Ek1
[
−e−γ(Wk−c|k|)

]]
, (6)

where qk is the optimal portfolio of a type k investor and |k| denotes the cardinality of the

set k, or |k| =
∑

a∈A I
k
a .

At time 0, investor i decides her type k, knowing that at time 1 she will choose an optimal

portfolio based on the information set pertaining to the type k. The first optimization is a

combinatorial discrete choice problem.5 The second optimization is a standard Markowitz

(1952) portfolio choice problem, where γ is the risk aversion coefficient, W k = (qk)′Re is

investor’s final wealth at t = 2 (which depends on her type k), and c is the monetary cost

of paying attention to one earnings announcement—e.g., an information-processing cost, or

time and opportunity cost. The attention cost c is strictly positive and is the same across

investors and firms. (We derive additional predictions in a model with heterogeneous costs

across investors—e.g., retail versus institutional investors—in Section 3.)

At t = 1, investors build optimal portfolios:

qk =
1

γ
Vark1[D]−1(Ek1[D]−P), for k ∈P(A), (7)

where the superscripts k in Ek1[·] and Vark1[·] read “under the information set of a type k

investor.” That is, Vark1[D] is the N ×N covariance matrix of assets’ payoffs, conditioned on

the type k investor’s information set.

We assume that an unmodeled group of agents trades for non-informational reasons or

liquidity needs. This is a common assumption in noisy rational expectations models, which

ensures that equilibrium prices do not fully reveal investors’ information. Consistent with

much of the prior literature, we often interpret liquidity trading as noise (Grossman and

Stiglitz, 1980; He and Wang, 1995). Liquidity traders have inelastic demands of x shares,

5Examples of combinatorial discrete (binary) choice problems in economics include plant location prob-
lems, country selection by multinational firms, and selection of which goods to produce. Hu and Shi (2019)
and Arkolakis, Eckert, and Shi (2021) made recent theoretical advances in this field.
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where each element of x is normally and independently distributed, xn ∼ N (0, σ2
xn).

Denoting by λk the fraction of type k investors, the prices of risky assets are determined

in equilibrium by the market-clearing condition:∑
k∈P(A)

λkqk + x = M. (8)

Before turning to the equilibrium analysis, we define the fraction of investors who observe

the announcement Ea as

Λa ≡
∑

k∈P(A)

λkIka . (9)

Importantly, in our model the attention capacity of investors is not constrained, in the

sense that an equilibrium in which Λa = 1 ∀a ∈ A is possible, as we will describe below.

2.1 Equilibrium search for information

As is customary in noisy rational expectations models, prices take the linear form

P = αE + ξx− ζM, (10)

where E ≡ [E1, E2, · · · , EA]′, α is a N × A matrix, and ξ and ζ are N ×N matrices.

Solving for the equilibrium price coefficients is not necessary to determine the equilibrium

demand for information. Instead, it is sufficient to make the following conjecture (equivalent

to Lemma 3.2 in Admati, 1985), which we will verify in Proposition 3.

Conjecture 1.

P̂ ≡ ξ−1(P + ζM) =
A∑
a=1

Λa

γσ2
εa

ιaEa + x, (11)

where P̂ ≡ [P̂1, P̂2, · · · , P̂N ]′ and ιa is a standard basis vector of dimension N with all com-

ponents equal to 0, except the a-th, which is 1.

This conjecture transforms the equilibrium prices into simple signals about Ea, a ∈ A.

In equilibrium, all investors except the fully informed (of type k = A) use prices to learn.
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Accordingly, the information sets of investors at time 1 areFk = {Ea | a ∈ k} ∪ P̂ if k ∈P(A) \ A,

Fk = {Ea | a ∈ A} if k = A.
(12)

Before characterizing the information acquisition decision for each investor type, we define

the following learning coefficients :

`ka = Ika + (1− Ika )`a, where `a ≡
Λ2
a

Λ2
a + γ2σ2

xaσ
2
εa

. (13)

If a type k investor observes the earnings announcement Ea, then Ika = 1 and the learning

coefficient `ka reaches its maximum value, 1. Without observing Ea, I
k
a = 0 and the investor

relies on prices to learn, which yields `ka = `a < 1. Prices are informative about Ea to

the extent that someone pays attention to the signal Ea, that is, if Λa > 0. In this case,

`a increases with the fraction of informed investors (investors learn more from prices when

a higher fraction of them pay attention to Ea) and decreases with the amount of noise in

supply σxa and the amount of noise in the earnings announcement σεa (investors learn less

from prices when there is more noise in supply or when earnings announcements are noisier).

Investors’ demand for information ultimately depends on the reduction in uncertainty

achieved by observing new information. Because in our setup the vector of final payoffs D is

a multidimensional normally distributed random variable, the reduction in uncertainty from

observing new information is conveniently measured using the notion of entropy: under the

information set of any investor type k ∈P(A), the vector D has entropy

Hk[D] =
N

2
ln(2π + 1)− 1

2
ln(det(Vark1[D]−1)). (14)

From this definition, it follows that the uncertainty perceived by the investor decreases with

the determinant of the posterior precision matrix of D (i.e., the inverse of the posterior

covariance matrix Vark[D], hereafter τ k).

Defining Var[D] ≡ σ2
fbb′ + Var[e], where e is the vector of idiosyncratic components en

in firms’ payoffs given in (1), we can state the following proposition.

Proposition 1. The posterior precision matrix for each investor type k ∈P(A) is

τ k ≡ Vark1[D]−1 = Var[D]−1 +
A∑
a=1

`ka
σ2
εa

ιaι
′
a, (15)
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and its determinant is given by

det(τ k) = det(Var[D]−1)

(
A∏
a=1

`kaσ
2
ea + σ2

εa

σ2
εa

)(
1 + U2

A∑
a=1

`kab
2
a

`kaσ
2
ea + σ2

εa

)
. (16)

Proposition 1 shows how the heterogeneity in the learning coefficients `ka across investors

of different types k ∈P(A) drives the heterogeneity in the determinants det(τ k). Because a

higher determinant means less uncertainty (Eq. 14), the determinants det(τ k) provide a clear

ranking of the informational distances between the 2A investor types. For instance the most

informed investors (of type A) have the highest det(τ k) because `Aa = 1, ∀a ∈ A, whereas

the least informed investors (of type ∅) have the lowest det(τ k).

The ranking in det(τ k) dictated by Proposition 1 allows for a simple characterization

of the information market equilibrium. Consider a type k investor who decides whether to

migrate to any alternative type in P(A) \ k. The key quantity that regulates the investor’s

decision is the benefit-cost ratio, which we define as

Bk
∅ ≡

det(τ k)

det(τ ∅)
e−2γc|k|. (17)

The ratio det(τ k)/ det(τ ∅) in Bk
∅ measures the gain in precision obtained from observing the

earnings announcements made by all the firms in the set k, whereas e−2γc|k| measures the

cost of paying attention to these announcements. With this benefit-cost ratio in hand, we

can formulate the following result.

Proposition 2. A type k investor changes type from k to k′ ∈P(A) \ k if and only if

Bk′

∅
Bk
∅
> 1 ⇐⇒ 1

2γ
ln

det(τ k
′
)

det(τ k)
> c(|k′| − |k|). (18)

Assume, without loss of generality, that |k′| − |k| > 0. On the left-hand side of (18),
1

2γ
ln det(τk

′
)

det(τk)
measures the benefit of migrating from k to k′ as a reduction in entropy divided

by investor’s risk aversion, (Hk[D] −Hk′ [D])/γ; the right-hand side measures the attention

cost. The type k investor changes type if and only if the benefit from the reduction in

entropy achieved by becoming of type k′ outweighs its cost. Risk aversion lowers the benefit

of information: because more risk-averse investors trade less aggressively, they benefit less

from paying attention to firm disclosures.

The ratio det(τ k
′
)/ det(τ k) in (18) is greatly simplified by means of Proposition 1: all

the heterogeneity pertaining to non-announcing firms enters only in det(Var[D]−1) and thus

vanishes in the ratio. To gain further insight into this ratio, let us focus on a simplified
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version where investors in aggregate pay attention to one firm only (i.e., there is only one

announcing firm, a). In this case, a type ∅ investor changes type to {a} if and only if

1

2γ
ln

1 + Var[Da]
σ2
εa

1 + Var[Da]
σ2
εa

Λ2
a

Λ2
a+γ2σ2

xaσ
2
εa

> c. (19)

On the left-hand side the benefit of information increases with Var[Da]/σ
2
εa, which measures

the quality of information provided by the earnings announcement; decreases with the fraction

of informed investors Λa, in which case prices are more informative and the signal Ea becomes

less valuable; increases with the amount of noise in supply σxa, in which case prices are less

informative and the signal Ea becomes more valuable; and decreases with the risk aversion.

(See also Grossman and Stiglitz, 1980, for similar tradeoffs.)

The same tradeoffs are at play when multiple firms are announcing, with the significant

difference that heterogeneity in firms characteristics (ba, σεa, σea, and σxa) yields heteroge-

neous information choices across firms. We will analyze this heterogeneity in Section 2.4,

where we discuss the model’s theoretical predictions and continue to focus here on the infor-

mation market equilibrium, which we characterize in the following theorem.

Theorem 1. There exist two positive values cmin < cmax, strictly increasing in U , such that:

(A) If c ∈ [cmax,∞), then the cost of information is prohibitive and no investor finds it

optimal to pay attention to the earnings announcements: λ∅ = 1.

(B) If c ∈ (cmin, cmax), then there exists a set {λk | k ∈ P(A)} such that, in equilibrium:∑
k∈P(A) λ

k = 1; λ∅ < 1; λA < 1; and the benefit-cost ratios {Bk
∅ | k ∈ P(A)} are

determined such that for any pair {k, k′} ∈P(A):

(i) If {λk > 0} ∧ {λk′ > 0}, then Bk′

∅ /B
k
∅ = 1.

(ii) If {λk = 0} ∧ {λk′ > 0}, then Bk′

∅ /B
k
∅ ≥ 1.

Conditions (i) and (ii) are both necessary and sufficient for the stability of the infor-

mation market equilibrium when c ∈ (cmin, cmax).

(C) If c ∈ [0, cmin], then the cost of information is small enough such that all investors pay

attention to all the earnings announcements: λA = 1.

Cases (A) and (C) are trivial equilibria in which the information cost is too high or too

low. In these cases, investors unanimously choose to remain uninformed or to pay attention

to all earnings announcements. Case (B), which will be the focus of our analysis in Section

2.4, defines a set of conditions such that, in equilibrium, no investor can unilaterally improve
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their utility by changing their type.6 We explain in Section 2.4 how investors arrive at this

self-sustaining equilibrium, and describe an iterative algorithm that converges to equilibrium

from any initial conditions {λk0 > 0 | k ∈P(A)}.

2.2 Equilibrium prices and earnings response coefficients

We now aggregate investors’ demands in order to solve for equilibrium prices. Define first

the weighted average precision matrix for the population of informed investors as

τ ≡
∑

k∈P(A)

λkτ k. (20)

Lemma 1. The weighted average precision is given by

τ = Var[D]−1 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (21)

where each coefficient πa(Λa) is a strictly increasing function of Λa,

πa(Λa) =
Λ2
a + Λaγ

2σ2
xaσ

2
εa

Λ2
aσ

2
εa + γ2σ2

xaσ
4
εa

, a ∈ A, (22)

and diag[yj | j ∈ z] is a diagonal matrix with {yj | j ∈ z} on its diagonal.7

Each function πa(Λa) determines the aggregate precision gains from observing Ea. A

key property of these functions, which will prove useful shortly, is that they depend on the

economic uncertainty U only indirectly through Λa.

Proposition 3. The equilibrium prices in this economy satisfy

τP =
A∑
a=1

πa(Λa)ιaEa + γ

[
diag

[
πa(Λa)σ2

εa

Λa
| a ∈ A

]
0A×(N−A)

0(N−A)×A IN−A

]
x− γM, (23)

where Iz is the identity matrix of dimension z.

6Conditions (i) and (ii) can be grouped by means of a Kronecker product. Consider the column vector
B = {Bk

∅ | k ∈ P(A)} and let B−1 be its element-wise inverse. The Kronecker product B−1 ⊗ B′, whose

rows correspond to λk and columns to λk
′
, groups all the necessary elements, e.g., if {λk > 0} ∧ {λk′

> 0},
then the element (k, k′) of B−1 ⊗B′ should equal 1.

7The off-diagonal elements in the second term of Eq. (21) are all zero, potentially suggesting that an
earnings announcement Ea is only informative about Da. This may seem unexpected, given that all final
payoffs share a common systematic component. However, the precision matrix does not have the usual
element-wise interpretation of the covariance matrix (e.g., the diagonal terms of the precision matrix are not
asset-specific precisions). Inverting the precision matrix τ would restore the common interpretation.
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The earnings response coefficients (ERCs) measure the reactions of the equilibrium prices

to the earnings announcements. In a simpler model with a sole announcer the ERC is the

coefficient of Ea in the equilibrium price. In our model with N firms and A announcers,

ERCs form the principal diagonal of the N ×A matrix α in the price conjecture (10). That

is, ERCs measure the price reactions of the announcing firms to their own announcements.

Denoting by DA the final payoffs of all announcing firms, we derive the following corollary.

Corollary 3.1. The earnings response coefficients are given by the diagonal of the A × A

matrix αA, which solves:

αA = IA − (IA + Var[DA] diag[πa(Λa) | a ∈ A])−1 . (24)

The A × A matrix αA is zero if Λa = 0 ∀a ∈ A. An important separation result helps

us interpret αA: as shown in Lemma 1, the coefficients πa(Λa) do not directly depend on

U . Therefore, in the following analysis, we can separately assess the effects of an increase

in economic uncertainty on ERCs and, in particular, the additional effect that arises from

changes in investor attention.

2.3 Illustration

To illustrate how investors’ search for information converges to a stable equilibrium, it is

helpful to write the individual optimization problem (6) in a more straightforward form.

Appendix A.7 shows that at time 0, each investor makes the following choice:

max
k∈P(A)

lnBk
∅ , (25)

where the benefit-cost ratios Bk
∅ have been defined in (17).

A key property of the function f(k) = lnBk
∅ is submodularity—the difference in the

incremental value of f(k) that one element a makes when added to the type k decreases as

the size of k increases. Submodularity can be interpreted as a property of diminishing returns.

It implies that an individual investor’s incentive to become more informed (e.g., to increase

her type from k to k ∪ {a}) decreases with her current level of attention. Furthermore, we

show in Appendix A.7 that a migration of a positive mass of investors from any type k to

a different type k′ decreases the relative attractiveness of type k′ with respect to type k,

i.e., decreases the fraction Bk′

∅ /B
k
∅ . This implies that an individual investor’s incentive to

choose k′ over k decreases if in aggregate more investors choose k′ over k. Hence we recover

the Grossman and Stiglitz (1980) result that individual action and the aggregate of (others)

individual actions are strategic substitutes.
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Hu and Shi (2019) and Arkolakis et al. (2021) derive an evolutionary learning algorithm

that reaches the equilibrium of a submodular game from any initial point. Starting from a

set of initial values {λk0 > 0 | k ∈ P(A)} such that
∑

k λ
k
0 = 1, the algorithm allows some

small fraction of the population of investors of a given type k to revise their strategy as the

best response to the current total population strategy. This process is iterated over all types

until it converges to a self-sustaining equilibrium in which no investor changes strategy, as

in Theorem 1. We relegate the details of this algorithm to Appendix A.7 and focus here on

a numerical example, which we illustrate in Figure 1.

(Insert Figure 1 about here)

This numerical example considers an economy with three announcers. The announcing

firms differ through their exposure to systematic risk, b1 > b2 > b3, while other firm-level

parameters are homogeneous across firms. The parameters that we chose are provided in the

caption of the figure. Note that this example is only illustrative—in Section 4, we propose a

realistic calibration with a larger number of announcers.

The dashed and solid lines in the figure depict the values cmin and cmax, respectively.

The plot confirms the results of Theorem 1: (i) cmin < cmax and (ii) cmin and cmax increase

with the amount of uncertainty U . When c ≤ cmin, all investors are attentive to all earnings

announcements, λA = 1; when c ≥ cmax, no investor pays attention to earnings announce-

ments, λ∅ = 1; when c ∈ (cmin, cmax), the two dotted lines that split the middle zone show

that investors always find the announcement of firm 1 most valuable—they pay attention to

E1 in cases (B1), (B2), and (B3)—whereas the announcement of firm 3 least valuable—they

pay attention to E3 only in case (B3). Since b1 > b2 > b3, E1 is the most informative an-

nouncement about the systematic factor f , and investors turn their attention first to firm 1.

Thus, in this equilibrium investors behave as if they queue announcements based on their

exposure to systematic risk. Frederickson and Zolotoy (2016) document a similar queuing re-

sult: investors devote more immediate attention to announcing firms that are comparatively

more visible (i.e., larger firms, firms with more media coverage, higher advertising expense,

or higher analyst coverage). In the case discussed here, attention queueing is based on firms’

exposures to the systematic factor f . Indeed, as we show in the next section, firms’ exposures

to the systematic factor yield a clear ranking of investor attention across firms.

2.4 Implications for attention and earnings response coefficients

Building on the previous illustration, we derive several testable implications of the model.

The first result that emerges from Theorem 1 and Figure 1 is the effect of an increase in

uncertainty on the information market equilibrium. Suppose uncertainty is low enough that
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all investors are inattentive—this corresponds to case (A), depicted with the hashed area in

the plot. Then, after an increase in uncertainty the equilibrium moves to the right, anywhere

from case (B) to case (C): a positive fraction of investors become attentive first to E1, and

if the increase in uncertainty is sufficiently substantial, to E2 and ultimately to E3. The

main implication is that an increase in uncertainty triggers investor attention to firm-level

information. Moreover, investors direct their attention to an increasing number of firms as

uncertainty increases.

The previous implication refers to the number of firms : more announcing firms become the

focus of investor attention as uncertainty increases. We now turn to the effect of uncertainty

on the number of investors who pay attention to the earnings announcements. The fractions

Λa of investors who observe each earnings announcement, defined in (9), are not apparent

from Figure 1, which only shows when these fractions are positive or zero. To analyze how

these fractions vary with uncertainty, assume for simplicity that no investor in the economy

observes the announcement of firm a, or Λa = 0. Note that similar intuition holds without

the assumption but with a more complicated expression. Then, for a type k investor the

benefit of paying attention to Ea follows from (17):

det(τ k∪{a})

det(τ k)
= 1 +

1

σ2
εa

σ2
ea +

b2
a

1
U2 +

∑A
α=1, α6=a

b2α`
k
α

`kασ
2
ej+σ

2
εα

 . (26)

The first implication of (26) is that the benefit of paying attention to Ea strictly increases

with uncertainty (this holds for all investor types and all announcing firms). Moreover,

the benefit of attention is higher for firms with a stronger exposure ba to the systematic

component, a higher volatility σea of their idiosyncratic component, and less noise σεa in

their announcement. Eq. (26) also implies that the benefit of attention decreases with the

amount of attention that investors pay to other earnings announcements, as reflected in the

summation term: if a large number of firms announce at the same time (i.e., A is high), and

large fractions of investors are attentive (i.e., Λα is large, ∀α 6= a), then prices are highly

informative about f and paying attention to Ea becomes less valuable. This implication

is similar to the investor distraction hypothesis (Hirshleifer et al., 2009): when multiple

announcements compete for investor attention, prices underreact to the new information.

In our model, this result arises not because investors are distracted by the simultaneous

announcements but because information spillovers increase aggregate price informativeness,

diminishing the benefit of attention.

A critical implication of (26) emerges once we fix ba = 0, which results in a constant

benefit of paying attention to Ea. In this case, an increase in uncertainty does not lead

14



to an increase in attention to firm-level information because no information spillover occurs

from firm a to the rest of the economy. This implication, coupled with evidence from recent

empirical work (Hirshleifer and Sheng, 2022; Ben-Rephael et al., 2021; Chan and Marsh,

2021b) and our empirical analysis in Section 4, highlights the importance of information

spillovers in theories of firm-level information acquisition.

Panel (a) of Figure 2 illustrates the impact of an increase in uncertainty in our calibrated

economy with three announcers. The three lines depict the fractions of the population of

investors attentive to each earnings announcement. This example assumes that b1 > b2 > b3.

Confirming Eq. (26), the fractions Λ1, Λ2, and Λ3 increase with U . We note that for low

levels of economic uncertainty the fractions Λa are all zero for a ∈ {1, 2, 3}, which corresponds

to case (A) of Theorem 1. As uncertainty increases the economy moves successively to all

the subcases of (B) and ultimately to case (C).

(Insert Figure 2 about here)

The increase in investor attention caused by an increase in uncertainty has additional

implications for the response of prices to firm-level information. To gain more intuition, we

write the ERC in an economy with a sole announcer (a particular case of Corollary 3.1):

ERCa = 1− 1

1 + (U2b2
a + σ2

ea)πa(Λa)
. (27)

The ERC increases with uncertainty directly through an increase in the variance of the

firm’s payoff Var[Da] = U2b2
a+σ2

ea and indirectly through an increase in investors’ attention to

the earnings announcement. Firms with a stronger exposure ba to the systematic component,

or a higher volatility σea of their idiosyncratic component, observe a larger increase in their

ERC as uncertainty and investor attention increase. Panel (b) of Figure 2 revisits our economy

with three announcers. It confirms that ERCs increase with uncertainty and that firms with

stronger exposure to the systematic components have higher ERCs.

Eq. (27) implies that ERCs are driven both by the exogenous increase in uncertainty and

the endogenous increase in investor attention and that the two effects compound each other.

We disentangle these two effects in Figure 3. The gray bars depict the impact on ERCs of

an increase in U. The hashed bars include the additional impact of the increase in investor

attention, confirming the direct and indirect effects from (27). Note that in this example the

ERC of the third announcer increases from zero to a positive value only through the indirect

effect of an increase in attention.

(Insert Figure 3 about here)
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We now turn to other dimensions of heterogeneity across firms and summarize the results

in Figure 4. Panels (a) and (d) analyze the effect of the volatility of the idiosyncratic compo-

nent, σe1 > σe2 > σe3 (while all other parameters are constant across firms). Eqs. (26) and

(27) imply that firms with higher σea should observe stronger investor attention and ERCs to

their announcements because the informativeness of an earnings announcement, Var[Da]/σ
2
εa,

is higher for firms with higher σea. Thus, investors focus on those firms first after an increase

in uncertainty. Panels (a) and (d) confirm these effects for the fractions of informed investors

and ERCs.

(Insert Figure 4 about here)

Assuming that firms differ through the noise in their signals, σε1 < σε2 < σε3, implies that

the signal of firm 1 is more valuable for investors for the same reason as above: E1 is more

informative about f than E2, which itself is more informative than E3. Panels (b) and (e)

of Figure 4 illustrate this. Finally, we also analyze the case of different noisiness of supply.

Panels (c) and (f) consider an economy in which σx1 > σx2 > σx3 and show that after an

increase in U , investors turn their attention more to firm 1, causing an increase in ERCs.

The intuition stems from price informativeness: the equilibrium prices of firms with more

substantial noise in supply reveal less information to investors, which increases the ex-ante

incentive to acquire information from earnings (as in Grossman and Stiglitz, 1980). This

intuition explains the greater attention and stronger ERCs for firms with higher σxa.

To summarize, the testable implications of our model concerning the impact of uncertainty

on investor attention and on ERCs are: (i) when uncertainty increases, investors focus on

earnings announcements of a larger number of firms, and more investors pay attention to

each announcing firm; (ii) investors’ incentives to pay attention to earnings announcements

decrease with the number of firms that announce their earnings simultaneously; (iii) when

uncertainty (investor attention) increases, ERCs strengthen for all announcing firms; and

(iv) increases in ERCs caused by higher uncertainty (investor attention) are incrementally

stronger for firms with higher ba, higher σea, lower σεa, and higher σxa.

2.5 Implications for the CAPM

We now turn to the implications of investor attention for the CAPM. The derivation of a

model-implied CAPM on earnings announcement days requires endogenous prices at time 0.

Thus, maintaining the same model assumptions as in the previous analysis, we assume that

at time 0 agents trade in the market and observe additional information. (The type of this

information—public or private—is inconsequential for the results derived here.) As such,

time 0 and time 1 represent the close of two consecutive trading days, with earnings being
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announced on the second day. Denoting equilibrium prices at times 0 and 1 by P0 and P1,

asset returns on the announcement day are Re
1 ≡ P1 −P0.

At time 0, all agents observe a publicly available signal about the aggregate market payoff,

G = M′D + g, where g ∼ N (0, σ2
g), (28)

where the noise in the public signal g is independent of all the random variables previously

defined. In an economy with a large number of firms (i.e., when N →∞), one can interpret

G as a signal about the systematic component f .

As in the baseline model, noise traders at time 0 have inelastic demands of x0 shares, with

x0,n ∼ N (0, σ2
xn), and we denote noise trading at time 1 by x1, which is defined as before.

Thus, the total supply of assets available for trading to informed investors is M−x0 at time

1 and M−x0−x1 at time 1. This follows He and Wang (1995) and Brennan and Cao (1997).

To summarize, in this slightly modified setup, investors trade before and after earnings

announcements, making their information acquisition decision at any time between 0 and 1.

Then the following proposition describes investor asset demands and the risky asset prices

at each market session in this model.

Proposition 4. There exists a partially revealing rational expectations equilibrium in the two

trading session economy in which

(i) Individual asset demands for a type-k investor are given by:

q0 =
1

γ
τ 0(E0[D]−P0), (29)

qk1 =
1

γ
τ k1(Ek1[D]−P1), (30)

where τ 0 ≡ Var[D|F0]−1 and τ k1 ≡ Var[D|Fk1 ], F0 = {G}, and Fk1 = {G} ∪ Fk, with

Fk defined in (12).

(ii) The vectors of risky asset prices are given by

P0 =
1

σ2
g

τ−1
0 MG− γτ−1

0 (M− x0), (31)

P1 = τ−1
1

∑
k∈P(A)

λkτ k1 E
k
1[D]− γτ−1

1 (M− x0 − x1), (32)

where τ 1 ≡
∑

k∈P(A) λ
kτ k1.

The proof is provided in Appendix A.8 and follows He and Wang (1995) and Brennan
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and Cao (1997), adapted to our Grossman and Stiglitz (1980) setup. Proposition 4 leads to

a CAPM relation, which we describe in the following corollary.

Corollary 4.1. (CAPM) Define the market excess return as Re
M = M′Re. The following

CAPM relation holds on earnings announcement day:

E[Re] = β E[Re
M], with β =

(τ−1
0 − τ−1

1 )M

U2
0 −M′τ−1

1 M
, (33)

where the market risk premium is given by

E[Re
M] = γU2

0 − γM′τ−1
1 M, (34)

and U2
0 ≡ M′τ−1

0 M represents the market-wide uncertainty (variance) that investors face

before making information decisions and before the earnings announcements.

Eq. (34) shows that the market risk premium is made up of two terms. The first term

increases with U2
0 , which is a direct measure of the uncertainty investors face before earnings

are announced. This ex-ante uncertainty increases with both U and with σg, as can be

intuitively understood by considering an economy with a large number of firms:

lim
N→∞

U2
0 =

U2σ2
g

U2 + σ2
g

. (35)

Investors’ attention to earnings announcements governs the second term in (34). Without

attention (if Λa = 0 ∀a ∈ A), τ 1 = τ 0 and the market risk premium is zero—that is, buying

the market portfolio at time 0 and selling it at time 1 involves on average no risk. However,

when investors are attentive, M′τ−1
1 M decreases with investor attention (∂M′τ−1

1 M/∂Λa <

0 ∀a ∈ A; see Appendix A.8) and yields a positive risk premium. Investors earn a risk

premium by paying attention because they are rewarded for resolving uncertainty (Robichek

and Myers, 1966; Epstein and Turnbull, 1980). Eqs. (33)-(34), thus, lead to the following

prediction: a higher level of ex-ante uncertainty U0 and heightened investor attention to firm-

level news contribute to a higher risk premium and a steeper market beta-return relation.

Corollary 4.1 yields additional predictions about the market betas of announcing firms.

These predictions emerge most transparently in a large economy in which, as N →∞, firms’

market betas converge to (the predictions do not hinge on taking this limit, but the intuition
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is easier to convey in a large economy; see Appendix A.8):

lim
N→∞

β = b + h



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

0N−A


, (36)

where h > 0 and the scalars πa(Λa), a ∈ A are defined in Lemma 1 and are increasing in Λa.

Eq. (36) has two predictions. First, betas are stronger for announcing firms. Consider

two firms, one announcer and one non-announcer, with the same exposure to the systematic

factor ba = bn > 0. The last term in (36) shows that the beta of the announcing firm

increases on its announcement date (Patton and Verardo, 2012; Chan and Marsh, 2021b).

Second, and more specific to our information acquisition setting, investor attention is the

channel through which the announcing firm’s beta increases. Without attention, πa(0) = 0,

and the betas of the two firms remain the same. On the other hand, when attention is

positive the announcing firm’s beta increases proportionally to the fraction of investors who

pay attention to its announcement.

3 Additional implications and extensions

3.1 Heterogeneous attention costs

Our analysis so far has focused on an economy in which firms are heterogeneous, but investors

are ex-ante identical. In reality, different investors may have different information acquisition

costs. For instance, institutional owners presumably have lower information acquisition costs

than retail investors. When choosing whether to pay attention to firm-level information, an

institutional investor’s alternative is generally to pay attention to a different financial signal

or other job-related tasks (e.g., human resources, calling investors). In addition, institutional

investors subscribe to services that lower the direct costs of information acquisition. In

contrast, retail investors pay attention to a primary job, family matter, hobby, or the back

of their eyelids, which may carry higher opportunity costs.

To study the implications of heterogeneous information costs, we extend our model to

two groups of investors, with information costs cl < ch. (These low-cost (cl) and high-cost

(ch) investors can be thought of in different ways, such as institutions vs. individuals, local

vs. non-local investors, or industry-focused vs. generalist investors.) The additional layer of
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heterogeneity requires re-writing the equilibrium conditions of Theorem 1 separately for each

investor group. Importantly, cl < ch implies that

B
k∪{a}
l,k > B

k∪{a}
h,k , ∀k ∈P(A) and a /∈ k, (37)

where B
k∪{a}
j,k = exp(−2γcj|k|) det(τ k∪{a})/ det(τ k) for j ∈ {l, h}. In words, paying attention

to one extra announcement has a larger net benefit for a low-cost investor than for a high-

cost investor. The condition (37), labeled “monotonicity in types” by Hu and Shi (2019),

guarantees the existence of an equilibrium and ensures that the solution method described

in Appendix A.7 reaches the equilibrium.

Figure 5 plots the attention of low-cost (left) and high-cost (right) investors as functions of

uncertainty. We use the same calibration with b1 > b2 > b3 as in Figure 1, split the population

of investors into 50% low-cost and 50% high-cost (other splits lead to similar results), and

fix cl = 0.045 and ch = 0.055. The two panels show that for any level of uncertainty, larger

fractions of low-cost investors pay attention to the earnings announcements. The steeper

lines in the left-hand side plot suggest that low-cost investors respond faster to the increase

in uncertainty than high-cost investors, confirming the intuition from (37) that low-cost

investors benefit comparatively more from increasing their attention.

(Insert Figure 5 about here)

Assuming different attention costs has further implications for ERCs. As shown in (27),

ERCs increase with the amount of attention in the economy, which implies that the investor

base of firms has an impact on ERCs: ERCs for firms with high ownership by low-cost

investors should show a more robust response to an increase in uncertainty, through the

stronger increase in attention. We test this theoretical implication in Section 4.

3.2 Dynamic model

We have derived our main results under the simplifying assumption of a one-period econ-

omy. This section shows that the same comparative statics results hold in a dynamic setup

with time variation in uncertainty. The dynamic setup consists of an overlapping-generations

economy in which a new generation of investors is born every period. We refer to the gener-

ation of investors born at time t as generation t. Each generation is present in the economy

for three dates and makes information acquisition and trading decisions sequentially, as in

the static model. Focusing on generation t− 1, each investor i ∈ [0, 1] makes an information

acquisition choice between t−1 and t, trades to take positions in securities at t, and consumes
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final wealth at t+ 1. As such, generation t− 1 investors liquidate their holdings at time t+ 1

by selling them at market prices to generation t investors. Figure 6 shows the timeline.

(Insert Figure 6 about here)

Our primary purpose is to understand how the dynamic feature of the economy impacts

the results obtained in the previous section. For this purpose, it is sufficient to assume that

investors trade a single risky asset and a riskless asset. (Assuming multiple risky assets

would considerably complicate the analysis without additional insights.) The riskless asset

is in infinitely elastic supply and pays a gross interest rate of Rf > 1 per period. The risky

asset pays a risky dividend per period,

Dt+1 = bft+1 + et+1, (38)

which, as in (1), has two components: a systematic component, ft+1 ∼ N (0, U2
t ), and a

firm-specific component, et ∼ N (0, σ2
e).

The key difference with the static model is that we allow for economic uncertainty, Ut,

to be time-varying. More precisely, we assume that Ut takes one of S ≥ 2 possible values,

us, s ∈ {1, ..., S}, and we denote the probability of the event Ut = us by ps. Furthermore,

Ut is observable to generation t − 1 investors, who make an information acquisition choice

between t− 1 and t and trade in the market at t. One could assume, for instance, that Ut is

revealed at time t − ε, where ε is very small (e.g., a fraction of a second). This assumption

preserves the sequence of the information acquisition and trading decisions, as in Grossman

and Stiglitz (1980).

At time t, the firm issues an earnings announcement,

Et = Dt+1 + εt, (39)

with εt ∼ N (0, σ2
ε). We denote the investors who pay attention to Et as I investors, and

those who decide to remain uninformed as ∅ investors. The indicator variable Ik takes the

value 1 if k = I and 0 if k = ∅. The cost of paying attention to Et is c > 0.

Each investor i ∈ [0, 1] of generation t − 1 starts with zero initial wealth and maximizes

expected utility:

max
k∈{I,∅}

Et−1

[
max
qkt

Ekt
[
−e−γ(Wk

t+1−cIk)
]]
, (40)

where W k
t+1 ≡ qkt (Dt+1 + Pt+1 −RfPt) ≡ qktR

e
t+1 is type k investor’s terminal wealth.
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The risky asset demand of liquidity (noise) traders equals xt, with xt being independently

and identically distributed, xt ∼ N (0, σ2
x). We conjecture the following linear structure for

the price, which is the dynamic equivalent of (10) from the static version of the model:

Pt = αtEt + ξtxt. (41)

The equilibrium in this dynamic model follows the same steps as in the static model.8 One

difficulty is that time variation in uncertainty creates a non-linearity. With time variation in

U , the distribution of the future price Pt+1 becomes non-Gaussian, and thus the equilibrium

can only be solved using an approximation. The method commonly used in the literature

(Vayanos and Weill, 2008; Gârleanu, 2009) preserves risk aversion towards diffusion risks

while inducing risk neutrality towards future changes in U , restoring linearity. We refer the

reader to Appendix A.9 for details and proceed here to discuss the main results.

Proposition 5. (a) Investor i is attentive to the earnings announcement if and only if

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

> e2γc. (42)

(b) The benefit of information, Var∅t [R
e
t+1]/VarIt [R

e
t+1], increases in Vart[Dt+1] = b2U2

t + σ2
e .

We recover the same result as in the static model: the benefit of paying attention to Et

increases with economic uncertainty. Moreover, the benefit of attention is higher when b is

higher and when the volatility σe of the idiosyncratic component is higher. Thus, we should

observe stronger investor attention when economic uncertainty is high in the dynamic model,

as in the static model.

The next proposition shows that in the dynamic model the ERC is a weighted average

of price responses from different investors, with weights wt on I investors and 1 − wt on ∅
investors (see Appendix A.9 for an expression of wt in Λt), as in Hirshleifer and Teoh (2003).

Proposition 6. The earnings response coefficient in this economy is given by

ERCt =
wt
Rf

Vart[Dt+1]

Vart[Dt+1] + σ2
ε

+
1− wt
Rf

Vart[Dt+1]

Vart[Dt+1] + σ2
ε/`t

, (43)

where wt ∈ [0, 1], `t ∈ [0, 1). Both wt and `t are increasing with the fraction Λt of investors

who pay attention to Et. Thus, the earnings response coefficient increases in Λt.

8Dynamic models of trading of this type have multiple equilibria, i.e., a model with N risky assets has 2N

equilibria (e.g. Banerjee, 2011; Andrei, 2018). Thus, this model has two equilibria: a low-volatility equilibrium
and a high-volatility equilibrium. The results that we present here hold in both equilibria.
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In (43), `t is the dynamic counterpart of the learning coefficient defined in (13) for the

static model. Two effects take place when uncertainty increases. The first effect is an increase

in both terms of (43) through Vart[Dt+1]. The second effect follows from Proposition 5. The

increase in economic uncertainty increases investor attention, and therefore both wt and

`t increase, further strengthening the ERC. We thus recover the intuition from the static

model: the ERC increases with economic uncertainty, both directly through an increase in

the variance of the firm’s payoff Vart[Dt+1] and indirectly through an increase in investor

attention. The two effects are stronger for firms with a higher b or idiosyncratic volatility σe.

Our focus on investor attention to earnings announcements is motivated by both the ex-

isting literature on investor attention and the notion that earnings announcements convey

valuable information about the macroeconomy (e.g., Patton and Verardo, 2012; Savor and

Wilson, 2016). However, our model also accounts for the possibility that investors may scale

up their information acquisition ahead of the earnings announcements. In particular, Propo-

sition 5 shows that regardless of prior information acquisition decisions, the benefit of paying

attention to the earnings announcement increases with uncertainty at time t. Moreover,

Proposition 6 shows that greater investor attention increases wt and `t, strengthening the

ERC. Although investors’ search for information beforehand may dampen the effect of an

increase in uncertainty on the conditional variance Vart[Dt+1], the second effect characterized

in Proposition 6 still guarantees that heightened investor attention increases ERCs.9

4 Empirical analyses

In this section, we conduct empirical tests of our theoretical predictions regarding the effect

of aggregate uncertainty on investors’ information acquisition, on ERCs, and on the CAPM.

In our first set of tests, we examine the relation between uncertainty and investor attention

around the announcement of quarterly earnings. That is, the unit of measurement in our

analyses is the quarterly earnings announcement.

4.1 Variable definitions and summary statistics

We use the VIX, an option-based measure of expected S&P 500 volatility, to measure time-

varying market-wide uncertainty. The VIX proxies for forward-looking stock market uncer-

9Benamar, Foucault, and Vega (2021) show that heightened attention in the face of greater uncertainty
does not fully neutralize the effect of uncertainty (see their Proposition 1). Put differently, a higher uncertainty
at time t− 1 results in a higher Vart[Dt+1], despite investors’ heightened attention at t− 1. Their argument
follows from the first-order condition in a standard information acquisition problem with convex attention
costs. Since the marginal cost of attention increases with attention, the effect of the increase in uncertainty
on Vart[Dt+1] is only partially offset by investors’ heightened attention.
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tainty, risk, or volatility and its direct counterpart in our model is U .10 To mitigate the

potential for reverse causality, we use the closing VIX from the trading day prior to the

earnings announcement.

To capture investor search for information, we exploit the SEC’s EDGAR download logs.

EDGAR is a publicly available central repository for companies’ SEC filings. The SEC

makes the records of EDGAR search activity public, where a search is defined as accessing a

given filing. We use the natural log of the company-day total volume of completed EDGAR

searches, ESV, as a search-driven proxy for investor attention. Completed EDGAR searches

are those that result in successful delivery of the requested document (code=200), which

is not an index page (idx=0). We also use the natural log of the number of downloads of

a company’s filings from unique IP addresses, ESVU, to capture the extensive margin of

investor search based on the number of investors accessing the firm’s filings. The EDGAR

search records are available from February 14, 2003 to June 30, 2017.11 Note that a change

in ESV(U) is equivalent to a change in log Λa in our model.12

A secondary measure of investor search is the Investor Search Volume Index (ISVI ) based

on investor searches for stock tickers via Google, as calculated and generously provided by

deHaan et al. (2021). We view ISVI as a secondary measure as it is available only from 2010

to 2018 and for a smaller sample of firms, and is a 0 − 100 index rather than a more easily

interpretable raw count of searches.

As in prior studies (e.g., Livnat and Mendenhall, 2006; Hirshleifer et al., 2009; DellaVigna

and Pollet, 2009), we use standardized earnings surprise (SUE ) deciles based on calendar-

quarter sorts in our analyses of market reactions to earnings announcements. Our inferences

remain similar when we use raw SUEs instead of SUE deciles. We measure earnings surprises

as SUEi,t = (Xi,t−E[Xi,t])/Pi,t, where i denotes firm, t denotes quarter, Xi,t are IBES reported

actual earnings, E[Xi,t] are expected earnings, taken as the latest median forecast from the

IBES summary file (following Dai, 2020), and Pi,t is the share price at the end of quarter t.

Daily excess returns are calculated as CRSP-reported daily returns adjusted for size

10Formally, denoting by b the vector of firms’ exposures to f and by Σe the covariance matrix of firm-
specific shocks, then investors’ uncertainty at t = 0 about the future market return, Var[M′Re|F0], equals
U2M′bb′M + M′ΣeM. Our assumptions of an equally weighted market portfolio and an average of 1 for
firms’ exposures to the systematic factor imply M′b = 1. Moreover, the matrix of idiosyncratic shocks Σe is
diagonal, and its diagonal has a finite mean, thus limN→∞M′ΣeM = 0 and Var[M′Re|F0] = U2.

11EDGAR downloads may come from humans or from automated programs or robots (e.g., Ryans,
2017). We use all downloads for three reasons: 1) automated downloads may be used by services that
provide information to investor clients; 2) automated downloads may be programmed to access EDGAR files
conditional on other inputs to the program capturing, for instance, macroeconomic conditions; and 3) our
use of year fixed effects in regressions controls for a secular trend of increasing robot downloads over time.

12In the model, Λa can be approximated with Qa/Q, where Q is a large number that measures the total
population of investors andQa measures the number of investors who observe Ea. Hence, ∆ log Λa = ∆ logQa,
and thus a change in log Λa is equivalent to a change in ESV(U).
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decile.13 Earnings announcement returns, EARET, are calculated as the two-day com-

pounded excess returns from the day of the earnings announcement through the day after.

In our analyses of market reactions to earnings announcements, we use the following

variables as controls, following prior literature (e.g., Hirshleifer et al., 2009): compound ex-

cess returns from ten to one days before the earnings announcement, PreRet; the market

value of equity on the day of the earnings announcement, Size; the ratio of book value

of equity to the market value of equity at the end of the quarter for which earnings are

announced, Book-to-Market ; earnings persistence based on estimated quarter-to-quarter au-

tocorrelation in reported earnings, EPersistence; institutional ownership as a fraction of total

shares outstanding at the end of the quarter for which the earnings are announced, IO; earn-

ings volatility, EVOL; the reporting lag measured as the number of days from quarter end

to the earnings announcement, ERepLag; analyst following defined as the number of ana-

lysts making quarterly earnings forecasts according to the IBES summary file, #Estimates;

average monthly share turnover over the preceding 12 months, TURN; an indicator variable

for negative earnings, Loss; the number of other firms announcing earnings on the same day,

#Announcements; year indicators; and day-of-week indicators.14

Our subsample analyses use partitions based on proxies for the underlying constructs.

Although the exposures of firms’ payoffs to the systematic factor f (the parameters bn) are not

perfectly observed in the data, they can be proxied by firms’ CAPM betas. More precisely,

in our model firms with larger exposures to f necessarily have higher market betas (we

provide this link in Eq. (36)). We use forecast dispersion (DISP) and idiosyncratic volatility

(IDVOL), defined in detail in Appendix B, as proxies for total earnings variance (Var[Ea]

in our model) and firm-specific payoff variance (σ2
ea).

15 The volatility of noise trade (σ2
xa)

is reflected in share turnover (TURN ), though we caution that turnover also captures other

constructs, such as information asymmetry and disagreement. Finally, we split the sample

on institutional ownership (IO) to capture variation in the cost to investors of acquiring

information (c), as these costs are likely to be lower for institutional than retail owners. We

provide detailed variable definitions in Appendix B.

Our sample begins in 1995, as earnings announcement dates tended to be identified unre-

liably prior to 1995 (DellaVigna and Pollet, 2009; Hirshleifer et al., 2009). We further limit

our sample to firms for which we can calculate analyst forecast-based earnings surprises,

13Our main results on earnings announcement window returns are robust to defining excess daily returns
as firm-specific returns adjusted for either equal-weighted or value-weighted market returns.

14To mitigate the influence of outliers among skewed/fat-tailed controls, we winsorize Size, EPersistence,
and EVOL at the first and 99th percentiles.

15Note that Forecast Dispersion could be driven by variation and unpredictability in either earnings
fundamentals (Var[Da] = b2aσ

2
f + σ2

ea) or earnings noise (σεa). As can be seen in a comparison of panels (d)

and (e) of Figure 4, σ2
ea and σ2

εa have opposing effects on the relation between uncertainty and ERCs.
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firms with a stock price greater than $5, and firms with average monthly share turnover in

the past year no lower than 1. The latter restrictions drop the smallest and least actively

traded firms from the sample. Finally, we restrict the sample to observations for which data

for all variables used in the respective analyses are available. This results in a sample of

224,675 firm-quarter observations for the analyses that do not require data on investor atten-

tion measures and 119,341 (62,757) for the analyses that require data availability on EDGAR

(Google) searches. Table 1 provides the descriptive statistics for the variables used in our

analyses.16

(Insert Table 1 about here)

Table 2 provides correlations. All correlations in bold are significant at the one percent

level. VIX is negatively correlated with EDGAR search volume measures and ISVI, but

these are raw correlations that do not correct for other factors, such as time factors affecting

both VIX and search volume (e.g., higher VIX and lower search in some years). VIX is

not generally significantly related to earnings announcement returns or earnings surprises,

suggesting that prior-day economic uncertainty is not directly linked to firm-level earnings

surprises.

(Insert Table 2 about here)

4.2 Attention and earnings response coefficients

As we elaborate on in Section 2, our first hypotheses relate to the effects of economic un-

certainty on investor attention to firm-level information, which we test for using investor

searches and market reactions around earnings announcements.

Our first set of tests examines whether aggregate uncertainty affects firm-level search

activity in and of itself. For these tests, we exploit the SEC EDGAR records of access

to company-specific filings around quarterly earnings announcements as well as investors’

Google searches captured by ISVI. We estimate the following regression equation:

SEARCHit = c0 + c1 × VIXt + c2 × ESVit−1

+c3 × SUEit + c4 × abs (SUEit) + γ ·Xit + uit, (44)

where SEARCH is either the log of daily EDGAR search volume (ESV ), the log of daily

EDGAR search volume from unique IP addresses (ESVU ), or ISVI. We also include the

16The number of observations for some variables in Table 1 is greater than 224,675, in part because we
require some lagged variables to be non-missing in the regression tests but not in Table 1.
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lagged dependent variable (ESV, ESVU, or ISVI on the previous earnings announcement), the

standardized SUE decile, and the absolute standardized SUE decile to control for differences

in average search volume across firms and in response to earnings news. Table 3 presents the

results from the estimation of (44). In Table 3 and the remaining tests, we standardize all

variables to a mean of zero and unit variance for ease of interpretation.

The results in Table 3 provide strong evidence for more active searching for firm-level

information on days with higher VIX, as the coefficients of interest on VIX are positive and

statistically significant for all three dependent variables. The coefficients of interest can be

interpreted as the approximate percent change in search volume or unique searchers for a

standard deviation change in the VIX. A one standard deviation change in VIX is associated

with a 3.0 (3.4) percent increase in the number of EDGAR searches (from unique IP addresses)

for the announcer’s filings on the earnings announcement date, and a 1.8 percent increase in

ISVI relative to its standard deviation (recall that ISVI is an index rather than a logged

count variable as for ESV(U)).17 Lagged dependent variables are significantly associated with

announcement day searches, as are the signed and absolute earnings surprise deciles (except

for absolute SUE in the ESV specification). Coefficients on #Announcements are negative,

though only statistically significant in the ESV and ISVI specifications, providing support

for the effect of multiple announcements shown in Hirshleifer et al. (2009). In the remainder,

we focus on EDGAR search volume measures (ESV and ESVU ), as these are available for a

longer time span covering roughly twice the number of earnings announcements as ISVI.

(Insert Table 3 about here)

Our next set of tests exploits the model’s predictions regarding price reactions to firm-

level information. We examine how economic uncertainty interacts with firm-level news in

the price formation process. We focus on the association between size decile-adjusted stock

returns in the two-day earnings announcement window and the earnings surprise, the VIX,

the interaction between the VIX and the earnings surprise, and a set of controls. We interact

each of these controls with our earnings surprise variable to mitigate concerns that a correlated

omitted interaction drives the coefficient on our interaction of interest. Standard errors are

clustered at the earnings announcement date level.

To test the hypotheses developed in Section 2, we estimate the following regressions at

17In unreported analysis replacing VIX with VIX centile indicators in the specifications presented in
Table 3 (i.e., SEARCHit = c0 +

∑100
j=1 c1j×VIX Centiletj + · · · ), we find that the relation between VIX and

attention measures is convex, consistent with the convexity in Figure 2(a) when attention to announcements
begins increasing from around U ∈ [0.19, 0.32]. We focus on the linear empirical effect identified by estimating
Eq. (44) for ease of interpretation.
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the firm-quarter level:

EARETit = c0 + c1 × SUEit + c2 × VIXt + c3 × SUEit ∗ VIXt + γ ·Xit + uit, and

EARETit = c0 + c1 × SUEit + c2 × ESVUt + c3 × SUEit ∗ ESVUt + γ ·Xit + uit, (45)

where the dependent variable EARETit represents the announcement-window return and Xit

represents a set of controls.

Column (1) of Table 4 reports our estimates of the first equation in (45).18 The coefficient

on SUE decile is positive and significantly different from zero (0.204, p < 0.01), consistent

with positive market responses to earnings surprises. Our coefficient of interest, the inter-

action between VIX and SUE, is also positive and significantly different from zero (0.015,

p < 0.01). We infer from this that market responses to firm-level information are higher on

days with greater uncertainty. Specifically, a one standard deviation change in VIX yields

an ERC that is approximately seven percent higher than the average response to earnings

surprises (7% = 0.015/0.204).

Columns (2) and (3) of Table 4 explore the mediating role of attention. In column

(2), we replace VIX with ESVU. The sample shrinks considerably because EDGAR search

data is available for a shorter window (2003-2017 relative to the earnings announcement

sample from 1995 to 2020). Even with the smaller sample, the coefficient on ESVU *SUE

is positive and significant (0.028, p < 0.01), consistent with earnings announcements that

attract greater investor attention receiving stronger market reactions in the announcement

window. In column (c), we include both VIX and ESVU as well as their interactions with

SUE. The coefficients of interest are both positive, although the ESVU *SUE interaction

(0.027, p < 0.01) is significant while the VIX *SUE interaction (0.010, p > 0.10) becomes

insignificant at traditional cutoffs. Overall, the coefficient pattern is consistent with the

indirect effect of VIX on market responses, operating through investor attention allocation

as reflected in EDGAR search activity, in line with the prediction of our model illustrated in

Eq. (27) and Figure 3.19

18We use SUE decile in our analyses. Empirically, raw SUE dispersion within the bottom decile is higher
on high-VIX days. To ensure that this dispersion is not driving higher ERCs, we re-ran our Table 4 analyses
on a subsample that excludes the bottom SUE decile and obtained similar results (untabulated, available
from the authors).

19Our results are consistent with Drake et al. (2015), who also find a positive association between EDGAR
search volume and ERCs. Additionally, they present evidence that EDGAR search volume around the
earnings announcement is associated with less post-earnings announcement drift (PEAD). While we do not
find a similar effect on average, we find in untabulated analysis a moderate negative association between
EDGAR search volume and near-term PEAD for firms with above-median CAPM beta. This is consistent
with our theoretical prediction of stronger effects for firms with greater systematic risk and in line with the
higher ERC for high-beta firms documented in our Table 6.
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(Insert Table 4 about here)

We estimate (45) in several subsamples to provide additional support for the theoreti-

cal predictions derived above. As shown in Figures 4 and 5, the effect of macroeconomic

uncertainty on ERCs is not generally monotonic in the splitting variables: the plots show

monotonic relations for bn, σεn, and σxn, but not for and σen and cn.

Table 5 presents estimates from these cross-sectional splits, where the variable of interest

is the VIX *SUE interaction. In these tests, we split our sample from the annual median

values of: CAPM beta, forecast dispersion (DISP), idiosyncratic volatility (IDVOL), trailing

share turnover (TURN ), and institutional ownership (IO).

In the CAPM beta split subsamples, the coefficient of interest has a positive sign but is

not statistically significant for low-beta firms. In contrast, the coefficient for high-beta firms

is positive and significantly different from both zero (p < 0.01) and the corresponding low-

beta coefficient (p < 0.10). This is consistent with our result in Figure 2(b), that the effect of

economic uncertainty on ERCs is greater for firms with larger exposures to systematic risk.

(Insert Table 5 about here)

In the subsamples split on forecast dispersion and idiosyncratic volatility, the coefficients

of interest are all positive and significantly different from zero (0.012-0.022, p < 0.05). How-

ever, they are not significantly different from each other.

For the splits using share turnover to capture the expected magnitude of noise trade, σxa,

the effects of economic uncertainty on ERCs are concentrated in subsamples with above-

median TURN. The coefficient on VIX *SUE in the high-TURN sample is positive and

significantly different from both zero (0.022, p < 0.01) and the coefficient in the low-TURN

sample (0.04, p < 0.10 for the test of difference in coefficients). This plausibly captures the

predicted positive effect shown in Figure 4, panel (f), where the effect of economic uncertainty

on ERCs is greater when the volatility of noise trade is larger. Similar to noise trade in our

model, high turnover can make it difficult to infer fundamental information from price, making

attention to earnings incrementally more valuable during periods of high uncertainty.

Our last sample splits are based on institutional ownership (IO). It is plausible to assume

that retail investors face greater opportunity costs than institutional investors when choosing

whether to pay attention to firm-level information. Indeed, recent empirical evidence supports

the view that retail investors are more susceptible to distractions than institutional investors

(Israeli, Kasznik, and Sridharan, 2021; Da, Hua, Hung, and Peng, 2022). Consistent with this

interpretation and our predictions illustrated in Figure 5, we find that the effect of economic

uncertainty on ERCs is concentrated in the high-IO subsample (0.024, p < 0.01), while
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the estimated effect for the low-IO subsample is insignificantly different from zero (0.007,

p > 0.10). The difference in coefficients is large in percentage terms (0.024/0.007 = 343%)

and significantly different from zero at the 10% level, consistent with higher information

acquisition costs reducing the effects of economic uncertainty on ERCs.

Table 6 re-estimates the regressions from Table 5 with ESVU replacing VIX, to provide

evidence that the effects are attributable to attention rather than the VIX itself and other

co-varying constructs, in line with Figure 3 from our theoretical analysis. The pattern is

generally similar, albeit weaker, plausibly due to the smaller sample size. Interestingly, the

results for the forecast dispersion and idiosyncratic volatility splits are stronger than those in

Table 5, as the effect of ESVU on ERCs is concentrated in the high forecast dispersion (0.036,

p < 0.01) and idiosyncratic volatility (0.034, p < 0.01) subsamples. These coefficients are also

significantly different from those in the corresponding below-median subsamples (p < 0.10 for

both), consistent with heightened uncertainty (Var[Da]) leading to stronger relations between

attention and ERCs.

(Insert Table 6 about here)

4.3 Calibration around earnings announcements

Can our model generate quantitatively similar attention responses to changes in economic

uncertainty? To answer this question, we calibrate our model based on historical data. First,

we match historical data on VIX : in our sample period from 1995 to 2020, the VIX averaged

20, with a daily standard deviation of 8.5. Then, we define U ≡ VIX/100 (VIX values are

quoted in percentage points) and standardize it, i.e., Û ≡ (U−0.2)/0.085. In our illustration,

we will allow U to take values between 0.1 and 0.4, since during our sample period the 10th

and 90th percentile of VIX were 11.6 and 28.7, respectively.

In our sample the average number of firms per quarter is 2,264, and the average number

of announcements per trading day is 53, with a standard deviation of 67.20 To compare,

Frederickson and Zolotoy (2016) report an average of 41 announcements per trading day

with a standard deviation of 61, and Ferracuti and Lind (2021) report an average of 63 and

a standard deviation of 83. Hirshleifer and Sheng (2022) report a higher average, 118, and

a standard deviation of 79. These studies do not separately report the number of unique

firms per year or quarter. Accordingly, we set the total number of firms in the economy as

N = 3, 000 and assume that between 10 and 100 firms announce their earnings on a given

trading day. The remaining calibration parameters are: γ = 10; σe = σε = 0.4 for all firms;

20Note that this differs from the mean #Announcements at the firm-announcement level reported in Table
1, as a trading day with N announcements would be counted once in an average across trading days N times
in an average across firm-announcements.
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the market portfolio M is a vector whose values are all equal to 1/3000; the volatility of noise

in supply is σx = 1/(3000 × 4) for all firms (which ensures that the probability of having

negative supplies is negligible); all the betas of the announcing firms are 1; and the cost of

information is c = 0.03.21

Panel (a) of Figure 7 plots the response of log Λa to a change in Û , or ∂ log Λa/∂Û , in two

cases: when 10 firms are announcing earnings (solid line) and when 100 firms are announcing

(dashed line). On the horizontal axis we let U vary from 0.1 to 0.4, while the vertical axis

measures the sensitivity of log Λa to changes in Û , consistent with the coefficient c1 in (44).

The plot shows that our calibrated model can match the numbers in Table 3. Furthermore,

the model also correctly implies a lower coefficient when the number of announcers is higher

(in which case price informativeness is higher), in line with the negative coefficients for

#Announcements obtained in Table 3.

(Insert Figure 7 about here)

Panel (b) plots the model-implied ERCs as functions of U when 10 firms are announcing

earnings (solid line) and when 100 firms are announcing (dashed line). Our model gener-

ates plausible magnitudes for ERCs, comparable with coefficients on SUE Decile in Table 4.

The plot also shows that ERCs increase with U but are smaller when more firms announce

earnings, consistent with panel (a) showing that attention is a substitute for price informa-

tiveness. (See also Chen et al., 2020, who document a similar substitution effect between the

acquisition of private information and the supply of public information.)

4.4 CAPM tests

We now turn to the predictions of our model for the CAPM. Corollary 4.1 shows that the

market risk premium is increasing in both ex-ante uncertainty and investor attention, which

implies a steeper securities market line (SML). Eq. (36) further implies that firms’ betas in-

crease on earnings announcement days, but only if investors pay attention to announcements.

To test these predictions, we estimate firm and portfolio betas using classical Fama and

MacBeth (1973) two-step regressions. In our firm-level estimation, we estimate betas sepa-

rately for high-attention days and earnings dates. In particular, for each firm i, we define

four indicator variables: 1iEA equals one on days when the firm i announces earnings; 1iHighAtt

equals one on days when investor attention to firm i is high (i.e., time-detrended ESV(U)

21To the best of our knowledge, the only attempt in the literature to estimate the parameters of Hellwig’s
(1980) noisy rational expectations model is Cho and Krishnan (2000). In line with the estimation in their
Table 2, our calibration assumes that noise in supply is considerably smaller than noise in private information
(σx << σε), and also a reasonable value of ten for the coefficient of risk aversion.
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of firm i is above the sample median); 1high,i
EA equals one if both 1iEA and 1iHighAtt are one;

and 1low,i
EA equals one if 1iEA is one and 1iHighAtt is zero. We then estimate three time-series

regressions for each firm:

rei,t = αiOther + αi∆EA 1iEA +βiOtherr
e
M,t + βi∆EA(1iEA×reM,t) + εi,t (46)

rei,t = αiOther + αi∆A 1iHighAtt +βiOtherr
e
M,t + βi∆A(1iHighAtt×reM,t) + εi,t (47)

rei,t = αiOther + αlow,i∆EA 1low,i
EA +αhigh,i∆EA 1high,i

EA

= + βiOtherr
e
M,t + βlow,i∆EA(1low,i

EA ×r
e
M,t) + βhigh,i∆EA (1high,i

EA ×reM,t) + εi,t,
(48)

where reM,t is the excess return on the market and rei,t is the excess return for firm i.22

The first regression tests whether firm betas increase on earnings announcement days.

That is, βi∆EA in (46) measures the change in the firm i’s beta on announcement days. The

second regression investigates whether firm betas vary with investors’ attention: βi∆A in (47)

measures the change in the firm i’s beta on days when investors’ attention to the firm’s

information is above its sample median. Finally, the third regression is a direct test of (36):

βhigh,i∆EA in (48) measures the change in the firm i’s beta on earnings announcement days when

investors’ attention to the firm’s information is above its sample median.

We estimate (46)-(48) for each firm, then compute averages betas across firms, together

with their standard errors. Table 7 presents estimates. Column (1) confirms Patton and

Verardo (2012)’s finding that firm betas increase on earnings announcement days. On average,

betas increase by 0.081 (p < 0.05) on announcement days. Columns (2) and (3) show that,

on average, firm betas increase with investor attention when attention is measured using

ESV and ESVU. On days when the detrended ESV(U) is above its median, betas increase

by 0.043, p < 0.01, (0.020, p < 0.01).

(Insert Table 7 about here)

In columns (4) and (5), we further split the earnings announcement days into high- and

low-attention days, as in (48). Betas increase on earnings announcement days only when

investors’ attention is high. In both columns the average βhigh,i∆EA is positive and statistically

significant, whereas βlow,i∆EA is negative and marginally significant in one case. The results

are consistent across the two attention measures: using ESV(U) the average βhigh,i∆EA is 0.103,

p < 0.01 (0.077, p < 0.05). Overall, the evidence confirms our model’s prediction that betas

of announcing firms increase only when investors pay attention to announcements.

22Firm-level excess returns are available from CRSP. In addition, daily excess returns on 10 value-weighted
beta-sorted portfolios are available from global-q.org/testingportfolios.html and on 25 size/BM portfolios and
the market from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. Appendix
B.1 describes the dataset and discusses the robustness of this section’s results.
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Next, we explore whether the effects we document at the firm-level in Table 7 extend to

portfolio-level analyses. We estimate the following regression, in which the intercepts and

portfolio betas are allowed to vary conditionally on the type of day:

rej,t = αjOther + αj∆A 1HighAtt +βjOtherr
e
M,t + βj∆A(1HighAtt×reM,t) + εj,t, (49)

where 1HighAtt is a dummy variable for high attention days (days with the detrended aggregate

ESV(U) above its median); rej,t is the portfolio excess return; βjOther is the beta on other days;

and βj∆A measures the change in the portfolio’s beta on high ESV(U) days. Tables 8 and

9 present results for 10 beta-sorted and 25 size/BM portfolios. We focus on the coefficients

β∆A, which our theory predicts to be positive.

(Insert Table 8 about here)

(Insert Table 9 about here)

Table 8 supports our model’s prediction, with nine out of ten portfolio betas being sig-

nificantly higher on high-attention days. The increase in betas is consistent across the two

attention measures (ESV in panel A and ESVU in panel B) and ranges from 0.067 (p < 0.01)

to 0.131 (p < 0.01) in panel A and from 0.023 (p < 0.1) to 0.122 (p < 0.01) in panel B. Table

9 further confirms these results with the 25 size/BM portfolios.23 The majority of portfolio

betas (21 out of 25, both in panel A and panel B) increase on high-attention days, with

their increase ranging from 0.031 (p < 0.1) to 0.401 (p < 0.01) in panel A and from 0.016

(p < 0.05) to 0.414 (p < 0.01) in panel B.

Finally, we estimate day-specific CAPMs. According to Corollary 4.1, both a high level of

ex-ante uncertainty and heightened investor attention increase the market risk premium and

thus imply a steeper SML. Table 10 shows the regression estimates for day-specific CAPMs,

with results for 10 beta-sorted portfolios in panel A and 25 size/BM portfolios in panel B

(estimates are in basis points per day). Our benchmark is the all-days CAPM relation, shown

in column (1). Then, columns (2) and (3) classify trading days into subsamples with VIX t−1

above its median and in its top quartile, respectively. In panel A the SML becomes steeper

when ex-ante uncertainty is higher, an effect that strengthens with the level of uncertainty.

Next, columns (4) and (5) classify trading days into subsamples with detrended ESV above

its median and in its top quartile, and columns (6) and (7) do the same for ESVU. All columns

confirm our hypothesis that more attention steepens the SML. Finally, columns (8) and (9)

23In unreported analysis, we find that the increase in betas is exclusively driven by attention and not by an
increase in ex-ante uncertainty. When considering high-VIX days in the regression equation (49), we obtain
that portfolio betas increase only when these high-VIX days are simultaneously high-attention days.
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document the combined effect of high ex-ante uncertainty and heightened attention on days

when the VIX t−1 and ESV(U) are both above their medians. Both columns support the

prediction of Corollary 4.1. The slope coefficients are noticeably stronger when high ex-ante

uncertainty precedes heightened attention. Overall, the magnitudes of the slope increases

due to higher VIX or/and ESV(U) are economically significant, ranging from 4.76 (p < 0.01)

to 11.78 (p < 0.01) basis points per day.

(Insert Table 10 about here)

Panel B yields similar inferences, albeit with weaker statistical significance. This is not too

surprising given the well-documented results that CAPM performs poorly in these portfolios

(Fama and French, 1993, 1996, 2004; Cochrane, 2009). However, even in this case, columns

(4)-(7) show evidence that the SML steepens on days with high aggregate attention. This

effect strengthens with the level of attention. The slope of the SML on high-attention days

is positive and statistically significant in most cases, ranging from 4.31 (p < 0.05) to 9.99

(p < 0.01) basis points per day. Comparing these results with the ones in columns (2)-(3),

we notice that attention has a stronger effect on the slope of the SML than uncertainty.

Figure 8 provides a graphical representation of Table 10. It plots average daily excess

returns in basis points against betas estimated from time-series regressions. The top (bottom)

panels present results for 10 beta-sorted portfolios (25 size/BM-sorted portfolios). All plots

are day-specific. The left panels plot the CAPM relation estimated on all days versus days

when VIX t−1 is in its top quartile; the center and right panels plot the CAPM relation on all

days versus days when the detrended aggregate ESV(U) measures are in their top quartiles.

(Insert Figure 8 about here)

The top panels confirm that the SML, when estimated on 10 beta-sorted portfolios, is

steeper on high-uncertainty and high-attention days. For the 25 size/BM portfolios (the

bottom panels) the estimated all-days SML has a negative slope, which becomes positive on

high-uncertainty and high-attention days. Finally, on high-attention days, portfolio betas

are noticeably higher (see Tables 8 and 9). This agrees with Eq. (36) and its premise that

investors learn about the economy from firm-specific information.

To summarize, according to our theory, two effects occur when investors are more at-

tentive to firm-level news. First, heightened attention increases firm betas; Tables 7 to 9

support this prediction. Second, the increase in attention resolves uncertainty, which steep-

ens the SML; Table 10 and Figure 8 support this second prediction. Our paper provides a

unified theoretical explanation for the relation between attention and the CAPM. It shows

34



that investors’ attention to firm-level news is the channel through which betas increase on

announcement days and the CAPM relation steepens.

More generally, because in our model heightened attention resolves uncertainty, we should

observe a steeper CAPM relation on days with strong uncertainty resolution. A quick test of

this statement is readily available: broadly defining days with high values of log(VIXt−1/VIXt)

as days with strong uncertainty resolution, testing the CAPM on days when this proxy is

high yields robust CAPM relations in any portfolio sorts and at the individual stock level.

Admittedly, log(VIXt−1/VIXt) is a coarse proxy for uncertainty resolution. Nevertheless,

these results suggest that models in which uncertainty and attention fluctuations generate

time variation in the resolution of uncertainty (e.g., Andrei and Hasler, 2015, 2019; Benamar

et al., 2021) might be particularly suitable for studying the cross section of asset returns.

5 Conclusion

This paper examines the relationship between economic uncertainty and investor attention

to firm-level earnings announcements. In a multi-firm equilibrium model, we show that

heightened economic uncertainty causes investors to allocate more attention to firm-level

information. Investors pay incrementally more attention to the earnings announcements of

high-beta firms, firms with more informative earnings announcements, higher idiosyncratic

volatility of earnings, less informative prices, and lower information acquisition costs.

The central premise of our model is that investors learn valuable information about the

economy from earnings announcements. Consequently, investors’ learning intensifies when

market-wide uncertainty is high. This implies a steeper beta-return relation on days of

heightened investor attention. Moreover, our model predicts that betas of announcing firms

increase with investors’ attention to earnings announcements.

The data support these predictions. Using two proxies for investor attention to firm-

level information (SEC EDGAR search traffic and Google stock ticker searches), we find

that investors pay more attention to firm-level earnings announcements on days with high

economic uncertainty. Our analysis further reveals that prices respond to earnings news more

strongly when there is more significant economic uncertainty. These results are concentrated

in firms with high CAPM beta, higher institutional ownership, idiosyncratic volatility, and

prior share turnover. We view these as consistent with our theoretical predictions related to

cross-sectional variation in the benefit-to-cost ratio of information. Finally, we find strong

empirical support for higher betas on high-attention days and a steeper CAPM relation on

days of heightened investor attention to firm-level information.

In conclusion, these results suggest that economic uncertainty is an essential driver of
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investor attention to firm-level information. They highlight the critical role of information

spillovers in information acquisition models. They also suggest that more reliable market risk

pricing occurs not only when uncertainty is high but when investors respond to high uncer-

tainty by intensifying their learning—in other words, when information gets processed and

resolves uncertainty. Thus, models in which uncertainty and attention fluctuations generate

time variation in the resolution of uncertainty might be particularly suitable for studying the

cross-section of asset returns.
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A Appendix

A.1 Proof of Proposition 1

Notation used thorough the Appendix:

• We denote I as the identity matrix, 1 as a vector of ones, and 0 as a vector/matrix of zeros.
These vectors and matrices are always assumed to have the conformable dimension, which we
do not specify below in order to avoid overly cumbersome notation.

• The set of announcing firms is A = {1, 2, ..., A}. Within this set, firms are indexed by a.

• The set of investor types is the power set of A, P(A), of dimension 2A. Within this set,
investor types are indexed by k.

• k̄ denotes the complement of an investor type k ⊆ A, that is, k̄ = A \ k.

• |k| denotes the cardinality of the set k.

• ιa is a standard basis vector of dimension N with all components equal to 0, except the a-th,
which is 1. ιk (ιk̄) represents the matrix with all the column vectors {ιa | a ∈ k} ({ιa | a ∈ k̄}).
ι represents the matrix with all the column vectors {ιa | a ∈ A}.

• ha ≡ Λa
γσ2
εa

, for a ∈ A. hk and hk̄ denote the column vectors {ha | a ∈ k} and {ha | a ∈ k̄}.

• diag[yj | j ∈ z] denotes a diagonal matrix whose diagonal is {yj | j ∈ z}. δhk (δhk̄) is a
diagonal matrix whose diagonal is hk (hk̄), e.g., δhk = diag[{ha | a ∈ k}].

• εk and εk̄ denote the column vectors {εa | a ∈ k} and {εa | a ∈ k̄}, and ε =

[
εk
εk̄

]
. Similarly

for xk, xk̄, and x.

• Σεk denotes the covariance matrix of the vector εk (a diagonal matrix whose elements are
{σ2

εa | a ∈ k}). Σεk̄ denotes the covariance matrix of the vector εk̄. Σxk̄ denotes the covariance
matrix of the vector xk̄.

Learning for type k investors

Type k investors observe the earnings announcements {Ea | a ∈ k}, and learn from prices. Conjec-
ture 1 implies that the only prices useful for learning are {P̂a | a ∈ k̄}. (If an investor observes Ea
then the price signal P̂a is a noisy version of Ea and is redundant for learning.)

Group the information set of type k investors into two vectors, Ek of dimension |k| and P̂k̄ of
dimension |k̄|. Then we can writeD

Ek

P̂k̄

 =

 I
ι′k

δhk̄ι
′
k̄

D +

0 0
I 0
0 δhk̄

[εk
εk̄

]
+

0
0
ι′
k̄

x, (A.1)

and thusD
Ek

P̂k̄

 ∼ N
0

0
0

 ,
 Var[D] Var[D]

[
ιk ιk̄δhk̄

][
ι′k

δhk̄ι
′
k̄

]
Var[D]

[
ι′k

δhk̄ι
′
k̄

]
Var[D]

[
ιk ιk̄δhk̄

]
+

[
Σεk 0
0 δh2

k̄
Σεk̄ + Σxk̄

] .

(A.2)

41



We will apply the Projection Theorem, which we write here for convenience.

Projection Theorem. Consider the n-dimensional normal random variable[
θ
s

]
∼ N

([
µθ

µs

]
,

[
Σθ,θ Σθ,s

Σs,θ Σs,s

])
. (A.3)

Provided Σs,s is non-singular, the conditional density of θ given s is normal with conditional mean
and conditional variance-covariance matrix:

E[θ|s] = µθ + Σθ,sΣ
−1
s,s (s− µs) (A.4)

Var[θ|s] = Σθ,θ −Σθ,sΣ
−1
s,sΣs,θ. (A.5)

Applied to (A.2), the Projection Theorem together with the Woodbury Matrix Identity imply:

Vark[D] =

(
Var[D]−1 +

[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k

δhk̄ι
′
k̄

])−1

(A.6)

=

(
Var[D]−1 +

[
ιk ιk̄

] [Σ−1
εk 0
0 δh2

k̄
(δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k
ι′
k̄

])−1

(A.7)

=

(
Var[D]−1 + ι diag

[
`ka
σ2
εa

| a ∈ A
]
ι′
)−1

, (A.8)

with `ka defined in (13). We have thus obtained τ k ≡ Vark[D]−1 as in Proposition 1. This simple
form for τ k allows us to compute its determinant using the Matrix Determinant Lemma:

det(A + UWV′) = det(W−1 + V′A−1U) det(W) det(A), (A.9)

where A = Var[D]−1, U = ι, W = diag
[
`ka
σ2
εa
| a ∈ A

]
, and V′ = ι′.

The Matrix Determinant Lemma implies

det(τ k) = det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)
det

(
diag

[
σ2
εa

`ka
| a ∈ A

]
+ ι′Var[D]ι

)
(A.10)

= det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)
det

(
diag

[
σ2
εa

`ka
+ σ2

ea | a ∈ A
]

+ U2bAb′A

)
, (A.11)

where bA is the vector of announcer firms’ exposure to the systematic component f .
Further apply the Matrix Determinant Lemma to the last term:

det(τ k) = det
(
Var[D]−1

)( A∏
a=1

`ka
σ2
εa

)(
A∏
a=1

(
σ2
εa

`ka
+ σ2

ea

))(
1 + b′A diag

[
`ka

`kaσ
2
ea + σ2

εa

| a ∈ A
]
U2bA

)
(A.12)

= det
(
Var[D]−1

)( A∏
a=1

`kaσ
2
ea + σ2

εa

σ2
εa

)(
1 + U2

A∑
a=1

`kab
2
a

`kaσ
2
ea + σ2

εa

)
, (A.13)

which completes the proof of Proposition 1.
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A.2 Proof of Proposition 2

The expected utility of a type ∅ investor (uninformed) at time 1 is:

U∅1 = max
qk

E∅1
[
−e−γ(W ∅−c

∑A
a=1 I

∅
a)
]

= max
qk

E∅1
[
−e−γ(q∅)′Re

]
. (A.14)

Further replacing the optimal portfolio choice from Eq. (7) yields

U∅1 = −E∅1
[
e−E∅1[Re]′ Var∅1[Re]−1Re

]
(A.15)

= −e−
1
2
E∅1[Re]′ Var∅1[Re]−1 E∅1[Re]. (A.16)

Assume that a type ∅ investor considers acquiring information and becoming of type k ∈P(A),
where |k| > 0. At time 1, from the perspective of the type ∅ investor, Ek1[Re] is a random vector.
Denote this random vector by z+m, with mean m and variance Σ (i.e., z has mean 0 and variance
Σ). By the law of iterated expectations,

m ≡ E∅1[Ek1[Re]] = E∅1[Re], (A.17)

and by the law of total variance,

Σ ≡ Var∅1[Ek1[Re]] = Var∅1[Re]−Vark1[Re]. (A.18)

Therefore, for the type ∅ investor, −1
2 E

k
1[Re]′Vark1[Re]−1 Ek1[Re] (that is, the random exponent

in (A.16), written for type k) is a random scalar that can be written as (define Σ∅ ≡ Var∅1[Re] to
simplify notation):

− 1

2
Ek1[Re]′Vark1[Re]−1 Ek1[Re] = −1

2
(z + m)′(Σ∅ −Σ)−1(z + m) (A.19)

= z′
(
−1

2
(Σ∅ −Σ)−1

)
︸ ︷︷ ︸

F

z +
(
−m′(Σ∅ −Σ)−1

)
︸ ︷︷ ︸

G′

z + m′
(
−1

2
(Σ∅ −Σ)−1

)
m︸ ︷︷ ︸

H

. (A.20)

Our aim is to compute E∅1[Uk1 ], i.e., the type ∅ agent’s expectation of what her expected utility
will be if she changes type to k. We will apply the following Lemma (Veldkamp, 2011, p. 102):

Lemma A2. Consider a random vector z ∼ N (0,Σ). Then,

E
[
ez
′Fz+G′z+H

]
= det(I− 2ΣF)−

1
2 e

1
2
G′(I−2ΣF)−1ΣG+H. (A.21)

Compute first

I− 2ΣF = I− 2Σ

(
−1

2
(Σ∅ −Σ)−1

)
(A.22)

= Σ∅(Σ∅ −Σ)−1, (A.23)

which, using (A.18), leads to the determinant in Lemma A2:

det(I− 2ΣF) =
det(Σ∅)

det(Vark1[Re])
=

det(τ k)

det(τ ∅)
. (A.24)
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The exponent in Lemma A2 is:

1

2
G′(I− 2ΣF)−1ΣG + H (A.25)

=
1

2

(
−m′(Σ∅ −Σ)−1

)
(Σ∅ −Σ)(Σ∅)−1Σ

(
−m′(Σ∅ −Σ)−1

)′
−m′

1

2
(Σ∅ −Σ)−1m (A.26)

=
1

2
m′(Σ∅)−1Σ(Σ∅ −Σ)−1m− 1

2
m′(Σ∅ −Σ)−1m (A.27)

=
1

2
m′
(

(Σ∅)−1Σ− I
)

(Σ∅ −Σ)−1m (A.28)

= −1

2
m′(Σ∅)−1m. (A.29)

We can then use Lemma A2 to write

E∅1[Uk1 ] = −eγc|k| E∅1
[
e−

1
2
Ek1 [Re]′ Vark1 [D]−1 Ek1 [Re]

]
(A.30)

= −eγc|k|
√

det(τ ∅)

det(τ k)
e−

1
2
E∅1[Re]′ Var∅1[Re]−1 E∅1[Re] (A.31)

= U∅1 eγc|k|
√

det(τ ∅)

det(τ k)
. (A.32)

At time t = 0, the type ∅ investor compares E0[U∅1 ] with E0[Uk1 ] and acquires the additional
signals if and only if

E0[U∅1 ] < E0[Uk1 ] = E0[E∅1[Uk1 ]], (A.33)

which, after replacement of (A.32), yields eγc|k|
√

det(τ ∅)/ det(τ k) < 1 (the division by E0[U∅1 ] < 0
flips the inequality sign). Thus, an investor of type ∅ changes type to k if and only if

Bk
∅ ≡

det(τ k)

det(τ ∅)
e−2γc|k| > 1. (A.34)

Consider now two investor types k and k′ as in Proposition 2. The empty set ∅ is the only
common subset of both k and k′, for all k, k′ ∈P(A). Thus, the uninformed investor is a common
reference point for type k and type k′ investors, and therefore the investor with the lowest benefit-
cost ratio among {Bk

∅ , B
k′

∅ } will always choose to migrate to the other type. In other words, a type
k investor changes type from k to k′ ∈P(A) \ k if and only if

Bk′

∅
Bk
∅
> 1 ⇐⇒ 1

2γ
ln

det(τk
′
)

det(τk)
> c(|k′| − |k|). (A.35)

This holds regardless of the sign of |k′| − |k|.

A.3 Proof of Theorem 1

An important property of the benefit-cost ratios Bk
∅ , for k ∈ P(A) \ ∅, is that they can be de-

composed into the product of consecutive one-step benefit-cost ratios. Formally, let k(i) be the ith

element of k and κ(i) the subset of k that contains all its elements up to and including k(i). Using
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the convention κ(0) = ∅ and defining B
κ(i−1)∪{k(i)}
κ(i−1) ≡ det(τκ(i−1)∪{k(i)})

det(τκ(i−1))
e−2γc, we can write

Bk
∅ =

|k|∏
i=1

B
κ(i−1)∪{k(i)}
κ(i−1) . (A.36)

We first establish the following Lemma.

Lemma A3. Consider an announcer a ∈ A and any type k ⊆ A \ {a}. Then

arg min
k

B
k∪{a}
k = A \ {a} (A.37)

arg max
k

B
k∪{a}
k = ∅ (A.38)

Lemma A3 states that the type k for which the one-step benefit-cost ratio B
k∪{a}
k attains its

minimum is the highest cardinality type that excludes a, that is, A \ {a}; and the type k for which

B
k∪{a}
k attains its maximum is the empty set ∅. In other words, attention has diminishing returns:

the lowest benefit from observing Ea belongs to the investor who already observes all the other
earnings announcements; and the highest benefit belongs to the uninformed investor. The proof of

Lemma A3 follows from writing explicitly B
k∪{a}
k by means of Proposition 1,

B
k∪{a}
k =

det(τ k∪{a})

det(τ k)
e−2γc (A.39)

=

 σ2
ea + σ2

εa

`aσ2
ea + σ2

εa

+
b2a

1
U2 +

∑A
α=1

`kαb
2
α

`kασ
2
eα+σ2

εα

(1− `a)σ2
εa

(`aσ2
ea + σ2

εa)
2

 e−2γc, (A.40)

which is indeed minimized when `kα = 1, ∀α ∈ A \ {a}, and maximized when `kα < 1, ∀α ∈ A \ {a}.
In the former case, k must be A \ {a}; in the latter, k must be ∅. (NB: Lemma A3 is a direct
consequence of the fact that the function ln(Bk

∅ ) is linearly related to the entropy defined in (14):

ln(Bk
∅ ) = 2(H∅[D] − Hk[D] − γc|k|). By the submodularity property of the entropy, ln(Bk

∅ ) is

submodular and therefore B
k∪{a}
k has diminishing returns. See also Appendix A.7.)

Lemma A3, together with the multiplicative property (A.36), will allow us obtain the bounds
cmin and cmax. We will first derive the lower bound cmin. When the information cost is below cmin,
all investors are informed, i.e., λA = 1. In order for this to be a stable equilibrium, the following
conditions must hold simultaneously:

BAA\{a} ≥ 1 ∀a ∈ A, (A.41)

meaning that no investor of type A finds it optimal to renounce being attentive to any signal Ea.
If these conditions hold simultaneously, then one can easily show using the multiplicative property
(A.36) and Lemma A3 that

BAk ≥ 1, for any type k ⊂ A, (A.42)

meaning that no investor of type A finds it optimal to be of any other possible type. (This can be
shown by writing BAk as a product as in (A.36) and using Lemma A3 for each individual term of
the product; it is a direct consequence of the property of diminishing returns to attention.)
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Conditions (A.41) further imply minaB
A
A\{a} ≥ 1, which will pin down cmin. Using the fact that

λA = 1, the definition of `a in Eq. (13) yields upper limits for all the learning coefficients `a,

¯̀
a =

1

1 + γ2σ2
xaσ

2
εa

∀a ∈ A, (A.43)

and thus cmin solves

e2γcmin = min
a

 σ2
ea + σ2

εa
¯̀
aσ2

ea + σ2
εa

+
b2a

1
U2 +

∑A
α=1

¯̀
αb2α

¯̀
ασ2

eα+σ2
εα

(1− ¯̀
a)σ

2
εa

(¯̀
aσ2

ea + σ2
εa)

2

 . (A.44)

Since the right hand side equals mina(det(τA)/det(τA\{a}) and thus is always larger than one,
equation (A.44) has a unique, strictly positive solution cmin. It can be easily checked that cmin is
strictly increasing in U .

Consider now an equilibrium in which no investor is informed, or λ∅ = 1. In order for this to be
a stable equilibrium, the following conditions must hold simultaneously:

Ba
∅ ≤ 1 ∀a ∈ A. (A.45)

If these conditions hold, then a consequence of the property of diminishing returns to attention is
that Bk

∅ ≤ 1 holds for any type k ⊆ A. (This can be shown by writing Bk
∅ as a product as in (A.36)

and using Lemma A3 for each individual term of the product.)
Conditions (A.45) further imply maxaB

a
∅ ≤ 1, and λ∅ = 1 leads to `a = 0 ∀a ∈ A. Thus, cmax

solves

e2γcmax = max
a

(
1 +

b2aU
2 + σ2

ea

σ2
εa

)
. (A.46)

This equation has a unique, strictly positive solution cmax, which is strictly increasing in U . Fur-
thermore, since Ba

∅ > BAA\{a} ∀a ∈ A (by Lemma A3), it is clear that maxaB
a
∅ > minaB

A
A\{a} and

therefore cmax > cmin. This completes the proofs of cases (C) and (A) of Theorem 1.
In case (B) of Theorem 1, the information cost is c ∈ (cmin, cmax). Clearly, when c ∈ (cmin, cmax)

both conditions (A.41) and (A.45) are violated and thus the equilibrium cannot be λ∅ = 1 or λA = 1.
Thus, in equilibrium there exists a set {λk | k ∈ P(A)} such that:

∑
k∈P(A) λ

k = 1; λ∅ < 1; and

λA < 1. Consider now all the pairs of types {k, k′} ∈P(A). For each pair, there are four cases:

(i) {λk > 0} ∧ {λk′ > 0}: this can be a stable equilibrium (meaning that no investor has an
incentive to migrate from type k to type k′ or vice versa) only if Bk′

∅ /B
k
∅ = 1.

(ii) {λk = 0} ∧ {λk′ > 0}: this can be a stable equilibrium (meaning that no investor of type k′

has an incentive to migrate to type k) only if Bk′

∅ /B
k
∅ ≥ 1.

(iii) {λk > 0} ∧ {λk′ = 0}: this is the reversal of the previous case and requires Bk′

∅ /B
k
∅ ≤ 1.

(iv) {λk = 0} ∧ {λk′ = 0}: in this case there is no condition on Bk′

∅ /B
k
∅ since there are no investors

of types k and k′.

Conditions (i)-(iv) are both necessary and sufficient for the stability of the information market
equilibrium. See Appendix A.7 for an algorithm that converges to the equilibrium for any set of
positive initial values {λk0 > 0 | k ∈P(A)} such that

∑
k λ

k
0 = 1.
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A.4 Proof of Lemma 1

Lemma 1 results directly after writing τ k for each investor type under this form:

τ k = Var[D]−1 + ι diag

[
`ka
σ2
εa

| a ∈ A
]
ι′, (A.47)

where ι is a N × A matrix whose columns are the standard basis vectors ιa for all the announcing
firms (vectors having all components equal to 0, except the a-th, which is 1).

The weighted average precision is then

τ =
∑

k∈P(A)

λkτ k = Var[D]−1 + ι diag

 ∑
k∈P(A)

λk
`ka
σ2
εa

| a ∈ A

 ι′, (A.48)

with `ka defined in (13). Furthermore,

∑
k∈P(A)

λk
`ka
σ2
εa

=
(1− Λa)`a

σ2
εa

+
Λa
σ2
εa

=
Λ2
a + Λaγ

2σ2
xaσ

2
εa

Λ2
aσ

2
εa + γ2σ2

xaσ
4
εa

= πa(Λa), (A.49)

which yields (21).

A.5 Proof of Proposition 3

We will use the market clearing condition to solve for the undetermined price coefficients:

∑
k∈P(A)

λk
Vark[D]−1

γ
Ek[D]− τ

γ
P + x = M. (A.50)

Using the Projection Theorem and ha ≡ Λa
γσ2
εa

we can compute

Vark[D]−1 Ek[D] =

(
Var[D]−1 +

[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
ι′k

δhk̄ι
′
k̄

])
×

×Var[D]
[
ιk ιk̄δhk̄

]([ ι′k
δhk̄ι

′
k̄

]
Var[D]

[
ιk ιk̄δhk̄

]
+

[
Σεk 0
0 δh2

k̄
Σεk̄ + Σxk̄

])−1 [
Ek

P̂k̄

]
,

(A.51)

which simplifies to

Vark[D]−1 Ek[D] =
[
ιk ιk̄δhk̄

] [Σ−1
εk 0
0 (δh2

k̄
Σεk̄ + Σxk̄)

−1

] [
Ek

P̂k̄

]
(A.52)

=
[
ιk ιk̄

] [Σ−1
εk 0

0 diag
[

γΛa
Λ2
a+γ2σ2

εaσ
2
xa
| a ∈ k̄

]] [Ek

P̂k̄

]
. (A.53)

According to Conjecture 1,

P̂k̄ = diag

[
Λa
γσ2

εa

| a ∈ k̄
]

Ek̄ + xk̄, (A.54)
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which, after replacement into (A.53), yields:

Vark[D]−1 Ek[D] =ιk diag

[
1

σ2
εa

| a ∈ k
]

Ek + ιk̄ diag

[
Λ2
a

Λ2
aσ

2
εa + γ2σ4

εaσ
2
xa

| a ∈ k̄
]

Ek̄

+ ιk̄ diag

[
γΛa

Λ2
a + γ2σ2

εaσ
2
xa

| a ∈ k̄
]

xk̄.

(A.55)

We now go back to (A.50), which we write as

τP =
∑

k∈P(A)

λk Vark[D]−1 Ek[D] + γx− γM, (A.56)

which, after replacement of (A.55) becomes

τP =

[
diag [πa(Λa) | a ∈ A]

0

]
E + γ

[
diag

[
πa(Λa)σ2

εa
Λa

| a ∈ A
]

0

0 IN−A

]
x− γM, (A.57)

where E is the column vector of earnings announcements and the functions πa(Λa), a ∈ A are
defined in Lemma 1. We can now verify Conjecture 1:

P̂ =
1

γ

[
diag

[
Λa

πa(Λa)σ2
εa
| a ∈ A

]
0

0 IN−A

][
diag [πa(Λa) | a ∈ A]

0

]
E + x (A.58)

=

[
diag

[
Λa
γσ2
εa
| a ∈ A

]
0

]
E + x, (A.59)

which completes the proof of Proposition 3.

A.6 Proof of Corollary 3.1

Define first Π ≡ diag [πa(Λa) | a ∈ A]. From (A.57), the matrix of response coefficients to E for all
firms in the economy, α, is given by

α = τ−1ιΠ = (Var[D]−1 + ιΠι′)−1ιΠ, (A.60)

where ι represents the matrix with all the column vectors {ιa | a ∈ A}. Multiplying with Πι′ and
applying the Woodbury matrix identity yields:

Πι′α = Π− (Π−1 + ι′Var[D]ι)−1. (A.61)

We recognize that ι′α = αA and ι′Var[D]ι = Var[DA], where DA is the A× 1 vector of payoffs
for the announcing firms. Thus, after multiplication with Π−1, we obtain Eq. (24):

αA = I− (I + Var[DA]Π)−1. (A.62)

The earnings response coefficients of the announcing firms are given by the diagonal elements of
the matrix αA. We also note that Eq. (24) can alternatively be written α−1

A = I + Π−1 Var[DA]−1,
by means of the Woodbury matrix identity.
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A.7 Equilibrium solution algorithm

We will first show that the maximization problem (6) is equivalent with the simplified form (25):

max
k∈P(A)

E0

[
max
qk

Ek1
[
−e−γ(Wk−c|k|)

]]
= max

k∈P(A)
eγc|k| E0

[
max
qk

Ek1
[
−e−γ(qk)

′
Re
]]

(A.63)

= max
k∈P(A)

eγc|k| E0

[
−e−

1
2
Ek1 [Re]′ Vark1 [Re]−1 Ek1 [Re]

]
, (A.64)

which, after using (A.32) and the law of iterated expectations, yields

max
k∈P(A)

eγc|k| E0

√det(τ ∅)

det(τ k)
U∅1

 = max
k∈P(A)

eγc|k|

√
det(τ ∅)

det(τ k)
E0

[
U∅1
]
. (A.65)

We notice that E0

[
U∅1
]

is a constant that does not depend on the individual choice of the

investor. Dividing by this (negative) constant yields

max
k∈P(A)

1

2
ln(det(τ k))− 1

2
ln(det(τ ∅))− γc|k| = max

k∈P(A)

1

2
lnBk

∅ , (A.66)

and therefore the optimization problem at time 0 for each investor in this economy is (25).
To prove that the function lnBk

∅ is submodular, consider two types k, k′ ∈ P(A) with k ⊆ k′

and a ∈ A \ k′, then use (A.39)-(A.40) to compute

lnB
k∪{a}
∅ − lnBk

∅ = lnB
k∪{a}
k (A.67)

= ln

 σ2
ea + σ2

εa

`aσ2
ea + σ2

εa

+
b2a

1
U2 +

∑A
α=1

`kαb
2
α

`kασ
2
eα+σ2

εα

(1− `a)σ2
εa

(`aσ2
ea + σ2

εa)
2

− 2γc. (A.68)

The same difference is lower when written for k′ instead of k, due to the term
∑A

α=1
`kαb

2
α

`kασ
2
eα+σ2

εα
in

the denominator (this term is larger when written for k′ because k ⊆ k′). Therefore,

lnB
k∪{a}
∅ − lnBk

∅ ≥ lnB
k′∪{a}
∅ − lnBk′

∅ , (A.69)

and thus the function lnBk
∅ is indeed submodular. We further prove the following Lemma.

Lemma A4. For any two types k, k′ ∈ P(A) and λk > 0, a migration of a positive mass of
investors z < λk from k to k′ decreases Bk′

∅ /B
k
∅ .

Proof. Consider a type k ∈P(A) and its complement k̄ = A \ k. Using Proposition 1, write

det(τ k) = det(Var[D]−1)

(∏
a∈k

σ2
ea + σ2

εa

σ2
εa

)∏
a∈k̄

`aσ
2
ea + σ2

εa

σ2
εa


×

1 + U2
∑
a∈k

b2a
σ2
ea + σ2

εa

+ U2
∑
a∈k̄

`ab
2
a

`aσ2
ea + σ2

εa

 .

(A.70)

A migration from k → k′ increases the terms
∏
a∈k̄

`aσ2
ea+σ2

εa
σ2
εa

and
∑

a∈k̄
`ab2a

`aσ2
ea+σ2

εa
, while all

49



the other terms of the decomposition (A.70) remain constant. Thus, det(τ k) increases. One can
similarly show that det(τ k

′
) decreases, and therefore Bk′

∅ /B
k
∅ decreases.

The submodularity property of the function lnBk
∅ , coupled with the monotonicity of Bk′

∅ /B
k
∅

implied by Lemma A4, justify the use of an iterative algorithm that converges towards a stable
equilibrium. The algorithm is adapted from Hu and Shi (2019) and Arkolakis et al. (2021) and
consists of the following steps:

1. Start from any set of positive initial values {λk0 > 0 | k ∈ P(A)} such that
∑

k λ
k
0 = 1.

Compute the benefit-cost ratios {Bk
∅ | k ∈P(A)}.

2. For any two types k, k′ ∈P(A), compute Bk′

∅ /B
k
∅ :

(a) if Bk′

∅ /B
k
∅ = 1, no further changes in λk and λk

′
are needed at this step.

(b) if Bk′

∅ /B
k
∅ > 1, then allow a small fraction of the population of type k investors to

migrate to type k′, which will decrease Bk′

∅ /B
k
∅ (Lemma A4). In the illustration below,

the dot A depicts the initial values {λk, λk′}, located on a line with slope λk
′
/λk. The

algorithm multiplies the slope of the line by m > 1 and finds two new values λknew and
λk
′
new such that λknew + λk

′
new = λk + λk

′
and λknew < λk, thus reaching the dot B:

λk

λk
′

Initial slope λk
′

λk

Migration k′ → k (if Bk′

∅ /B
k
∅ < 1)

Migration k → k′ (if Bk′

∅ /B
k
∅ > 1)

A

B

C

After the multiplication, the new values for λk and λk
′

are given by

λknew = λk
λk + λk

′

λk +mλk′
and λk

′
new = λk

′ λk + λk
′

λk/m+ λk′
. (A.71)

To ensure stability of the solution, m is set to increase with (Bk′

∅ /B
k
∅ − 1). Finally,

compute the benefit-cost ratios {Bk
∅ | k ∈P(A)} using the new values {λknew, λk

′
new}.

(c) if Bk′

∅ /B
k
∅ < 1, apply a similar procedure as in the previous step, moving from A to C.

3. Iterate step 2 until the algorithm has converged to the desired accuracy and the conditions
of Theorem 1 are satisfied. Convergence is guaranteed by Lemma A4.

A.8 (CAPM) Proofs of Proposition 4 and Corollary 4.1

Investors’ learning and uncertainty at time 0 Given information at time 0, investors
form beliefs about D, E0[D] and Var0[D]. The prior variance of D is Var[D] = U2bb′ + Var[e].
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Based on investors’ information set F0 = {G}, we apply the Projection Theorem (page 42), with:

Σθθ = Var[D] = U2bb′ + Var[e] (A.72)

Σθs = Cov[D, G] = Var[D]M = U2b + Var[e]M (A.73)

Σsθ = Cov[G,D] = M′Var[D] = U2b′ + M′Var[e] (A.74)

Σss = Var[G] = M′Var[D]M + σ2
g = U2 + M′Var[e]M + σ2

g , (A.75)

where b is the N × 1 vector of firms’ exposures to the systematic component f , M′b = 1 by
assumption, and e is the vector of idiosyncratic components in firms’ payoffs. Then

Var0[D] = U2bb′ + Var[e]− (U2b + Var[e]M)
1

U2 + M′Var[e]M + σ2
g

(U2b′ + M′Var[e]), (A.76)

or, using the Woodbury Matrix Identity:

τ 0 ≡ Var0[D]−1 = Var[D]−1 +
1

σ2
g

MM′. (A.77)

Investors’ posterior expectation at time 0 is:

E0[D] = Var[D]M(σ2
g + M′Var[D]M)−1G =

1

σ2
g

τ−1
0 MG. (A.78)

where the second equality results from multiplying the first equality with τ−1
0 τ 0 and simplifying.

The market-wide uncertainty at time 0 is defined as U2
0 ≡ Var0[M′D]:

U2
0 = M′Var0[D]M = σ4

g

1

σ2
g

M′
(

Var[D]−1 + M
1

σ2
g

M′
)−1

M
1

σ2
g

(A.79)

= σ4
g

[
1

σ2
g

−
(
σ2
g + M′Var[D]M

)−1
]

=
σ2
gM

′Var[D]M

σ2
g + M′Var[D]M

=
1

1
M′ Var[D]M + 1

σ2
g

. (A.80)

Since M′Var[D]M = U2 + M′Var[e]M, U0 increases if U increases or if σg increases. Furthermore,
limN→∞M′Var[D]M = U2 and we recover Eq. (35) in the text.

Equilibrium To solve for the equilibrium prices, conjecture the following linear forms:

P0 = Γ0G+ ξ00x0 − ζ0M (A.81)

P1 = Γ1G+ ξ01x0 − ζ1M +α1E + ξ1x1 (A.82)

Noise traders hold x0 at time 0 and x0 + x1 at time 1.

Time 1 At time 1, investors’ learning follows Appendix A.1, with the addition that all investors
observe G from the previous period and the conjecture (11) must change to take this into account
(Note: investors’ information at time 0 is public, and thus x0 is observed):

P̂1 ≡ ξ−1
1 (P1 − Γ1G− ξ01x0 + ζ1M) =

A∑
a=1

Λa
γσ2

εa

ιaEa + x1. (A.83)
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The posterior variance Vark1[D] is now

τ k1 ≡ Vark1[D]−1 = τ 0 +
A∑
a=1

`ka
σ2
εa

ιaι
′
a, (A.84)

where τ 0 is defined in (A.77). The weighted average precision at time 1 is then

τ 1 =
∑

k∈P(A)

λkτ k1 = τ 0 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (A.85)

where πa(Λa) is defined as in (22). We can then write a modified version of (A.55):

τ k1 Ek1[D] =ιk diag

[
1

σ2
εa

| a ∈ k
]

Ek + ιk̄ diag

[
Λ2
a

Λ2
aσ

2
εa + γ2σ4

εaσ
2
xa

| a ∈ k̄
]

Ek̄

+ ιk̄ diag

[
γΛa

Λ2
a + γ2σ2

εaσ
2
xa

| a ∈ k̄
]

xk̄ +
1

σ2
g

MG,

(A.86)

which leads to a new market clearing condition (the counterpart of (8) in the baseline setup):∑
k∈P(A)

λkqk1 + x0 + x1 = M, where qk1 =
1

γ
τ k1(Ek1[D]−P1). (A.87)

Thus, prices at time 1 solve a modified version of (A.56) in the baseline setup, and one can check
that they verify the new conjecture (A.83). We thus obtain (32) in Proposition 4:

τ 1P1 =
∑

k∈P(A)

λkτ k1 Ek1[D] + γx0 + γx1 − γM. (A.88)

Time 0 Consider an investor who at time 0 knows that she will be of type k at time 1. We prove
here that knowing her future type does not change her portfolio choice at time 0,

q0 =
1

γ
τ 0(E0[D]−P0), (A.89)

which is Eq. (29) in Proposition 4. The proof of this statement follows Brennan and Cao (1997),
adapted to our Grossman and Stiglitz (1980) setup with information acquisition.

The final wealth of a type-k investor at time 2 is (taking into account the cost of information):

W k = (qk0)′(P1 −P0)− c|k|+ (qk1)′(D−P0), (A.90)

and he expected utility at time 1 for this investor is then given by

Uk1 = − exp

[
−γ(qk0)′(P1 −P0) + γc|k| − 1

2
(Ek1[D]−P1)′τ k1(Ek1[D]−P1)

]
. (A.91)

Defining

ak ≡ Ek1[D]−P0 (A.92)

ck ≡ Ek1[D]−P1, (A.93)
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we can write the expected utility at time 1 as

Uk1 = − exp

[
−γ(qk0)′(ak − ck) + γc|k| − 1

2
(ck)′τ k1ck

]
. (A.94)

To compute the expected utility at time 0, E0[Uk1 ], we need the joint distribution at time 0 of ak

and ck (both of them are random for a time 0 investor). The law of iterated expectations implies:

E0[ak] = E0[D]−P0. (A.95)

Using that E0[x1] = 0, Eq. (A.88) implies

τ 1 E0[P1] =
∑

k∈P(A)

λkτ k1 E0[D] + γx0 − γM (A.96)

= τ 1 E0[D]− γ(M− x0), (A.97)

and thus

E0[P1] = E0[D]− γτ−1
1 (M− x0), (A.98)

which leads to

E0[ck] = E0[D]− E0[D] + γτ−1
1 (M− x0) = γτ−1

1 (M− x0). (A.99)

We now compute variances and covariances of ak and ck:

Var0[ak] = Var0[Ek1[D]] = Var0[D]−Vark1[D] = τ−1
0 − (τ k1)−1, (A.100)

and, defining Ω ≡ Var0[D−P1],

Var0[ck] = Var0

[
Ek1[D−P1]

]
= Ω− (τ k1)−1. (A.101)

Finally, the covariance Cov0[ak, ck] is

Cov0[ak, ck] = Cov0[Ek1[D],Ek1[D]−P1] (A.102)

= Var0[Ek1[D]]− Cov0[Ek1[D],P1] (A.103)

= τ−1
0 − (τ k1)−1 − Cov0[Ek1[D],P1]. (A.104)

To solve for Cov0[Ek1[D],P1], consider the most informed type, denoted by k̃. Then

Cov0[Ek̃1[D],P1] = Covk1[Ek̃1[D],P1]︸ ︷︷ ︸
=0

+ Cov0[Ek1[D],P1], (A.105)

and thus all the covariances Cov0[Ek1[D],P1] take the same value, Cov0[Ek̃1[D],P1].
Then, using (A.88):

Cov0[Ek̃1[D],P1] = Cov0

Ek̃1[D], τ−1
1

 ∑
k∈P(A)

λkτ k1 Ek1[D] + γx0 + γx1 − γM

 , (A.106)
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and since k̃ is the most informed investor, she does not learn from prices and therefore Ek̃1[D] does
not depend on x1. Thus, we can further write the covariance above as

Cov0[Ek̃1[D],P1] = τ−1
1

∑
k∈P(A)

λkτ k1 Cov0[Ek̃1[D],Ek1[D]] (A.107)

= τ−1
1

∑
k∈P(A)

λkτ k1

Covk1[Ek̃1[D],Ek1[D]]︸ ︷︷ ︸
0

+ Cov0[Ek1[D],Ek1[D]]

 (A.108)

= τ−1
1

∑
k∈P(A)

λkτ k1

(
τ−1

0 − (τ k1)−1
)

(A.109)

= τ−1
0 − τ

−1
1 , (A.110)

and thus, going back to (A.104), we obtain

Cov0[ak, ck] = τ−1
0 − (τ k1)−1 −

(
τ−1

0 − τ
−1
1

)
= τ−1

1 − (τ k1)−1. (A.111)

Eqs. (A.95), (A.99), (A.100), (A.101), and (A.111) imply the joint distribution of ak and ck:[
ak

ck

]
∼ N

([
E0[D]−P0

γτ−1
1 (M− x0)

]
,

[
τ−1

0 − (τ k1)−1 τ−1
1 − (τ k1)−1

τ−1
1 − (τ k1)−1 Ω− (τ k1)−1

])
. (A.112)

We are now ready to compute

E0[Uk1 ] = E0

[
− exp

(
−γ(qk0)′(ak − ck) + γc|k| − 1

2
(ck)′τ k1ck

)]
(A.113)

using Lemma A2. To simplify notation, denote by E0[ak] = ma and E0[ck] = mc (these do not

depend on k) and z the demeaned vector,

[
ak

ck

]
=

[
za
zc

]
+

[
ma

mc

]
. The exponent above is

z′
[
0 0
0 −τ k1/2

]
︸ ︷︷ ︸

F

z +
[
−γ(qk0)′ γ(qk0)′ −m′cτ

k
1

]︸ ︷︷ ︸
G′

z + γc|k|+ γ(qk0)′(mc −ma)−
1

2
m′cτ

k
1mc︸ ︷︷ ︸

H

. (A.114)

Let Σ be the covariance matrix in (A.112). Then,

I− 2ΣF = I− 2

[
0 −(τ−1

1 − (τ k1)−1)
τk1
2

0 −(Ω− (τ k1)−1)
τk1
2

]
(A.115)

= I−
[
0 −τ−1

1 τ k1 + I
0 −Ωτ k1 + I

]
=

[
I τ−1

1 τ k1 − I
0 Ωτ k1

]
. (A.116)

Use block inversion to obtain (I− 2ΣF)−1. The diagonal blocks are both invertible, and thus

(I− 2ΣF)−1 =

[
I 0
0 (Ωτ k1)−1

] [
I −(τ−1

1 τ k1 − I)(Ωτ k1)−1

0 I

]
(A.117)

=

[
I [(τ k1)−1 − τ−1

1 ]Ω−1

0 (τ k1)−1Ω−1

]
, (A.118)
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and thus (I− 2ΣF)−1Σ equals[
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1] [τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1

(τ k1)−1Ω−1[τ−1
1 − (τ k1)−1] (τ k1)−1[I−Ω−1(τ k1)−1]

]
. (A.119)

In Lemma A2, the term 1
2G′ (I− 2ΣF)−1 ΣG equals

1

2

[
−γ(qk0)′ γ(qk0)′ −m′cτ

k
1

]
×
[
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1] [τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1

(τ k1)−1Ω−1[τ−1
1 − (τ k1)−1] (τ k1)−1[I−Ω−1(τ k1)−1]

]
×
[
−γqk0

γqk0 − τ k1mc

]
,

(A.120)

and thus it has the following form

1

2
G′ (I− 2ΣF)−1 ΣG + H =

1

2

[
g′1 g′2

] [a b
b′ d

] [
g1

g2

]
=

1

2
g′1ag1 + g′1bg2 +

1

2
g′2dg2 + H, (A.121)

with,

1

2
g′1ag1 ≡

1

2
γ2(qk0)′

(
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1]
)

qk0 (A.122)

g′1bg2 ≡ −γ(qk0)′[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1[γqk0 − τ k1mc] (A.123)

1

2
g′2dg2 ≡

1

2
[γ(qk0)′ −m′cτ

k
1](τ k1)−1[I−Ω−1(τ k1)−1][γqk0 − τ k1mc]. (A.124)

Taking the first order condition with respect to qk0 yields (using matrix differentiation rules:
∂x′Ax/∂x = (A+A′)x and ∂x′A/∂x = A):

∂ 1
2g
′
1ag1

∂qk0
= γ2

(
τ−1

0 − (τ k1)−1 − [τ−1
1 − (τ k1)−1]Ω−1[τ−1

1 − (τ k1)−1]
)

qk0 (A.125)

∂g′1bg2

∂qk0
= −2γ2[τ−1

1 − (τ k1)−1]Ω−1(τ k1)−1qk0 + γ[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1τ k1mc (A.126)

= −2γ2[τ−1
1 − (τ k1)−1]Ω−1(τ k1)−1qk0 + γ[τ−1

1 − (τ k1)−1]Ω−1mc (A.127)

∂ 1
2g
′
2dg2

∂qk0
= γ2(τ k1)−1[I−Ω−1(τ k1)−1]qk0 −

1

2
γ(τ k1)−1[I−Ω−1(τ k1)−1]τ k1mc −

1

2
γ[I− (τ k1)−1Ω−1]mc

(A.128)

= γ2(τ k1)−1[I−Ω−1(τ k1)−1]qk0 − γ[I− (τ k1)−1Ω−1]mc (A.129)

∂H

∂qk0
= γ(mc −ma). (A.130)

All the terms with qk0 sum up to (there are 3 terms; add first term with first half of second term;
add third term with second half of second term; take total; τ−1

1 Ω−1(τ k1)−1 is symmetric):

γ2(τ−1
0 − τ

−1
1 Ω−1τ−1

1 )qk0, (A.131)
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whereas all the terms without qk0 sum up to (there are 3 terms):

γτ−1
1 Ω−1mc − γma, (A.132)

and thus the first order condition with respect to qk0 is

(τ−1
0 − τ

−1
1 Ω−1τ−1

1 )qk0 =
1

γ
(ma − τ−1

1 Ω−1mc). (A.133)

From (A.95) and (A.99), we know that ma = E0[D]−P0 and mc = γτ−1
1 (M− x0). Since none

of them depend on k, it follows that qk0 is independent on k and thus

τ−1
0 q0 − τ−1

1 Ω−1τ−1
1 q0 =

1

γ
(E0[D]−P0)− 1

γ
τ−1

1 Ω−1γτ−1
1 (M− x0). (A.134)

The last terms on each side cancel out by market clearing. We therefore obtain (A.94):

q0 =
1

γ
τ 0(E0[D]−P0). (A.135)

Using (A.78) and market clearing yields (31) and completes the proof of Proposition 4.

Proof of Corollary 4.1 (CAPM) Eqs. (A.135) and (A.99) imply E0[D−P0] = γτ−1
0 (M−x0)

and E0[D−P1] = γτ−1
1 (M− x0). Thus,

E0[P1 −P0] = γ(τ−1
0 − τ

−1
1 )(M− x0). (A.136)

Taking unconditional expectation and defining Re ≡ P1 −P0 yields

E[Re] = γ(τ−1
0 − τ

−1
1 )M, (A.137)

which, written for the market portfolio is

E[Re
M] = γ(M′τ−1

0 M−M′τ−1
1 M) = γ(U2

0 −M′τ−1
1 M), (A.138)

where U2
0 is the market-wide uncertainty at time 0, defined in (A.80). The second term in brackets,

M′τ−1
1 M, decreases with Λa, ∀a. To see this, we know from (A.85) that

τ 1 = τ 0 +

[
diag[πa(Λa) | a ∈ A] 0A×(N−A)

0(N−A)×A 0(N−A)×(N−A)

]
, (A.139)

and that πa(Λa) increases in Λa (Lemma 1). Thus

∂M′τ−1
1 M

∂πa(Λa)
= M′ ∂τ

−1
1

∂πa(Λa)
M (A.140)

= −M′τ−1
1

∂τ 1

∂πa(Λa)
τ−1

1 M (A.141)

= −M′τ−1
1 ιaι

′
aτ
−1
1 M < 0, (A.142)

where we have used that the derivative of the inverse of a matrix K is −K−1KdK−1 (d meaning
derivative: start with Id = (KK−1)d = KdK−1 +K(K−1)d and solve for (K−1)d). Thus, M′τ−1

1 M
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decreases when investors are more attentive and Λa increases.
From (A.137)-(A.138), we obtain the CAPM in Corollary 4.1:

E[Re] =
(τ−1

0 − τ
−1
1 )M

U2
0 −M′τ−1

1 M
E[Re

M]. (A.143)

Firms’ betas: proof of Eq. (36) To understand how market betas relate to firms’ exposures
b to the systematic factor, and how betas are governed by investor attention, we start by analyzing
the numerator in (A.143), or (τ−1

0 − τ
−1
1 )M. From (A.85), τ 1 = τ 0 + ιΠι′, where Π is a A × A

diagonal matrix with the scalars πa(Λa) on its diagonal, Π = diag[πa(Λa) | a ∈ A]. This yields

τ−1
1 = τ−1

0 − τ
−1
0 ι(Π−1 + ι′τ−1

0 ι)−1ι′τ−1
0 , (A.144)

and thus

(τ−1
0 − τ

−1
1 )M = τ−1

0 ι(Π−1 + ι′τ−1
0 ι)−1ι′τ−1

0 M. (A.145)

The term τ−1
0 ι represents the first A columns of τ−1

0 = Var0[D]. Using (A.76), removing all
terms that vanish when N →∞, and denoting by bA = [b1 b2 · · · bA]′,

τ−1
0 ι =

U2σ2
g

U2 + σ2
g

bb′A + Var[e]ι. (A.146)

This implies (using b′M = 1 and further removing vanishing terms):

ι′τ−1
0 M =

U2σ2
g

U2 + σ2
g

bA (A.147)

Π−1 + ι′τ−1
0 ι = Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A, (A.148)

where eA = [e1 e2 · · · eA]′. Using (A.146)-(A.148), the term (τ−1
0 − τ

−1
1 )M is then(

U2σ2
g

U2 + σ2
g

bb′A + Var[e]ι

)(
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.149)

= b
U2σ2

g

U2 + σ2
g

b′A

(
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.150)

+

[
Var[eA]

0

](
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.151)

= b

 U2σ2
g

U2 + σ2
g

−

(
U2 + σ2

g

U2σ2
g

+ b′A(Π−1 + Var[eA])−1bA

)−1


︸ ︷︷ ︸
a strictly positive scalar, ≡ ω1

(A.152)

+

[
Var[eA]

0

](
Π−1 + Var[eA] +

U2σ2
g

U2 + σ2
g

bAb′A

)−1
U2σ2

g

U2 + σ2
g

bA (A.153)
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The scalar ω1 is strictly positive because the diagonal matrix Π−1 + Var[eA] is positive definite.
The last term above equals (solving only for its non-zero part):

Var[eA]

[(
Π−1 Var[eA]−1 + I +

U2σ2
g

U2 + σ2
g

bAb′A Var[eA]−1

)
Var[eA]

]−1
U2σ2

g

U2 + σ2
g

bA (A.154)

=

Π−1 Var[eA]−1 + I︸ ︷︷ ︸
an A×A matrix, A

+bA
U2σ2

g

U2 + σ2
g

b′A Var[eA]−1


−1

U2σ2
g

U2 + σ2
g

bA (A.155)

=
U2σ2

g

U2 + σ2
g

A−1bA

1−

 1
U2σ2

g

U2+σ2
g

+ b′A Var[eA]−1A−1bA︸ ︷︷ ︸
a strictly positive scalar, ω2


−1

b′A Var[eA]−1A−1bA

 (A.156)

=
U2σ2

g

U2 + σ2
g + ω2U2σ2

g



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

 . (A.157)

The scalar ω2 is strictly positive because the diagonal matrix Var[eA]−1A−1 is positive definite.

We can then write market betas, β =
(τ−1

0 −τ
−1
1 )M

M′(τ−1
0 −τ

−1
1 )M

, as

1

ω1 +
U2σ2

g

U2+σ2
g+ω2U2σ2

g

∑A
a=1

πa(Λa)σ2
ea

1+πa(Λa)σ2
ea

ba
N


ω1b +

U2σ2
g

U2 + σ2
g + ω2U2σ2

g



π1(Λ1)σ2
e1

1+π1(Λ1)σ2
e1
b1

π2(Λ2)σ2
e2

1+π2(Λ2)σ2
e2
b2

...
πA(ΛA)σ2

eA

1+πA(ΛA)σ2
eA
bA

0N−A




. (A.158)

In a large economy (N → ∞), the denominator in the first term converges to ω1 and thus we
recover Eq. (36) in the text, with h > 0 defined as:

h ≡ 1

ω1

U2σ2
g

U2 + σ2
g + ω2U2σ2

g

. (A.159)

The result that the announcing firms’ betas increase with attention does not depend on taking
the limit N → ∞. In unreported analysis, we verify this result through simulations in a smaller
economy. We find that the result always holds in our simulations, which we have performed for a
wide range of parameter values.

A.9 (Dynamic model) Proofs of Propositions 5 and 6

Proof of Proposition 5 We start by making the following conjecture for equilibrium prices:

P̂t ≡ ξ−1
t Pt =

Λt
γσ2

ε

ZtEt + xt, (A.160)
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where Λt is the fraction of informed investors and Zt will be determined in equilibrium below.

Learning for the informed investor For the informed investor, the only informative signal
at time t is Et. Application of the Projection Theorem yields

VarIt [Dt+1] =
Vart[Dt+1]σ2

ε

Vart[Dt+1] + σ2
ε

=

(
Vart[Dt+1]−1 +

1

σ2
ε

)−1

, (A.161)

and

EIt [Dt+1] =
Vart[Dt+1]

Vart[Dt+1] + σ2
ε

Et =
VarIt [Dt+1]

σ2
ε

Et. (A.162)

Learning for the uninformed investor The uninformed investor learns from the price signal
P̂t, and thus the Projection Theorem implies:

Var∅t [Dt+1] =
Vart[Dt+1]σ2

ε

Λ2
tZ

2
t

Λ2
tZ

2
t +γ2σ2

xσ
2
ε

Vart[Dt+1] + σ2
ε

=

(
Vart[Dt+1]−1 +

Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

1

σ2
ε

)−1

, (A.163)

and

E∅t [Dt+1] = Var∅t [Dt+1]
γΛtZt

Λ2
tZ

2
t + γ2σ2

εσ
2
x

P̂t (A.164)

=
Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

Var∅t [Dt+1]

σ2
ε

Et + Var∅t [Dt+1]
γΛtZt

Λ2
tZ

2
t + γ2σ2

εσ
2
x

xt. (A.165)

Equilibrium When forming optimal portfolios at time t, both I and ∅ investors form expectations
about Pt+1 +Dt+1. Using that Ekt [Pt+1] = 0 ∀k ∈ {I, ∅}, informed investors’ beliefs are:

EIt [Pt+1 +Dt+1] = EIt [Dt+1] (A.166)

VarIt [Pt+1 +Dt+1] = VarIt [Dt+1] +

S∑
s=1

ps
[
α2
s,t+1(b2U2

s + σ2
e + σ2

ε) + ξ2
s,t+1σ

2
x

]
, (A.167)

where ps represents the probability of reaching the state Us. The last term in (A.167) is the variance
of the future price, Vart[Pt+1], which is the same for I and ∅ investors, and does not change over
time (the information that investors have at t becomes irrelevant at t+ 1; furthermore, at any time
t investors face the same probability distribution over future values of Us, and thus over the values
of the price coefficients at time t+ 1). Thus, we denote the last term in (A.167) by Var[Pt+1].

Similar reasoning leads to uninformed investors’ beliefs:

E∅t [Pt+1 +Dt+1] = E∅t [Dt+1] (A.168)

Var∅t [Pt+1 +Dt+1] = Var∅t [Dt+1] + Var[Pt+1]. (A.169)

Consider now the optimization problem that all investors face:

max
k∈{I,∅}

Et−1

[
eγcI

k
max
qkt

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]]
, (A.170)
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which leads to the following portfolio choice problem of k ∈ {I, ∅} investors:

max
qkt

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
. (A.171)

In the expectation above, the future price Pt+1 is normally distributed conditional on the future
value of Us. One can write the expectation as

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
=

S∑
s=1

ps Ekt
[
−e−γqkt (Ps,t+1+Dt+1−RfPt)

]
, (A.172)

where Ps,t+1 is the future price in the state Us. Defining Res,t+1 ≡ Ps,t+1 + Dt+1 − RfPt, the
expectation can be further written as

Ekt
[
−e−γqkt (Pt+1+Dt+1−RfPt)

]
=

S∑
s=1

ps

(
−e−γq

k
t Ekt [Res,t+1]+ 1

2
γ2(qkt )2 Varkt [Res,t+1]

)
. (A.173)

We now resort to an approximation of this function as in Vayanos and Weill (2008) and Gârleanu
(2009). Economically, this approximation preserves risk aversion towards diffusion risks (i.e., risks
created by normally distributed variables), but creates risk neutrality towards discrete jump risks
(i.e., risks created by future changes in Us). The approximation is very accurate in this setting,
particularly because Ekt [Res,t+1] = Ekt [Dt+1] + Ekt [Ps,t+1] − RfPt does not vary across future states

(Ekt [Ps,t+1] = 0 ∀s), and thus the future distribution of prices remains symmetric, unimodal, and
elliptical (only the variance Varkt [R

e
s,t+1] changes across future states). First, define

Var
k
t [R

e
s,t+1] ≡ γVarkt [R

e
s,t+1], (A.174)

and replace this above to obtain a function of γ:

f(γ) =
S∑
s=1

ps

(
−e−γq

k
t Ekt [Res,t+1]+ 1

2
γ(qkt )2Var

k
t [Res,t+1]

)
. (A.175)

The Taylor expansion of f(γ) around zero is given by f(γ) = f(0) + γf ′(0) +O(γ), where O(γ)
represents higher-order terms that go to zero faster than γ as γ → 0. Therefore

f(γ) ≈ −1 +

S∑
s=1

ps

(
γqkt Ekt [Res,t+1]− 1

2
γ(qkt )2Var

k
t [R

e
s,t+1]

)
(A.176)

= −1 +
S∑
s=1

ps

(
γqkt Ekt [Res,t+1]− 1

2
γ2(qkt )2 Varkt [R

e
s,t+1]

)
(A.177)

= −1 + γqkt Ekt [Ret+1]− 1

2
γ2(qkt )2 Varkt [R

e
t+1]. (A.178)

The first order condition with respect to qkt leads to the optimal portfolio of the informed and
uninformed investors:

qIt =
EIt [Ret+1]

γVarIt [R
e
t+1]

and q∅t =
E∅t [Ret+1]

γVar∅t [R
e
t+1]

. (A.179)
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Market clearing requires:

Λt
EIt [Dt+1 + Pt+1]−RfPt

γVarIt [R
e
t+1]

+ (1− Λt)
E∅t [Dt+1 + Pt+1]−RfPt

γVar∅t [R
e
t+1]

= −xt, (A.180)

and since the price conjecture (41) implies EIt [Pt+1] = E∅t [Pt+1] = 0, this yields

Λt EIt [Dt+1]

VarIt [R
e
t+1]

+
(1− Λt)E∅t [Dt+1]

Var∅t [R
e
t+1]

−

(
Λt

VarIt [R
e
t+1]

+
1− Λt

Var∅t [R
e
t+1]

)
RfPt = −γxt, (A.181)

and we recognize the weighted average precision across investors, denoted hereafter by τt:

τt ≡
Λt

VarIt [R
e
t+1]

+
1− Λt

Var∅t [R
e
t+1]

. (A.182)

Eq. (A.181) further leads to

τtRfPt =
Λt EIt [Dt+1]

VarIt [Dt+1]

VarIt [Dt+1]

VarIt [R
e
t+1]

+
(1− Λt)E∅t [Dt+1]

Var∅t [Dt+1]

Var∅t [Dt+1]

Var∅t [R
e
t+1]

+ γxt. (A.183)

After replacement of (A.161)-(A.162) and (A.163)-(A.165), we obtain

Pt =
τ−1
t

Rf

(
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σ2
ε

VarIt [Dt+1]

VarIt [R
e
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+
1− Λt
σ2
ε

Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

Var∅t [Dt+1]

Var∅t [R
e
t+1]

)
Et

+
τ−1
t

Rf

(
γ + (1− Λt)

γΛtZt
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εσ
2
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Var∅t [Dt+1]

Var∅t [R
e
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)
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(A.184)

which determines the coefficients in the price conjecture Pt = αEt + ξxt. Moreover, the conjecture
(A.160), which requires that αt

ξt
= Λt

γσ2
ε
Zt, together with (A.184) imply that Zt must be

Zt =
VarIt [Dt+1]

VarIt [R
e
t+1]

. (A.185)

We now solve for the equilibrium Λt in the dynamic model. The approximated expected utility
of uninformed investors in (A.178), after replacement of the optimal portfolio choice (A.179), is

U∅t = −1 + γ
E∅t [Ret+1]

γVar∅t [R
e
t+1]

E∅t [Ret+1]− 1

2
γ2

(
E∅t [Ret+1]

γVar∅t [R
e
t+1]

)2

Var∅t [R
e
t+1] (A.186)

=
1

2

E∅t [Ret+1]2

Var∅t [R
e
t+1]
− 1 ≈ −e

− 1
2

E∅t [Ret+1]2

Var∅t [Ret+1] . (A.187)

where we have used the approximation x − 1 ≈ −e−x. This approximation restores the expected
utility in exponential form and is highly accurate when E∅t [Ret+1]2/(2 Var∅t [R

e
t+1]) is small, which is

likely to be the case: E∅t [Ret+1]2/Var∅t [R
e
t+1] represents the squared Sharpe ratio of the stock from

the perspective of uninformed investors.
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Similarly, for an informed investor,

UIt ≈ −eγce
− 1

2

EIt [Ret+1]2

VarIt [Ret+1] . (A.188)

For an uninformed investor, EIt [Ret+1] is a normally distributed random variable with mean

E∅t [Ret+1] (by the law of iterated expectations) and variance Σt ≡ Var∅t [R
e
t+1] − VarIt [R

e
t+1] (by the

law of total variance). Taking expectation at t − 1 of (A.188) as in (A.170) and applying Lemma
A2 yields

Et−1

−eγce− 1
2

EIt [Ret+1]2

VarIt [Ret+1]

 = U∅t eγc
(

VarIt [R
e
t+1]

Var∅t [R
e
t+1]

)1/2

. (A.189)

Since U∅t < 0, the uninformed investor is attentive to the earnings announcement if and only if

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

> e2γc, (A.190)

which proves part (a) of Proposition 5. Using (A.161) and (A.163), the benefit of information is

Var∅t [R
e
t+1]

VarIt [R
e
t+1]

=

Var[Pt+1] + Vart[Dt+1]σ2
ε

Λ2
t Z

2
t

Λ2
t Z

2
t +γ2σ2

xσ
2
ε

Vart[Dt+1]+σ2
ε

Var[Pt+1] + Vart[Dt+1]σ2
ε

Vart[Dt+1]+σ2
ε

. (A.191)

Since
Λ2
tZ

2
t

Λ2
tZ

2
t +γ2σ2

xσ
2
ε
< 1,

Var∅t [Ret+1]

VarIt [Ret+1]
increases in Vart[Dt+1], proving part (b) of Proposition 5.

Proof of Proposition 6 The ERC (i.e., the sensitivity αt of the price Pt to the earnings
announcement Et) follows directly from (A.182) and (A.184):

αt =
1

Rf

1
Λt

VarIt [Ret+1]
+ 1−Λt

Var∅t [Ret+1]

(
Λt VarIt [Dt+1]
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)
(A.192)

=
1

Rf

(
wt

Vart[Dt+1]

Vart[Dt+1] + σ2
ε

+ (1− wt)
Vart[Dt+1]

Vart[Dt+1] + σ2
ε/`t

)
, (A.193)

where wt and `t are defined as:

wt =

Λt
VarIt [Ret+1]

Λt
VarIt [Ret+1]

+ 1−Λt
Var∅t [Ret+1]

and `t =
Λ2
tZ

2
t

Λ2
tZ

2
t + γ2σ2

xσ
2
ε

< 1. (A.194)

ERCt is a weighted average. A higher fraction of informed investors Λt increases wt, and thus the
weighted average places a higher weight on Vart[Dt+1]

Vart[Dt+1]+σ2
ε
. Because `t < 1, this higher weight increases

the weighted average. Moreover, a higher Λt increases `t, which further increases Vart[Dt+1]
Vart[Dt+1]+σ2

ε/`t
and thus the weighted average. Overall, these two effects confirm that a higher Λt increase the
ERC, proving Proposition 6.
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B Variable definitions

Variable Description

VIX Closing value of VIX on the trading day prior to the earnings announcement.
Source: CRSP.

ESV Log daily number of EDGAR downloads of the company’s filings from SEC
EDGAR. Source: SEC.

ESVU Log daily number of EDGAR downloads of the company’s filings from unique IP
addresses. Source: SEC.

ISVI Investor Search Volume Index based on investors’ Google searches of stock tickers.
Source: DeHaan, Lawrence, and Litjens (2021).

EARET Compound excess return over the size decile portfolio for earnings announcement
trading date and one trading day after. Source: CRSP.

SUE Decile Earnings surprise relative to analyst consensus forecasts deflated by quarter-end
share price. Source: IBES Summary File, CRSP.

PreRet Compound excess return over the size decile portfolio for earnings announcement
trading date -10 to -1. Source: CRSP.

Size Market value of equity on the earnings announcement date in $M. Source: CRSP.
Book-to-Market Book to market ratio at the end of quarter for which earnings are announced.

Source: Compustat.
EPersistence Earnings persistence based on AR(1) regression with at least 4, up to 16 quarterly

earnings. Source: Compustat.
IO Institutional ownership as a fraction of total shares outstanding. Source: Thomson-

Reuters 13F Data, CRSP.
EVOL Standard deviation of seasonally differenced quarterly earnings over the prior 16

(at least 4) quarters. Source: Compustat.
ERepLag Days from quarter-end to earnings announcement. Source: Compustat.
#Estimates Number of analysts making quarterly earnings forecasts. Source: IBES Summary

File.
TURN Average monthly share turnover for the 12 months preceding the earnings announce-

ment. Source: CRSP.
Loss Indicator for negative earnings. Source: Compustat.
#Announcements Number of concurrent earnings announcements. Source: Compustat, IBES.
CAPM Beta CAPM Beta estimated using the CRSP value-weighted market return index for the

250 (at least 60) trading days prior to the earnings announcement. Source: CRSP
IDVOL Idiosyncratic volatility estimated using the CAPM model with the CRSP value-

weighted market return index for the 250 (at least 60) trading days prior to the
earnings announcement. Source: CRSP

DISP Earnings forecast dispersion calculated as standard deviation of analyst forecasts
deflated by mean absolute forecast. Source: IBES Summary File.

B.1 CAPM tests: data description and robustness checks

The analysis in Section 4.4 starts by merging by GVKEY and DATE the database that contains
firm daily excess returns with the EDGAR search database. The individual returns sample limits
are from January 2002 to December 2020. The EDGAR sample limits are from 2003-02-14 to
2017-06-30, which dictates the final limits of the merged sample. This initial merged sample has
11,097,305 observations and 4497 unique firms.

To identify high/low attention days, we build detrended time series of log search data at the
individual firm level. Then, we add the value of 1 to the EDGAR search data to be able to take
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the log on days with zero EDGAR search. (These days commonly occur at the beginning of the
sample; as another option, we have removed the first five years of data, from 2003 to 2007, and the
results are robust to this alternative.) After detrending the log EDGAR search data, we split the
residuals according to their sample median, with high-attention days (1iHighAtt = 1) corresponding
to residuals being above the median.

Before estimating the regressions (46)-(48) for Table 7, we clean up the data as follows:

(i) Using the Thomson Reuters I/B/E/S database, we remove announcements recorded after
4:00 PM on a given date. While one can measure investor attention (EDGAR downloads) on
days when these announcements are released, investors trading on a U.S. exchange will react
to the announcements only on the following trading day. This non-synchronicity prevents
us from properly aligning 1low,i

EA and 1high,i
EA . (The results are robust and even gain statistical

significance if we do not remove these announcements.)

(ii) We remove firms that have less than 20 earnings announcements. This ensures that there are
enough earnings announcement days for the regression (48), which further splits the earnings
announcement days into low/high attention days. (The results are similar if we use a tighter
threshold, e.g., 40.)

(iii) We remove firms that have more than 500 zero EDGAR search values. (The results are similar
if we use a tighter threshold, e.g., 250.)

Furthermore, the results in Table 7 are robust to alternative splits of the earnings announcement
days in (48): once the earnings announcement days are selected, re-compute the median of detrended
EDGAR searches within this sub-sample (instead of using the median across all search days), then
split the days based on this new median.

The analysis that yields Tables 8-10 and Figure 8 uses return data from January 1990 to De-
cember 2021, which corresponds to the sample limits for the VIX. The results are similar if we limit
the sample to June 2017 (the upper limit of the EDGAR search data) or if we use the entire dataset
for portfolio excess returns (starting from January 1967 for ten beta-sorted portfolios and from July
1926 for 25 size/BM portfolios).

Finally, the results in Table 10 are robust to several alternative specifications. The first robust-
ness check concerns our definition of high-attention days. Rather than using the raw detrended
ESV(U) measures, we regress ESV(U) on VIX and use the residuals instead, with similar results.
Second, the results are stronger in panel A and remain confirmatory in panel B after removing the
first five years of EDGAR data, years during which search numbers are relatively lower.
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C Figures and Tables
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Figure 1: Information market equilibrium
This figure depicts the three cases of Theorem 1, (A), (B), and (C). We further split case (B)
in three sub-cases: (B1) Λ1 > 0,Λ2 = Λ3 = 0, in which investors only pay attention to the
announcement of firm 1; (B2) Λ1 > 0,Λ2 > 0,Λ3 = 0, in which investors pay attention to the
announcements of firms 1 and 2 but not 3; (B3) Λ1 > 0,Λ2 > 0,Λ3 > 0, in which investors
pay attention to the announcements of all firms. The calibration used for this illustration
is: γ = 1, b1 = 1.2, b2 = 1, b3 = 0.8, σe1 = σe2 = σe3 = 0.2, σε1 = σε2 = σε3 = 1, and
σx1 = σx2 = σx3 = 1.
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Figure 2: The impact of economic uncertainty on investor attention and ERCs
Panel (a) plots the fractions of attentive investors to each one of the three earnings announce-
ments. Panel (b) plots the earnings response coefficients. In this economy, b1 > b2 > b3,
c = 0.045, and the rest of the calibration is provided in Figure 1.
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Figure 3: The separate impact of an increase in uncertainty and an increase in
investor attention on ERCs
This figure plots the successive changes in ERCs of the announcing firms after an increase
of economic uncertainty from 0.3 to 0.4. The grey bars plot ERCs resulting exclusively from
the increase in U . The hashed bars plot the final ERCs, including also the impact of the
increase in investor attention. In this economy, b1 > b2 > b3, c = 0.045, and the rest of the
calibration is provided in Figure 1.
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(d) σe1 = 0.3, σe2 = 0.2, σe3 = 0.1
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Figure 4: The impact of economic uncertainty on investor attention and ERCs
This figure plots the fractions of investors attentive to each earnings announcement (above)
and ERCs (below), as functions of economic uncertainty, for different σea, σεa, and σxa. The
rest of the calibration is provided in Figure 1, and c = 0.045.

67



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

Economic uncertainty, U

(a) Low-cost investors’ attention

Λl,1

Λl,2

Λl,3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

Economic uncertainty, U

(b) High-cost investors’ attention

Λh,1

Λh,2

Λh,3

Figure 5: The impact of economic uncertainty on investor attention in an economy
with heterogeneous attention costs
Each panel of the figure plots the fractions of attentive investors as functions of economic
uncertainty, with low-cost investors in panel (a) and high-cost investors in panel (b). In
this economy, b1 > b2 > b3, cl = 0.045, ch = 0.055, the fractions of low-cost and high-cost
investors are of equal size (50%), and the rest of the calibration is provided in Figure 1.
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Figure 6: Overlapping generations economy
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Figure 7: Response of investor attention to changes in uncertainty and ERCs in
an economy with 3000 firms
Panel (a) plots the partial derivative of log Λa with respect to standardized uncertainty Û
when U ∈ [0.1, 0.4], and is thus the theoretical counterpart of the coefficient c1 in (44) and
in Table 3. Panel (b) plots ERCs implied by the theoretical model when U ∈ [0.1, 0.4] and
is thus the theoretical counterpart of the coefficient c1 in (45) and in Table 4. Both panels
consider two alternatives, one with 10 announcers (solid lines), and one with 100 announcers
(dashed lines). See Section 4.3 for a detailed description of the calibration.
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Figure 8: The impact of uncertainty and attention on the CAPM
This figure plots average daily excess returns in basis points (bps) against full-sample betas
for ten value-weighted beta-sorted portfolios (top panels) and 25 size/BM-sorted portfolios
(bottom panels). The estimates are reported separately for: all days versus days with VIX t−1

in its top quartile (left panels); all days versus days with the detrended aggregated ESV in
its top quartile (middle panels); and all days versus days with the detrended aggregate ESVU
in its top quartile (right panels). The lines represent day-specific CAPM relations (Table 10).
Daily excess returns are available from January 1990 to December 2021, and EDGAR search
records are available from February 2003 to June 2017 (see Appendix B.1).
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Table 1: Descriptive statistics
This table reports descriptive statistics for the sample used in analyses of returns around
earnings announcements. Detailed definitions of all variables are available in Appendix B.

Variable Obs. Count Mean Std. Dev. 25% 50% 75%

VIX 234,874 19.626 8.162 13.770 18.030 23.010
ESV 124,660 4.719 1.999 3.367 4.934 6.319
ESVU 124,660 3.664 1.506 2.639 3.912 4.883
ISVI 66,534 4.419 13.315 0.000 0.000 0.000
EARET 234,874 0.001 0.080 -0.033 0.001 0.037
SUE Decile 234,874 5.536 2.705 3.000 6.000 8.000
PreRet 234,851 0.002 0.081 -0.035 -0.001 0.035
Size 234,874 4973.899 13764.427 282.266 854.312 2980.429
Book-to-Market 234,727 0.534 0.382 0.274 0.458 0.701
EPersistence 234,206 0.226 0.398 -0.040 0.180 0.500
IO 225,437 0.633 2.288 0.430 0.666 0.842
EVOL 234,232 0.822 2.115 0.116 0.272 0.654
ERepLag 234,874 30.765 13.609 22.000 28.000 37.000
#Estimates 234,874 7.799 6.573 3.000 6.000 11.000
TURN 234,874 17.446 17.605 6.935 12.826 22.120
Loss 234,874 0.194 0.396 0.000 0.000 0.000
#Announcements 234,874 150.476 92.544 73.000 137.000 221.000
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Table 3: Investor attention and economic uncertainty.
This table presents results of regressions of announcement-window EDGAR and (investor-
driven) Google searches on prior day’s closing value of VIX and controls (Eq. 44). All
variables are standardized to be mean-zero and unit-variance. Detailed definitions of all
variables are available in Appendix B. Standard errors for the coefficients are clustered by
date. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels,
respectively.

Dep. Var. ESV ESVU ISVI
(1) (2) (3)

VIX 0.030*** 0.034*** 0.018*
(0.005) (0.005) (0.010)

lag(Dep. Var.) 0.455*** 0.535*** 0.238***
(0.013) (0.013) (0.008)

SUE Decile 0.005*** 0.005*** 0.009**
(0.001) (0.001) (0.004)

abs(SUE Decile) 0.005 0.011*** 0.015*
(0.003) (0.003) (0.008)

Size 0.059*** 0.059*** 0.086***
(0.002) (0.003) (0.005)

Book-to-Market -0.008*** -0.011*** -0.014***
(0.001) (0.001) (0.004)

EPersistence -0.016*** -0.013*** 0.005
(0.002) (0.002) (0.004)

IO 0.002 0.001 0.107***
(0.001) (0.001) (0.034)

EVOL 0.006*** 0.007*** 0.009*
(0.001) (0.001) (0.005)

ERepLag 0.025*** 0.016*** 0.010**
(0.006) (0.006) (0.005)

#Estimates 0.045*** 0.045*** 0.034***
(0.003) (0.003) (0.005)

TURN 0.027*** 0.028*** 0.055***
(0.002) (0.002) (0.006)

Loss -0.001 0.004*** 0.002
(0.001) (0.001) (0.004)

#Announcements -0.024** -0.010 -0.019***
(0.011) (0.012) (0.005)

Date-clustered SE Yes Yes Yes
Year FE Yes Yes Yes
Day-of-week FE Yes Yes Yes
N 119,341 119,341 62,757
R-sq 0.803 0.817 0.122
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Table 4: ERCs, economic uncertainty and investor attention
This table presents results of regressions of earnings announcement returns (EARET ) on
earnings surprise deciles interacted with the VIX (column a), with ESVU (column b), and
with both the VIX and ESVU (column c) (Eq. 45). All variables are standardized to be
mean-zero and unit-variance. Control variables include: PreRet, Size, Book-to-Market, EPer-
sistence, IO, EVOL, ERepLag, #Estimates, Turn, Loss, #Announcements, year indicators,
day-of-week indicators, and each of these interacted with SUE Decile. Detailed definitions of
all variables are available in Appendix B. Standard errors for the coefficients are clustered by
date. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10% levels,
respectively.

Dep. Var. = EARET
(1) (2) (3)

VIX *SUE Decile 0.015*** 0.010
(0.005) (0.007)

ESVU *SUE Decile 0.028*** 0.027***
(0.007) (0.007)

SUE Decile 0.204*** 0.295*** 0.297***
(0.012) (0.018) (0.018)

VIX -0.007 -0.007
(0.005) (0.006)

ESVU -0.018*** -0.018***
(0.006) (0.006)

lag(ESVU ) -0.001 -0.001
(0.007) (0.007)

lag(ESVU )*SUE Decile -0.011 -0.010
(0.007) (0.007)

PreRet -0.075*** -0.080*** -0.080***
(0.004) (0.006) (0.006)

PreRet*SUE Decile -0.012*** -0.012** -0.011**
(0.003) (0.005) (0.005)

Controls Yes Yes Yes
Controls*SUE Decile Yes Yes Yes
Date-clustered SE Yes Yes Yes
Year and Day-of-week FE Yes Yes Yes
N 224,675 119,332 119,332
R-Square 0.111 0.143 0.143
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Table 7: Firm betas and investor attention on earnings announcement days
This table reports averages of beta estimates from three regressions:

rei,t = αiOther + αi∆EA 1iEA +βiOtherr
e
M,t + βi∆EA(1iEA×reM,t) + εi,t (i)

rei,t = αiOther + αi∆A 1iHighAtt +βiOtherr
e
M,t + βi∆A(1iHighAtt×reM,t) + εi,t (ii)

rei,t = αiOther + αlow,i∆EA 1low,i
EA +αhigh,i∆EA 1high,i

EA

= + βiOtherr
e
M,t + βlow,i∆EA(1low,i

EA ×r
e
M,t) + βhigh,i∆EA (1high,i

EA ×reM,t) + εi,t, (iii)

where 1iEA equals one on days when the firm i announces earnings; 1iHighAtt equals one on
days when investor attention to firm i is high (i.e., time-detrended ESV(U) of firm i is above
the sample median); 1high,i

EA equals one if both 1iEA and 1iHighAtt are one; and 1low,i
EA equals one

if 1iEA is one and 1iHighAtt is zero; reM,t is the excess return on the market; and rei,t is firm i’s
excess return. The table reports average values for the β coefficients across firms and their
standard errors (in parenthesis). ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided
1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)

Attention measure: ESV ESVU ESV ESVU

Average βOther 1.028∗∗∗ 1.018∗∗∗ 1.028∗∗∗ 1.039∗∗∗ 1.039∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Average β∆EA 0.081∗∗

(0.034)
Average β∆A 0.043∗∗∗ 0.020∗∗∗

(0.005) (0.005)
Average βlow∆EA -1.920∗ -1.551

(1.049) (1.063)

Average βhigh∆EA 0.103∗∗∗ 0.077∗∗

(0.039) (0.038)

Average Adj. R2 0.252 0.253 0.253 0.258 0.257
Firm Count 1,368 1,260 1,260 1,260 1,260
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Table 8: Portfolio betas and investor attention, 10 beta-sorted portfolios
This table reports beta estimates from the regression

rej,t = αjOther + αj∆A 1HighAtt +βjOtherr
e
M,t + βj∆A(1HighAtt×reM,t) + εj,t,

where 1HighAtt is an indicator variable for high attention days (days with the detrended
aggregate ESV(U) above the median); reM,t is the excess return on the market; rej,t is the

portfolio excess return; βjOther is the beta on other days; and βj∆A measures the change in
the portfolio’s beta on high attention days. The regression is estimated on 10 beta-sorted
portfolios. ESV(U) results are reported in Panel A (Panel B). Standard errors are given in
parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10%
levels, respectively.

Panel A: 10 beta-sorted portfolios and high ESV days

Low (2) (3) (4) (5) (6) (7) (8) (9) High

βOther 0.508∗∗∗ 0.631∗∗∗ 0.789∗∗∗ 0.841∗∗∗ 0.930∗∗∗ 0.990∗∗∗ 1.067∗∗∗ 1.184∗∗∗ 1.306∗∗∗ 1.561∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.007) (0.008) (0.011)
β∆A 0.093∗∗∗ 0.120∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.116∗∗∗ 0.131∗∗∗ 0.127∗∗∗ 0.083∗∗∗ 0.067∗∗∗ 0.029

(0.011) (0.011) (0.011) (0.010) (0.010) (0.010) (0.011) (0.012) (0.014) (0.020)

Panel B: 10 beta-sorted portfolios and high ESVU days

Low (2) (3) (4) (5) (6) (7) (8) (9) High

βOther 0.504∗∗∗ 0.626∗∗∗ 0.785∗∗∗ 0.837∗∗∗ 0.925∗∗∗ 0.989∗∗∗ 1.065∗∗∗ 1.190∗∗∗ 1.319∗∗∗ 1.574∗∗∗

(0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.008) (0.012)
β∆A 0.094∗∗∗ 0.121∗∗∗ 0.108∗∗∗ 0.109∗∗∗ 0.119∗∗∗ 0.120∗∗∗ 0.122∗∗∗ 0.057∗∗∗ 0.023∗ -0.009

(0.011) (0.010) (0.010) (0.010) (0.010) (0.009) (0.010) (0.012) (0.014) (0.019)

78



Table 9: Portfolio betas and investor attention, 25 size/BM-sorted portfolios
This table reports beta estimates from the regression

rej,t = αjOther + αj∆A 1HighAtt +βjOtherr
e
M,t + βj∆A(1HighAtt×reM,t) + εj,t,

where 1HighAtt is an indicator variable for high attention days (days with the detrended
aggregate ESV(U) above the median); reM,t is the excess return on the market; rej,t is the

portfolio excess return; βjOther is the beta on other days; and βj∆A measures the change in the
portfolio’s beta on high attention days. The regression is estimated on 25 size/BM-sorted
portfolios. ESV(U) results are reported in Panel A (Panel B). Standard errors are given in
parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the two-sided 1%, 5%, and 10%
levels, respectively.

Panel A: 25 size/BM-sorted portfolios and high ESV days

βOther β∆A

Growth (2) (3) (4) Value Growth (2) (3) (4) Value

Small 0.999∗∗∗ 0.919∗∗∗ 0.814∗∗∗ 0.780∗∗∗ 0.726∗∗∗ 0.160∗∗∗ 0.220∗∗∗ 0.290∗∗∗ 0.336∗∗∗ 0.358∗∗∗

(0.010) (0.009) (0.008) (0.009) (0.009) (0.018) (0.017) (0.015) (0.015) (0.016)
(2) 1.130∗∗∗ 0.984∗∗∗ 0.900∗∗∗ 0.897∗∗∗ 0.960∗∗∗ 0.031∗ 0.193∗∗∗ 0.283∗∗∗ 0.317∗∗∗ 0.401∗∗∗

(0.009) (0.008) (0.008) (0.008) (0.009) (0.016) (0.014) (0.013) (0.014) (0.016)
(3) 1.175∗∗∗ 0.988∗∗∗ 0.921∗∗∗ 0.920∗∗∗ 0.985∗∗∗ -0.062∗∗∗ 0.091∗∗∗ 0.175∗∗∗ 0.204∗∗∗ 0.246∗∗∗

(0.008) (0.006) (0.006) (0.007) (0.009) (0.014) (0.011) (0.011) (0.013) (0.017)
(4) 1.129∗∗∗ 0.925∗∗∗ 0.905∗∗∗ 0.894∗∗∗ 0.999∗∗∗ -0.088∗∗∗ 0.102∗∗∗ 0.217∗∗∗ 0.192∗∗∗ 0.258∗∗∗

(0.006) (0.005) (0.006) (0.007) (0.009) (0.011) (0.008) (0.010) (0.012) (0.016)
Large 1.028∗∗∗ 0.933∗∗∗ 0.909∗∗∗ 0.949∗∗∗ 1.086∗∗∗ -0.144∗∗∗ 0.007 0.100∗∗∗ 0.253∗∗∗ 0.295∗∗∗

(0.004) (0.004) (0.005) (0.008) (0.011) (0.007) (0.007) (0.009) (0.014) (0.020)

Panel B: 25 size/BM-sorted portfolios and high ESVU days

βOther β∆A

Growth (2) (3) (4) Value Growth (2) (3) (4) Value

Small 0.998∗∗∗ 0.920∗∗∗ 0.808∗∗∗ 0.771∗∗∗ 0.707∗∗∗ 0.146∗∗∗ 0.193∗∗∗ 0.278∗∗∗ 0.328∗∗∗ 0.373∗∗∗

(0.011) (0.010) (0.008) (0.009) (0.009) (0.018) (0.016) (0.014) (0.015) (0.016)
(2) 1.144∗∗∗ 0.985∗∗∗ 0.896∗∗∗ 0.882∗∗∗ 0.941∗∗∗ -0.010 0.169∗∗∗ 0.264∗∗∗ 0.327∗∗∗ 0.414∗∗∗

(0.009) (0.008) (0.008) (0.008) (0.009) (0.016) (0.013) (0.013) (0.014) (0.016)
(3) 1.187∗∗∗ 0.994∗∗∗ 0.919∗∗∗ 0.914∗∗∗ 0.968∗∗∗ -0.092∗∗∗ 0.064∗∗∗ 0.162∗∗∗ 0.199∗∗∗ 0.270∗∗∗

(0.008) (0.006) (0.006) (0.007) (0.010) (0.013) (0.010) (0.011) (0.012) (0.016)
(4) 1.138∗∗∗ 0.928∗∗∗ 0.896∗∗∗ 0.879∗∗∗ 0.958∗∗∗ -0.103∗∗∗ 0.083∗∗∗ 0.220∗∗∗ 0.216∗∗∗ 0.346∗∗∗

(0.006) (0.005) (0.006) (0.007) (0.009) (0.011) (0.008) (0.010) (0.012) (0.015)
Large 1.040∗∗∗ 0.930∗∗∗ 0.900∗∗∗ 0.907∗∗∗ 1.064∗∗∗ -0.161∗∗∗ 0.016∗∗ 0.113∗∗∗ 0.348∗∗∗ 0.329∗∗∗

(0.004) (0.004) (0.005) (0.008) (0.012) (0.006) (0.007) (0.009) (0.013) (0.019)
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Table 10: CAPM, economic uncertainty, and investor attention
This table reports the results of regressions of excess returns on 10 value-weighted beta-sorted
portfolios (Panel A) and 25 size/BM-sorted portfolios (Panel B) on the excess return on the
market. Estimates are in basis points per day and are computed separately for: all days; days
with VIX t−1 above the median and in its top quartile; days with the detrended aggregate
ESV above the median and in its top quartile; days with the detrended aggregate ESVU
above the median and in its top quartile; and days with both VIX t−1 and ESV(U) above
their medians. Standard errors are given in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the two-sided 1%, 5%, and 10% levels, respectively.

Panel A: 10 beta-sorted portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9)

All days VIX ESV ESVU VIX> 50% VIX> 50%
> 50% > 75% > 50% > 75% > 50% > 75% ESV> 50% ESVU> 50%

Intercept 2.186∗∗∗ -0.577 -1.355 1.216 1.274 -0.333 -1.211 -2.559∗∗ -5.528∗∗∗

(0.546) (0.606) (1.104) (0.764) (0.734) (0.785) (1.410) (1.003) (1.550)
β 2.102∗∗∗ 7.117∗∗∗ 9.843∗∗∗ 4.761∗∗∗ 4.282∗∗∗ 5.096∗∗∗ 7.967∗∗∗ 11.786∗∗∗ 10.297∗∗∗

(0.518) (0.578) (1.050) (0.680) (0.666) (0.708) (1.289) (0.883) (1.383)

R-Square 0.673 0.950 0.917 0.860 0.838 0.866 0.827 0.957 0.874
Nb. days 8058 4027 2012 1808 904 1808 904 848 752

Panel B: 25 size/BM-sorted portfolios

All days VIX ESV ESVU VIX> 50% VIX> 50%
> 50% > 75% > 50% > 75% > 50% > 75% ESV> 50% ESVU> 50%

Intercept 7.164∗∗∗ 8.963∗∗∗ -1.200 1.525 0.475 -1.274 -2.829 6.783∗ -0.127
(1.930) (2.460) (4.910) (2.188) (3.806) (2.347) (3.131) (3.395) (3.141)

β -3.028 -3.298 6.618 4.314∗∗ 5.389 6.052∗∗∗ 9.990∗∗∗ 3.422 5.409∗

(1.904) (2.452) (4.842) (1.894) (3.278) (2.085) (2.750) (2.948) (2.813)

R-Square 0.099 0.073 0.075 0.184 0.105 0.268 0.365 0.055 0.138
Nb. days 8058 4027 2012 1808 904 1808 904 848 752
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