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1. Introduction

A large amount of economic research uses the combined database by the Center for
Research in Security Prices (CRSP) and Compustat for firm-level information. While
it is certainly the “gold standard of stock market databases”,! the provided data is far
from complete. Table 1 showcases the severity of the issue of missing firm characteristics
using a large panel of 143 firm-level characteristics from the dataset provided by Jensen,
Kelly, and Pedersen (2021). Among the twelve characteristic groups, formed to capture
similar aspects of a company, for example about the company’s quality, return momentum
or size, the median characteristic is missing for 12%-22% of firmxmonth observations.
Characteristics with the highest degree of missingness are missing between 19% and 56%
of their entries over the sample period from 1972-2020. Even those characteristics that
are most often available still lack a considerable chunk of information. Depending on
the characteristic’s group, they may be missing for as few as 1% (for the company’s
market capitalization, as part of group Size), but also as many as 16% of all firm xmonth

observations for Accruals.

Statistical tests in asset pricing typically require long time-series and large cross-
sections. However, due to missing information, the panel of stock characteristics is limited
both in the time series and the cross section of stocks. By removing or naively imputing
missing entries of characteristics, a researcher throws away valuable information, for ex-
ample about the temporal properties of risk factors based on these characteristics. At the
same time, she implicitly assumes that the results obtained from the subsample of stocks
with available characteristics generalize to those firmxmonth observations with missing
information. For example, factor premia estimated from characteristic-sorted portfolios

may not be representative of the full universe of stocks, if the target characteristic is

lhttps://www.crsp.org/files/Booth_Magazine_Winter_2011_CRSP_Index_Feature.pdf.
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Table 1: Summary of Main Findings.

The table highlights our main findings. First, it shows how often characteristics clustered into twelve
themes, designed to capture similar aspects of a firm (Jensen et al., 2021), are missing. Second, it gives
our model’s accuracy in reconstructing the characteristics, which we measure as the expected deviation
from the true value, when characteristics are cross-sectionally discretized into percentiles (see Section 3,
lower values are better). Finally, we show how using the completed dataset changes annualized returns of
high-minus-low characteristic-sorted portfolios (AHmL). Along the median (Qsp), we also report results
for the 10th (Q10) and 90th (Qgg) percentile measured across characteristics within a theme.
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0.08 0.19 0.56
1.37 279 5.05
—1.01 —-0.25 —0.00
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Miss. 0.12 0.17 0.36
Acc. 2.16 3.61 7.89
AHmL —-5.82 —0.65 1.37
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Miss.  0.08 0.12 0.33 0.14 0.20 0.35 0.01 0.12 041 0.14 0.17 0.19
Acc. 1.54 180 7.54 281 697 18.11 1.30 190 2.14 5.16 8.52 11.02

AHmL —-3.99 —0.58 0.48 —1.46 —0.37 0.85 =-3.77 037 1.33 —1.00 —0.66 0.69

2 Table 1 showcases that our proposed method to

more often available for large firms.
recover missing firm characteristics is highly accurate, on average predicting the correct
cross-sectional percentile with a deviation of at most five percentiles. At the same time,
correctly accounting for missing firm characteristics has a real effect on characteristic-
sorted portfolio returns in empirical asset pricing. For most characteristics, the average
high-minus-low return spread decreases using a dataset for which missing entries have
been completed by our machine learning algorithm. Taking characteristics that proxy for

a company’s Investment behavior as an example, we find that post-completion average

value-weighted factor returns decrease by —3.93% to —0.11% per year.

Our study is devoted to recovering missing firm characteristics, drawing on the informa-

2We show in Figure 4 that small firms are on average missing much more information than their larger
counterparts. At the same time, missingness restricts the available historic sample, see Figure 3.



tional content of other — observed — characteristics, past observations of characteristics,
and information from the cross-section of other firms. We adapt state-of-the-art ad-
vances from the field of natural language processing to the case of financial data and
train a large-scale machine learning model in a self-supervised environment. We use the
uncovered latent structure governing firm characteristics to recover missing entries and
show that our model comfortably beats competing methods, both empirically and in
simulated data. We furthermore quantify the model’s uncertainty in its predictions and
stress the importance of considering missing information in firm panels by showing that
average returns to many characteristic-sorted long-short portfolio are likely lower than

previously thought.

1.1.  Our Findings

Masked language models randomly flag a certain fraction of words in an input sentence
for reconstruction. The model consequently learns the context in which words are placed
in a sentence. We apply this idea to the case of missing firm characteristics and carefully
customize the model to match the task of recovering missing financial data. By asking
the model to reconstruct a certain set of masked characteristics, we force it to extract
a suitable context of information about other characteristics, their historical evolution,
and information from other firms, which uncovers the latent structure governing firm
characteristics. Our main building block is the attention mechanism used in the so-called
“Transformer” architecture popularized by Vaswani, Shazeer, Parmar, Uszkoreit, Jones,
Gomez, Kaiser, and Polosukhin (2017). Attention computes the similarity between a
target search query and internally-updated keys to a database. The resulting attention
matrix provides a direct mapping between a target characteristic and historical, as well

as cross-sectional information.



We apply our model to a large dataset from Jensen et al. (2021), which provides
information about 143 firm characteristics for the years of 1962 through 2020. To assure
that our model learns to recover missing firm characteristics by uncovering the latent
structure that governs them, we train it using data of the most recent 15 years, for which
the information set is most complete. We use firm characteristics, discretized to cross-
sectional percentiles, as input to the model. The discretization has several advantages: i)
it allows the model to explicitly deal with and learn from missing entries, ii) it deals with
outliers and reduces potential noise in the input data and iii) it produces a probability
distribution across the characteristic’s percentiles, which we can use to gauge the model’s

uncertainty associated with each prediction.

In a simulation study we show that the proposed model setup can extract information
for various different processes governing the evolution of firm characteristics in a single
model and outperforms simple ad-hoc methods imputing a characteristic’s last available
value or the cross-sectional mean. The model accurately predicts masked entries for auto-
regressive and cross-sectionally dependent characteristics, as well as for characteristics
driven by a combination of both processes. Furthermore, we can show that the model

accurately recovers the temporal information patterns of autoregressive processes.

Our main metric to assess the model’s accuracy for a large panel of characteristics and
firms is the expected percentile deviation (EPD), which measures the average absolute
deviation from the true percentile. The expected percentile deviation amounts to 3.63
in the training and 4.67 in the testing sample. Separately considering accounting- and
market-based, as well as hybrid characteristics, which draw on both types of information,
we find that reconstructing the latter is easiest, but that the model performs well on each
type of characteristic. We find that the model’s accuracy is robust over time, as it is to
the degree of information provided for a target firmxmonth observation, measured by

the number of missing characteristics.



Zooming in on how well we can reconstruct individual characteristics, we find near
perfect reconstruction for age, market_equity, or intermediate momentum ret_12.7,
among many others. The characteristics that the model struggles the most with are
those relying on daily data, as the model operates at the monthly frequency and is never
fed intra-month information. We can further show that the model’s estimations are

unbiased.

What’s the merit of setting up a model that simultaneously recovers missing entries
for all 143 characteristics? Given prior knowledge about how a target characteristic may
evolve, researchers and investors alike may use bespoke approaches to impute missing
values. We consider a wide range of competing approaches that harness the informa-
tional content of a characteristic’s own past, different slices of the cross-section of firms
— for example of firms within the same industry or of similar size — as well as themes
of characteristics that represent similar aspects of a firm, for example its past debt is-
suance, overall accounting quality, or return momentum. Across all twelve characteristic
themes that we consider, our model produces the lowest EPD, showcasing that the inter-
dependencies between input characteristics and their evolution through time are highly
complex, requiring a flexible modeling approach to recover missing entries. We also show
that imputing the cross-sectional mean as a simple benchmark (Green, Hand, and Zhang,
2017) yields poor results. In fact, across the twelve themes, our model explains between
55% and 98% of the variation of reconstructed firm characteristics not already explained

by the mean-imputation.

The proposed model architecture puts us in the unique position of being able to quan-
tify the uncertainty attached with each prediction. This is in contrast to contempora-
neous research (e.g. Bryzgalova, Lerner, Lettau, and Pelger, 2022), which rely on point
estimates, as opposed to a probability distribution across percentiles. To quantify this

uncertainty, we use the insight that an uninformed guess produces equal probabilities



for all percentiles and use the Kolmogorov-Smirnov test statistic to show that the esti-
mated probability distribution significantly differs from a uniform assignment for 93.8%

of missing firm characteristics.

In an application to empirical asset pricing, we use the completed dataset and inves-
tigate how filling the gaps influences average returns of characteristic-sorted long-short
(L-S) portfolios. Incorporating the additional information pushes the returns of most
L-S portfolios towards zero. Across all 143 characteristics, the average change in the
absolute return spread amounts to a significant —1.26%, with a much larger impact on
many characteristics. Furthermore, we show that the returns of both the long and short
leg decrease on average, but that the reduction in either leg of the long-short portfolio
are uncorrelated across characteristics. We rule out that these results arise mechanically
by sorting stocks based on past information or wrongfully allocating stocks to the long
or short portfolio after imputation. At the same time, we can confirm that most factors
survive the scrutiny of this approach, adding to recent evidence by Jensen et al. (2021)
that most findings in financial research are indeed reproducible and carry over to unseen

data.

Our model’s architecture produces interpretable outputs and importantly is not a black
box.? The rigorous use of the attention mechanism allows us to track the internal flow of
information: which input is required to reconstruct a target firm characteristic? Using
groups of accounting-, market-based and hybrid characteristics as the highest level of ab-
straction, we show that the model primarily draws on information about characteristics
of the same group, but also greatly benefits from the inclusion of all other characteris-
tics. Clustering firm characteristics by their informational content confirms these results.

Together, this provides an intuitive justification for jointly modeling the evolution of the

3Explainable AI has recently garnered a lot of attention. See for example Lundberg and Lee (2017)
for a great attempt at interpretation. Attention is a way to keep the model interpretable internally, see
for example Lim, Arik, Loeff, and Pfister (2021) and Arik and Pfister (2019).



143 firm characteristics when recovering missing information.

Recent evidence from the literature on empirical asset pricing has showcased that past
firm characteristics contain valuable information about future stock returns (Baba Yara,
Boons, and Tamoni, 2020; Keloharju, Linnainmaa, and Nyberg, 2021). Investigating how
important past information is when recovering missing firm characteristics, we can show
that it is mostly the evolution of firm characteristics within the last year that is used
in the model’s predictions. This is in line with efficient financial markets and adequate
accounting and reporting standards. Further elaborating on the importance of different
parts of the information set, we find that restricting our proposed model architecture to
the inclusion of only temporal or cross-characteristic information deteriorates how accu-
rate firm characteristics can be reconstructed. Still, these restricted machine learning
models manage to outperform the bespoke approaches outlined earlier. Together, this
highlights the importance of jointly incorporating information about a target character-
istic’s past, other characteristics of the firm in question, as well as information about the

cross-section of other firms.

We provide the completed dataset, including the recovered percentiles and estimates
for the raw firm characteristics, as well as the estimated probability distribution across

percentiles for future research.*

1.2. Related Literature

Our paper contributes to the literature on dealing with missing information in financial
and accounting data. The issue is pervasive: Abrevaya and Donald (2017) hand-collected
data from four leading economic journals over a three-year window and claim that about

40 % of all published articles had to deal with missing data and roughly 70 % of those

4The imputed firm characteristics can be downloaded from the first author’s website.
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simply dropped missing observations. This ad-hoc approach, also preferred by influential
studies such as Fama and French (1993) and Kelly, Pruitt, and Su (2019), not only vastly
reduces the sample size, but potentially results in biased inference, if results obtained from
the sample with no missing data do not generalize to the remainder. Smaller firms provide

less complete information — a direct violation of this “missing-at-random” assumption.

Another prominent way of dealing with missing data is to impute the cross-sectional
mean, which dates back to Wilks (1932). The studies by Green et al. (2017), Kozak,
Nagel, and Santosh (2020a), Gu, Kelly, and Xiu (2020), Chen and Zimmermann (2020),
and Gu, Kelly, and Xiu (2021) are recent examples using this approach on the merged
CRSP-Compustat database. Bali, Beckmeyer, Moerke, and Weigert (2021b) and Bali,
Goyal, Huang, Jiang, and Wen (2021a) also use this approach on joint stock-option and
stock-bond datasets, respectively. Afifi and Elashoff (1966) argue that imputing the mean
yields unbiased estimates if and only if the data follows a multivariate normal distribution
and the data is missing at random. Financial and accounting data likely violates both
assumptions, requiring the use of novel methods more apt at dealing with the issue of

missing firm characteristics.

A contemporaneous attempt at leveraging the informational content of missing firm
characteristics for the use in asset pricing studies is provided by Freyberger, Hoppner,
Neuhierl, and Weber (2021). The authors propose an adjusted generalized method of
moments framework to find suitable estimates for missing characteristics. They base their
estimation on a pre-selected set of 18 characteristics, which are required to be observable
at all times, and impute missing characteristics by assuming that they hold explanatory
power for stock returns. As a fully cross-sectional approach, their method disregards
information about past observations of firm characteristics — as we will later see, an
important aspect for recovering missing firm characteristics. The objective we pursue in

this study is different from that of Freyberger et al. (2021). Instead of imputing missing



characteristics that best help explain stock returns, we completely abstract from the asset
pricing perspective and impute the most probable unconditional values for missing entries.
In an application using the completed dataset, we can show that missing characteristics

indeed have an impact on characteristic-sorted long-short portfolio returns.

The two studies most closely related are by Cahan, Bai, and Ng (2022) and Bryzgalova
et al. (2022). Both studies rely on extracting a latent factor structure on panel data to
impute missing entries. Bryzgalova et al. (2022) have a similar objective as our study,
in that the authors, after examining cross-sectional and temporal missingness patterns
in a panel of 45 firm characteristics, propose an imputation method using latent fac-
tors estimated from observable characteristics. The authors thereby assume that a low
number of latent factors adequately explains the evolution of observed and missing firm

characteristics.

We deviate from Bryzgalova et al. (2022) in several important aspects: first, our model
requires no dimensionality reduction, i.e., we do not impose that each characteristic is
driven by the same set of latent factors. Instead, we allow the model to flexibly decide
for each firmxmonth observation, which observed characteristics are most informative to
impute missing values. This also facilitates the interpretation of the predictions, as we
are able to trace the model’s internal information flow. Second, we provide a full out-of-
sample test spanning 37 years, showing that the estimated structure between observable
characteristics and missing entries is stable over time. Third, we carefully account for im-
balances in the dataset, which arise because some characteristics are missing more often
than others. Not accounting for these imbalances will implicitly overweight information
from characteristics with a higher availability. Estimating latent factors on observed char-
acteristics will push these factors towards being more informative about characteristics
that are already most often available. Keep in mind that the objective of our study is to

impute missing characteristics. During the training phase, we therefore make sure that



the model is asked to reconstruct each characteristic the same number of times. Fourth,
we introduce nonlinearities and interaction effects between characteristics, of which cur-
rent asset pricing research stresses the importance in explaining stock returns (Gu et al.,
2020; Chen and Zimmermann, 2020; Kozak, Nagel, and Santosh, 2020b). Fifth, we ob-
tain a probability distribution across percentiles of a characteristic, which puts us in the
unique position to directly quantify the uncertainty associated with each imputation.
Finally and most importantly, the differences in the modeling approach outlined above
lead to a better imputation performance on the 143 characteristics we consider, which

more than triples the 45 studied by Bryzgalova et al. (2022).

2. Machine Learning for Missing Characteristics

Our model architecture builds on recent advances from the computer science literature,
and applies state-of-the-art ideas from natural language, sequence, and image processing
to the question of how to deal with missing economic data. Specifically, we follow the
insights of BERT, proposed by Devlin, Chang, Lee, and Toutanova (2018), which has
grown to be one of the most renowned language models and is now an integral part of
Google’s search engine. BERT learns how words relate to one another in a self-supervised
fashion. By randomly masking words of an input sentence, BERT is required to come
up with a probabilistic assessment of how to reconstruct the masked words given the
remaining sentence as a context. In an analogous fashion, we extend BERT to predict
missing firm characteristics by leveraging the information content of observed charac-
teristics, past observations of characteristics, and information from the cross-section of
other firms. Characteristics are correlated across stocks, within a target stock, and over
time. To see this, consider the case of Apple. Given that Apple operates in the tech-

nology sector, it’s profitability will co-move with that of Microsoft. At the same time,

10
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Fig. 1. Model Setup

The figure shows the first part of our model setup, the data preparation. The raw data for a target stock,
for example Apple, consists of a T' x F' matrix, with 7" = 60 months of historical information about F' =
143 characteristics (left panel). We first discretize the characteristics cross-sectionally into percentiles
(middle panel) and then randomly mask 20% of Apple’s characteristics at time ¢ for reconstruction,
denoted by the special class “0” in the right panel.

Apple’s valuation ratios, such as book-to-market and price-to-earnings, will also co-move
together. This correlation structure is dynamic and potentially highly complex and non-
linear. Our model is able to make use of this vast array of information in an interpretable
fashion, providing academics and practitioners alike unique insights into commonalities

in the space of firm characteristics and a simple way to deal with missing data.

2.1.  Data Preparation

Figure 1 walks the reader through the first step of our model, which deals with preparing

the input dataset to a usable form.

Raw Data. The example in the Figure uses information about Apple to reconstruct
masked target characteristics in January of 2012, using a total lookback window of 7" = 60
months to draw information from. The input matrix of size T'x F" holds information about
the F' = 143 characteristics of Apple between February 2007 and January 2012. When

estimating the model we apply the steps detailed herein for all stocks in the sample.
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Cross-sectional Discretization. To simplify the task of reconstructing missing firm
characteristics, while at the same time retaining a high-degree of expressiveness and flex-
ibility, we employ a simple transformation to the input characteristics: instead of consid-
ering rank-standardized firm characteristics as a real number between [—1, +1] (Gu et al.,
2020), we cross-sectionally discretize (middle panel) each characteristic into percentiles,
yielding a total of 100 classes per characteristic.® First and foremost increasing the ro-
bustness of the model fit and helping with possible overfitting by dealing with outliers
and reducing noise in the input characteristics, this approach has the added benefit of
providing a natural way for dealing with missing data: we add an additional class to each
characteristic, which captures the information of a missing input. We thereby allow the
circumstance that a certain characteristic is missing to provide potentially valuable infor-
mation to the model about why it is missing. Expressing characteristics as a real number
in contrast provides no direct way to denote a missing entry. Should we assign the cross-
sectional mean of “0” to missing entries? This will bias the model towards imputing the
cross-sectional mean — an undesirable property as the tails of the distribution are more
often than not the main point of interest. Another advantage of this discretization step
is that the model produces a probability distribution across a characteristic’s percentiles.

This allows us to quantify the modeling uncertainty associated with each predictions.

Masking for Reconstruction. In the next step, features masked for reconstruction
(right panel) are assigned class “0”. Predicting their percentiles using the information
available about other firm characteristics will be the objective of our model. We ran-
domly mask 20% of the available firm characteristics at time ¢, shown in Figure 1 as the
blue squares. This approach is known in natural language processing as masked language

modeling and follows Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, and

5This approach is commonly used in gradient-boosted trees, such as XGBoost, which have recently
enjoyed considerable interest by financial economists. In a novel paper.
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Stoyanov (2019). We apply it to the case of recovering ex-ante missing entries. During
this self-supervised stage, we have full knowledge of the true percentiles of masked char-
acteristics. In a subsequent out-of-sample evaluation phase, we use the estimated latent

structure to impute characteristics that were missing to begin with.

Note at this point that we repeat the masking step for a high number of iterations, 400
in our case. In each iteration, we mask a different set of characteristics per firmxmonth
observation. Therefore, each combination of masked characteristics is equally likely. The
model extracts a suitable context from the available information, where the availability is
changing from iteration to iteration. Thereby, the model learns to suitably impute missing
entries of firm characteristics by flexibly accommodating to the available information,
regardless of the dependence structure underlying missing information. Importantly,
whereas we randomly mask 20% of the available characteristics for reconstruction, this
does not require that entries of firm characteristics are missing at random. In contrast,
the iterative learning algorithm makes the model robust to fluctuations in patterns of

missing information, which potentially vary over time and are stock-specific.

The model is flexible enough to understand the quarterly release cycle of accounting
variables. We therefore mask not only the values of these variables in month-t, but
also the two preceding months (t — 1 and ¢ — 2). This step assures that the model has
no forward-looking information. During the estimation phase, we also assure that the
model reconstructs each characteristic an equal number of times by scaling the 20% with
the overall percentage of missing entries per characteristic in the training sample. Ta-
ble B2 highlights that the degree of missingness varies substantially across characteristics.
Without this modeling choice, the model would invariably learn to reconstruct well those
characteristics that are most often available, simply because it sees them as examples
more often. As we later want to use the learned latent representation of how firm char-

acteristics relate to one another to recover ex-ante missing entries, we assure that the
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Fig. 2. Model Setup

The figure shows the second part of our model setup, dealing with the model estimation. The prepared
data from the steps outlined in Figure 1 is fed through an embedding stage, which represents the 100
percentiles of each characteristic as a D = 64-dimensional vector, which is learned across stocks. We
next weight the information from past time steps through temporal attention (top right) and then
interact input characteristics (bottom right), allowing the model to use information from all available
characteristics in the reconstruction of every target characteristic. In a final step, we obtain a probability
distribution across the 100 percentiles for each masked characteristic and use the percentile with the
highest predicted probability as the model’s estimate. We compare this with the true — observed —
percentile and update the model weights through stochastic gradient descent.

model learns to do so for all characteristics, regardless of how often they are missing in

the training step.

2.2.  Model Estimation

Figure 2 provides the second part of our model setup, dealing with the actual estimation
and choice of architecture. We extend the methodology proposed in Devlin et al. (2018)

to deal a) with financial data, and b) missing observations.
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Embedding. First, we feed the discretized and masked characteristics through an em-
bedding. The embedding enables the model to leverage information about other stocks
in the universe, by pushing dissimilar stocks across the distribution of a target character-
istic away from each other, while keeping the ones that are similar close to one another
in vector space. It does so by expressing the percentiles of each firm characteristic as
D = 64-dimensional numerical vectors, which are shared across all stocks at time t.
This “lookup table” relates a percentile of a characteristic to a numerical representation,
which is learned from the input data. While embeddings are useful in many ways, they
are especially so in the context of recovering missing entries of firm characteristics to
accommodate differences in how the distributional properties of observed characteristics
relate to missing entries. For example, Fama and French (1993) highlight that stocks
with high and low market capitalization have vastly different risk profiles. Analogously,
large and small stocks potentially differ in how to process information needed to recover
missing characteristics. The embedding accommodates these differences. The use of em-
beddings is standard in machine learning to deal with complex datasets (Huang, Khetan,
Cvitkovic, and Karnin, 2020; Somepalli, Goldblum, Schwarzschild, Bruss, and Goldstein,

2021; Lim et al., 2021; Gorishniy, Rubachev, Khrulkov, and Babenko, 2021).

Temporal Weighting. How does the historical evolution of firm characteristics help
us to reconstruct today’s values? To find an optimal weighting of information from past
time steps, we heavily rely on the so-called attention mechanism, a machine learning
technique that allows the model to dynamically focus on the most important parts of
the input data, while fading out the rest. We also apply attention in the next step when
interacting information from the set of 143 input firm characteristics. The rigorous use of
attention in machine learning as a standalone technique was proposed by Vaswani et al.

(2017) and gave rise to the “Transformer” model type, which are by now the backbone
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of many state-of-the-art models in natural language and sequence processing.

Attention computes how similar a tensor of search queries Q is to a tensor of keys K.
Both Q and K are linear transformations of the same x, which is the intermediate output
from the previous model step, W¥Xx, where matrices W and WX are learned in the
estimation process. The reliance on the same inputs for both queries and keys gives rise
to the name “self-attention”. Using the resulting attention (comparison) matrix A(Q, K)
as weights, we compute an optimally-weighted combination of the values in tensor V,
which again is a linear transform of input x, V.= WVx. Each entry of V is associated
with a certain entry of keys in K, analogous to how SQL lookups work. Different from
SQL lookups, however, which require that each query has a matching key in the database,
attention is a probabilistic lookup, such that the algorithm retrieves the most probable
keys for the query. In economics and finance this allows to answer questions such as
“how important is information about Apple’s book-to-market ratio from one year ago to
reconstruct today’s entries?” or “how important is information about Apple’s price-to-

earnings ratio to recover its book-to-market ratio?”

Mathematically, express attention as,

A(Q,K) = Norm (%) , (1)

where N* denotes the number of units to attend to, so either T = 60 in the temporal
weighting step, or F' = 143 when interacting characteristics. The resulting attention
matrix per firm-month observation is thus of size (N* x N*). Norm is a normalization
function, which scales the attention matrix to row-wise sum to 1, with values between 0

and 1, thereby mapping from R? to probability space A%.6 We consider normalization

6Such that A?:={p e R%:p >0, |p|: = 1}

16



functions of the a-Entmax family (Peters, Niculae, and Martins, 2019):

a-entmax(x) = argmaxp' z + HZ (p), with (2)
pEAd

s o —pg), a# 1L
ala—1 J 7))
H(p) = { 7V

—>_;pjlogp;, a=1.

We consider three different normalization functions, with varying degrees of imposed
sparsity in the attention matrices. a = 1 yields the common Softmax function, with no
sparsity imposed (i.e. p; > 0 V j). Martins and Astudillo (2016) introduce Sparsemax
(v = 2), which aggressively pushes small weights towards zero. This is familiar to how
Lasso-regressions push the smallest coefficient to zero. To model moderate sparsity in
the attention matrices, we also consider a@ = 1.5, which we refer to as Entmax. We have
no prior on the degree of sparsity in the latent structure governing the evolution of firm
characteristics. We therefore let the data decide on the optimal degree of sparsity in both

the temporal and feature attention matrices, by tuning hyperparameter o.”

To increase the learning capacity, multiple attention heads — each with its own atten-
tion matrix and therefore flexibility to focus on different parts of the input data — are
commonly employed. We opt for a total of N'd —= 8 temporal and feature attention
heads per processing unit. Changing this has only a marginal impact on the outcome. We
follow Lim et al. (2021) and use interpretable multi-head attention (IMHA) throughout

the paper. It averages the attention matrices of each attention head before multiplying

"Results for this exercise are shown in Table IA2.1.
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it with a single learned value matrix V:

IMHA(Q,K,V) = HWy, where (4)
1 Nheads

H=1 ow > A(QWH,KWE) o VWY, (5)
h=1

Here, matrices W, € R X(D/NM) ith | e [Q, K] are head-specific weights for keys

and queries, and Wy € RP*P

are the weights for values V, which are shared across the
heads. The weight-sharing for V allows us to directly interpret the attention weights in
terms of how important each characteristic and historic time step is in reconstructing

today’s characteristics.

Now that we have introduced the attention mechanism, we continue walking through
the model setup. We stress the equivalence between the attention mechanism and a
weighted sum of a possibly nonlinear function of inputs x. Let z;;. denote the internal
representation of Apple’s ith characteristic before temporal aggregation, measured at time
t — [. Subscript e denotes the eth value in the vector along the embedding dimension
of size D = 64, which we have described above. We leverage past information about
Apple’s characteristics by computing a weighted sum of all z;.. over lookback months
[ € 1[0,..,59], where weights w; are learned from the data itself, yielding intermediate

model output y; .:®

Yie = Z wi (%) - f(Tige) (6)

where function f(-) follows Eq. (1). After the temporal weighting, we apply additional
nonlinear processing steps, which capture higher-order dependencies. These steps are

further described in Appendix TA1.

8Where the lookback dimension is deflated.
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Interacting Characteristics. Other firm characteristics hold valuable information
about missing entries, which we incorporate into the model by employing the atten-
tion mechanism across the feature dimension. The model consequently learns to extract
the right share of information from each characteristic j € F' to reconstruct the percentile

of target characteristic 7.

Let z; . denote Apple’s ith characteristic after the temporal aggregation. The feature
attention now computes weights v;;V (4, j), expressing how much of characteristic j’s
information is required to reconstruct an entry of characteristic 7. As for the temporal
weights w; from the previous step, weights v; ; depend on the intermediate model input

x and are therefore both stock- and time-specific:

F=143

Vie= Y Vij (%) f(0) (7)

j=1
After these three steps the model has combined information about other stocks (em-
beddings), the past evolution of Apple’s own characteristics (temporal weighting), as well

as other firm characteristics of Apple (interacting characteristics).

Obtaining Probabilities. The final modeling steps takes the interacted and processed
characteristics and creates a probability distribution across the 100 percentiles for each of
the masked input characteristics. To do so, we first extend the 64-dimensional embedding

dimension to span the 100 percentiles:
y = W%, with W ¢ R100xD) (8)

We then optionally apply additional nonlinear processing along that dimension, wherein

the optionality is governed by skip-gates described in Appendix [A1.1. Finally, we apply
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a Softmax normalization (Eq. (2)), which transforms the model’s output to a probability

distribution over the percentiles.

3. Data, Training & Performance Metrics

Firm Characteristics We analyze the dataset studied in Jensen et al. (2021), which
contains monthly firm characteristics computed from CRSP and Compustat, for all stocks
trading on NYSE, NASDAQ, and AMEX. We focus on the 153 characteristics identified
by Jensen et al. (2021), from which we drop seasonal returns (Heston and Sadka, 2010),
which are more often missing than they are available. Similar to Gu et al. (2021), we
require only a minimum set of filters in order to work on the largest possible dataset. For
a firm-month observation to be included, we require that it refers to common equity and

the firm’s primary security.

Our model extracts information about the likely value of a missing characteristic from
observed characteristics and their evolution through time. We therefore require that each
firm x month observation has valid information about at least 20% of the input character-
istics. We specifically do not dictate which characteristics have to be available, or which
are informative about missing entries of other characteristics, but rather let the data
speak for itself. This filtering step discards 0.2% of observations in the joint training and
validation sample, and 7.2% in the testing sample.” We follow the standard procedure
in the literature and lag quarterly accounting data by three months and annual account-
ing data by half a year. In total, our data covers the period from July-1962 through

December-2020, for a total of 57 years, providing information about 143 characteristics

9We have also estimated a model without this filter in a previous version of the paper. All results
shown in this version carry over to the unfiltered sample. However, requiring a minimum amount of
information for a given firm seems plausible in our opinion, if we want to leverage the information that
is available from these characteristics to recover entries that are not.
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Fig. 3. Distribution of Missing Firm Characteristics over Time.

The figure shows the distribution of the number of missing firm characteristics per observation for each
decade in our dataset. We use 143 firm level characteristics from the dataset provided by Jensen et al.
(2021) with common filters applied, see Section 3. The dashed red lines indicate the mean number of
missing characteristics per firm-month observation.

on 25,118 unique firms, for a total of more than 3.2 million firm-month observations.
Of the 143 characteristics, 47 are based on market information alone, 75 on accounting

information, and 21 are a hybrid that use information from both sources.

Figure 3 and Figure 4 discuss two important dimensions of missingness patterns in
our dataset: First, Figure 3 shows the evolution of missing values for the 143 firm-
level characteristics over time. During the 60s, an average of 51 characteristics — more
than 35% — are missing for a firmxmonth observation. Despite this number declining
considerably in the following decades, the average firm still misses 12 characteristics today.
Dropping missing entries of firm characteristics potentially limits the historic sample that

a researcher can use. Most tests in empirical asset pricing, however, crucially depend on
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Fig. 4. Percentage of Missing Characteristics by Market Capitalization Quintile.

The figure shows the average proportion of missing entries that belong to firmxmonth observations
within a certain market capitalization quintile. For this, we sort stocks by their market capitalization
each month and report the proportion of missing firm characteristics within each quintile. The numbers
are scaled to sum to 1.

long time-series. As a second dimension of missingness, Figure 4 shows the average cross-
sectional proportion of missing entries across the 143 firm characteristics considered,
shown separately for market capitalization quintiles formed in each month ¢. The 40%
smallest firms on average make up more than half of all missing characteristics. This
number steadily drops to below 10% for the 20% largest firms. Dropping firmxmonth
observations with missing characteristics therefore systematically excludes information
about smaller firms. At the same time, however, missing information is an issue that is
not exclusive to these smaller issues but rather pervasive across the entire CRSP universe.
Table B2 provides a list of the characteristics used, how often each is missing, and how

well our model is able to reconstruct each characteristic.

Training Routine As we are discretizing the input characteristics into percentiles, we
can formulate the problem of recovering firm characteristics as a multi-class classification.
The standard approach to solving these is by minimizing the cross-entropy loss, which

is the negative log-probability of the target class. To force the model to also get the
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predictions right for characteristics that are harder to recover, we use the focal loss

proposed by Lin, Goyal, Girshick, He, and Dollar (2017):

FL(p) = ﬁ S (1 po) - log(pe). (9)

which reduces the influence of examples that the model classifies well already. Here,
p. denotes the predicted probability of the target percentile for masked characteristic c.
We optimize over the mean loss for all masked (and thus reconstructed) characteristics.
For this, we set v = 25, which saturates estimated probabilities p. at around 20%.
This does two things: first, it forces the model to come up with good predictions for
all characteristics, instead of focusing on a few that are easiest to reconstruct. And
second, v = 25 is lenient enough to accommodate different scales at which the input
characteristics operate. While most are represented as real numbers, which we then
discretize to percentiles, some characteristics, notably the f_score by Piotroski (2000),
are discrete to begin with, ranging between 0 and 9. If 7 is set to aggressively, the model
is forced to produce seemingly “random” predictions for f_score. Instead, our choice of

v = 25 strikes a balance between the two.

Figure 3 illustrates that the sample has grown considerably more complete in recent
years, with an average of 12/143 characteristics missing in the last decade, compared
to more than a third in the 60s. The more characteristics that are available to us,
the more information we are able to extract. As a consequence, we flip the common
train/validate/testing split and train the model using the most recent 15 years of data
(2006-2020) and validate the choice of hyperparameters in a five-year validation sam-
ple (2001-2005). The remaining 37 years (1962-2000) are used for out-of-sample tests

regarding the robustness of the model fit in never-before-seen data.
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Optimization Neural networks are typically trained using stochastic gradient descent,
which uses a subset of the data in each iteration to evaluate the gradient and update
the model weights. The key parameter governing the success of this training procedure
is the learning rate, which controls the size of each step taken in the opposite direction
of the gradient. We use the adaptive moment estimation algorithm (Adam), introduced
by Kingma and Ba (2014), that individually changes the learning rate for each model
parameter by estimating the first two moments of the gradient. To help Adam converge
to good solutions, we furthermore adopt the “OneCycle” learning rule by Smith and
Topin (2017), which starts with a very low learning rate (Ir = 0.00001), which is then
increased for the first 30% of training epochs, up to a high number (Ir = 0.005). This
ramp-up phase with a low learning rate helps Adam find good estimates of the moments
of the gradient, which aids the algorithm in making informed decisions for the epochs
with the higher learning rates. After the increase of the learning rate, we gradually
decrease it until the total number of training epochs is reached to refine the fit. We set
the maximum number of training epochs to 400.!° With a batch size B = 2400 and
a total of approximately 780,000 observations in the 15 years-long training sample, we
update the model parameters with stochastic gradient descent more than 130,000 times.
Training each hyperparameter-combination takes about a day on eight Nvidia Tesla A100
80GB GPUs. A list of the hyperparameters, their search ranges and optimal values is

given in Table [A2.1 in the appendix.

Regularization To assure that the latent structure found by the model carries over to
unseen data, we employ a number of regularization techniques: we include proper weight
decay for Adam (Loshchilov and Hutter, 2017), which adds a fraction of the L2 norm of

the model parameters to the loss function, forcing the model to choose small and conser-

0Tncreasing the number of maximum epochs does not change the results.
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vative parameters. amsgrad (Tran et al., 2019) adds theoretical convergence guarantees
to the ad-hoc effectiveness of Adam. During training, we furthermore randomly drop
the activation of connections in the model. This dropout helps the model find general
solutions (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov, 2014). Lastly,
we use layer normalization after each skip-connection. This assures that each processing
unit operates on roughly the same data range (Ba, Kiros, and Hinton, 2016). Layer nor-
malization tends to work better than batch normalization for sequence and time-aware

modeling tasks.

Performance Measures The way the model is fitted — that is by randomly masking
a fixed percentage of non-missing characteristics which we try to reconstruct — provides
us with a controlled environment to assess the model’s performance by quantifying its

accuracy in reconstructing observed percentiles.

The primary metric we propose to evaluate the model’s ability to reconstruct firm
characteristics follows the ROC curve (reveiver operating characteristic) — a staple in
machine learning research for evaluating classification problems. For that, we obtain
the sampling frequencies p of the model error |A| as the absolute difference between the

observed class y and the model predicted class ¢ for the set of masked characteristics,

pIAl= k) =p(ly — gl =k)  where  |A] € [0,1,...,9] (10)

The cumulative distribution function p(|A| < k), for k € [0..50], or ROC' curve, then tells

us about the model’s true-positive rate for a given threshold of the allowed model error.

We also consider the average number of percentiles we deviate from the truth, which
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we call expected percentile deviation (EPD):"

99

E[JAl =) "p(A]=k)-k. (11)

k=0

A perfect model produces EPD = 0. Fully random predictions yield an EPD of 33.3.
EPD is a convenient way to summarize the information provided by the ROC curve in a

single number.

4. Model Validation: A Simulation Study

As outlined in the previous sections, we have set up our model with explicit jobs assigned
to each building block. It is designed to include both temporal and cross-characteristic
information, while being fully agnostic about the underlying processes governing the
evolution of firm characteristics. We deliberately rely on the capability of our model
to extract this structural information on its own. To showcase how well the proposed
model learns about different types of processes, we set up a controlled environment in a

simulation study.

Considered Processes The benefit of our model setup is that we can simultaneously
model characteristics with different underlying processes. In the simulation, we consider
characteristics that may be driven by an autoregressive process, rely heavily on cross-
characteristic information, or a blend of the two. The inclusion of a large number of
characteristics, F' = 143 in our case, facilitates cross-learning effects, wherein one type of

characteristic can be used in the reconstruction of characteristics of another type.'? To see

HEPD is directly linked to the area under the ROC curve, commonly used in machine learning (AU-
ROC), where EPD = 1-AUROC.
12Empirical evidence of this is provided in Figure 14 and Figure 15.
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how our model manages to simultaneously deal with characteristics driven by different
types of processes, we simulate three types of characteristics with different properties.

The first set of characteristics ¢ follows an AR(12) process:

AR12 R(12
< zw (A (12)

where e ~ N(0,1) and v ~ (0.9, 1) denotes a high level of auto-correlation. We choose

exponentially-decaying weights wy,

=C-e " kell,12],  withCst. ) wp=1, (13)

The second set of characteristics is cross-sectionally dependent, following a multivariate

normal distribution (Freyberger et al., 2021):
iy ~N(0,cov), (14)

where cov; ; = 0.99=71 for characteristics ¢ and j.

Finally, the third set of characteristics combines the two cases from above:

ar;; =y - arjz—1 + 827,5 (15)

CARANS — (AR a4+ (1 — w?R) - xsyy, (16)

where ar;; governs the autoregressive component, ¢’ ~ AN(0,1), and xs ~ N (0, cov),
with the same covariance matrix as above. w”® denotes the relative weight of the AR-

component, which we set to 0.25.

We simulate a sample of 100 firms with 50 characteristics of each category for 25

years of monthly data, of which we use 15 for training, and 5 for validation and testing,
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Table 2: Simulation: Model Accuracy

The table shows the imputation accuracy measured by the expected percentile deviation defined in
Eq. (11) for the simulation study outlined above. We differentiate our model’s accuracy from that of a
Last imputation method which is a good competitor for autoregressive characteristics. We also include
the Mean imputation method which is frequently used in the finance literature (e.g. Green et al., 2017;
Gu et al., 2020, 2021).

Expected percentile deviation

All AR(12) XS AR(12) + XS
Full model 5.58 6.71 3.08 6.94
Last 20.38 6.55 33.48 21.12
Mean imputation 25.01 25.01 25.00 25.01

each. We assess how well our model is able to reconstruct firm characteristics using
two simple benchmarks for comparison. First, we consider imputing the cross-sectional
mean, regardless of the underlying process. As a second benchmark, we impute the last
available value for each characteristics, which will naturally work well for autoregressive

characteristics.

Table 2 shows the results. Overall, we find that our model manages to uncover the
latent structure governing all types of characteristics and that within a single model.
Pooled across all characteristics, we find that it produces by far the lowest EPD, show-
casing its flexibility. For autoregressive characteristics AR(12), we find that it performs
on par with imputing the last entry, with EPDs of 6.71 vs. 6.55, respectively. For fully
cross-sectional characteristics XS, imputing the characteristic’s previous entry leads to
random guesses and an EPD of ~ 33. Our model, however, manages to predict the
true percentiles with high accuracy. The same applies to characteristics that are gov-
erned by a joint autoregressive and cross-sectional process AR(12) + XS. The inclusion
of cross-sectional dependencies between characteristics renders the imputation of the last
available value a poor choice, being off by more than 20 percentiles on average. Imputing
the cross-sectional mean naturally fails to uncover the intricacies of the underlying pro-

cesses and unconditionally produces an EPD of 25. In sum, our model is highly flexible
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in accommodating multiple processes governing firm characteristics at the same time. It
frees researchers and investors alike from taking a stand ex-ante about which process
governs a target characteristics and instead learns to approximate the process directly

from the data.
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Fig. 5. Temporal Attention Weights — Simulated AR(12) Process

The figure shows temporal attention weights for a simulated AR(12) process in the specified look-back
window of 12 month. Temporal attention weights measure how much information from each historical
time-step is incorporated in the final prediction of the model. In that sense, it is directly comparable to
the weights wy, specified in Eq. (13) for the simulated AR(12) process. We added both the actual (i.e.
pre-specified) and the model predicted weight to the graph for comparison.

Temporal Patterns The temporal attention mechanism enables our model to use
information from lagged values within the specified look-back window with no prior re-
strictions on where to draw information from. Table 2 has already shown that this enables
the model to accurately reconstruct autoregressive firm characteristics. Figure 5 shows
the learned temporal attention weights showcasing from which time lag the model uses
information. The weights of the AR(12) process and the extracted temporal attention
weights of the model perfectly line up. The model is capable of exactly identifying the
temporal dependencies governing the evolution of these characteristics. Importantly, we
find a weight of ~ 0 placed on information from time ¢ = 0. Despite being presented
with contemporaneous information about other characteristics, our model has learned to

disregard it and instead focuses solely on the temporal evolution.
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5. Reconstructing Firm Characteristics

In this section, we apply our model to real-world data and ask it to reconstruct a set of
randomly masked firm characteristics using the information embedded in other charac-
teristics and their historical evolution. We first assess how well the model performs in
an absolute sense: how far off are the predictions of the true percentile, across time, for
different characteristics, and for different levels of available information for a firm? We
then compare how well nested model cases, described in Section 3, fare against the full
model. This investigation allows us to highlight the importance of incorporating a vast
array of information from multiple dimensions when filling missing entries. Lastly, we
zoom into the model and understand how it comes up with its predictions by exploit-
ing the proposed architecture, which is fairly interpretable through the heavy use of the

attention mechanism.

5.1. Model Performance

Figure 6 shows the resulting cumulative distribution function p(|A| < k), for k& € [0..50],
for the training, validation and testing samples (Eq. (10)). For a quarter of the cases in
the training sample, our model manages to recover the masked characteristic’s percentile
exactly. For comparison, we have also included the performance of using the common
mean- or median-imputation. Numerous studies use this approach to deal with missing
firm characteristics (Green et al., 2017; Gu et al., 2020, 2021). The gray area in Figure 6
directly denotes our model’s outperformance over this ad-hoc approach. Simply inferring
the characteristic’s mean is insufficient and disregards important variation in firm char-
acteristics. In fact, for about 77% of cases, the mean imputation produces a deviation of
more than a decile. Our model instead deviates by that much in fewer than one in ten

cases. We also find that our model’s performance is highly consistent and carries over
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Fig. 6. Model Accuracy Curve.

The figure shows the cumulative distribution function of the model error |A| defined in Eq. (10) for the
training, validation and testing sample. We also show the result for imputing the median for comparison.
Section 5.2 provides a detailed model comparison. The gray-shaded area denotes the outperformance
of our model compared to this ad-hoc method. The blue shaded area denotes the expected portfolio
deviation (EPD) defined in Eq. (11).

well to the validation and the ouf-of-sample testing data.

The blue area above the curve is the EPD defined in Eq. (11). In the out-of-sample
testing data, we achieve an EPD of 4.31. In other words, our model predictions are on
average off by less than five percentiles, which significantly outperforms simply imputing
the mean, with an EPD of 25. For the validation (training) sample, the EPD drops
slightly, to 4.03 (3.63). ' These numbers of course differ vastly across characteristics,
each with differences in how hard they are to reconstruct, how often they are missing,

and when they are missing. We now investigate the reconstruction performance across

these dimensions.

Accuracy over Time. We first consider how well the model predictions stack up over

time. Preferably, the prediction quality should be unaffected by temporal progression.

13We may also express the performance in a reconstruction R? which amounts 87% across the joint
training, validation and testing sample, see Table A1l in the Appendix.
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Fig. 7. Model Accuracy over Time.

The figure shows the model’s accuracy as measured by the expected percentile deviation defined in
Eq. (11) over time for accounting- and market-based, as well as hybrid characteristics.

At the same time, however, Figure 3 shows that the degree of missingness has decreased
considerably over time. Likewise, we use the most recent 15 (45) years to train (+vali-
date) the model and its parameters. It is natural to assume some form of generalization
gap to unseen testing data, which in our case is also the data with the highest degree of

overall missingness.

While we do find evidence of better performance in recent years in Figure 7, the EPD
is fairly stable over time and still low throughout the testing sample starting in 1973.
For better interpretability, we have split the EPD numbers for market, accounting and
hybrid characteristics, wherein hybrid characteristics use information from both sources
(an example is the book-to-market ratio). We find that the average performance for all
three groups of characteristics has improved slightly over time. For example, while the
EPD for hybrid characteristics is around 4 in the early years of our sample, it trends
downward to around 3 by the start of the validation sample and now stands at around
2 percentiles. The trends for the other groups are comparable. We find the best perfor-

mance for hybrid characteristics, which have a comparatively high availability, and the
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Fig. 8. Model Accuracy as a Function of Available Information.

The figure shows the model’s accuracy measured by the expected percentile deviation defined in Eq. (11)
as a function of the number of missing characteristics per firmxmonth observation. We group observa-
tions into quintiles depending on how many characteristics are missing and show results separately for
the training, validation and testing sample.

worst for market characteristics, which generally vary the most. In fact, Figure IA5.1 in
the Internet Appendix highlights the percentile migration for the three types of charac-
teristics. Market-based characteristics fluctuate most from quarter to quarter. Still, the
EPD is at or below 5 for all groups, suggesting that our predictions are on average off by

less than five percentiles, even in the out-of-sample tests.!4

This temporal stability shows that our model is able to pick up on, and ultimately
exploit, a strong latent structure governing the evolution of firm characteristics. The
slight increase in the EPD in the testing sample is likely not driven by shifts in this

structure, but rather by the higher degree of missing information for that period.

Accuracy by Available Information. We therefore investigate how well the model is

able to reconstruct characteristics when the degree of available information varies. To do

14Note that we employ a full out-of-sample test to assess how well our model’s predictions hold up in
data never used in its estimation. The sample accuracy would improve further had we decided to train
the model on the full dataset.
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so, we sort each firmxmonth observation by the number of available characteristics and
compare the reconstruction performance across different missingness buckets. Figure 8

shows the results.

We find that the reconstruction error is increasing in the respective missingness buckets.
More cross-characteristic information allows the model to better pick up on interactions
with other firm characteristics and consequently achieve better predictions for the target
characteristic. This effect, however, is fairly modest throughout. In fact, even for the
firmxmonth observations with 60-80% missing characteristics, we find an EPD of 6-7

percentiles, still achieving better-than-decile accuracy.

Accuracy by Characteristics. We have seen that the average prediction of char-
acteristics for firms with only few other characteristics is still precise. The lower the
missingness, however, the better the predictions tend to be. To follow up on this, we
now investigate the characteristics that we predict the best, and those that are hardest
to predict. Figure 9 provides a breakdown of the ten characteristics with the lowest EPD
and the ten characteristics with the highest EPD. A complete list is provided in Table B2.

We furthermore indicate the group that each characteristic belongs to.

Among the characteristics best reconstructed is age, which deterministically increases
by 1 each quarter, a behavior our flexible model architecture is able to identify. We can
also reconstruct certain market-based characteristics very well, with a EPD of near zero.
Notable examples are market_equity (Banz, 1981), momentum in the form of ret_ 127
(Novy-Marx, 2012), and the dollar volume over the last half year dolvol_126d. We find
a distinct cluster of characteristics among those worst reconstructed. Six out of the ten
characteristics use daily information in their construction. They rapidly change from
month to month — an evolution the model is not able to pick up on, because we never

feed it information at a higher frequency than monthly. Other characteristics that the
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Fig. 9. Model Accuracy by Characteristic.

The figure shows the model’s accuracy for the ten characteristics that the model reconstructs the best
and the worst, measured by the expected portfolio deviation defined in Eq. (11). A complete overview
can be found in Table B2 in the Appendix. We further categorize characteristics into three groups,
accounting-, hybrid- and market-based.

model has a hard time reconstructing are measures of earnings persistence ni_ar1l and
the number of consecutive quarters with earnings increases ni_inc8q. Overall, the EPD
for only two out of the 143 characteristics is above 20 percentiles, or in other words, less

than accurate to the quintile.

Unbiased Predictions. We have so far focused on absolute deviations from the true
percentile. While the predictions of our model are quite accurate, we want to understand
if any systematic biases exist in the reconstruction process. For this, Figure 10 shows
the median and 10 and 90% quantiles for the signed estimation error A across different
percentiles for the true class. The figure provides three interesting insights into the
prediction process. First, the median signed estimation error across all percentiles of
the target characteristic is indistinguishable from zero. In other words, the model’s
predictions are unbiased. Second, the 10th and 90th percentiles are fairly symmetric
around the median. Interestingly, the range in which the estimation errors fluctuate is
smaller for percentiles in the tail of the distribution. Of course, for a true class of “0”, the

model can only deviate by predicting classes too high. However, this smaller fluctuation
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Fig. 10. Signed Estimation Error for Different Target Percentiles.

The figure shows both the distribution of the signed estimation error with error bars indicating the 10 %
and 90 % quantile and the EPD as defined in Eq. (11) for different target percentiles.

for the tail percentiles is not only driven by the lower bound (positive deviations for
classes 1-5 in Figure 10), but also evident in smaller deviations in the other direction
(negative deviations in Figure 10). Third, this pattern is also found for EPD, which is

generally smallest for tail percentiles.

5.2.  Competing Approaches

The economic literature has come up with different ad-hoc methods for dealing with
missing firm characteristics. The simplest method restricts the analysis to a sub-sample
for which all information is available (Lewellen, 2015; Kelly et al., 2019). This will not
only bias the results if the missing-at-random assumption is violated (Afifi and Elashoff,
1966; Freyberger et al., 2021) but also becomes infeasible if the number of characteris-
tics considered is large and the subsample with all characteristics available shrinks. For
example, retaining only the subsample of firms for which all 143 characteristics in our
sample are available would reduce the sample size from roughly 3.1 million observations

to only 186,158 — a reduction of more than 95%. In light of the multiple testing prob-
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Table 3: Competing Approaches — Description

Short description

Last Last value imputation. For variables with quarterly updates we use the value
of the previous quarter. If the last value is not available we impute the cross-
sectional mean.

Hist. mean Historical mean imputation which imputes the mean value of the last 12 months.

Mean by size For each point in time, stocks are grouped into deciles by their market equity.
We then impute the mean value of the corresponding size group for a specific
characteristic.

Mean by industry We use Kenneth French’s industry classification to form 12 distinct industry

groups at each point in time. We then impute the mean value of the corre-
sponding group for a specific characteristic.

Mean imputation Cross-sectional mean imputation method.

Mean by type Characteristics are grouped by their type (Accounting, Market or Hybrid). We
then impute the mean value of the corresponding group of characteristics for the
target characteristic.

Mean by theme Characteristics are grouped by theme (cf. Jensen et al., 2021) to capture similar
aspects of a company. We then impute the mean value of the corresponding group
of characteristics for the target characteristic.

lem, however, we would optimally test all possible characteristics and their combinations

simultaneously.

To circumvent the issue of a decreasing sample size, the finance literature has come
up with a simple ad-hoc method, the mean imputation method (e.g. Green et al., 2017,
Gu et al., 2020, 2021), which simply imputes the cross-sectional mean and hence discards
time-series variation if characteristics are cross-sectionally standardized. We describe
this and alternative methods for imputing missing characteristics, which are tailored to
capture a researcher’s prior knowledge about how different characteristics may evolve
in Table 3. In contrast, our machine learning method is agnostic about the underlying
processes, as we have emphasized in Section 4, and thus does not require selecting a

bespoke imputation approach for each characteristic.

We present methods that harness time-series information of a specific characteristic,
either imputing the last available value of a target characteristic or a historical mean

(Last, Hist. mean). Many characteristics are correlated over time such that past values
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Table 4: Competing Approaches — EPD

The table shows the imputation accuracy as measured by the expected percentile deviation defined in
Eq. (11) for different approaches to compare them with our model. The approaches are shortly described
in Table 3. Characteristics are grouped by their theme as defined by Jensen et al. (2021) and results
show the average EPD for all characteristics attributed to the same theme. The best method for each
theme is highlighted in bold.

Expected percentile deviation

Full Hist. Mean Mean Mean Mean Mean
model Last mean by size by industry imputation by type by theme

Accruals 3.99 12.95 19.82 24.74 24.10 24.99 27.89 41.41
Debt issuance  4.55 10.22  17.60 24.14 23.92 24.60 26.68 31.74
Investment 3.98 9.93 17.70 24.20 24.02 24.90 27.82 35.68
Leverage 3.59 4.81 8.56 23.27 21.36 26.08 26.29 25.61
Low risk 4.99 9.20 13.00 21.56 22.88 24.88 28.40 31.90
Momentum 5.05 14.39  23.36 23.98 24.01 25.27 22.68 13.95
Profit growth 5.37 14.39  21.77 23.88 23.59 24.26 23.49 21.09
Profitability 3.32 6.26 12.25 19.77 22.91 24.29 23.18 20.42
Quality 3.15 6.41 12.57 24.40 22.63 25.76 23.47 17.72
Seasonality 9.06 9.84 15.19 21.65 22.24 23.39 25.04 25.51
Size 1.80 1.99 7.23 11.62 22.85 25.61 26.53 32.93
Skewness 8.27 3198 26.52 24.69 24.68 25.00 28.73 41.25
Value 2.53 3.65 11.11 24.12 22.84 26.84 21.57 20.75
Mean 4.59 10.46 15.90 22.46 23.23 25.07 25.52 27.69

provide information for future realizations. Of course this requires time-series informa-
tion to be available. Alternative methods leverage information of clusters of stocks, i.e.,
stocks clustered by market capitalization or industry (Mean by size, Mean by industry).
Characteristics of firms of similar size or within the same industry potentially exhibit
similar dynamics, such that averages of these groups may serve as a good proxy to cap-
ture these dynamics. Lastly we consider information provided from other characteristics
(Mean by type, Mean by theme). Grouping characteristics in terms of type or theme
aims at identifying characteristics with similar content to come up with predictions for

missing characteristics.!® These approaches will work well if characteristics with similar

15To assure that characteristics of one type or within a theme are comparable, we sort them such
that higher values indicate higher returns unconditionally, as measured by the characteristic-sorted high-
minus-low return spread.
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informational content have a sufficiently high correlation such that they are placed in
similar cross-sectional percentiles. To test these ad-hoc approaches for imputing missing
values we compare their EPD to that of our model for different characteristic themes.

Results are shown in Table 4.

Our model outperforms the other approaches for all characteristic themes and for most
themes it does so by a large margin. The best competitor is the Last imputation method
which on average still produces an EPD twice that of our model. While imputing the last
value comes close to our model’s accuracy for “Size” and “Value” characteristics it fails
to produce meaningful imputations for characteristics that proxy for “Profit growth”,
“Momentum”, and most notably “Skewness” (EPD of 31.98 vs. our model’s 8.27). The
third best model again leverages temporal information and imputes a historical mean.
This produces an EPD averaged across the twelve characteristic themes of 15.90, more
than tripling our model’s 4.59. The remaining methods all perform poorly, with EPDs
around or even above 25. An EPD of 25 is obtained when imputing the cross-sectional
mean.'® It seems as though clustering information by different portions of the cross-
section of stocks or the information content of characteristics is insufficient in finding
suitable imputations for missing firm characteristics. Instead, the success of our proposed
model architecture stresses that time-series and cross-sectional information should be
combined and that the informational content of observable firm characteristics is more

complex than accounted for by the aggregations considered here.

6. Recovering Missing Firm Characteristics

The objective of our study is to present a method to recover missing firm characteristics

and provide a completed data for future research. Naturally, these predictions are as-

6Considering the amount of variation explained (R?) shown in Table A1 confirms these findings.
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sociated with uncertainty. The choice of predicting cross-sectional percentiles produces
a probability distribution across the percentiles of a target characteristic. We use this
probability distribution to quantify the uncertainty of each prediction — a feature unavail-
able to other imputation methods, such as the common mean-imputation or alternative

approaches proposed by contemporaneous studies.

Model Uncertainty. When reconstructing masked characteristics in the previous sec-
tion, we have full knowledge about the desired outcome and a direct way to assess the
quality of the reconstruction. Instead, when applying the model to missing entries we do
not. However, we can quantify the uncertainty associated with each prediction. “Good”
predictions have two properties: 1) reconstructing the characteristic generally works well
within the fully controlled environment of Section 5, i.e. it produces a low EPD, and 2)
the estimated probability distribution across percentiles of a missing firm characteristic

is significantly different from an uninformed guess.

To address 2), we proceed in two ways: for an uninformed guess the model is unable
to produce a meaningful distribution across percentiles. In these cases, it approximately
defaults to a uniform distribution, predicting each percentile with equal probability. How-
ever, even if the model’s estimated probability distribution is statistically indistinguish-
able from a uniform distribution, the prediction may still correctly identify the true
percentile. We argue that the model’s predictions are internally consistent, whenever the

percentiles which are assigned the highest probabilities are in close proximity.

We apply the Kolmogorov-Smirnov test to formally assess if the estimated distribution
is significantly different from a uniform distribution (Massey Jr., 1951).17 Let Fy(z)

denote the cumulative distribution function of a uniformly distributed random variable,

"Note that the Kolmogorov-Smirnov test likely underrejects the null hypothesis in our setting, given
that we discretize the input space to 100 percentiles. The test-statistic scales with y/1/N, where N = 100
in our setting.
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Fig. 11. Model Confidence.

The figure shows a histogram of the recovery confidence of our model, measured by the Kolmogorov-
Smirnov test statistic. The test measures whether the probability distribution across all classes for each
recovered characteristic as predicted by our model is significantly different from a uniform distribution.
The dashed vertical line indicates the 5% confidence level. Based on this measure we find 93.8 % of the
reconstructed characteristics to be predicted with confidence.

on the interval x € [1,100]. Likewise, let FYj(x) denote the cumulative step-function
estimated by our model when generating the probability distribution across percentiles
for target characteristic c. Then, the Kolmogorov-Smirnov test statistic d° for the model
prediction is given by

d° = max |Fy(x) — Fy ()] (17)

In our case, Fj;(z) significantly differs form a uniform distribution at the 5 % significance-

level if d° exceeds dyax = 0.136 (Massey Jr., 1951).

Figure 11 shows the histogram of the Kolmogorov-Smirnov statistic for the pooled
set of filled entries of firm characteristics. For 93.8% of the recovered entries of firm
characteristics the model produces a probability distribution across the characteristic’s

percentiles that is significantly different from a uniform distribution.

For the remaining 6.2% of missing entries, we now analyze how far apart the percentiles

with the highest and next-highest assigned probability lie. In 58.6% of cases in which we
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fail to reject the null of a uniform assignment across percentiles, the percentile with the
highest and the percentile with the next-highest probability are just one percentile apart.
In 69.1% of cases they differ by no more than five percentiles. In total, for only 1.9% of the
recovered missing entries the predicted probability distribution is indistinguishable from
a uniform distribution and the two classes with the highest assigned probability disagree
with regards to the general location of the true percentile. Of course other researchers
may want want to apply different benchmarks to identify recovered firm characteristics
with low model uncertainty. Hence, we provide the output probability distribution of our

model alongside each recovered characteristics to encourage future research on this topic.

Discussion One may argue that the model should produce a probability distribution
with a single peak — a predicted percentile with 100% probability associated. However,
this result, while theoretically appealing, is highly unrealistic empirically and in no way
expedient. For one, predictions depend on the observable characteristics of a firm. Small
changes in single input characteristics or in combinations of characteristics may lead to
vastly different predictions of missing characteristics. We require the model to take these
nuances into account and balance their informational content. Inevitably, this leads to
a dispersion in the probability distribution. At the same time, the input characteristics,
even if observable, are measured with noise. This noise directly translates to uncertainty
in the model’s predictions. Lastly, we use the so-called focal loss, described in Section 3, to
force the model to also learn about reconstructing characteristics for which a reconstruc-
tion is harder. Above a certain probability threshold, assigning a larger probability to the
true percentile does not improve the estimation loss. In our case, the threshold amounts
to roughly 20%. We are in the unique position to quantify the model’s uncertainty and

believe it to be an important aspect of imputing missing firm characteristics.
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Recovering Raw Firm Characteristics To recover missing firm characteristics, we
have considered the characteristic’s distribution, discretized to a fine-grid of percentiles.
Instead, many applications in Accounting, Management, and Marketing research require
the actual values, not just their cross-sectional distribution. We can back out reasonable
estimates for the raw characteristics, by interpolating between values of the characteristic
in the predicted percentiles observed for other firms.

We consider three methods to come up with estimates of raw firm characteristics. For a
given recovered percentile for the target characteristic, we first identify all firms that fall
within said percentile. Within this set, we then identify the firms which have the lowest
and highest value of the characteristic. The first method simply linearly interpolates
between these two edge points, and reports the “mid” value therein. The second and
third methods give the “mean” and “median” of all observed values within the respective
percentile instead. Revisiting the multitude of established results in economic research
using this completed dataset is beyond the scope of this paper. However, as an application
we test how the recovered firm characteristics influence factor premia in characteristic-

based asset pricing.

7. Application: Factor Portfolios in Finance

What is the impact of changes in the distribution of firm characteristics after filling
in missing values? The answer of course depends on the research question and can be
addressed in many ways. For one attempt at providing an answer, we choose to study the
impact on high-minus-low factor portfolios, which are a common application of this data
in characteristic-based asset pricing and have been the cornerstone of financial research

since at the very latest Fama and French (1993).

We first sort stocks into deciles for a given characteristic. We then calculate the re-
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turns for each decile portfolio weighted by each included firm’s market capitalization in
the past month, and first discard missing values (“Pre”), and then use the completed data
set with imputed values (“Post”). Consequently, we form the zero-cost factor portfolio
as the difference between the highest and lowest decile portfolio.!® Changes in portfo-
lio returns arise if the firms with recovered characteristics have different return patterns
than the average firm in the portfolio before recovering missing values. Note that we
purposefully separate the imputation of missing firm characteristics and the calculation
of factor returns. This is different from Freyberger et al. (2021), who impute firm charac-
teristics conditional on explaining stock returns. Instead, our approach is agnostic about
whether missing entries of firm characteristics should relate to return patterns and only

investigates this after the imputation.

Figure 12 shows the change in high-minus-low factor portfolio returns for the 30 char-
acteristics with the ex-post largest change in the factor premium due to the inclusion of
recovered firm-characteristics. The high-minus-low returns discarding stock observations
with a missing entry for the sorting characteristic are given in black (“Pre”), whereas
the red circles denote the returns after considering the impact of imputed missing values
("Post”). A clear trend emerges: using the completed set of firm characteristics pushes
most high-minus-low spreads towards zero. Examples with large changes in the average
high-minus-low spreads are fcf me (pre: 13%, post: 6%), the change in net-operating
assets noa_gria (pre: 13%, post: 7%), and momentum ret_12_1 (pre: 21%, post: 16%).
A complete list can be found in the Internet Appendix Table IA3.1. Across all 143 char-
acteristics, we find that the absolute return spread decreases by an average of -1.26 %

with a Newey and West (1987) t-value of —6.67.

18We follow Jensen et al. (2021) and cap the value-weights by the 80th percentile of the market
capitalization of all firms in any given months to limit the influence of large outliers. To focus on the
outright changes arising due to a change in the portfolio decomposition after imputing missing values,
we also consider equally-weighted returns in Appendix [A4. Using value-weights invariably masks part
of the impact of missing values, as information for large stocks is more complete and overall of better
quality.
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Fig. 12. Impact of Missing Observations on Factor Portfolio Returns.

The figure shows the change in high-minus-low factor portfolio returns for the 30 characteristics with
the ex-post largest change in the factor premium due to the inclusion of recovered firm-characteristics.
The premium without incorporating the information of imputed missing characteristics is given in black
(“Pre”), the premium after the inclusion of this information in red (“Post”). Blue data points display the
control which consists of all observations of the ”Pre”-group but using characteristic values reconstructed
by our model. This is to show that our model does not mechanically drive down the high-minus-low
returns. A complete list of these changes is provided in Table TA3.1.

We investigate two potential issues, which may give rise to a mechanical reduction in
absolute return spreads: first, one may argue that even if high-minus-low return spreads
are correctly identified using the uncompleted dataset, through the imputation approach
some stocks will be wrongfully allocated to the high and low portfolio. Assuming that
returns are a monotonic function of the true portfolio, this will push down on the high-
minus-low return spreads after imputation. A first indication that this is less of a concern
using our model is given in Figure 10: the reconstruction accuracy is generally highest in
the high and low portfolios. Another potential concern relates to the use of past infor-

mation about characteristics to impute today’s missing values. If the imputation relies
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heavily on this past information, imputed values are potentially less informative about
future returns.’® Baba Yara et al. (2020) investigate the predictive power of “old” infor-

mation and generally finds that past characteristics still generate large return spreads.

To address these points, we proceed as follows: we create a reconstructed data set which
reconstructs the observations of the uncompleted dataset, using our model, in the same
fashion as in Section 5: we randomly mask and reconstruct 20 % of the available input
characteristics. We repeat this step 25 times to ensure that > 99% of characteristics have
been reconstructed. The resulting high-minus-low return spreads for this reconstructed
data set are also shown in Figure 12 as the blue circles (“Control”). The results clearly
show that there is no mechanical downward-bias induced by our model. Regression results
further support this evidence: high-minus-low return spreads using the reconstructed and

uncompleted dataset are statistically indistinguishable across the 143 characteristics.

The average impact on high-minus-low return spreads is large and quite heterogeneous.
Some return spreads are barely impacted, others by a lot. How much of this impact is
driven by changes in the average returns of the long vs. the short component of the
characteristic-sorted factor portfolios? The post-completion change in the average high-

minus-low return is given by

AHmL = HmL™" — HmL"™ = AHi — ALo (18)

The red line in Figure 13 provides the distribution of AHmL across the 143 characteristics
considered and visually confirms the evidence that average long-short portfolio returns
tend to decrease using the completed dataset. For ease of exposition, we show the Pre-to-
Post change in the negative returns of “Lo”, which makes it comparable to how changes

to “Hi” are presented and conforms with the profits a long-short investor would make

19We thank Andrea Barbon for pointing out this potential issue to us.
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Fig. 13. Distribution of Changes in Factor Returns

The figure shows a kernel density estimate of the change in portfolio returns post-completion, as defined
in Eq. (18). The red line shows the distribution of AHmL across the 143 firm characteristics considered,
while the blue (green) line show the results for the high (low) portfolio, respectively.

when shorting portfolio “Lo”. We find that the average profits of both the high and low
portfolio decrease for the average characteristic but that the return change for the high
portfolio is on average more negative. Average returns to the low (high) portfolio on
average decrease by —0.52% (—0.80%) per year. Interestingly, the changes in average
returns of the low and high portfolio are uncorrelated, with a correlation coefficient of
just 0.028 across characteristics. This shows that our completion procedure does not
merely lead to a uniform reduction in the returns of the long and short leg of the factor

portfolios.

Our results stress the importance of carefully considering the impact of missing firm
characteristics and provide an additional hurdle for newly proposed risk factors to pass:
the factors should survive not only in the sample in which they are available outright,
but also using the extended sample including firms with missing observations. In total we
find that 6 of the 143 factor premia lose their significance. Still, most factor premia that
are significant before the imputation remain significant thereafter, and others even gain

significance (see Table TA3.1). We have already highlighted that our approach is agnostic
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about whether firm characteristics are informative about stock returns, in contrast to the
study by Freyberger et al. (2021). The described analysis therefore adds a new out-of-
sample test for assessing the validity of newly-found and existing risk factors. With this,
we complement the recent debate on whether financial research experiences a replication
crisis (Harvey, Liu, and Zhu, 2016; Jensen et al., 2021). Judging by the relative stability
of most factor premia with respect to the impact of missing values (in terms of their

significance, not necessarily their magnitude), we argue in favor of replicability in Finance.

8. Which Information Set Matters?

We have so far shown that our model performs well in reconstructing percentiles of firm
characteristics and that completing the panel of 143 firm characteristics has profound
implications for risk factors in asset pricing. We now investigate the importance of
incorporating nonlinear dependencies between characteristics, between assets, and over
time in more detail, by looking at the model’s internal structure to assess how it comes
up with its predictions, as well as by considering simpler — nested — models that include

only a subset of the information available to the full model specification.

Feature Importance To assess which characteristics the model uses to reconstruct
missing entries of target characteristic ¢, we express the feature attention matrices de-
scribed in Section 2 as directed weights, wherein each row indicates how much information
about each characteristic is necessary to reconstruct a masked entry of ¢. First, we assess
for each characteristic type (accounting, hybrid, market) the importance of information
about characteristics of the same type, as well as the other two. Second, we once again
follow Jensen et al. (2021) and cluster the 143 characteristics into twelve themes, such as

“Accruals” or “Skewness”. We then investigate for each characteristic theme, how impor-
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Fig. 14. Feature Importance by Characteristic Type.

The figure shows the average feature importance weights for information drawn from the target character-
istic itself (“Self”), as well as the joint importance of characteristics of each group, including accounting-
based, market-based, as well as hybrid characteristics. We also split the target characteristic by these
groups to show how the information flow changes. Note that the model has no information about these
groupings, they arise organically from the data. The feature attention per characteristic group naturally
sums up to one.

tant information about characteristics of the same theme is in comparison to information
from the other eleven themes. For example, we may be interested in the importance
of “Size” characteristics, when reconstructing a characteristic from the “Value” group.
This analysis also provides an intuitive justification for including the 143 firm charac-
teristics jointly, should information from the other themes be important in the model’s

reconstruction of firm characteristics.

Figure 14 provides this breakdown at the level of characteristic types. Since the
row-wise sum of the attention matrix is always 1, we can simply add up the values
for characteristics belonging to each of the three types.?’ We also separately highlight
the importance of historical information about the characteristic itself. If each charac-
teristic was equally informative about all others, this self-importance would amount to

1/N = 1/143 ~ 0.007.

20Diebold and Yilmaz (2014) estimate directed networks between firms using observable returns in a
VAR-framework. As an analogy, the attention would be the connectedness matrix in their framework.
We are interested in the “From”-connectedness, i.e. how much the internal representation of a target
characteristic is influenced by the others.
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Fig. 15. Feature Importance by Theme of Characteristic.

The figure shows the average feature importance weights for the twelve themes of characteristics identified
by Jensen et al. (2021), split by information drawn from characteristics of the same theme (“Within”)
versus other themes (“Other”). The dotted line denotes the theoretical feature importance if each theme
was equally informative about all other themes (1/Nthemes = 1/12).

We find a high importance of same-type information: to reconstruct accounting-based
characteristics, information about other accounting-based characteristics is most impor-
tant. The same applies to market-based characteristics. As expected, reconstructing
hybrid characteristics requires a mix of all other characteristic types. Importantly, the
model places a high weight on the historical evolution of target characteristic ¢, from
3.6% for hybrid variables up to 5.3% for market-based characteristics. While we find a
high importance of same-group information, the weight placed on this information is far
below 100% for all characteristic types. This highlights both the benefits of including
as many characteristics as possible, as well as the tremendous flexibility of our modeling

approach in assessing and using this vast amount of information.

In Figure 15 we show how characteristics of different themes relate to one another.
Consistent with the previous evidence from types of characteristics, the model consistently
leverages information about other themes when reconstructing a characteristic of a target

theme. Still, the feature importance of information from the same theme (“Within”) is
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Table 5: Temporal Attention Weights.

The table shows average temporal attention weights for each year in the specified look-back window of
5 years. Similar to feature importance weights, temporal attention weights measure how much informa-
tion from each historical time-steps is incorporated in the final prediction of the model. Quantiles are
calculated from the cross-section of firms for each month and consequently averaged across time. The
mean of temporal attention naturally sums up to one.

Quantiles
Mean 1 5 25 50 75 95 99
Full
Year-1 0.941 0.828 0.883 0.921 0.942 0.965 0.999 1.000
Year-2 0.037 0.000 0.000 0.021 0.036 0.049 0.076 0.114
Year-3 0.015 0.000 0.000 0.003 0.013 0.023 0.039 0.059
Year-4 0.006 0.000 0.000 0.000 0.003 0.010 0.021 0.033
Year-5 0.001 0.000 0.000 0.000 0.000 0.001 0.005 0.013

fairly high, between 8% for “Seasonality” and 35% for “Low risk”. These results highlight
the benefits of including characteristics that capture different facets of a firm’s finances,

measured both from a market- and accounting-based point of view.

Time Importance We explicitly account for the historical evolution of input char-
acteristics in a flexible fashion, such that the model may incorporate varying levels of
temporal information per target characteristic. Especially accounting-based characteris-
tics may benefit from this inclusion, given that they typically fluctuate little from quarter
to quarter. For example, Gongalves (2021) models the evolution of a firm’s equity dura-
tion using a vector autoregressive process with lag 1. But this inclusion may also provide
fruitful information for market-based characteristics. Keloharju et al. (2021) have recently
shown that it is not today’s value for firm characteristics that has explanatory power over
returns, but rather a characteristic’s deviation from its long-run mean. Table 6 shows
how identifying both this long-run mean, as well as how a characteristic fluctuates around

this mean is beneficial when recovering missing firm characteristics.

Table 5 provides the results. While we allow the model to incorporate information
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from up to five historical years, we find overwhelming evidence that most information
is drawn from the past year. The mean attention put on this year amounts to 94.1%,
with comparatively little variation over time. The first percentile of how much weight
is placed on the most recent year still amounts to 82.8%. In contrast, the second year
receives on average about 3.7% of the total attention, with occasional spikes above 11.4%.
In line with this, tuning the hyperparameters for the model reveals a preference for
sparse temporal attention weights, using the EntMax normalization function outlined
in Eq. (2). Last year’s information is imperative when making informed predictions
of missing characteristics. Current and near-term values of firm characteristics already
incorporate most information necessary, highlighting the efficiency of modern financial

markets and financial reporting.

Restricting the Information Set Besides our full model architecture outlined in Sec-
tion 2, we may also consider a number of nested models, which restrict the reconstruction
of firm characteristics to using different dimensions of the input data. We have noted
that firm characteristics correlate over time, across assets, and between different charac-
teristics of the same firm. For example, we have just highlighted in the previous section
that information from the most recent year is most important. But how important is
the inclusion of this temporal information and how well would a model work that only

operates on the cross-section of observable firm characteristics in month 7

To assess the importance of incorporating the temporal evolution of firm character-
istics, we consider two nested models: the first is restricted to information about the
characteristics masked for reconstruction, blending out all other information. At the
same time, we disallow the model to interact input characteristics, but add the em-
bedding step. The model may therefore dissect the cross-section of stocks per target

characteristic and apply different levels of processing for stocks in different percentiles of
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the target characteristic.2!’ The model is thus forced to reconstruct characteristics using
only their historical information, capturing their autoregressive component. We call it
the “Temporal model”. The second model is given information about all ' = 143 char-
acteristics, but measured only at time ¢, fully disregarding their temporal evolution. We

denote it as the “X-sectional model”.

In the last nested case (“no-self model”), we assess how important historic informa-
tion about the target (masked) characteristics are. We allow the model to incorporate
information about non-masked characteristics, as well as their historical evolution, but
provide no historic information about the masked characteristics themselves. Note that
this is a highly restrictive model setup, which assumes that we lack any (historic) infor-
mation about 20% of the input characteristics (those we have randomly masked). Once
again, we include the mean imputation approach for comparative purposes, and sepa-
rately show the accuracy for the three types of characteristics considered (accounting,

market, hybrid).

The full model performs best with an EPD of 4.31 for the entire sample — a 2-fold im-
provement over each of the nested cases. In fact, we find little variation of the full-sample
scores for any of the nested models. However, when considering characteristic types in-
dividually, we do find slight differences between the models. For example, the temporal
model slightly outperforms both the cross-sectional and no-self model for accounting and
hybrid variables. For market variables instead, the temporal model performs slightly
worse with an EPD of 9.86, which is still a 2.5-fold improvement over imputing the
mean. Notably, the full model specifications consistently outperforms the nested mod-
els for each characteristic type individually and across all characteristics. Keep in mind

that we reconstruct masked entries of all 143 characteristics in a joint model and do not

21A simple example is to apply different levels of processing to large and small stocks, which differ in
many dimensions, not the least of which is the degree of missing information, which is systematically
higher for small stocks, see Figure 4.
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Table 6: Nested Models — Accuracy by Imputation Method.

The table shows the imputation accuracy measured by the expected percentile deviation defined in
Eq. (11). We differentiate our model’s accuracy from that of a cross-sectional model, which disregards
temporal information and a temporal model, which disregard information from other characteristics.
The no-self model disregards all information on the target characteristics but attends to information
about other characteristics and their temporal evolution. We further consider imputing masked features
with the cross-sectional median as the benchmark. Results are shown for market- and accounting-based,
as well as hybrid characteristics. The best performing model is highlighted in bold for each case.

Expected percentile deviation

Full Training Validation Testing
All
Full model 4.31 3.63 4.03 4.67
X-Sectional model 9.02 7.19 8.14 10.01
Temporal model 8.30 7.40 7.82 8.80
No-self model 8.38 6.66 7.52 9.31
Mean imputation 25.08 25.08 25.13 25.07
Accounting
Full model 4.10 3.42 3.89 4.45
X-Sectional model 9.56 7.73 8.81 10.52
Temporal model 7.99 7.13 7.63 8.45
No-self model 8.98 7.18 8.24 9.92
Mean imputation 24.75 24.74 24.67 24.77
Market
Full model 5.29 4.65 4.90 5.65
X-Sectional model 9.16 7.66 8.30 10.03
Temporal model 9.86 8.81 9.02 10.51
No-self model 7.91 6.66 7.16 8.63
Mean imputation 25.01 25.03 25.05 24.99
Hybrid
Full model 2.89 2.04 2.50 3.32
X-Sectional model 6.96 4.30 5.47 8.35
Temporal model 5.97 5.11 5.72 6.38
No-self model 7.43 4.92 5.92 8.76
Mean imputation 26.32 26.35 26.87 26.21

refit the models for only accounting or market-based characteristics, providing a unified

framework for dealing with missing firm information.
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9. Conclusion

A vast literature in empirical asset pricing uses observable firm characteristics as proxies
for differences in expected stock returns. However, firm characteristics are frequently
missing, some more often than others. Basing inference on the set of stocks for which
a target characteristic is available potentially biases the results due to variation in the
sample considered. For example, Figure 4 shows that small firms are consistently missing
more information. Therefore, results obtained from a dataset in which missing informa-
tion is discarded or incorrectly dealt with may not generalize well to the case of small

stocks.

In this paper, we propose a comprehensive machine learning method, which borrows
from recent advances in natural language processing and adapts their insights to the case
of financial data to fill these missing entries. For this, we use three types of information:
about other characteristics of a target firm, how these characteristics evolved over time,
and from the cross-section of other firms. We show in a first step that the proposed
model vastly outperforms ad-hoc methods, such as imputing the cross-sectional mean,
but also more involved methods, tailored to leverage ex-ante information a researcher
may have about how firm characteristics may evolve. We can also show that predictions
are unbiased and highlight that the inclusion of all three types of information is vital
to the model’s success. Second, our model setup allows us to explicitly quantify the
uncertainty attached to each prediction. Fully uninformed predictions will produce a
uniform distribution across a target characteristic’s percentiles. We show that in most
cases the model’s predictions significantly differ from a uniform distribution. Third,
we use the completed dataset, i.e., a panel with imputed missing entries, to investigate
changes in average returns of common risk factors. For most characteristics, absolute

high-minus-low return spreads are lower using the completed dataset. We carefully assure
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that this is not driven by sorting on “old” information. Still, most return spreads remain
significant, adding another piece of evidence in favor of replicability in finance (Jensen
et al., 2021). Finally, we investigate the model’s internal mechanism to come up with
its predictions for missing firm characteristics and show that it leverages information of
all 143 characteristics, stressing a) the model’s flexibility and b) benefits of including
information about many aspects of a firm’s finances. We have made the filled entries of
firm characteristics, as well as the associated modeling uncertainty available for future

research.??

22The imputed firm characteristics can be downloaded from the first author’s website.
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Appendix A. R? by Imputation Method

Table Al: Model Comparison — R? by Imputation Method.

Table A1l shows the imputation accuracy by R?, which measures how much of the variation in recon-
structing masked characteristics a method can explain that is not already explained by imputing the
cross-sectional mean. As we discretize each characteristic into percentiles we calculate the R? in the
following fashion:

99
1— 2o Px(|A[=k)- (k/100)?
99
> k=0 Pmi(|A] = k) - (k/100)?
with subscript x indicating the current method being evaluated and MI standing for the Mean Imputation
method. We differentiate our model’s accuracy from that of the approaches outlined in Table 3 and

separately provide the achieved R?s for the twelve themes of characteristics from Jensen et al. (2021).
The best performing model is highlighted in bold for each case.

R? =

X

(A1)

R2
Full Hist. Mean Mean Mean Mean Mean
model  Last mean by size by industry imputation by type by theme

Accruals 0.91 0.43 0.07 0.01 0.04 0.00 —0.28 —1.82
Debt issuance 0.87 0.55 0.15 0.02 0.04 0.00 —0.21 —0.84
Investment 0.90 0.60 0.20 0.04 0.04 0.00 —0.30 —1.20
Leverage 0.92 0.88 0.70 0.15 0.24 0.00 —0.07 -0.13
Low risk 0.85 0.66 0.54 0.19 0.12 0.00 —0.36 —0.76
Momentum 0.91 0.49 —0.01 0.08 0.07 0.00 0.16 0.61
Profit growth 0.82 0.28 -0.13 0.02 0.03 0.00 0.03 0.18
Profitability 0.92 0.78 0.48 0.26 0.08 0.00 0.06 0.04
Quality 0.91 0.79 0.50 0.07 0.16 0.00 0.15 0.44
Seasonality 0.55 0.48 0.23 0.10 0.06 0.00 —0.18 —0.30
Size 0.98 0.98 0.77 0.70 0.14 0.00 —0.11 —1.17
Skewness 0.80 —-0.88 —0.21 0.02 0.02 0.00 —0.36 —1.85
Value 0.96 0.92 0.60 0.12 0.19 0.00 0.30 0.26
Mean 0.87 0.53 0.30 0.14 0.09 0.00 —0.09 —0.50
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Appendix B. Accuracy, Missingness and Model Con-

fidence

Table B2 provides summary information about the model accuracy as measured by the expected per-
centile deviation defined in Eq. (11) for each characteristic separately. Characteristics are sorted from
best to worst model accuracy. We further include the missingness of each characteristic in the data set
for all firm xmonth observations. ”sig. KS-Test” provides information on how many of the recovered firm
characteristic exhibit a significant - i.e. on the 5% level - KS-statistic as defined in Section 6, which is a
measure of model confidence for the recovered firm characteristics. We further classified characteristics
in accounting (A), hybrid (H) and market (M) variables.

Table B2: Missingness, accuracy and model confidence per characteristic.

Expected percentile deviation

Full Training Validation Testing Miss. [%] sig. KS-Test [%] Class

age 0.74 0.64 0.77 0.78 0.00 - H
market_equity 1.26 0.90 1.15 1.42 0.48 99.86 M
rd5_at 1.28 0.93 1.33 1.50 73.83 98.66 A
ret_12_7 1.36 0.96 1.09 1.60 17.03 99.99 M
sale_me 1.39 1.02 1.21 1.57 11.83 98.06 H
at_me 1.41 1.04 1.24 1.60 11.44 99.92 H
dolvol_126d 1.44 0.93 1.18 1.71 10.69 99.40 M
rd_sale 1.47 0.92 1.21 1.77 62.01 59.47 A
gp-atll 1.48 1.00 1.29 1.73 14.80 98.37 A
op-atll 1.50 1.03 1.27 1.74 14.75 56.36 A
ivol_capm_252d 1.52 1.42 1.40 1.58 16.21 93.30 M
gp-at 1.55 0.98 1.24 1.85 11.81 64.53 A
at_turnover 1.62 0.94 1.16 1.99 12.74 99.59 A
op-at 1.65 1.10 1.36 1.92 11.74 90.06 A
cop-at 1.68 1.14 1.74 1.93 19.91 69.19 A
ebit_sale 1.70 1.23 1.37 1.95 13.11 97.46 A
opex_at 1.72 1.12 1.29 2.04 11.81 79.22 A
qmj 1.75 1.58 1.75 1.85 35.60 97.39 M
qmj_prof 1.80 1.33 1.58 2.04 12.13 52.68 M
be_me 1.84 1.44 1.83 2.01 14.21 83.90 H
corr_1260d 1.85 1.47 1.75 2.08 34.74 94.25 M
cop-atll 1.85 1.13 1.72 2.21 20.47 73.07 A
ebit_bev 1.91 1.45 1.78 2.11 15.49 79.15 A
ope_bell 1.92 1.47 1.82 2.11 28.49 96.43 A
pre 1.97 1.25 2.28 2.21 0.48 99.19 M
ope_be 1.99 1.37 1.71 2.26 25.25 94.91 A
debt_me 2.00 1.55 1.68 2.23 11.70 98.70 H
ni_be 2.03 1.32 1.52 241 14.29 88.88 M
sale_bev 2.03 1.45 1.84 2.30 15.43 98.19 A

Continued on next page.
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Table B2: Missingness, accuracy and model confidence per characteristic.

netdebt_me
ret_12_1
mispricing_perf
divl2m_me
ami_126d
ivol_capm_21d
rd_me
zero_trades_252d
betabab_1260d
nncoa_grla
qmj_safety
at_be
ivol_ff3_21d
rvol_21d
bev_mev

ret 9.1

o_score
rmax5_21d
intrinsic_value
niq_at
ivol_hxz4 21d
noa_grla

ni_me

capx-gr3
ebitda_mev
ncoa_grla
ocfq_saleq_std
z_score
mispricing_mgmt
capex_abn
equpo_me
niq_be

ret_6-1

ocf_at
oaccruals_at
sale_emp_grl
emp_grl
capx_gr2
ocf_me

at_grl

sale_gr3
eqnpo_12m
ret_3-1

noa-at

eq_dur
qmj_growth
tangibility
Iti_grla
zero_trades_126d

2.07
2.08
2.11
2.12
2.13
2.17
2.20
2.21
2.21
2.29
2.30
2.32
2.34
2.36
2.37
2.47
2.50
2.54
2.60
2.63
2.65
2.66
2.68
2.70
2.7
2.77
2.77
2.82
2.90
2.93
2.94
2.95
2.96
2.96
3.01
3.02
3.03
3.08
3.08
3.11
3.17
3.17
3.35
3.36
3.42
3.46
3.48
3.49
3.53

1.48
1.58
1.57
1.78
1.21
2.50
1.51
0.90
1.95
1.80
1.82
1.62
2.47
2.24
1.93
1.80
2.12
2.20
2.31
2.05
2.83
2.11
1.66
2.38
1.92
2.62
2.14
2.24
2.15
2.45
2.12
2.09
2.18
1.45
1.86
2.46
2.79
2.76
1.52
2.44
2.7
1.95
2.54
2.11
2.50
3.12
2.31
2.85
1.01

1.58
2.07
1.76
1.47
1.62
1.89
1.98
1.41
1.94
2.25
1.97
1.82
2.17
2.12
241
2.34
2.45
2.25
2.85
2.32
2.56
243
1.91
2.75
2.40
291
2.46
2.92
2.45
3.21
3.36
2.51
2.80
1.83
2.43
3.06
3.19
3.21
1.92
2.93
3.13
2.14
3.10
2.64
3.01
3.47
2.95
3.21
1.97

2.40
2.31
2.39
2.36
2.69
2.07
2.56
2.95
2.43
2.50
2.56
2.70
2.31
2.47
2.53
2.79
2.67
2.78
2.67
2.99
2.57
2.94
3.25
2.87
3.10
2.80
3.30
3.05
3.31
3.12
3.25
3.46
3.34
3.82
3.67
3.27
3.12
3.21
3.96
3.43
3.39
3.84
3.76
4.01
3.89
3.63
4.03
3.83
4.94

11.70
17.10
5.20
7.69
16.35
15.31
61.26
12.68
35.24
23.42
8.56
14.00
15.31
15.31
16.07
15.17
24.04
15.32
35.16
29.13
24.50
24.38
11.60
35.12
13.56
21.98
47.18
25.61
15.12
36.68
28.12
31.38
13.18
13.31
19.83
25.91
29.45
29.70
13.49
14.42
26.84
9.51
11.13
23.92
24.23
35.60
21.64
21.55
10.69

67.70
99.96
90.69
95.73
93.35
93.65
90.13
77.18
83.44
85.25
47.44
80.50
92.88
80.59
77.38
99.83
86.26
90.67
91.89
99.70
90.33
79.12
73.75
99.36
68.84
77.72
98.94
89.57
78.44
97.46
97.81
97.91
92.44
97.59
95.51
98.95
92.86
98.18
89.27
84.86
94.85
99.55
91.59
80.26
89.26
82.10
77.50
99.79
99.33
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Table B2: Missingness, accuracy and model confidence per characteristic.

fnl_grla
eqnetis_at
inv_grla
aliq_at
kz_index
sale_grl
eqpo_me
taccruals_at
chcsho_12m
cowc_grla
niq-be_chgl
ni_ivol
coa_grla
alig_mat
inv_grl
nfna_grla
be_grla
turnover_126d
nig-at_chgl
rmaxb_rvol_21d
fef_me
turnover_var_126d
oaccruals_ni
dolvol_var_126d
sti_grla
taccruals_ni
beta_60m
netis_at
cash_at
capx_grl
dsale_dinv
ppeinv_grla
Inoa_grla
col_grla
zero_trades_21d
rmax1_21d
ret_.1.0
ocf_at_chgl
ret_60_12
debt_gr3
ncol_grla
dbnetis_at
saleq_su
resff3.12_1
saleq_grl
dsale_dsga
dgp_dsale
nig_su
tax_grla

3.54
3.56
3.61
3.63
3.67
3.69
3.76
3.80
3.87
3.91
3.97
3.98
4.04
4.07
4.14
4.25
4.27
4.33
4.35
4.36
4.44
4.51
4.53
4.55
4.63
4.69
5.01
5.01
5.06
5.08
5.13
5.18
5.34
5.39
5.56
5.80
5.98
6.19
6.29
6.39
6.83
6.88
6.90
7.20
7.22
7.33
7.40
7.45
7.63

2.98
2.56
3.19
2.12
3.25
2.92
3.08
2.16
244
3.35
3.40
3.61
4.04
2.76
3.89
2.50
3.65
0.92
3.87
3.83
2.27
3.81
2.61
3.70
4.57
3.03
4.91
3.54
3.11
4.43
4.54
4.95
4.58
4.55
3.22
4.85
4.78
4.33
9.92
5.72
6.29
4.91
6.44
6.86
9.58
5.93
5.81
6.34
7.45

3.43
3.50
4.03
3.64
3.75
3.27
4.81
2.72
2.62
3.74
3.66
3.56
4.16
4.03
4.29
4.10
3.83
2.21
4.09
3.83
2.99
4.14
3.44
4.19
4.18
3.35
3.23
4.51
3.88
5.06
5.05
5.30
6.52
5.19
3.97
4.67
5.26
4.99
6.65
6.42
7.14
6.00
7.24
6.65
6.18
6.47
7.06
7.19
7.13

3.81
4.04
3.72
4.27
3.83
4.10
3.90
4.78
4.66
4.18
4.34
4.27
4.02
4.62
4.20
5.04
4.61
6.24
4.66
4.75
5.68
4.89
5.63
5.00
4.76
5.73
5.40
5.80
6.08
5.39
5.39
5.25
5.50
5.78
6.89
6.51
6.65
7.26
6.41
6.68
7.00
7.86
7.07
7.45
8.19
8.15
8.16
8.11
7.79

14.69
27.74
17.09
22.73
24.04
16.66
31.77
20.36
8.57
23.51
37.99
36.38
22.95
28.06
32.18
14.69
18.81
10.69
35.07
19.88
18.90
10.69
19.87
10.69
31.68
20.42
26.26
27.75
12.44
24.37
35.99
24.09
25.93
21.63
9.22
15.32
9.72
17.12
41.62
33.92
22.50
12.42
35.95
19.23
24.49
34.26
25.08
34.84
15.30

98.57
80.60
96.96
85.54
68.33
74.75
89.60
93.34
100.00
91.93
95.08
88.86
79.82
97.05
72.40
98.47
83.94
98.68
89.56
85.68
73.35
86.93
95.29
88.35
99.83
72.45
99.89
94.65
75.18
95.77
93.78
82.07
64.71
97.16
58.61
75.93
94.15
98.77
81.40
72.94
97.99
72.85
96.84
97.74
88.39
71.73
98.42
78.17
94.93
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Table B2: Missingness, accuracy and model confidence per characteristic.

pi-nix 7.70 6.84 7.28 8.08 33.81 81.43 A
earnings_variability =~ 7.87 7.83 8.59 7.74 37.51 94.01 A
prc_highpre_252d 8.00 6.57 8.09 8.67 16.23 88.54 M
iskew_capm_21d 8.31 8.73 7.83 8.20 15.32 53.11 M
rskew_21d 8.72 7.96 7.84 9.28 15.32 81.25 M
resfI3_6_1 9.27 8.30 8.59 9.82 19.32 83.13 M
f_score 10.20 8.81 9.02 11.02 29.08 70.79 A
iskew_ff3_21d 10.20 9.82 10.17 10.40 15.31 41.45 M
betadown_252d 10.35 9.10 9.28 11.19 17.45 70.80 M
ni_arl 10.72 10.89 11.16 10.55 36.38 83.38 A
ni_inc8q 11.63 11.08 11.17 12.05 39.71 99.98 A
dsale_drec 11.77 11.97 12.02 11.63 24.50 91.19 A
iskew_hxz4_21d 12.03 11.51 12.13 12.27 24.50 27.51 M
bidaskhl 21d 12.15 12.62 12.33 11.89 13.86 99.97 M
beta_dimson_21d 24.70 23.30 23.23 25.70 15.31 73.74 M
coskew_21d 29.16 27.65 28.60 30.01 15.31 31.10 M
Average 4.36 3.63 4.03 4.75 21.61 85.89
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Internet Appendix

(not for publication)

Recovering Missing Firm Characteristics with

Attention-based Machine Learning

Table of Contents:

1. Appendix IA1 provides a detailed account of the model setup, the individual sub-
networks used and how they. We also provide an illustrative fictitious example for

reconstructing Apple’s book-to-market ratio in January of 2012.

2. Appendix IA2 shows the hyperparameters, their search ranges in the Cowen-Rivers,
Lyu, Tutunov, Wang, Grosnit, Griffiths, Maraval, Jianye, Wang, Peters, et al.

(2020) Bayesian optimization and the final hyperparameter choice.

3. Appendix B shows a list of the 143 firm characteristics used in the study, their type
(hybrid, market, and accounting), how often they are missing and how well our

model is able to reconstruct entries of said characteristic.

4. Appendix A3 shows a list of how factor premia estimated using high-minus-low
portfolio spreads for each of the 143 firm characteristics changes using the initial

and completed samples.

5. Appendix TA5 shows a portfolio migration heatmap to visualize how the portfolio

allocation changes over time for different characteristic types.



Appendix IA1l. Model Setup in Detail

An Illustrative Example Consider a simple example to understand how we leverage
information from observed firm characteristics to recover those that are missing. Fig-
ure [A1.1 shows the actual quintiles for the Fama and French (2015) characteristics for
Apple in January of 2012. Assume that we wish to reconstruct Apple’s quintile for the
book-to-market ratio “B2M”. We first mask it by inserting a “0” as a special class captur-
ing characteristics masked for reconstruction. We then run this masked input through the
model, which produces a probabilistic mapping between Apple’s B2M and the other four
characteristics. Assume for this example that knowing about Apple’s market capitaliza-
tion and growth in total assets is most informative about recovering the book-to-market
ratio. The model consequently learns to place a higher weight on these characteristics
(45% on “Size” and 35% on “Inv”). In contrast, market-based information, such as Ap-
ple’s beta is less important for this task (weight of 5%). Using this mapping of how
informative a certain characteristic is to reconstruct B2M, the model then produces a
probability distribution across the five quintiles for B2M. If it places the highest weight
on the first quintile (in this example, 85%) we have successfully reconstructed Apple’s
book-to-market ratio using only information about Apple’s other characteristics mea-
sured at time £. In the full model, we also incorporate information about how Apple’s

characteristics have evolved through time.

IA1.1.  Buwilding Blocks

Before we discuss the model architecture in detail, we introduce the two central building
blocks used in our model: attention and gated skip connections. For a description of the

attention mechanism and its merits see Section 2.2 in the main text.

Gated Skip Connections Gated skip connections control the flow of information in
our model by dynamically adjusting the impact that each layer of (non)linear processing
has. In a standard fully-connected network, each input is fed through each processing
layer. There is no way to skip further processing for simpler, while retaining a high level
of processing for the most complex inputs. Instead, with skip connections, the model

learns the optimal degree of processing per input from the data itself. Specifically, we let
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Fig. TA1.1. Exemplary Workflow to Recover Firm Characteristics

The figure shows an example for how our model manages to leverage the information of other firm
characteristics to reconstruct a target characteristic, in this case Apple’s (ticker AAPL) book-to-market
ratio. We first set the characteristic to be reconstructed to a special “masked” token (0), and subsequently
ask the model to find an optimally-weighted representation of other firm characteristics to come up with a
predicted distribution over possible quintiles for Apple’s book-to-market ratio. We then compare the most
likely quintile with the actual value, and update the model’s parameters through gradient descent, which
allows the model to incrementally learn about how to extract information from available characteristics.
What is missing from this stylized example is that we also incorporate the historic evolution of firm
characteristics in the actual model.

the model decide how much of each additional processing step to skip through weights w:

1

w(X) - 1+ e—Linear(x)’

(IA1)
where Linear(x) = Wx + b denotes a linear transformation of x. The output y of a
given processing block is then a weighted-average between raw input x and the processed
input f(x):

y = w(x) - f(x)+[1 - w(x)]- @ (1A2)

Skip connections have been used to improve the performance in many areas, most no-
tably in image processing, spawning the infamous ResNet (He, Zhang, Ren, and Sun,

2015). They not only allow for deeper models that generalize well to unseen data but



potentially also speed up the estimation. The particular choice of weighted skip con-
nection used for our model follows the “Highway Networks” by Srivastava, Greff, and
Schmidhuber (2015).

IA1.2.  Model Setup

Figure TA1.2 schematically shows how the model learns to extract information from the
cross-section of firms, their characteristics and their historical evolution. The model
architecture consists of four main processing units shown in Figure IA1.2, which are
further detailed below: feature embeddings create a high-dimensional representation of the
percentiles of each input characteristic and push dissimilar firms along that characteristic
away from each other. The temporal attention network (TAN) extracts an optimally-
weighted average of the temporal evolution of firm characteristics, and feature attention
networks (FAN) create a mapping between missing and available characteristics of a
given firm. In the last step, we run these extracted connections through a multi-layer
perceptron (MLP), which estimates a probability distribution over the percentiles of each

characteristic we wish to recover.

Feature Embeddings The financial literature highlights stark differences between
stocks with small and large market equity in many aspects (Fama and French, 1993).
Recovering Apple’s book-to-market ratio using other characteristics may very well lead
to a different functional form than recovering Rite Aid Corp.’s book-to-market ratio. To
accommodate these differences across the range of a characteristic and to improve the
learning capacity of the model, we feed each input characteristic through its own embed-
ding. This is common in machine learning to deal with complex datasets (Huang et al.,
2020; Somepalli et al., 2021; Lim et al., 2021; Gorishniy et al.; 2021). An embedding
is a learned lookup table that represents the percentiles of a target characteristic in a
D-dimensional space. Percentiles that are closer in vector space are expected to behave
similarly. For example, the model may learn that small stocks should receive different
processing from large stocks, by pushing these stocks away form one another in vector
space. We choose an internal embedding size of D = 64, such that each of the 100 (+1
missing; +1 masked) classes per characteristic is represented by a 64-dimensional vector.
Embeddings have the added benefit of increasing the model’s internal learning capac-

ity, by adding a fourth “embedding” dimension, leaving the characteristics dimension



® ®
® o’
®
®

Embedding TAN — FAN > MLP —>

L)

Fig. [A1.2. Model Setup

The figure schematically shows how the model extracts information from the cross-section of firm char-
acteristics, as well as their historical evolution to predict the percentiles of characteristics masked for
reconstruction (by the token “07). We first randomly mask a fixed percentage (20%) of input charac-
teristics for reconstruction, feed the characteristics through embeddings, a temporal attention network
(TAN) extracting information about the characteristics’ historical evolution, and multiple feature at-
tention networks (FAN), which extract information from other available characteristics. The last step
comprises a multi-layer perceptron (MLP), which generates an informed probability distribution of the
true percentile. We then compare how close the model’s predicted percentiles are to the ones actually
observed before masking them.
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untouched, which increases the model’s interpretability.

Temporal Attention Network To extract temporal patterns across characteristics,
we use a simplified version of the temporal attention mechanism put forth by Lim et al.
(2021). We feed the input from the embedding layer through an initial long-short-term
memory (LSTM) network (see Figure IA1.3. The computation of the attention matrix
is permutation invariant. It therefore disregards the timing of when information was
received. To allow the model to understand that information from four years ago may
be less important than the same information obtained last month, we need to add a
time-positional encoding to the input. As in Lim et al. (2021), the LSTM serves this
purpose. LSTMs have been successfully used by Chen and Zimmermann (2020) to extract
macroeconomic states from a large data set of macroeconomic indicators. The effective
lookback ability of LSTMs is limited, however, a drawback that temporal attention solves

by explicitly attending to past information, without relying on gating mechanisms.

The time-encoded data is fed through the temporal IMHA unit with eight attention
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Fig. TA1.3. Temporal Attention Network

The figure shows the setup of the temporal attention network (TAN). We first feed the input through a
long-short-term memory network to add positional awareness. We then employ temporal interpretable
multi-head attention (IMHA), which extracts a matrix which optimally weights historical time steps.
The last step applies a linear fully-connected layer with nonlinear GELU activation function. Each step
is skipable in part or in full, through skip connections. We also apply dropout multiple times during
training, which increases the stability of the model during inference.

heads, which extracts a weighted importance of past time step in the form of a temporal
attention matrix. We follow this up by a simple linear layer with a GELU activation
function. GELU has been introduced by Hendrycks and Gimpel (2016) and solves the

issue of vanishing gradients occasionally encountered by the standard ReL.U.

Feature Attention Network After we have extracted an optimally-weighted temporal
representation of the input embeddings, we feed this intermediate data through six FANs.
This number follows the original Transformer study by Vaswani et al. (2017). Each FAN
creates a feature attention matrix, which tells us which characteristics the model uses to
reconstruct a given missing input. The use of multiple consecutive FANs helps the model

cover not only simple reconstructions, but also those that require more processing.

We feed the output of the feature IMHA with eight attention heads through a lin-
ear layer followed by a GelU, and allow for dynamic complexity control through skip-

connections.

Multi-Layer Perceptron The last processing unit in our model is a standard MLP.
MLPs combine a number of linear layers of varying sizes with activation functions. We
use a total of two linear layers, the first of which is followed by a GelU activation func-
tion. The last layer takes the internal representation of the input data and creates a
(B x F x G)-dimensional tensor, where GG denotes the number of classes. We apply a
Softmax function to the last dimension to obtain a probability distribution p across a

characteristic’s percentiles for all firm-month observations in the batch of size B. We
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Fig. TA1.4. Feature Attention Network

The figure shows the setup of the feature attention network (FAN). We feed the input through a fea-
ture interpretable multi-head attention network (IMHA), followed by a linear fully-connected layer with
nonlinear GELU activation function. Each step is skipable in part or in full, through skip connections.
We also apply dropout multiple times during training, which increases the stability of the model during
inference.

then regard the most probable percentile as the predicted class and compare it with the

true (unmasked) percentile.



Appendix TA2.

Hyperparameters

The following Table TA2.1 shows the model’s hyperparameters, their search ranges and

the optimal values using a hyperparameter search with 64 trials and the Bayesian opti-

mization scheme outlined in Cowen-Rivers et al. (2020).

Table TA2.1: Hyperparameters for the Models Considered.

The table shows the hyperparameters and the boundaries from which they are randomly drawn to
optimize them for each model considered. Optimal hyperparameter values are shown in bold.

Model to fill missing firm characteristics

Batch size 2,400

Training months 180

Validation months 60

Testing months 402

min [r 0.00001

max Ir 0.005

Weight decay 0.001

AdamW f 0.9 Follows Liu et al. (2019)
AdamW S 0.98 Follows Liu et al. (2019)
AdamW eps le—6 Follows Liu et al. (2019)

~ 2 FocallLoss parameter

Mask pct. 20% Char. to randomly mask for reconstruction
F 151 Number of characteristics

T 60 Number of lookback timesteps
[N embedding 64 Internal model size

NIMHA 8 per step Number of attention heads
FAN steps 6 Number of consecutive FANs
FAN Normalization € [Soft, Ent, Sparse]Max

FAN Dropout € [0.0,0.1,0.3]

FAN Linear Dropout € [0.0,0.1,0.3]

TAN steps 6 Number of consecutive TANs
TAN Normalization € [Soft, Ent, Sparse|Max

TAN Dropout € [0.0,0.1,0.3]

TAN Linear Dropout € [0.0,0.1,0.3]

MLP dropout € [0.0,0.1,0.3]




Appendix IA3. Changes in Factor Premia — Value-
weighted Returns

The following Table IA3.1 reports changes in factor portfolio returns after the inclusion of
firms with previously missing values using market capitalization-weighted returns, follow-
ing Jensen et al. (2021). Characteristics are sorted by the change in the factor premium
AHmL. We also provide the premium before (HmL"™) and after (HmL"*") imputation.
Column “Not sig.” equals “Y” whenever the factor’s premium was significant before
inclusion of missing observations, but is not significant thereafter. This happens on 6
occasions. The total number of significant factors is fairly constant at 98 before and 95
after imputation.

Table IA3.1: Change in Factor Premia.

HmLFre Hm[Post AHmL Not sig.
f_score 0.27  FFE 0.12 ok —0.15  ***
fcf_me 0.13 oAk 0.06 ook —-0.07 ok
ivol_capm_252d 0.19  *%* 0.13 ook —0.06  ***
cowc_grla 0.10  *** 0.04 ook —0.06  F**
ivol_capm_21d 0.18  *¥* 0.12 ok —0.06  ***
cop_at 0.18  *%* 0.12 ork —0.06  ***
noa_grla 0.13 ok 0.07 ok —0.05  Fx
cop-atll 0.16  *** 0.11 ok —0.05  Fx
ret_12_1 0.21 oAk 0.16 oAk —0.05 ok
ope_bell 0.10  *** 0.06 ok —0.04  ***
coa_grla 0.08 ¥ 0.04 oak —0.04  *¥*
rd_me 0.14 oAk 0.10 oAk —0.04 oAk
ret_60_12 0.03 - —0.01 - —0.04 oAk
ppeinv_grla 0.11 ook 0.08 ork —0.04  FxX
ocf_at 0.14 ok 0.11 oAk —0.04 oAk
ami_126d 0.04 - 0.00 - —0.03 -
ivol_ff3_21d 0.18 oAk 0.14 oAk —0.03 oAk
niq_at 0.11  #k 0.08 L0.03 e
capex_abn 0.04 ¥ 0.01 - —0.03  F** Y
oaccruals ni 0.10  H** 0.07 ok —0.03 ¥
ncoa_grla 0.09  FF* 0.06 ok —0.03  ***
nncoa_grla 0.09 ¥ 0.06 ork —0.03  ***
eq_dur 0.11 oAk 0.08 ook —0.03 ok
capx_gr3 0.06  *H* 0.03 ook —0.03 Hox
oaccruals_at 0.09 X 0.06 ok —0.03  Rx
noa_at 0.11 ok 0.09 ok —0.03  ***
inv_grl 0.08 oAk 0.05 oAk —0.03 oAk
op_atll 0.14 % 0.12 003w
saleq_su 0.03 ¥ 0.01 - —0.02  Fx* Y
ebitda_mev 0.14 ook 0.11 ook —0.02 ok

Continued on next page.




Table TA3.1: Change in Factor Premia.

debt_gr3 0.04 X 0.02 ork —0.02 R
inv_grla 0.09  F¥* 0.07 ok —0.02 *x
chcsho_12m 0.11 oAk 0.09 ork —0.02 ook
be_grla 0.06 oAk 0.03 * —0.02 oAk
ocf_me 0.12 ook 0.10 ook —0.02 ok
emp_grl 0.07 X 0.05 ook —0.02 R
resff3_6_1 0.07 oAk 0.05 oAk —0.02 oAk
netis_at 0.11 ok 0.09 ok —0.02 ork
zero_trades_21d 0.02 - 0.00 - —0.02 -
nfna_grla 0.07  FFE 0.05 ok —0.02  F*
earnings_variability ~ 0.01 - —0.01 - —0.02  Fx*
capx_gr2 0.07  FFX 0.05 ook —0.02 ok
alig-mat 0.07  *** 0.05 oAk —0.02 oAk
capx_grl 0.07  FFE 0.05 ok —0.02 ok
gmj_growth 0.04 ok 0.02 ok —0.02 -
dolvol_var_126d 0.01 - —0.01 - —0.02 Hx
pre_highpre_252d 0.10 * 0.08 * —0.02  kx*
mispricing_mgmt 0.14  *** 0.12 ok —0.02  F¥*
niq_be_chgl 0.06 ¥ 0.04 ok —0.02 ok
pi_nix 0.02 * 0.00 - —0.02 * Y
eqnpo_12m 0.10  *%* 0.08 ook —0.02 -
Inoa_grla 0.09 X 0.07 ok —0.01 oK
ope_be 0.11 ok 0.09 ok —0.01 -
kz_index 0.03 - 0.01 - —0.01 *x
dsale_drec 0.01 - —0.00 - —0.01 *x
mispricing_perf 0.18  *%* 0.17 ook —0.01 Hox
qmj_safety 0.05 ok 0.04 * —0.01 oK
taccruals_at 0.03 ok 0.02 - —0.01 ok Y
ni_me 0.12 o 0.11 oAk —0.01 -
dsale_dinv 0.05 orok 0.03 ork —0.01 -
ni_arl 0.00 - —0.01 - —0.01 Hok
sale_grl 0.04 ok 0.03 * —0.01

at_grl 0.08  *H* 0.07 ok —0.01
turnover_var_126d 0.01 - —0.01 - —0.01 -
eqpo_me 0.06 *ok 0.04 *ok -0.01 -
ret_6_1 0.16 oAk 0.15 oAk —0.01 oAk
rmax5_rvol_21d 0.09  *** 0.08 ook —0.01 *
at_be 0.04 - 0.03 - —0.01 ok
ivol_hxz4_21d 0.18 oAk 0.17 oAk —0.01 *ok
iskew_ff3_21d 0.01 - —0.00 - —0.01 ok
ret_1_0 0.09 oAk 0.08 oAk —0.01 *ok
ocf_at_chgl 0.05 X 0.04 ok —0.01 -
sale_gr3 0.03 * 0.02 - —0.01 - Y
bev_mev 0.04 - 0.03 - —0.01 -
sale_bev 0.10  *** 0.09 ok —0.01 *x
taccruals_ni 0.04 ¥ 0.03 ork —0.01 -
fnl_grla 0.08 oAk 0.07 oAk —0.01 ok
tax_grla 0.01 - —-0.00 - —0.01 -
rd_sale 0.03 - 0.03 - —-0.01 -

Continued on next page.
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Table TA3.1: Change in Factor Premia.

netdebt_me
zero_trades_252d
niq_at_chgl
turnover_126d
eqnetis_at
op-at
rmaxb_21d
sale_emp_grl
sale_me
cash_at
gp-atll

be_me
ebit_sale
dgp_dsale
resff3_12_1
coskew_21d
iskew_hxz4_21d
ebit_bev
ret_3_1
beta_dimson_21d
7_8core
lti_grla
divl2m_me
ret_9_1

gp-at

niq_su

ni_ivol

at_me
dbnetis_at
col_grla
tangibility
bidaskhl_21d
alig_at
ret_12_7
beta_60m
sti_grla

age

ncol_grla
debt_me
dsale_dsga
betadown_252d
rvol_21d
saleq_grl
eqnpo_me
opex_at
at_turnover
rd5_at

ni_be

prc

0.03
0.03
0.05
0.02
0.12
0.17
0.19
0.00
0.09
0.01
0.05
0.04
0.10
0.05
0.13
0.01
0.01
0.09
0.12
0.01
0.03
0.02
0.03
0.18
0.09
0.05
0.05
0.03
0.06
0.00
0.02
0.11
0.05
0.16
0.00
0.00
0.01
0.01
0.01
0.00
0.02
0.19
0.01
0.14
0.03
0.05
0.03
0.08
0.06

*3kk

kokk

kK%

K3k

*kk

*okk

K3k

*kk
*okk

K3k

*3kk

*3kk
Kkk
Kokk

K3k

0.02
0.02
0.05
0.01
0.12
0.17
0.18
—0.00
0.09
0.01
0.05
0.04
0.10
0.04
0.13
0.01
0.01
0.09
0.12
0.00
0.03
0.02
0.02
0.18
0.09
0.05
0.05
0.03
0.06
0.00
0.02
0.10
0.05
0.16
0.00
0.00
0.01
0.01
0.01
0.00
0.02
0.19
0.01
0.14
0.03
0.05
0.03
0.08
0.06

KKk

Kokk

k%%

K3k

KKk

*okk

*3kk

KKk
*okk

K3k
K3%kk

K3k

—0.01 ok
—0.01 -
—0.01 -
—0.01 -
-0.01 -
—0.01 ok
—0.01 -
—0.01 -
—0.00 -
—0.00 *
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 otk
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 - Y
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Continued on next page.
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Table TA3.1: Change in Factor Premia.

rskew_21d 0.02 *x 0.02 oAk 0.00 -
qmj_prof 0.13  *** 0.13 ok 0.00 -
rmax1_21d 0.14 oAk 0.14 ork 0.00 -
ni_inc8q 0.01 - 0.02 - 0.01 -
niq_be 0.11 ook 0.12 oAk 0.01 -
dolvol _126d 0.03 - 0.04 - 0.01 -
o_score 0.07 *x 0.08 ok 0.01 -
iskew_capm_21d 0.01 - 0.02 *x 0.01 ork
intrinsic_value 0.01 - 0.02 - 0.01 -
ocfq_saleq_std 0.05 * 0.06 oK 0.01 -
zero_trades_126d 0.03 - 0.04 * 0.01 -
betabab_1260d 0.04 - 0.06 *x 0.02 -
market_equity 0.08  *¥* 0.10 *ox 0.02 -
qmj 0.10 o 0.12 oAk 0.02 oAk
corr_1260d 0.00 - 0.02 - 0.02 -
by 98 95 71
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Appendix IA4. Changes in Factor Premia — Equally-
weighted Returns

The following Table IA4.1 reports changes in factor portfolio returns after the inclusion of
firms with previously missing values using equally-weighted returns. Characteristics are
sorted by the change in the factor premium AHmL. We also provide the premium before
(HmL"™) and after (HmL"*") imputation. Column “Not sig.” equals “Y” whenever
the factor’s premium was significant before inclusion of missing observations, but is not
significant thereafter. This happens on 6 occasions. We note, however, that the total
number of significant factors is fairly constant at 113 before and 114 after imputation.

Table TA4.1: Change in Factor Premia.

HmLF™ HmLFost AHmL Not sig.
f_score 0.24 ¥ 0.16 ook —0.08 ok
pre_highpre_252d 0.04 - —0.03 - —0.07 R
noa_grla 0.18 k¥ 0.11 ook —0.06  F**
rmaxb_rvol 21d 0.16  *** 0.11 ok —0.06 ork
debt_gr3 0.10 oAk 0.04 oAk —0.05 oAk
ppeinv_grla 0.17  *%* 0.12 ook —0.05  ***
ivol_capm_21d 0.11 ok 0.06 - —0.05  F** Y
ebitda_mev 0.10  *** 0.05 * —0.05  Rx
noa_at 0.17  *** 0.13 ok —0.05  ***
cop_at 0.18  *%* 0.13 ork —0.05  ***
cop_atll 0.16  *%* 0.11 ork —0.04  F¥*
inv_grl 0.12 oAk 0.08 ok —0.04 oAk
saleq_su 0.07 X 0.03 oK —0.04  Fx*
emp_grl 0.12  HF* 0.08 ook —0.04  F**
cowc_grla 0.10  *%* 0.05 ork —0.04  ***
ncoa_grla 0.14 orok 0.11 ork —0.04 ork
ivol_ff3_21d 0.11 Hok 0.07 * —0.04 oAk
oaccruals_at 0.11 ook 0.07 ook —0.04  F**
zero_trades_252d 0.14  HF* 0.10 ok —0.04  F**
mispricing_mgmt 0.20  FFE 0.16 ook —0.04 R
coa_grla 0.12 0.08 ok —0.04  Fxx
resff3_6_1 0.09 ook 0.05 oAk —0.04 ok
oaccruals_ni 0.12  *%* 0.08 ook —0.03  Rx
eqnpo_12m 0.12  *%* 0.09 ork —0.03  F**
nncoa_grla 0.15  HF* 0.11 ook —0.03  kxx
at_grl 0.15 ok 0.12 Rk 0.03 e
be_grla 0.12 oAk 0.08 ork —0.03 ork
nfna_grla 0.10  *%* 0.07 ook —0.03  F**
ocf_at_chgl 0.05 X 0.02 * —0.03  F**
alig_at 0.11 ok 0.08 oAk —0.03 xx
pi_nix 0.01 - —0.02 *x —0.03  ***
ret_60_12 0.09 ook 0.06 K —0.03 *x

Continued on next page.
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Table TA4.1: Change in Factor Premia.

alig_mat 0.13  *%* 0.10 ork —0.03  F**
fcf_me 0.11 HoAK 0.08 oAk —0.03 *
ret_6_1 0.10 o 0.07 *ok —0.02 oAk
ret_12_1 0.14 HAK 0.12 o —0.02 oAk
ivol_capm_252d 0.06 - 0.03 - —0.02 Hok
turnover_126d 0.10 oAk 0.08 ok —0.02 oAk
sale_grl 0.10  *** 0.07 ok —0.02  **¥*
betadown_252d 0.05 - 0.03 - -0.02 oAk
corr_1260d 0.04 - 0.01 - —0.02 oAk
netis_at 0.14 HoAK 0.12 o —0.02 oAk
qmj_growth 0.06  *H* 0.04 ook —0.02 *
Inoa_grla 0.14 k¥ 0.12 ook —0.02  F**
ivol_hxz4_21d 0.11 o 0.09 Hok —0.02 oAk
tax_grla 0.02 - —0.00 - —0.02  *¥*
capex_abn 0.06 oAk 0.05 oAk —0.02 ok
chesho_12m 0.13 ook 0.11 oAk —0.02 oAk
capx_gr3 0.11 ok 0.09 ok —0.02 *
inv_grla 0.13 HoAK 0.12 o —0.02 oAk
capx_grl 0.10 ¥ 0.09 ok —0.02 ok
ret_3_1 0.06 Hok 0.04 - —0.02 o Y
sale_emp _grl 0.02 o 0.01 - —0.02  Fx Y
fnl_grla 0.12  *** 0.10 ok —0.02  Fx*
sale_gr3 0.08  *** 0.07 ok —0.02 *x
niq_be_chgl 0.10 o 0.09 o —0.02 *ok
op-at 0.12 oAk 0.11 oAk —0.02 oAk
be_me 0.18 HAK 0.16 o —0.01 Hok
dsale_drec 0.01 - —0.00 - —0.01 *
intrinsic_value 0.04 - 0.03 - —0.01 -
taccruals_at 0.04 *ok 0.03 * -0.01 oAk
ocf_at 0.12 o 0.11 oAk —0.01 *ok
ret_9_1 0.12 HAK 0.11 HAK —0.01 oAk
netdebt_me 0.08 oAk 0.07 oAk —0.01 oAk
rd5_at 0.06 * 0.05 - —0.01 - Y
z_score 0.05 * 0.03 *ok -0.01 -
ret_1.0 0.29 o 0.28 oAk —0.01 oAk
capx_gr2 0.11 ok 0.10 ok —0.01 -
zero_trades_126d 0.13 oAk 0.12 oAk —0.01 -
nig-at_chgl 0.08 ¥ 0.07 ook —0.01 *
niq-at 0.09 HoAK 0.08 HoAK —0.01 -
taccruals_ni 0.04 oAk 0.03 *ok -0.01 -
ebit_sale 0.05 - 0.04 - —0.01 *
dgp_dsale 0.06  *F* 0.05 ok —0.01 ok
sale_bev 0.10 oAk 0.09 oAk -0.01 *
niq_su 0.10  *** 0.09 okx —0.01 ok
rd_me 0.24 HoAK 0.23 o —0.01 -
at_me 0.11 oAk 0.10 ok -0.01 -
dsale_dsga 0.01 - —0.00 - —0.01 -
ebit_bev 0.06 * 0.05 - —0.01 * Y
ami_126d 0.08 Hok 0.07 oAk —0.01 -

Continued on next page.
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Table TA4.1: Change in Factor Premia.

cash_at
kz_index
bev_mev
op_atll
eqnetis_at
rskew_21d
resff3_12_1
bidaskhl_21d
sale_me
tangibility
ni_ivol

ocf_me
turnover_var_126d
dbnetis_at
rvol_21d
col_grla
ret_12_7
rd_sale
beta_dimson_21d
dsale_dinv
ope_bell
lti_grla
qmj_safety
mispricing_perf
pre

age
iskew_hxz4_21d
ni-inc8q
beta_60m
ni_me
eqpo_me
market_equity
saleq_grl
eqnpo_me
ni_be
rmax5_21d
opex_at
divl2m_me
niq_be
debt_me
ope_be
dolvol_126d
eq-dur

gp-at

gp-atll
sti_grla
coskew_21d
at_turnover
at_be

0.04
0.04
0.15
0.09
0.15
0.06
0.15
0.02
0.15
0.09
0.00
0.10
0.05
0.10
0.11
0.05
0.11
0.01
0.03
0.05
0.06
0.04
0.05
0.14
0.07
0.01
0.03
0.01
0.01
0.05
0.05
0.16
0.01
0.14
0.06
0.16
0.03
0.02
0.12
0.01
0.07
0.12
0.11
0.09
0.04
0.03
0.00
0.04
0.01

*
ko
kksk
kkk
kkk
kokok
kokok

*kk
Kokk

$okk

*3k

*kk

*okk

KKk
kokok

*okk

K3k

*okk

k3K

*k

*okk

kKoK

ok

*k

*okk

0.04
0.03
0.15
0.08
0.14
0.05
0.15
0.02
0.15
0.08
—0.00
0.10
0.04
0.09
0.11
0.05
0.11
0.01
0.03
0.05
0.06
0.04
0.05
0.14
0.07
0.01
0.03
0.01
0.01
0.05
0.05
0.16
0.02
0.14
0.06
0.16
0.03
0.02
0.12
0.01
0.08
0.13
0.11
0.10
0.04
0.04
0.01
0.05
0.02

*
kkk
kkk
k%%
kokok
kkk

KKk
Kokk

ok
*k
*okk
*okk
*okk
$okk

—0.01 ok Y
—0.01 -
—0.01 -
—0.01 -
-0.01 *
—0.01 -
—0.01 ok
—0.01 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 ok
—0.00 -
—0.00 -
—0.00 *
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -
—0.00 -

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.01

Continued on next page.
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Table TA4.1: Change in Factor Premia.

iskew_capm_21d 0.05 X 0.06 ork 0.01 -
qmj_prof 0.12  Hk* 0.13 ook 0.01 ok
dolvol_var_126d 0.03 - 0.04 oK 0.01 *
zero_trades_21d 0.06 * 0.07 ok 0.01 -
ncol_grla 0.01 - 0.02 * 0.01 -
betabab_1260d 0.05 - 0.07 ok 0.01 -
o_score 0.02 - 0.04 - 0.02 ok
ni_arl 0.01 - 0.03 ok 0.02 *x
iskew_ff3_21d 0.02 Hok 0.04 oAk 0.02 oAk
earnings_variability ~ 0.01 - 0.03 ok 0.02 ok
rmax]1_21d 0.15 ook 0.17 oAk 0.02 ok
ocfq_saleq_std 0.04 - 0.06 ok 0.03 ok
qmj 0.10  *xx 0.13  *xx 0.03  *x*
b)) 113 114 89
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Appendix IA5. Portfolio Migration
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Fig. IA5.1. Portfolio Migration Heatmap

The figure shows how the portfolio allocation of characteristics of different types fluctuates from month
t to t + 6, i.e., over half a year. Darker shades of blue indicate that a migration from the portfolio on
the x-axis to the portfolio on the y-axis is more likely. We separately show the portfolio migration for
accounting and market-based, as well as hybrid characteristics. Note that the portfolio migration for
market-based characteristics is most dispersed.
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