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Abstract

Recent findings on the term structure of equity and bond yields pose severe challenges to
existing equilibrium asset pricing models. This paper presents a new equilibrium model of sub-
jective expectations to explain the joint historical dynamics of equity and bond yields (and their
yield spreads). Equity/bond yields movements are mainly driven by subjective dividend/GDP
growth expectations. Yields on short-term dividend claims are more volatile because short-term
dividend growth expectation mean-reverts to its less volatile long-run counterpart. Procyclical
slope of equity yields is due to the counter-cyclical slope of dividend growth expectations. The
correlation between equity returns/yields and nominal bond returns/yields switched from posi-
tive to negative after the late 1990s, mainly owing to a shift in correlation between real GDP
growth and real dividend growth expectations from negative to positive, and only partially due
to procyclical inflation. Dividend strip returns are predictable and the strength of predictabil-
ity decreases with maturity due to underreaction to dividend news and hence predictable divi-
dend forecast revisions. The model is also consistent with the data in generating persistent and
volatile price-dividend ratios, excess return volatility, and momentum.

Keywords: Subjective expectations, under-reaction, term structure, equity yields, stock-bond correlation,

return predictability, forecast revision, momentum, stock market puzzles

JEL Classification: G00, G12, E43.
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1 Introduction

The fundamental question in asset pricing research is what drives the equity and bond price move-

ments. To see the link between them, researchers can express equity price at time t as its discounted

cash flows:

Pt =
∑
n≥0

E t (Dt+n)
Rt:t+n

= ∑
n≥0

E t (Dt+n)

exp
(
n

(
y(n)

t +θ(n)
t

)) ,

where E t (Dt+n) is the expected nominal dividend and Rt:t+n is the required return. Rt:t+n can be

decomposed further into nominal bond yield y(n)
t and dividend risk premium θ(n)

t . This equation

holds under marginal investors’ expectations, which could be rational or irrational. Motivated by the

finding that prices are too volatile than expected dividend and the finding that future returns are

predictable by the price-dividend ratio under the rational expectation (Shiller, 1981; Campbell and

Shiller, 1988; Cochrane, 2008, 2011), researchers have proposed several asset pricing models based

on time-varying dividend risk premium θ(n)
t . Leading examples include the habit formation model

(Campbell and Cochrane, 1999), the long-run risk model (Bansal and Yaron, 2004), and the disaster

risk model (Barro, 2006; Gabaix, 2012; Gourio, 2012).

Recent empirical findings pose new challenges to existing equilibrium asset pricing models from

different dimensions. (1) Survey-based evidence indicates weak time-variations in expected returns

(Greenwood and Shleifer, 2014; Nagel and Xu, 2022b) instead of the strong variations implied by

many existing models. (2) De La O and Myers (2021) show that most aggregate stock price move-

ments are caused by cash flow growth expectations rather than by subjective return expectations,

and Bordalo et al. (2020b) show that long-term earnings growth expectations over-react to news,

leading to stock return predictability and excess price volatility. (3) Short-term equity yields are

more volatile than long-term equity yields and both are driven mainly by dividend growth expecta-

tions (Van Binsbergen et al., 2013) rather than by dividend risk premium. (4) The slope of equity

yields (long-term minus short-term yields) is procyclical. (5) Dividend strip returns are predictable,

but the strength of predictability decreases with maturity (Van Binsbergen et al., 2012). (6) The
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correlation between aggregate stock returns and long-term nominal bond returns has switched from

positive to negative since the late 1990s (Li, 2002; Campbell et al., 2017). Although the change in

inflation cyclicality is the standard explanation in the literature, Duffee (2021) provides empirical

evidence that the correlation between stock returns and real bond returns, i.e., a real channel, plays

a significant role in explaining this fact.

This paper contributes to the literature by proposing an equilibrium model that explains the joint

dynamics of the term structure of equity and bond yields and is consistent with the above empirical

findings. In our model, variations in equity (bond) yields are due to subjective dividend growth (GDP

growth) expectations instead of dividend (bond) risk premium. We show that the model can match

the historical dynamics of the term structure of equity and bond yields and their comovements.

Yields on short-term dividend claims are more volatile because the short-term dividend growth ex-

pectation mean-reverts to the less volatile levered long-run GDP growth expectations. The negative

slope of equity term structure during recessions reflects the countercyclical slope of dividend growth

expectations. Long-term Treasury bonds have switched from risky assets to safe assets since the late

1990s, which is mainly driven by a stronger correlation between real GDP and real dividend growth

expectations and only partially by procyclical inflation. Finally, underreaction to dividend news (or

predictable dividend forecast revisions) implies (1) ex-post predictability of strip/market returns, (2)

decreasing in predictability with maturity, and (3) return momentum. Prices are volatile because of

volatile subjective beliefs.

To model subjective beliefs, we depart from rational expectation by assuming that the agent has

the “belief in the law of small numbers” as labelled by Tversky and Kahneman (1971). Under this

assumption, the agent perceives small samples to represent their population equally well as large

samples. Such cognitive bias implies that the agent, in his human nature, produces forecasts for

the future by extrapolating fundamentals; that is, the agent overreacts to the news. Meanwhile,

variations of macro variables are affected by both underlying structural shocks and central bank

mandates. Misperception of the central bank’s reaction to inflation and output growth shocks can
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switch overreaction to the observed under-reaction to the news. In addition to the sticky-information

model of Mankiw and Reis (2002), noisy-information model of Sims (2003), or learning about the long-

run in Farmer et al. (2021), we provide an alternative channel that leads to agent’s underreaction to

news.

We assume that the data generating processes (DGPs) for real dividend level, real GDP growth,

and inflation all contain latent states. The agent forms subjective expectations of these latent states

using the learning framework discussed above. Specifically, the aggregate log dividend is decomposed

into two components: (1) long-duration dividend dl
t and (2) share of long-duration dividend in total

dividend ds
t . The aggregate endowment risk is embedded in the long-duration dividend dl

t, which is

assumed to be levered on log real GDP. The share of long-duration dividend ds
t carries no aggregate

risks and follows a stationary process.1 Meanwhile, the real GDP growth (as endowment growth)

and inflation are each decomposed into one stable and one transitory/volatile component. The sta-

ble component varies less with the business cycle and is assumed to contain a random-walk state

variable (capturing trend growth and inflation), while the transitory component varies significantly

with the business cycle and is assumed to contain a stationary state variable (capturing short-run

deviations from the trend).

We estimate the subjective learning gains by matching model-implied expectations with consen-

sus forecasts in the survey. The model implies that the agent under-reacts to news when forming

expectations on real dividend, real GDP growth and inflation. Furthermore, we find that the model-

implied subjective expectation of dividend growth closely tracks the full time-series of consensus

forecasts for the aggregate dividend growth, with the correlation of 0.8 for both 1- and 2-year fore-

casts.

To derive asset pricing implications, our model assumes that the representative agent has a con-

1Empirically, we find that long-duration dividends indeed are more related to the aggregate endowment. We
also find that separating long-duration dividend from total dividend can help the model best match dividend
growth expectations in survey data. The two-component model is also consistent with the recent finding that
the cross-section of cash-flow duration contains useful information for the aggregate market (see e.g., Kelly
and Pruitt, 2013; Li and Wang, 2018; Gormsen and Lazarus, 2022).
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stant relative risk aversion (CRRA) utility when pricing assets, which implies a constant subjective

risk premium. We show that our model can match the entire time-series dynamics of the term struc-

ture of equity yield over the past three decades. Using equity yield data from Giglio et al. (2021),

Figure 2 displays some salient features: (1) more volatile short-term equity yields, (2) a secular

decline in equity yields since the late 1980s followed by an upward trend after 2000, (3) a sharp in-

crease in yields during recessions, and (4) a procyclical equity yield slope. In our model the constant

risk premium suggests that the equity yields are driven by subjective dividend growth expectations.

The short-term expectation is more volatile and mean-reverts to the less volatile long-run growth

expectation, thus the long-term equity yields are more stable. The subjective dividend growth expec-

tations experienced an upward trend starting from the late 1980s and decreased steadily after 2000,

which caused the equity yields to have the opposite trend movements. During recessions, growth ex-

pectations are low, with the short-term expectation being much lower than its long-run counterpart.

Therefore, we observe sharp increases in equity yields and the procyclical equity yield slope. We

also show that the ex-post realized returns generated from the model align well with their empirical

counterparts. The implied 2-year (10-year) dividend strip returns have a correlation of 0.6 (0.5) with

the data. Regarding the bond market, since our model block for bond pricing closely follows the setup

of Zhao (2020), it matches several essential facts in the US bond market. Within our sample, we

find that the model-implied 1- (10-) year nominal bond yields have a correlation of 0.92 (0.95) with

the data, suggesting that the model is also successful in pricing nominal bonds.

We next investigate the comovements between equity and bond markets. A well-known stylized

fact is that long-term nominal bonds switched from risky to safe assets after the late 1990s; that is,

the correlation between bond and stock returns changed from positive to negative. The same pattern

is observed for the correlation between nominal bond yields and real equity yields: the “Fed model”.

Change in inflation cyclicality (from countercyclical to procyclical) can potentially explain these facts

since it switches the sign of inflation risk premium in equity returns (from negative to positive).2

2In equilibrium models, inflation risk premium in equity returns can arise from, for example, “money illu-
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However, Duffee (2021) finds that changes in the real bond and stock return correlation (i.e., a real

channel) play a significant role in explaining this fact. Our model reconciles these empirical find-

ings using subjective expectations of real GDP growth, inflation, and real dividend growth (rather

than inflation risk premium). While the real effect of inflation, defined as the covariance between

subjective inflation and subjective real growth, explains approximately 20% of the total changes in

bond-stock covariance, we find that changes in the nominal bond-stock covariance indeed are mainly

driven by changes in the real bond-stock covariance. More explicitly, such changes are due to a shift

in correlation between real GDP and real dividend growth expectations from negative to positive af-

ter 2000, which accounts for around 90% of total changes in nominal bond-stock covariance. That is,

a new channel driving the bond-stock correlation is that real bonds provide a better hedge to stocks

after 2000. In the data, we confirm the relevance of this channel.

Our model also sheds new light on why equity returns are predictable by equity yields (e.g.,

Campbell and Shiller, 1988) and why the strength of predictability declines from short- to long-

maturity dividend claims (e.g., Van Binsbergen et al., 2012). With constant risk premium, strip

returns can be decomposed to bond excess returns matched by maturity and dividend forecast revi-

sions. We find that (1) bond return predictability has a small contribution to the total strip return

predictability for short-maturity dividend strips; (2) dividend forecast revision is more predictable in

the short maturity, translating to a downward-sloping term structure of return predictability. The

reason is that the agent underreacts to dividend news. A positive shock to the current dividend

(higher equity yield) does not push up too much the agent’s dividend expectation today, leaving space

for the increase in subsequent dividend forecast revision. As the maturity increases, since the cur-

rent news has a smaller impact on longer-term dividend expectations, the predictability of dividend

forecast revision will become weaker. It should be noted that the return predictability caused by un-

derreaction to cash-flow news is also consistent with the momentum literature (see e.g., Chan et al.,

sion” (David and Veronesi, 2013), time-varying risk aversion (Campbell et al., 2020), long-run risk (Piazzesi
and Schneider, 2007; Bansal and Shaliastovich, 2013; Song, 2017), or time-varying ambiguity Zhao (2017).
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1996; Chordia and Shivakumar, 2006). In our equilibrium model, underreaction to dividend news

leads to positively autocorrelated dividend forecast revision, which translates to momentum.

Finally, the model reconciles major aggregate stock market puzzles. The model implies a time-

series of aggregate dividend yields close to and as persistent as the data. The unconditional mean

and volatility of model-implied dividend yields and market returns are comparable to the data. The

model also replicates the positive (negative) correlation between the market returns and the long-

term Treasury bond returns before (after) 2000.

In Appendix E, we extend the model to further take into account the agent’s fear over model

misspecification. We show that when the agent is ambiguous about real GDP and dividend growth,

the extended model implies time-series of equity yields and returns that are closer to the data.

Related literature

This paper is motivated by some new evidence in the empirical asset pricing literature: for example,

the importance of subjective expectation in equity markets (Barberis et al., 2015; Cassella and Gulen,

2018; Bordalo et al., 2020b; De La O and Myers, 2021; Guo and Wachter, 2021) and in bond markets

(Froot, 1989; Piazzesi et al., 2015; Cieslak, 2018; Duffee, 2018), the term structure of equity yields

(Van Binsbergen et al., 2012, 2013; Van Binsbergen and Koijen, 2017; Van Binsbergen, 2021; Giglio

et al., 2021), and the relationship between stock and bond markets (Li, 2002; Campbell et al., 2017;

Duffee, 2021). To the best of our knowledge, this is the first article that proposes an asset pricing

model with subjective beliefs to jointly explain the historical dynamics of the term structure of equity

and bond yields and is consistent with the above empirical findings. In fact, echoing Brunnermeier

et al. (2021), who suggest that “research focus should be on motivating, building, calibrating, and

estimating models with non-RE beliefs ... we need structural models of belief dynamics that can

compete with RE models in explaining asset prices and empirically observed beliefs,” this paper

connects subjective expectation with asset prices and estimates the belief process using survey data.
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This paper is also related to an extensive equilibrium asset pricing literature focusing on (1) ra-

tional expectation and aggregate stock market puzzles (Campbell and Cochrane, 1999; Bansal and

Yaron, 2004; Barro, 2006; Gabaix, 2012; Gourio, 2012; Albuquerque et al., 2016), (2) rational expec-

tation and bond markets (Piazzesi and Schneider, 2007; Wachter, 2006; Bansal and Shaliastovich,

2013), (3) the link between stock and bond markets (David and Veronesi, 2013; Campbell et al.,

2020; Song, 2017; Zhao, 2017), (4) risk premium and the term structure of equity returns (Hasler

and Marfe, 2016; Bansal et al., 2021; Breugem et al., 2022; Gonçalves, 2021a; Li and Xu, 2021), and

(5) subjective beliefs in equity and bond markets (Barberis et al., 2015; Adam et al., 2016; Nagel

and Xu, 2022a; Zhao , 2020). We extend the literature by providing a unified framework of bond and

equity pricing under subjective expectations, and the model matches many stylized facts in these two

markets. In particular, while Zhao (2020) shows how subjective expectation resolves some puzzles in

bond markets, our paper addresses leading puzzles in equity markets and bond-stock comovements.

The paper continues as follows. Section 2 outlines the framework for expectation formation and

asset pricing. Section 3 describes the data and model estimation and calibration. Section 4 shows

the empirical results. Section 5 provides some robustness analysis, and Section 6 concludes.

2 Expectation Formation and Asset Prices

In this section, we describe how the agent forms subjective beliefs over real dividend level, real

endowment growth, and inflation. Then assuming the CRRA utility, we derive the equilibrium bond

and equity prices that are consistent with those subjective beliefs.

2.1 Subjective expectation

We first introduce a framework to illustrate how the agent forms subjective expectations, and we will

apply the idea to specific economic forecasts in later subsections. Consider the following state-space
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model as the data-generating process for the economic outcome y:

yt = Cxt +σϵϵt, (1)

xt+1 = ρxt +σuut+1, (2)

with i.i.d. ϵt and ut following standard normal distribution. The coefficient C reflects how yt is tied

to the structural forces or latent states xt. Without loss of generality, we assume C > 0.

Rational belief updating is defined as Bayesian updating:

p(xt|I t)∝ p(yt|xt, I t−1)× p(xt|I t−1), (3)

which implies the following dynamics for the posterior belief over xt (i.e., the Kalman filter):

E txt = ρE t−1xt−1 +K(yt −CρE t−1xt−1), (4)

with the steady-state Kalman gain K = CP
C2P+σ2

ϵ
> 0 and P the steady-state variance of the predictive

distribution for the latent state.

To model subjective belief, we depart from Equation (3) by assuming that the belief update follows

p(xt|I t)∝ p(yt|xt, I t−1)1+θ× p(xt|I t−1), (5)

where θ captures the behavioural bias. An agent with subjective expectations evaluates one data

observation as if she observed 1 + θ data observations. The belief dynamics under such an update

rule have the same form yet different learning gain

Ẽ txt = ρẼ t−1xt−1 +ν(yt −CρẼ t−1xt−1), (6)
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where we label Ẽ(·) as the subjective expectation and the subjective learning gain as ν= (1+θ)CP̃
(1+θ)C2P̃ +σ2

ϵ

.3

When ν> K , that is, θ > 0, the agent overreacts to the news by becoming excessively optimistic (pes-

simistic) after good (bad) news about the latent state relative to the rational benchmark. Similarly,

when ν < K , or θ < 0, the subjective belief underreacts to news, as now the agent puts less weight

on the recent data.4 Hence the belief updating scheme (5) may accommodate rich dynamics as ob-

served in the survey data. For example, survey forecasts display overreaction in long-term earnings

growth (Bordalo et al., 2019, 2020b), underreaction in GDP growth and inflation (Coibion and Gorod-

nichenko, 2015), and underreaction in real dividend level (this paper).

When θ > 0, the belief updating can be micro-founded as the agent has the “belief in the law

of small numbers” (Tversky and Kahneman, 1971). Under such cognitive bias, the agent produces

forecasts for the future by extrapolating fundamentals; that is, the agent overreacts to the news. The

cognitive bias has been widely researched in the literature (e.g., Rabin, 2002) and a formal discussion

of (5) is offered by Santosh (2021).5 However, in this paper, we focus on the forecasts for real dividend

level, GDP growth and inflation, which all display underreaction to the news. While underreaction

is consistent with the sticky-information model of Mankiw and Reis (2002), noisy-information model

of Sims (2003), or learning about the long-run in Farmer et al. (2021), they do not imply the exact

form (5) with θ < 0. We provide an alternative approach that can be consistent with underreaction,

even when θ > 0.

The idea is that the observed economic outcomes stem from the general equilibrium and may

be affected by the actions of unmodeled economic entities. For instance, the central bank has the

goal of stabilizing inflation and output gap (Woodford, 2001), and firms are primarily concerned with

the stability of dividends (Lintner, 1956; Brav et al., 2005). If the agent has biased beliefs over the

3P̃ is the steady-state variance of the subjective predictive distribution for the latent state and may differ
slightly from P in the Kalman filter.

4We formally show this in Equation (IA.7) in Appendix A.1.
5Equation (5) has a different psychological foundation than the diagnostic expectation in e.g. Bordalo et al.

(2020a), though they both imply agents’ overreaction to news. The diagnostic expectation is based on the
representativeness heuristic (Kahneman and Tversky, 1972).
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central bank’s reaction function or the firm management’s payout policy, the subjective expectation

will be distorted as well.6 Such bias can be captured by assuming that instead of (1), the agent has

the following observation equation in mind:

yt = C̃xt +σϵϵt, (7)

while the observation equation under the rational expectation is still (1). We are interested in the

case when C̃ < C (in absolute terms). A lower value for perceived C means that the inflation or output

growth is perceived to be less responsive to structural shocks, and the dividend is less responsive to

earnings shocks relative to the rational benchmark. In Appendix B, we show that these biases could

arise from a standard New Keynesian model where the agent overly estimates the strength of the

stabilization motive by the central bank, or from a dividend smoothing model where the agent overly

estimates the degree of dividend smoothing.

Now under the perceived model, the subjective learning gain becomes ν = (1+θ)C̃P̃
(1+θ)C̃2P̃ +σ2

ϵ

. Clearly,

even when θ > 0, ν can still be smaller than K if C̃ is small enough. An extreme case when C̃ = 0,

the agent will not react to news (ν = 0). In summary, while the behavioural bias caused by the law

of small numbers makes the agent overreact to recent news, the wrong perception of the general

equilibrium effect may make the agent underreact.

The above mechanism is only for illustrative purposes. To make the empirical analysis feasible,

in subsequent sections when we discuss learning about dividend, inflation, and GDP growth, we

directly estimate the subjective learning gain ν from the survey data, and the subjective expectations

are still formed according to Equation (6).

6The wrong belief may occur due to the difficulty of estimating the central bank’s reaction function (e.g.,
Clarida et al., 2000) or the strength of dividend smoothing (e.g., Leary and Michaely, 2011).
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2.2 Subjective beliefs on real dividend level

In this subsection, we describe how the agent forms beliefs over aggregate real dividend. We begin

with a two-component dividend model and let the agent learn these two components separately when

forming expectations. Specifically, the logarithm of aggregate real dividend can be decomposed as:

dt = dl
t +ds

t , (8)

where dt = logDt is the log total real dividend and dl
t = logD l

t measures the log real dividend from

the sector of long-duration stocks. As a result, ds
t = dt −dl

t quantifies the share of the long-duration

dividend in the aggregate dividend. The decomposition (8) extracts useful information from the cross-

section of cash-flow duration when modelling the aggregate market.7 In Section 5.1, we compare the

performance of our model with existing models such as the dividend-earning model. We find that

separating aggregate dividend according to (8) brings useful information for explaining the subjective

dividend expectations, equity forward yields, and bond-stock correlation changes.

We first assume that the total dividend from long-duration stocks dl
t is more tied to the aggregate

economy. It is linked to the total endowment yt through a leverage parameter λ, with the following

state-space model:

dl
t −λyt =µd,t +σl

dϵ
l
d,t (9)

µd,t+1 =µd,t +σµdϵ
µ

d,t+1, (10)

where ϵl
d,t and ϵ

µ

d,t are i.i.d. shocks following the standard normal distribution. In Section C of

Internet Appendix, we offer empirical evidence that supports the close connection between long-

7While traditional literature on dividend learning relies on observations of aggregate dividend or endow-
ment series (see e.g., Johannes et al., 2016), incorporating other informative series into the learning framework
can be a promising avenue. For example, Jagannathan and Liu (2019); De La O and Myers (2021); Nagel and
Xu (2022a) incorporate earnings information.
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duration dividend and aggregate endowment. We show that the long-duration dividend positively

and strongly correlates with the real GDP (with or without considering the time trend), and the real

GDP level explains 88% of total variations in the long-duration dividend. However, the correlation

is weaker for the short-duration dividend, with the real GDP only explaining around 50% of its

variations.

Then, following Menzly et al. (2004); Cochrane et al. (2008), we assume that the dividend share

is stationary and follows the state-space model:

ds
t = xd,t +σs

dϵ
s
d,t (11)

xd,t+1 = ρd xd,t +σx
dϵ

x
d,t+1, (12)

where ϵs
d,t and ϵx

d,t are i.i.d. shocks following the standard normal distribution. The specification

captures the idea that dividends from long-duration stocks cannot deviate permanently from the

aggregate dividend and that information from such deviation ds
t is helpful to infer future dividend.

When the share of long-duration dividend is temporarily higher, the aggregate dividend will increase

more.

With specified DGPs, the agent forms the subjective expectation following the rule discussed in

Section 2.1. Then the agent’s posterior beliefs over latent states µ̃d,t and x̃d,t evolve according to:

µ̃d,t+1 = µ̃d,t +νl
d(dl

t+1 −λyt+1 − µ̃d,t) (13)

x̃d,t+1 = ρd x̃d,t +νs
d(ds

t+1 −ρd x̃d,t). (14)

We note that the subjective learning gains νl
d,νs

d can be different for two dividend components, and

the subjective dividend growth is:

Ẽ t∆dt+1 =λẼ t∆gt+1 + (ρd −1)x̃d,t + (νs
d −1)(ds

t −ρd x̃d,t−1)+ (νl
d −1)(dl

t −λyt − µ̃d,t−1), (15)
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where∆gt+1 = yt+1−yt is the growth rate of real output. We will specify how its subjective expectation

is formed in the next subsection.

2.3 Subjective beliefs on endowment growth and inflation

In an endowment economy with no risk premium, bond yields are driven by investors’ expectations

of real growth and inflation rate. Given that bond yields contain both a trend component and a

cycle component, we use the component models of real GDP growth and inflation following Zhao

(2020). Trend in yields are driven by the long-run expectations of growth and inflation, and cyclical

movements in yields are driven by investor’s beliefs on short-run growth and inflation.

Specifically, the four components of GDP – investment spending, net exports, government spend-

ing, and consumption (PCE) – do not move in lockstep with each other; their volatility differs greatly.

PCE is very stable and varies less with the business cycle. In contrast, the other three components

vary greatly across economic contractions and expansions. Similarly, for inflation, the core inflation

is much more stable than other inflation components. With this in mind, we can decompose output

growth and inflation via the following accounting identity:

∆gt =∆g∗
t +Gapg

t

πt =π∗
t +Gapπt ,

where πt is total inflation and ∆gt is GDP growth. The stable components ∆g∗
t and π∗

t are PCE

growth and core inflation, and Gapg
t and Gapπt are the volatile components (GDP growth excluding

the PCE and GDP deflator excluding the core inflation).
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The real consumption growth and core inflation follow:

∆g∗
t =µg,t +σgε

∗
g,t (16)

π∗
t =µπ,t +σπε∗π,t, (17)

where ε∗g,t+1 and ε∗π,t+1 are i.i.d. standard normal shocks. The latent states are assumed to follow

the unit-root processes:

µg,t+1 =µg,t +σµgεµg,t+1 (18)

µπ,t+1 =µπ,t +σµπεµπ,t+1. (19)

The two gap components are assumed to contain latent stationary states:

Gapi
t = xi,t +σgap

i ε
gap
i,t (20)

xi,t+1 = ρ ixi,t +σx
i ε

x
i,t+1, (21)

where i = g,π, and ε
gap
i,t+1, εx

i,t+1 are i.i.d. standard normal shocks.

The agent forms beliefs based on the same learning scheme in Section 2.1:

µ̃g,t = µ̃g,t−1 +υ∗g
(
∆g∗

t − µ̃g,t−1
)

µ̃π,t = µ̃π,t−1 +υ∗π
(
π∗

t − µ̃π,t−1
)

x̃g,t = ρg x̃g,t−1 +υgap
g

(
Gapg

t −ρg x̃g,t−1
)

x̃π,t = ρπ x̃π,t−1 +υgap
π

(
Gapπt −ρπ x̃π,t−1

)
,

where υ∗g, υ∗π, υgap
g and υgap

π are subjective learning gains linked to each component. The equilibrium

nominal bond yields are linear functions of these four state variables. The impact of µ̃g,t and µ̃π,t on
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bond yields of all maturities is identical and therefore drives the low-frequency trend movements.

The impact of x̃g,t and x̃π,t is stronger for short-term yields than for the long-term yields. Hence

business cycle movements in yields, especially in short-term yields, are mainly attributed to these

short-run beliefs.

2.4 Asset prices

We assume that the representative agent has the standard CRRA utility U(Ct)=∑∞
t=0β

t C1−γ
t

1−γ , where

β stands for the agent’s subjective discount factor, and γ is the risk-aversion coefficient. The log

nominal pricing kernel implied from the CRRA utility is:

m$
t+1 = logβ−γ∆gt+1 −πt+1. (22)

The equity spot yield for the n−period dividend strip (claim to the n−period ahead aggregate nominal

dividend):

ey(n)
t = 1

n
(d$

t − p(n)
t ), (23)

where p(n)
t is the log strip price and d$

t is the log nominal aggregate dividend. For n = 1, the time-t

equilibrium price of the one-period dividend strip is:

P(1)
t = Ẽ t[M

$
t+1D$

t+1], (24)

where the conditional expectation is taken under subjective belief. Similarly, the price of n−period

dividend strip is:

P(n)
t = Ẽ t[M

$
t+1P(n−1)

t+1 ]. (25)
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Solving the iterations forward, for the n−period equity spot yield we obtain:

ey(n)
t = A(n)

e

n
− (λ−γ)(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)+

1−ρn
d

n
x̃d,t −

νl
d −1

n
(dl

t −λyt − µ̃d,t−1)−
νs

d −1

n
(ds

t −ρd x̃d,t−1),

(26)

with expression of A(n)
e and solution details given in Appendix A.

Meanwhile, the time-t price of n−period nominal discount bond satisfies the recursion:

P(n)
b,t = Ẽ t[M

$
t+1P(n−1)

b,t+1 ]. (27)

We solve out the n−period nominal bond yield:

y(n)
t =

A(n)
b

n
+γ(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)+ (µ̃π,t +

1−ρn
π

n(1−ρπ)
ρπ x̃π,t). (28)

To better connect equity and nominal bond yields, we can write (26) as:

ey(n)
t =

A(n)
e − A(n)

b

n
+ y(n)

t − 1
n

Ẽ t∆d$
t+1:t+n = θ(n)

d + y(n)
t − g$,(n)

d,t , (29)

where g$,(n)
d,t = 1

n Ẽ t∆d$
t+1:t+n is the subjective belief over the life-time nominal dividend growth for

the n−period dividend strip. The equation follows Equation (4) in Van Binsbergen et al. (2013) by

disentangling the equity yield into the (constant) risk premium (θ(n)
d ), nominal bond yield (y(n)

t ), and

nominal dividend growth (g$,(n)
d,t ). Therefore, the time-variations in equity yields are entirely driven

by subjective beliefs over real GDP and dividend growth.
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3 Data, Estimation and Calibration

3.1 Data

We collect the term structure data of dividend strip yields from Giglio et al. (2021). Using a large

cross-section of US stock returns, they estimate an affine model of equity prices and derive the strip

yields for the aggregate market. Their method not only accurately replicates the dividend futures

data used in recent studies such as Van Binsbergen et al. (2013); Van Binsbergen and Koijen (2017);

Bansal et al. (2021), but also extends the length of data substantially.8 A more extended sample

creates an ideal laboratory for us to study the dynamics of the equity term structure over the business

cycles. As for the bond term structure, we use the end-of-quarter zero-coupon nominal bond yields

from Gürkaynak et al. (2007).

To construct the dividend series used for learning, we obtain firm-level quarterly dividends from

the CRSP/Compustat Merged Database for all firms listed on NYSE, NASDAQ, and AMEX. Follow-

ing De La O and Myers (2021) and Giglio et al. (2021), we focus on ordinary cash dividends. To

implement our two-component dividend model (8), we consider firm-level long-term earnings growth

median forecasts (LTG) as the benchmark measure of the equity duration, with the data available

from the IBES unadjusted summary file.9 La Porta (1996) and Gormsen and Lazarus (2022) show

that such a model-free measure can be interpreted as the equity duration. Since equity duration is

defined as the weighted sum of time with the weights given by expected cash-flows, higher long-term

expected cash-flows relative to today naturally translate into higher duration.10 Then, we calcu-

8Dividend futures data usually starts from 2003 and hence is not suitable for our study. Van Binsbergen
et al. (2012) use option returns to assess the equity term structure, with data going back to 1996. However,
option-based data is only available for short maturities up to two-year, and Boguth et al. (2019) find that noises
from highly levered option positions may significantly contaminate the inference from option prices.

9While IBES data is available at the monthly frequency, we transform it to quarterly frequency by taking
the end-of-quarter readings. Results from using the within-quarter average are almost identical.

10Existing measures of equity duration (see e.g., Dechow et al., 2004; Weber, 2018; Gonçalves, 2021b) require
formal econometric modelling and estimation. We do not take a stand on such modelling issues and prefer to
use the model-free duration. In Section 5 we run robustness checks using these measures, and results are
quantitatively similar.
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late the dividend from the long-duration sector as the following. At the end of each quarter, we

assign all dividend-paying firms into either of the two groups based on firms’ LTG forecasts in the

previous quarter. If a firm’s LTG is above or equal to the cross-sectional median of the LTG of all

dividend-paying firms, then it is assigned to the long-duration group. Otherwise, it is allocated to

the short-duration group. Within each quarter, we sum all dividends from the long-duration and

short-duration sectors, respectively. We deflate the obtained two nominal dividend series using the

GDP deflator and take a four-quarter trailing summation to remove their seasonality, following the

usual practice. By construction, the sum of two dividend series will be the real aggregate dividend.

The equity duration data is available from 1981Q3; hence the deseasonalized dividend series ranges

from 1982Q4 to 2019Q4. We use the initial 5-year training period for agent’s learning, and we start

our empirical analysis from 1987Q4.

We use the data for subjective dividend growth to estimate the dividend learning gains, and

we extend the 1-year aggregate expected dividend growth data constructed by De La O and Myers

(2021) to 2019Q4 using the same empirical steps.11 Similarly, to estimate learning gains for the

real GDP growth and inflation, we rely on the consensus forecasts for 1-year real GDP growth and

inflation from the Survey of Professional Forecasters (SPF). The data ranges from 1981Q3 to 2019Q4.

Finally, we collect the data on real output growth and GDP deflator from the Bureau of Economic

Analysis (BEA). The real personal consumption expenditure (PCE) and core inflation, i.e., the stable

components of GDP and total inflation, are also obtained from the BEA. Since the learning gains on

growth and inflation may be small (see e.g., Malmendier and Nagel, 2016; Nagel and Xu, 2022a), we

need an extended training sample to form reasonable beliefs. Thus we allow the agent to learn these

quantities using the data back to 1959Q1.

11Their original data spans the period from 2003Q1 to 2015Q3. Their data and our replicated series have a
correlation coefficient of 0.92 over the same sample.
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3.2 Parameter estimation and calibration

In Panel A of Table 1, we list values used for the standard parameters. The leverage parameter λ is

set to 3, the risk aversion coefficient γ is set to 4, and the subjective discount factor β is calibrated to

match the average level of the 10-year equity yields in the data. In Panel B, we estimate the persis-

tence of latent states in the state-space models discussed in Section 2, using the maximum likelihood

with the Kalman filter.12 One exception is ρg, which we choose to calibrate from the data. The reason

is that a persistent xg,t is crucial for our model to match the dynamics of bond yield spread (Zhao

, 2020), yet it is challenging to estimate the persistent component directly from the output growth

series (e.g., Schorfheide et al., 2018). Therefore, we calibrate ρg to maximize the correlation between

the model-implied nominal bond yield spread (10-year minus 1-year) and the data counterpart. Fi-

nally, to estimate the subjective learning gains for the real GDP growth, inflation, and dividend,

we minimize the root mean square errors (RMSE) between the 1-year consensus forecasts from the

relevant survey data and the model-implied 1-year expectations, following e.g., Branch and Evans

(2006); Cieslak and Povala (2015). Panel C of Table 1 reports the estimated gains. It shall be noted

that we do not use any asset price data when determining the parameters governing the subjective

belief dynamics.

In this paper, we are particularly interested in whether our model can match the full time-series

of dividend expectation data. Figure 1 shows that the model-implied 1-year subjective dividend

growth tracks its empirical counterpart well, and the unconditional correlation reaches 0.8. In the

right plot, we note that even though we do not use 2-year survey dividend growth in the estimation,

the model-implied quantity also closely matches the data. Hence, the estimation results support our

model in capturing salient features of subjective dividend growth.

12Appendix A provides more details and also reports the volatility parameter estimates that will be used to
calculate the constant term in the equity yields.
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Table 1: Model parameters

The table reports model parameter values. Panel A reports the leverage parameter λ, risk-aversion coefficient
γ, and subjective discount factor β. Panel B displays parameter estimates for the latent state persistence in
the state-space models discussed in Section 2. Panel C reports the learning gains for real dividend level, real
GDP growth, and inflation, all estimated from the corresponding 1-year consensus forecast data. The sample
used for estimation ranges from 1981Q3 to 2019Q4 for the real GDP growth and inflation, and from 2003Q1
to 2019Q4 for the real dividend.

Panel A: Leverage and preference
λ γ β

3 4 1.007
Panel B: Persistence of latent states

ρg ρπ ρd
0.941 0.932 0.934

Panel C: Subjective learning gains
νl

d νs
d ν∗g ν

gap
g ν∗π ν

gap
π

0.164 0.464 0.012 0.065 0.049 0.228

Figure 1: Fit of real dividend growth expectations

The figure plots the model-implied 1-year and 2-year aggregate real dividend growth expectations together
with the data. The correlation coefficients are reported in the figure. The sample period is from 2003Q1 to
2019Q4.
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Do the model-implied beliefs deviate from the rational expectation in a way consistent with the

survey data? We run the test following Coibion and Gorodnichenko (2015) by regressing realized

forecast errors on lagged forecast revisions. When the agent underreacts (overreacts) to news, she

will insufficiently (overly) adjust the forecast upward after good news. Hence the forecast is likely

to be followed by positive (negative) forecast errors, leading to a positive (negative) slope coefficient

from the regression. Table 2 reports the regression results from the data and the model. We find

that the agent underreacts to news regarding the real dividend level, GDP growth, and inflation.

The slope coefficients are positive and (mostly) significant.13 As argued in Section 2, underreaction

is related to the dividend smoothing behaviour and the Fed’s dual mandates. The agent chooses to

put less weight on recent shocks to real dividend, inflation, and real GDP growth when updating

beliefs if she expects that the firm and the Fed will aggressively stabilize future dividend, inflation,

and growth.

Table 2: Rationality test of subjective beliefs

The table runs the rationality test of subjective beliefs following Coibion and Gorodnichenko (2015). For each
quantity of interest x, the realized forecast errors are regressed on lagged subjective forecast revisions:

xt+n − Ẽ t(xt+n)=α+β[Ẽ txt+n − Ẽ t−nxt+n]+ϵt+n.

n is chosen to be 1-year for real dividend, and we run the regression (11) in Coibion and Gorodnichenko (2015)
for real GDP growth and inflation. Ẽ txt+n denotes the subjective forecast from the survey data or implied
from the model. The Newey-West t-statistics are reported in parentheses. The sample period for the real GDP
growth and inflation is from 1987Q4 to 2019Q4, while that for the real dividend is from 2003Q1 to 2019Q4.

Real dividend level real GDP growth Inflation
Data Model Data Model Data Model

β 0.24 0.39 0.72 0.38 0.38 0.40
(t) (2.57) (2.81) (1.91) (1.99) (1.35) (2.76)

13Coibion and Gorodnichenko (2015) obtain positive and significant estimates for the inflation forecasts on
the sample from 1969 to 2014, while our results are based on 1987 to 2019.
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4 Empirical Results

This section explores whether our general equilibrium model accounts for leading asset pricing puz-

zles in equity and bond markets. Since the model nests Zhao (2020), it naturally accounts for key

stylized facts in the bond markets. We thus focus more on the equity market by first studying the

model implications for the equity term structure. We discuss whether the model generates time-

varying bond-stock correlation and return predictability, as usually observed in the data. Finally, we

assess model performance in explaining well-known puzzles in the aggregate stock market.

4.1 Term structure of equity yields and returns

4.1.1 Historical dynamics of equity term structure

We start with the business cycle dynamics of the equity term structure. Figure 2 plots the equity

yields defined in (26) together with the data from Giglio et al. (2021). The model-implied yields

closely track the movements in the data over the entire sample. Comparing the results for 1-year

and 10-year, our model can match both the volatile 1-year equity yields and the less volatile 10-year

yields. The model also generates a secular decline in equity yields since the late 1980s, followed by

an upward trend post-2000, and replicates the equity yield spikes during the recession periods in the

1990s and around 2008. The last row of Figure 2 plots the slopes of the equity term structure, defined

as the difference between 10-year and 1-year yields. The time-series plot suggests that model-implied

slopes co-move tightly with the data.
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Figure 2: Term structure of equity yields

The figures compare the model-implied term structure of equity yields with the data from Giglio et al. (2021).
The last row plots the spread between 10-year and 1-year equity yields. Shaded areas correspond to NBER
recessions. The sample period is from 1987Q4 to 2019Q4, and all numbers are in annualized percentage terms.

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020
-40

-20

0

20

40

Data:1-year
Model:1-year

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020
-10

-5

0

5

10

Data:10-year
Model:10-year

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020
-40

-20

0

20

40

Data:equity yield slope
Model:equity yield slope

23



Panel A of Table 3 reports their unconditional mean, volatility, and correlation. We find that the

model-implied moments are close to the empirical counterparts and that the correlation is also high.

For example, the 1-year (10-year) model-implied equity yields have a correlation coefficient of 0.68

(0.79) with the data, and the correlation between slopes is 0.59. Overall, the evidence favors the

model in terms of fitting the term structure of equity yields.

Table 3: Summary statistics of equity yields

The first three rows of Panel A reports the unconditional mean and standard deviation of equity yields from
both our model and data, and their correlation coefficients. Also in Panel A, we report moments of equity yields
during expansion and recession periods, identified via the NBER business cycle dating. Panel B reports the
decomposition of average slope of equity yields into the components described in Equation (30), i.e., compo-
nents related to the constant, real GDP growth, and dividend-specific growth. All numbers are in annualized
percentage terms, and the sample period is from 1987Q4 to 2019Q4.

Panel A: Moments Data Model
1Y 10Y 10Y-1Y 1Y 10Y 10Y-1Y

Unconditional
Mean -4.39 -1.34 3.05 -4.18 -1.34 2.84

Volatility 8.89 2.70 7.22 8.52 1.92 7.07
Corr with data 0.68 0.79 0.59

Expansion
Mean -5.44 -1.51 3.93 -4.94 -1.38 3.56

Volatility 7.29 2.54 5.95 7.39 1.84 6.04

Recession
Mean 5.82 0.33 -5.50 3.28 -0.92 -4.20

Volatility 15.25 3.65 12.10 14.22 2.65 11.72
Panel B: Slope decomposition Const RGDP Div-spec Total

Expansion 1.05 0.04 2.47 3.56
Recession 1.05 0.18 -5.43 -4.20

4.1.2 Procyclical equity slope

The equity yield slope is usually found to be procyclical (see e.g., Van Binsbergen et al., 2013; Bansal

et al., 2021); that is, during the recession, the slope is deeply negative, while in normal times, it can

be positive. We evaluate whether the conditional moments of model-implied equity yields exhibit

similar patterns in Panel A of Table 3. We find that the equity term structure is upward sloping

during the expansion period, yet it becomes negative during the recession, with an average equity
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slope of –5.50%. Our model successfully generates such sign reversal, with an average slope of 3.56%

(-4.20%) during the expansion (recession). The model-implied yields also display higher volatilities

during the recession, in line with the data.

Our model captures the cyclicality of equity yield slopes in a way different from the previous

literature. While most prior studies rely on the procyclical term structure of risk premia to reconcile

this evidence (see e.g., Hasler and Marfe, 2016; Gonçalves, 2021a; Li and Xu, 2021; Breugem et al.,

2022), their channels may not be coherent with recent survey-based evidence on the importance of

cash-flow variations.14 In contrast, the CRRA utility implies a negligible dividend risk premium in

our model and equity yield movements are driven mostly by subjective dividend growth expectations.

During recessions, growth expectations are exceptionally lower, with short-term expectation being

much lower than its long-run counterpart; therefore, we observe sharp increases in equity yields and

procyclical equity yield slopes.

Panel B of Table 3 further explores which factors contribute to the sign reversal of equity slopes

by disentangling two economic forces in the equity yield:

ey(n)
t = Const(n)−(λ−γ)(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)︸ ︷︷ ︸

RGDP (n)
t

+
1−ρn

d

n
x̃d,t −

νl
d −1

n
(dl

t −λyt − µ̃d,t−1)−
νs

d −1

n
(ds

t −ρd x̃d,t−1)︸ ︷︷ ︸
Div−speci f ic(n)

t

.

(30)

The average term structure of equity yields can be decomposed into (the negative of) the term struc-

ture of subjective real GDP growth and real dividend-specific growth. Our results show that during

the recession, short-maturity equity yield is higher mainly because the agent perceives lower real

dividend-specific growth in the short-run compared to the long-run.

14In fact, Table 5 in Van Binsbergen et al. (2013) does find that the dividend growth expectation accounts
for a substantial share of equity yield variations. Cassella et al. (2022) document that the term structure of
biased beliefs over cash-flows may be empirically consistent with the equity term structure dynamics.
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4.1.3 Returns on dividend claims

We then evaluate whether the model also generates reasonable dynamics for returns on dividend

claims. Following Van Binsbergen and Koijen (2017), we study the h−period realized futures return

of the dividend strip with n−period maturity, which can be computed as:

r(n)
F,t+1:t+h =∆d$

t+1:t+h +ney(n)
t − (n−h)ey(n−h)

t+h − r(n)
B,t+1:t+h, (31)

with r(n)
B,t+1:t+h as the h−period realized return of the nominal bond with n−period maturity. Un-

der constant dividend risk premium, the time-varying futures returns are driven by time-varying

subjective dividend growth.

Figure 3: Strip futures returns: data vs. model

The figure compares the model-implied futures returns of dividend strips with the data calculated from Giglio
et al. (2021). Realized dividend growth is calculated from the S&P 500 aggregate dividend. We display results
for 2-year and 10-year strip returns, and the sample period is from 1988Q4 to 2019Q4. All numbers are in
annualized percentage terms.
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Figure 3 suggests that our model captures ex-post returns in the data reasonably well. The

correlation of 2-year realized strip returns reaches 0.6, and that of the 10-year strip is still at a high

level of 0.5. An important caveat is that the fit of equity yields in Figure 2 does not necessarily

translate into the close fit of returns in Figure 3, as the latter further requires the model to capture

the equity yield changes well.

4.2 Bond-stock comovement

This subsection addresses the puzzling behavior of bond-stock correlation. A stylized finding from the

literature is that the correlation between bond and stock returns changed from positive to negative

after 2000. Similar shifts are also observed in the correlation between equity yields and long-term

nominal Treasury yields, the “Fed model.”15 We show that changing correlation between real GDP

growth expectation and real dividend growth expectation can reconcile the puzzle. Before 2000, the

real GDP growth expectation was weakly or negatively correlated with the real dividend growth

expectation, suggesting that the real bond was not a hedge since it lost value together with the stock.

However, the correlation became positive and sizeable after 2000; thus real bond became a hedge to

the stock, leading to a negative bond-stock correlation.

4.2.1 Correlation changes between real GDP and dividend growth expectations

To understand the bond-stock correlation, from the model we have

y(n)
t = θ(n)

b + r(n)
t + 1

n
Ẽ tπt+1:t+n, (32)

ey(n)
t = θ(n)

d + r(n)
t − g(n)

d,t, (33)

r(n)
t = cte+γg(n)

t , (34)

15See discussions on bond-stock return correlations in Baele et al. (2010); David and Veronesi (2013); Camp-
bell et al. (2017, 2020); Kozak (2022); Li et al. (2022), and on the Fed-model in Asness (2003); Campbell and
Vuolteenaho (2004); Bekaert and Engstrom (2010); Burkhardt and Hasseltoft (2012).
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where r(n)
t is the real bond yield, g(n)

d,t is the real dividend growth expectation, g(n)
t is the real GDP

growth expectation, θ(n)
d is the (constant) dividend risk premium, and θ(n)

b is the (constant) bond risk

premium that includes the inflation and real bond risk premium, all at the n-period horizon. Then

we can decompose the bond-stock covariance as

Cov(y(n)
t , ey(n)

t )=V ar(r(n)
t )+Cov(

1
n

Ẽ tπt+1:t+n +θ(n)
b , ey(n)

t )−γCov(g(n)
t , g(n)

d,t). (35)

The first term is always positive. Previous literature often attributes sign reversals in bond-stock

covariance to the sign changes in the second term, i.e., inflation (or inflation risks in bond yields) has

changing correlation with equity yields. We instead study the importance of the final term, which

represents a real channel for changes in bond-stock correlation.

To show this channel is empirically relevant, Figure 4 plots the rolling correlation between sub-

jective real GDP growth expectation and subjective real dividend growth expectation of S&P 500 in

the survey data, both at the one-year horizon.16 We find that before 2000, the correlation is negative.

Higher expected real GDP growth coincides with lower expected real dividend growth, so prices of

the real bond and the stock both drop (Equation (34) and (33)). Hence the real bond is not a hedge

to the stock before 2000. Strikingly, the correlation jumps to positive after 2000, implying that the

real bond becomes a better hedge to the stock. Our model successfully replicates the switch in real

correlation. The model-implied growth expectation of real GDP and real dividend has a correlation

of -0.1 (0.7) before (after) 2000, compared with the correlation of -0.2 (0.6) in the data. In the fol-

lowing subsections, we quantitatively evaluate the importance of this real channel for generating

sign-reversals in bond-stock correlation.

16The rolling window is set to 10 years. The subjective real GDP growth is the consensus forecast from the
SPF. Since dividend expectation data were unavailable before 2003, we backfill the ex-ante expectation data
using ex-post 1-year realized dividend growth. De La O and Myers (2021) show that these two series are close.

28



Figure 4: Time-varying correlation between expected real GDP growth and real
dividend growth

The figure plots the 10-year rolling correlation between subjective real GDP growth and subjective real divi-
dend growth of S&P 500 in the survey data. These forecasts are at the one-year horizon and obtained from the
SPF and the IBES. Since dividend expectation data were unavailable before 2003, we backfill the ex-ante ex-
pectation data using the ex-post 1-year realized dividend growth when calculating the correlation (blue line).
We also display the rolling correlation when we always use the ex-post realization as a proxy for ex-ante ex-
pectations (red line). By construction, these two lines coincide before 2003. We use the data before 1987 to
display the rolling correlation from 1987Q4 to 2019Q4.
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4.2.2 Correlation of equity and bond yields

Panel A of Table 4 reports the correlation between the yield of 10-year nominal bond and the divi-

dend strips at various maturities. In both the data and the model, the bond-stock correlation turns

negative after 2000.17 As argued above, our model replicates this pattern via the real channel. We

find that the correlation between real bond and equity yields also exhibits the same sign-reversals.

For instance, the 10-year dividend strip has a correlation of 0.26 with the 10-year real bond before

2000, yet such correlation changes to -0.67 afterward.

17All our results are robust to other choices of breakpoints, such as 2001Q2 used by Campbell et al. (2020).
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To further quantify the importance of the real channel, we use covariance decomposition (35)

Cov(y(N)
t , ey(n)

t )= Cov(r(N)
t , r(n)

t )︸ ︷︷ ︸
real rate volatil ity

+Cov(
1
N

Ẽ tπt+1:t+N +θ(n)
b , ey(n)

t )︸ ︷︷ ︸
inf lation real e f f ect

−γCov(g(N)
t , g(n)

d,t)︸ ︷︷ ︸
real growth cov

, (36)

where N = 10yr, and we add a label to each component. The three components represent (1) real rate

volatility; (2) inflation real effect, which we define as the covariance between expected inflation (and

inflation risk premium) and real growth expectations; and (3) covariance between expected real GDP

growth and real dividend growth. The sign-reversal we observe for the bond-stock correlation must

stem from these three components. For component (2) we note that the prior literature entertains

different models of correlation between θ(n)
b and θ(n)

d to reconcile the bond-stock return correlation.

For instance, David and Veronesi (2013) rely on belief changes and money illusion; Song (2017)

embeds procyclical inflation into the long-run risk model; and Campbell et al. (2020) connect inflation

with time-varying risk-aversion. We take an orthogonal route because our model has constant risk

premium. Thus component (2) reflects the correlation between expected inflation and expected real

growth.

In Panel B of Table 4, we report the contribution of each component to the total bond-stock

covariance changes across two subsamples. The decomposition results suggest that a dominant force

driving the bond-stock correlation is indeed the comovements between expected real GDP growth and

real dividend growth, which contributes to over 70% of the changes in bond-stock yield covariance

after 2000. The explanatory share by the inflation real effect only accounts for around 40%.18

18The negative contribution from the real rate volatility reflects more volatile beliefs during the latter sam-
ple, primarily due to the global financial turmoil around 2008. Excluding the global financial crisis period, we
obtain less volatile beliefs and hence a positive explanatory share.
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Table 4: Bond-stock yield correlation and covariance decomposition

Panel A reports the correlation between the nominal yield of the 10-year bond and the dividend strip with
maturity n. We also report the correlation between the real yield of the 10-year bond and dividend strips from
the model. Panel B reports the decomposition results of bond-stock yield covariance (in percentage) based on
(36). Results are computed based on the sample before 2000Q1 (1987Q4 to 1999Q4) and after 2000Q1 (2000Q1
to 2019Q4).

n 1Y 5Y 10Y
Panel A: Yield correlation

Data
Before 2000 0.83 0.85 0.84
After 2000 -0.47 -0.60 -0.62

Model
Before 2000 0.64 0.85 0.87
After 2000 -0.62 -0.41 -0.31

Model (real)
Before 2000 0.39 0.29 0.26
After 2000 -0.41 -0.62 -0.67

Panel B: Decomposition
Real rate vol -4.42% -13.20% -23.57%
Infl real effect 33.47% 41.19% 43.72%
Real growth cov 70.95% 72.01% 79.86%

4.2.3 Correlation of equity and bond returns

Now we analyze the bond-stock return correlation. The h−period return of a nominal bond and a

dividend strip with n−period maturity are:

r(n)
B,t+1:t+h = ny(n)

t − (n−h)y(n−h)
t+h , (37)

r(n)
S,t+1:t+h = ney(n)

t − (n−h)ey(n−h)
t+h +∆d$

t+1:t+h. (38)

Equation (29) implies that the bond and dividend strip returns are linked:

r(n)
S,t+1:t+h = r(n)

B,t+1:t+h + (Ẽ t+h − Ẽ t)∆d$
t+1:t+n +nθ(n)

d − (n−h)θ(n−h)
d . (39)

Panel A of Table 5 reports the bond-stock return correlation of 10-year nominal bond and the

dividend strips at various maturities. Following the literature, we set the holding period to be one

year (h = 4). The results show that the bond-stock return correlation also turns negative after 2000
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in both the data and the model. Furthermore, consistent with the real channel discussed above, the

correlation between returns to 10-year real bond and dividend strips inherits the sign changes.

We can run a decomposition similar to (36) to quantify the contribution of the real channel. More

explicitly, we extract nominal and real components from the long-term nominal bond return and the

dividend strip return:

r(N)
B,t+1:t+h = INFL(N)

B +RGDP(N), (40)

r(n)
S,t+1:t+h = INFL(n)

S +RGDP(n) +RDIV (n), (41)

with expressions for each term given in Appendix A (Equation (IA.22)). Absent risk premium vari-

ations, the bond and equity returns reflect variations in underlying real cash-flow and inflation ex-

pectations. Then, we can decompose the return covariance as:

Cov(r(N)
B,t+1:t+h, r(n)

S,t+1:t+h)= Cov(INFL(N)
B ,RGDP(n) +RDIV (n))+Cov(INFL(n)

S ,RGDP(N))︸ ︷︷ ︸
Inf lation real e f f ect

+Cov(INFL(N)
B , INFL(n)

S )+Cov(RGDP(N),RGDP(n))︸ ︷︷ ︸
Inf lation & real rate volatil ity

+Cov(RGDP(N),RDIV (n))︸ ︷︷ ︸
real growth cov

. (42)

In Panel B of Table 5, we report the contribution of each component in (42) to the total bond-stock

return covariance changes. We find that the inflation real effect now explains less of the changes in

the bond-stock return covariance than the changes in yield covariance (around 20% versus around

40%, see Table 4). The key reason is that the persistent expected inflation, though it correlates

strongly with the level of expected real growth, cannot move enough at high-frequency to explain

the return covariance. Thus our results are consistent with recent findings documenting a modest

impact of inflation on the bond-stock return correlation (Duffee 2018, 2021; Gomez-Cram and Yaron
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2021). More importantly, we find that the covariance of expected real growth continues to play a

significant role in driving return covariance. This real channel accounts for around 90% of the total

covariance changes.

Table 5: Bond-stock return correlation and covariance decomposition

Panel A reports the correlation between returns to 10-year nominal bond and the dividend strip with maturity
n. We also report the correlation between returns to 10-year real bond and dividend strips from the model.
Panel B reports the decomposition results of bond-stock return covariance (in percentage) based on (42). Re-
sults are computed based on the sample before 2000Q1 (1988Q4 to 1999Q4) and after 2000Q1 (2000Q1 to
2019Q4).

n 1Y 5Y 10Y
Panel A: Return correlation

Data
Before 2000 0.33 0.46 0.43
After 2000 -0.53 -0.52 -0.51

Model
Before 2000 0.13 0.36 0.41
After 2000 -0.56 -0.41 -0.17

Model (real)
Before 2000 0.13 0.37 0.42
After 2000 -0.58 -0.40 -0.15

Panel B: Decomposition
Infl and real rate vol -5.40% -14.15% -21.52%
Infl real effect 19.13% 21.74% 23.66%
Real growth cov 86.26% 92.41% 97.86%

4.3 Return predictability

We now study the return predictability puzzle. There are two important stylized facts: equity market

returns are predictable by lagged dividend-price ratios (e.g., Campbell and Shiller, 1988; Cochrane,

2011), and the strength of predictability decreases from short-term dividend claims to long-term

claims (Van Binsbergen et al., 2012). We run two predictive regressions to evaluate whether our

model is consistent with the evidence. The first regression is standard, and we predict the market

excess returns using the log dividend-price ratio:

rM,t+1:t+h − y(h)
t =α+β(d$

t − pt)+ϵt+1:t+h. (43)
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The second regression is on predicting the strip excess returns using its own lagged equity yields,

following Van Binsbergen et al. (2012)

r(n)
S,t+1:t+h − y(h)

t =α+β(d$
t − p(n)

t )+ϵt+1:t+h. (44)

The holding period h is set to one year, and the risk-free rate is the h-period nominal bond yield

y(h)
t . Panel A of Table 6 reports the regression results from the data and the model. During the

period from 1987Q4 to 2019Q4, the annual market excess returns are positively predicted by the

lagged log dividend-price ratio in the data, with a t−statistic of 2.86 and R2 of 10%. Our model

regression generates similar R2, and the slope coefficient is positive and significant. Moreover, our

model reproduces the downward-sloping strength of strip return predictability, as in Van Binsbergen

et al. (2012). For instance, in the data, 5-year strip excess returns are strongly predictable with R2

of 24.7%, yet the R2 decreases to 17.5% for the 10-year strip. The model-implied term structure of

predictability is very similar and downward sloping, with the R2 decreasing from 26.8% to 18.9%.

What is the source of return predictability and its term structure? To clarify the mechanism, we

rewrite the excess return of the n−period dividend strip as:

r(n)
S,t+1:t+h − y(h)

t = Cte+ rx(n)
B,t+1:t+h︸ ︷︷ ︸
bond

+ (Ẽ t+h − Ẽ t)d
$
t+n︸ ︷︷ ︸

f orecast revision

. (45)

In our model, the realized strip excess return consists of two components: the maturity-matched

realized bond excess return, and the forecast revision for the dividend at maturity. Equity yields

that predict strip returns must predict either (or both) of components. Panel B of Table 6 reports

the results of using equity yields to predict them, and we document different patterns for short- and

long-term strips. For the 5-year strip, its bond component is weakly predictable by the 5-year equity

yield, yet the predictability of dividend forecast revision is strong with an R2 around 10%. How-

ever, the pattern reverses for the 10-year strip. The bond component is now significantly predictable
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with an R2 of around 9%, yet the predictability of dividend forecast revision is weak. Therefore,

the downward-sloping term structure of return predictability is attributed to the downward-sloping

term structure of dividend forecast revision predictability. The results are consistent with the agent

underreacting to dividend news, as we documented in Table 2. A positive shock to the current divi-

dend (higher equity yield) does not push up too much the agent’s dividend expectation today, leaving

space for the subsequent dividend forecast revision to increase. Nevertheless, when n becomes larger,

since the current news has smaller impact on longer-term dividend expectations, the predictability

of dividend forecast revision will become weaker.

Table 6: Return predictability

Panel A reports the results of predictive regressions (43) and (44) in the data and in the model. The dividend
strip returns are calculated from the data in Giglio et al. (2021), and the realized dividend growth is calculated
from the S&P 500 aggregate dividend. Panel B reports the decomposition results of predictive regression (44)
via (45). In brackets, we report the Newey-West t-statistics. The sample period is from 1988Q4 to 2019Q4.

Panel A: Return predictability
MKT 5Y 7Y 10Y

β 0.17 0.34 0.28 0.24
Data (t) (2.86) (5.01) (4.57) (4.20)

R2(%) 10.29 24.73 20.84 17.50
β 0.18 0.18 0.15 0.14

Model (t) (3.78) (6.63) (6.21) (5.21)
R2(%) 12.16 26.79 23.01 18.87

Panel B: Predictability of two return components
Bond 0.04 0.05 0.06

(t) (1.76) (1.87) (2.07)
R2(%) 6.48 7.25 8.67

Forecast revision 0.13 0.10 0.07
(t) (2.92) (2.45) (1.79)

R2(%) 10.15 6.59 3.48

Recent literature exploits the predictable forecast errors (FE) of cash-flow growth to explain the

stock return predictability (e.g., Bordalo et al., 2020b; Nagel and Xu, 2022a). To see the link with our
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proposed channel, we note that the forecast revision in Equation (45) can be rewritten as

(Ẽ t+h − Ẽ t)d
$
t+n =∆d$

t+1:t+h − Ẽ t∆d$
t+1:t+h︸ ︷︷ ︸

FE

+(Ẽ t+h − Ẽ t)∆d$
t+h+1:t+n. (46)

The prior literature focuses on the predictability of the first term, and it is unclear whether their

channel is consistent with the downward-sloping term structure of return predictability. Our analy-

sis extends the literature by showing that (1) predictable forecast error is only one source of return

predictability and is embedded in the predictable dividend forecast revision; (2) biases in cash-flow

expectations could reconcile downward-sloping term structure of return predictability.

The return predictability caused by underreaction to fundamental news is also consistent with

the momentum literature, which shows that the momentum may be due to market’s underreaction

to cash-flow news (see e.g., Chan et al., 1996; Chordia and Shivakumar, 2006). In our equilibrium

model, underreaction to dividend news leads to positively autocorrelated dividend forecast revision.

Equation (45) implies that such underreaction also causes price momentum. Therefore, our channel

fits well the evidence showing the tight relation between price momentum and fundamental momen-

tum (Chordia and Shivakumar, 2006).

4.4 Puzzles about the aggregate stock market

In this subsection, we revisit several aggregate stock market puzzles via our equilibrium model. We

model the aggregate market portfolio as the portfolio of dividend strips as:

Pt =
Ht∑

n=1
P(n)

t , (47)

where P(n)
t is the price of the n−period dividend strip, and the time-varying Ht may be interpreted

as the life expectancy of the aggregate portfolio. We do not manually set values for Ht, nor clarify

the mechanisms for its time-variations (e.g., Fama and French, 2004; Chen, 2011). Instead, we adopt
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a simple approach by modeling it as a function of our equity duration measures for the aggregate

market:

Ht = a+bLTG t, (48)

where LTG t is calculated as the value-weighted average of long-term growth forecasts over all firms.

The specification captures the time-varying cash-flow duration of the aggregate stock market in a

parsimonious way. We can pin down parameters a and b by minimizing the RMSE between the

aggregate price-dividend ratio in the data and the model. Although we use the data when estimating

a and b, the time-variations of the model-implied aggregate price-dividend ratio are driven entirely

by the strip yield variations and exogenous movements in aggregate equity duration.19

Figure 5: Aggregate dividend-price ratio: data vs. model

The figure compares the model-implied aggregate dividend-price ratio with the data. The model-implied quan-
tity is obtained following the method in Section 4.4. The correlation coefficient between the model and data
is reported in the plot. The sample period is from 1987Q4 to 2019Q4, and the numbers are in annualized
percentage terms.

1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020
1

1.5

2

2.5

3

3.5

4

Corr= 0.86

Data

Model

19Model performance is similar if we use a fixed cut-off level when calculating (47), following e.g., Van Bins-
bergen (2021).
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Figure 5 shows that the model-implied aggregate dividend-price ratio is close to the data, with

a correlation coefficient of 0.86. In Table 7, we find that they are equally persistent, with the AR(1)

coefficients around 0.95. Meanwhile, the market log dividend-price ratio implied by the model has

an annualized volatility of 26% and is close to 30% in the data. With the time-series of aggregate

dividend-price ratio, we can also calculate the implied market returns. Our model generates an

average market return of around 12%, replicating the high equity return (8%) in the data. Market

returns are also volatile in our model, with an annualized volatility of 14%. Finally, we replicate sign

switches of the correlation between long-term nominal bond returns and aggregate stock returns

after 2000, with the correlation coefficient changing from 0.29 to -0.42.

Table 7: Moments for aggregate market

The table reports the moments of the aggregate stock market, including the annualized mean and volatility of
market returns, volatility and AR(1) coefficient of market log dividend-price ratio, and the correlation between
10-year nominal bond returns and aggregate stock returns. We also report the correlation between the model
and the data regarding the log dividend-price ratio and market returns. The sample period is from 1987Q4 to
2019Q4.

E(rM) σ(rM) σ(d− p) ρ(d− p) Corr(rM , rB|t < 2000) Corr(rM , rB|t ≥ 2000)
Data 0.08 0.16 0.30 0.95 0.39 -0.64
Model 0.12 0.14 0.26 0.96 0.29 -0.42

Corr(dpdata,dpmodel) 0.86

5 Robustness analysis

5.1 Comparison with existing models of dividend expectations

We compare the term structure of dividend expectations implied from the two-component model

(8) with those implied from Nagel and Xu (2022a); De La O and Myers (2021). We also consider

a variation of our model that omits two components in (8) and choose to learn directly from the

aggregate dividend levels. After obtaining the dividend expectations from those alternative models,
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we calculate the model-implied equity forward yields by assuming the CRRA utility and compare

them with the data.20 Such an exercise would shed more light on the value added by our dividend

model.

Table IA.3 displays their implications for the term structure of equity forward yields and the

bond-stock yield correlation.21 The left part reports the correlation between the implied term struc-

ture of equity forward yields from different models and the data. Our two-component model outper-

forms existing models in terms of explaining the equity term structure. Meanwhile, the right part

of Table IA.3 suggests that existing models cannot explain sign-reversals in bond-stock correlation.

They imply the positive bond-stock correlation throughout the whole sample.

5.2 Other measures of duration

The baseline measure of equity duration is the analyst forecast for long-term earnings growth. As

a robustness check, we experiment with alternative duration measures proposed in the literature,

including those discussed in Dechow et al. (2004); Weber (2018); Gonçalves (2021b). In addition,

we consider the book-to-market ratio as a duration measure following Lettau and Wachter (2007).

After constructing the dividend series sorted over these duration measures, Table IA.4 reports the

moments of model-implied equity yields and their correlation with the data. Even if we use different

measures of equity duration, the results show that the model successfully replicates key moments

of the data, and the time-series correlation coefficients are also high. In a related exercise, while

still using LTG as the duration measure, we change the construction of long-duration dividends by

using the 40th or 60th cross-sectional percentile of LTG as the breakpoint. Results remain similar,

as found in the last two rows of Table IA.4.
20It should be noted that the focus of Nagel and Xu (2022a); De La O and Myers (2021) is not to explain

the equity term structure, but to understand other asset pricing facts. Appendix D.1 gives more details on the
comparison.

21Since they do not model the bond market, we use bond yield data for calculating the model-implied equity
spot yields and the bond-stock correlation.
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6 Conclusion

Motivated by the finding that future returns but not future cash flows are predictable by current

price-dividend ratios, research in macro-finance has, over the past three decades and within the

rational expectations framework, been trying to come up with a force that moves prices but not

expected future cash flows. This principle has guided equilibrium asset pricing literature and has

given rise to the model of time-varying risk attitude (habit formation) or time-varying risks (long-run

risk or disaster risk).

However, new empirical findings on subjective expectations, the term structure of bond and eq-

uity yields, and the correlation of stocks and bonds pose severe challenges to existing rational models.

Subjective expectations of cash flows are found to be the most important drivers of equity and bond

prices. In contrast, subjective return expectations are not as important as predicted by the rational

models. Meanwhile, dividend and bond risk premia in the rational model cannot explain equity and

bond yield spread movements observed in data. Furthermore, using the inflation risk premium to

explain the change in stock-bond correlation implies too much inflation risk in equity returns.

We offer a unified bond and equity pricing framework consistent with these empirical findings.

The movements of equity/bond yields are driven by subjective dividend/GDP growth expectations,

and subjective risk premium is negligible. The model-implied long- and short-yields of dividend strips

and bonds, and their spreads are close to the data (both time-series dynamics and moments). Long-

term Treasury bonds switched from risky assets to safe assets after the late 1990s, mainly due to a

shift in correlation between real GDP growth and real dividend growth expectations from negative to

positive, and only partially driven by the procyclical inflation. Equity/strip returns are predictable,

but the strength of predictability decreases from short-term to long-term claims due to predictable

subjective forecast revisions. The channel is also consistent with the literature on equity momentum.

Finally, our framework quantitatively matches several major aggregate stock market puzzles, such

as the persistent and volatile price-dividend ratios and excess volatility of stock returns.
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Internet Appendix for “Expectation-Driven Term

Structure of Equity and Bond Yields"

A Model Solution Details

A.1 Derivation of rational and subjective beliefs

For the steady-state Kalman filter, the posterior (or the filtered) distribution for xt after observing yt

is:

p(xt|I t)∝ exp(− (yt −Cxt)2

2σ2
ϵ

)×exp(− (xt −ρE t−1xt−1)2

2P
), (IA.1)

with P the steady-state conditional variance of the predictive distribution under the Kalman filter.

We then calculate the posterior mean for xt:

E txt = ρE t−1xt−1 + CP
C2P +σ2

ϵ

(yt −ρE t−1xt−1). (IA.2)

Note that by definition, P solves:

P = ρ2σ2
ϵP

C2P +σ2
ϵ

+σ2
u. (IA.3)

Then we solve for the subjective posterior distribution:

p(xt|I t)∝ exp(− (1+θ)(yt − C̃xt)2

2σ2
ϵ

)×exp(− (xt −ρẼ t−1xt−1)2

2P̃
), (IA.4)

with P̃ the steady-state conditional variance of the predictive distribution under the subjective learn-

ing. We then calculate the subjective posterior mean for xt:

Ẽ txt = ρẼ t−1xt−1 + (1+θ)C̃P̃
(1+θ)C̃2P̃ +σ2

ϵ︸ ︷︷ ︸
ν

(yt −ρẼ t−1xt−1). (IA.5)
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Note that by definition, P̃ solves:

P̃ = ρ2σ2
ϵ P̃

(1+θ)C̃2P̃ +σ2
ϵ

+σ2
u. (IA.6)

To formally show under-(over-) reaction when ν< K (ν> K), we can derive the following relation

between the expectation wedge and news:

Ẽ txt+1 −E txt+1 = ν−K
K

(E txt+1 −E t−1xt+1)︸ ︷︷ ︸
news

+ρ(1−ν)(Ẽ t−1xt −E t−1xt). (IA.7)

It shall be noted that to clarify interpretation, our definition of news refers to the innovations to

rational beliefs obtained from the Kalman filter (so that two terms on the right-hand side of are

uncorrelated). In contrast, Coibion and Gorodnichenko (2015) define the news as innovations to

subjective beliefs. We show that the two notions of news are highly correlated (see simulation results

in Table IA.5). To derive the equation, from the Kalman filter we can write yt as:

yt = E txt+1 −ρE t−1xt

K
+ρE t−1xt = E txt+1 −E t−1xt+1

K
+E t−1xt+1,

which is replaced into (6). After subtracting both sides by E txt+1, we can obtain (IA.7).

A.2 Equilibrium prices and returns

A.2.1 Bond prices

We first derive the equilibrium nominal bond prices. Conjecture that the log price of n−period nomi-

nal bond follows:

p(n)
b,t =−A(n)

b −B(n)
b µ̃g,t −C(n)

b x̃g,t −D(n)
b µ̃π,t −E(n)

b x̃π,t. (IA.8)

The pricing of one-period bond implies:

p(1)
b,t = Ẽ tm

$
t+1 +

1
2

�V artm
$
t+1, (IA.9)
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from which we can solve out the coefficients:

A(1)
b =− logβ− 1

2
γ2σ̃2

g −
1
2
γ2(σ̃gap

g )2 − 1
2
σ̃2
π−

1
2

(σ̃gap
π )2

B(1)
b = γ

C(1)
b = γρg

D(1)
b = 1

E(1)
b = ρπ, (IA.10)

with

σ̃2
g = P̃µg +σ2

g, (σ̃gap
g )2 = P̃xg + (σgap

g )2, σ̃2
π = P̃µπ+σ2

π, (σ̃gap
π )2 = P̃xπ+ (σgap

π )2. (IA.11)

Then, from the pricing of n−period nominal bond:

p(n)
b,t = Ẽ t(m

$
t+1 + p(n−1)

b,t+1)+ 1
2

�V art(m
$
t+1 + p(n−1)

b,t+1), (IA.12)

we can solve out the iteration for coefficients

A(n)
b = A(n−1)

b − logβ− 1
2

(B(n−1)
b ν∗g +γ)2σ̃2

g −
1
2

(C(n−1)
b ν

gap
g +γ)2(σ̃gap

g )2 − 1
2

(D(n−1)
b ν∗π+1)2σ̃2

π

− 1
2

(E(n−1)
b ν

gap
π +1)2(σ̃gap

π )2

B(n)
b = B(n−1)

b +γ
C(n)

b = C(n−1)
b ρg +γρg

D(n)
b = D(n−1)

b +1

E(n)
b = E(n−1)

b ρπ+ρπ. (IA.13)

We have the following explicit formula for coefficients:

B(n)
b = nγ,C(n)

b =
ρg(1−ρn

g)

1−ρg
γ,D(n)

b = n,E(n)
b = ρπ(1−ρn

π)
1−ρπ

(IA.14)
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A.2.2 Dividend strip prices

Then we solve for the equilibrium dividend strip yield (log price-dividend ratio). Since it is in real

terms, we conjecture that p(n)
e,t −d$

t has the following functional form:

p(n)
e,t −d$

t =−A(n)
e −B(n)

e µ̃g,t −C(n)
e x̃g,t −D(n)

e x̃d,t −E(n)
e (dl

t −λyt − µ̃d,t−1)−F (n)
e (ds

t −ρd x̃d,t−1). (IA.15)

For the one-period strip, its log price-dividend ratio follows:

p(1)
e,t −d$

t = Ẽ t(mt+1 +∆dt+1)+ 1
2

�V art(mt+1 +∆dt+1). (IA.16)

We solve out the coefficients:

A(1)
e =− logβ− 1

2
(λ−γ)2σ̃2

g −
1
2

(λ−γ)2(σ̃gap
g )2 − 1

2
(σ̃l

d)2 − 1
2

(σ̃s
d)2

B(1)
e = γ−λ

C(1)
e = (γ−λ)ρg

D(1)
e = 1−ρd

E(1)
e = 1−νl

d

F (1)
e = 1−νs

d, (IA.17)

with

(σ̃l
d)2 = P̃µd + (σl

d)2, (σ̃s
d)2 = P̃xd + (σs

d)2. (IA.18)

Similarly, the n−period strip price solves:

p(n)
e,t −d$

t = Ẽ t(mt+1 +∆dt+1 + p(n−1)
e,t+1 −d$

t+1)+ 1
2

�V art(mt+1 +∆dt+1 + p(n−1)
e,t+1 −d$

t+1), (IA.19)
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from which we obtain

A(n)
e = A(n−1)

e − logβ− 1
2

(λ−γ−B(n−1)
e ν∗g)2σ̃2

g −
1
2

(λ−γ−C(n−1)
e ν

gap
g )2(σ̃gap

g )2 − 1
2

(νl
d)2(σ̃l

d)2

− 1
2

(νs
d)2(1−D(n−1)

e )2(σ̃s
d)2 (IA.20)

B(n)
e = B(n−1)

e +γ−λ
C(n)

e = C(n−1)
e ρg + (γ−λ)ρg

D(n)
e = D(n−1)

e ρd +1−ρd

E(n)
e = 1−νl

d

F (n)
e = 1−νs

d.

We thus have the following explicit formula for coefficients:

B(n)
e = n(γ−λ),C(n)

e =
ρg(1−ρn

g)

1−ρg
(γ−λ),D(n)

e = 1−ρn
d,E(n)

e = 1−νl
d,F (n)

e = 1−νs
d. (IA.21)

According to (IA.13) and (IA.20), we need the following parameters to calculate the constant term for

the equity and bond yields. Their estimates are obtained from the state-space model estimation.

σ̃g σ̃
gap
g σ̃π σ̃

gap
π σ̃l

d σ̃s
d

0.011 0.006 0.004 0.002 0.142 0.065

Finally, to decompose bond and equity strip return as in (40) and (41), from the return definitions

we have (ignoring the constant):

r(N)
B,t+1:t+h = Ẽ tπt+1:t+N − Ẽ t+hπt+h+1:t+N︸ ︷︷ ︸

INFL(N)
B

+γ(Ẽ t∆gt+1:t+N − Ẽ t+h∆gt+h+1:t+N )︸ ︷︷ ︸
RGDP (N)

,

r(n)
S,t+1:t+h =πt+1:t+h︸ ︷︷ ︸

INFL(n)
S

+γ(Ẽ t∆gt+1:t+n − Ẽ t+h∆gt+h+1:t+n)︸ ︷︷ ︸
RGDP (n)

+ (Ẽ t+h − Ẽ t)∆dt+1:t+n︸ ︷︷ ︸
RDIV (n)

. (IA.22)

B Micro-founded models for (7)

We present a standard New Keynesian model where the agent perceives excessive controls on the

inflation and the output gap by the central bank, and a dividend-smoothing model where the agent

perceives excess smoothing behavior by the firm management. Both will make the magnitude of C̃

to be smaller than its rational benchmark C.
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First, a standard three-equation New Keynesian model is given as the following:

ŷt =− 1
σ

(i t −E tπt+1)+E t ŷt+1 + zu,t, (IA.23)

πt =βE tπt+1 +κ ŷt, (IA.24)

i t =φππt +φy ŷt + zi,t, (IA.25)

where ŷt is the output gap, πt is the inflation, and i t is the nominal short rate. The Taylor rule

coefficients φπ and φy describe how the central bank reacts to inflation and output gap. We denote

the demand shock as zu,t and the monetary shock as zi,t. They follow the AR(1) process

zu,t+1 = ρuzu,t +ϵu,t+1, (IA.26)

zi,t+1 = ρ i zi,t +ϵi,t+1. (IA.27)

Conjecture the following solutions of endogenous variables as functions of exogenous variables

πt = Cπuzu,t +Cπi zi,t, (IA.28)

ŷt = Cyuzu,t +Cyi zi,t. (IA.29)

Replacing them into the New Keynesian model yields the solution for coefficients

Cπu = κ

κ(φπ−ρu)
σ

+ (1−βρu)(1+ φy
σ
−ρu)

Cyu = 1

1+ φy
σ
−ρu + κ(φπ−ρu)

σ(1−βρu)

Cπi = −κ/σ
κ(φπ−ρ i)

σ
+ (1−βρ i)(1+ φy

σ
−ρ i)

Cyi =− 1/σ

1+ φy
σ
−ρ i + κ(φπ−ρ i)

σ(1−βρ i)

. (IA.30)

By attaching a measurement error to inflation, we arrive at the state-space representation in the

main text

πt = Cxt +σϵϵt, (IA.31)

xt+1 = ρxt +σuut+1, (IA.32)
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with xt = [zu,t, zi,t]′, C = [Cπu,Cπi]. Similar representation can also be obtained for the output gap.

In this system, the agent learns demand and monetary shocks from the observation, but we

assume that the agent perceives φ̃π > φπ, with φπ the coefficient under the rational measure. That

is, the agent overly estimates the strength of the inflation stabilization by the central bank. Since

all parameters in C will shrink towards zero as φπ increases, we thus obtain lower C (in absolute

terms) relative to the rational benchmark. Similarly, if the agent perceives φ̃y > φy, we obtain the

same prediction.

Second, we consider the dividend smoothing model proposed by Lintner (1956)

Dt+1 =α+C×D∗
t+1 + (1−C)×Dt +ϵt+1, (IA.33)

D∗
t+1 = TP ×E t+1, (IA.34)

E t+1 = Ē+ρ(E t − Ē)+ηt+1, (IA.35)

where D∗
t+1 is the target dividend level and is equal to target payout ratio (TP) times the earnings

E t+1. To form the state-space model, we have added the state equation (IA.35) that describes the

earnings process. For this system, parameter C governs how the firm management adjusts the

dividend facing earnings shocks. When the agent perceives smoother dividend relative to the rational

benchmark, C will be lower and the dividend is less responsive to earnings shock under the subjective

measure.

C Properties of dividends from long-duration portfolios

We provide empirical justification for the novel two-component model (8). To show that long-duration

dividends are more related to the real GDP level, in the data we estimate the following regression

for log dividends from short or long-duration portfolios:

logD i
t =α0i +α1i t+βi log(RGDP), i = {S,L}. (IA.36)

As a comparison, we also estimate the above regression without the time trend; that is, we estimate

the cointegrating relation between the level series.

Table IA.1 reports the results. After removing the deterministic trend in the level data, we find

that short-duration dividends are negatively related to the real GDP, with a t-statistic of -4.87. In

contrast, the long-duration dividend significantly and positively correlates to the real GDP. The high

R2 indicates that the real GDP can explain 90% of the fluctuations in long-duration dividends. The

7



outcome does not change when we ignore the time trend. Although the short-duration dividend

now positively relates to the real GDP, the R2 is only 42%, suggesting that more than half of the

fluctuations in the short-duration dividend are not related to the real GDP. Notably, the estimates

for long-duration dividends are still positive, and the R2 is close to 90%.

Table IA.1: Relation between the real GDP and the dividends from short- and
long-duration portfolios

with time trend without time trend
Short-duration Long-duration Short-duration Long-duration

β -2.08 0.96 1.05 2.24
(t) (-4.87) (2.86) (10.21) (31.06)

R2(%) 57.8 88.0 41.5 86.8

Table IA.2 lists the average sector composition for short- and long-duration portfolios, where the

sector classification follows the Global Industry Classification Standard (GICS) of S&P and MSCI.

On average, the long-duration portfolio is mainly populated by stocks from the consumption and

technology sectors—they account for around 60% of the stocks in the long-duration portfolio.

Table IA.2: Sector composition for short- and long-duration portfolios

Short-duration Long-duration
Financials 28.7% Consumer discretionary 21.6%
Utilities 17.3% Consumer staples 19.5%
Industrials 11.9% Technology 18.4%
Materials 9.4% Energy 10.8%
Consumer discretionary 9.0% Financials 7.1%
Consumer staples 6.7% Health care 7.0%
Technology 5.4% Materials 6.6%
Energy 4.9% Industrials 4.4%
Others 4.4% Utilities 3.6%
Health care 2.3% Others 1.0%
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D Additional Results

D.1 Comparison with existing models

We compare the term structure of dividend expectations implied from our model with those implied

from the following learning framework.

First, we consider the constant-gain learning as in Nagel and Xu (2022) (their Equation (1)):

∆dt =µd +ϵt. (IA.37)

The agent learns about the mean growth rate µd according to

µ̃d,t+1 = µ̃d,t +0.018× (∆dt+1 − µ̃d,t). (IA.38)

The term structure of dividend expectation is flat with

Ẽ t∆dt+ j = µ̃d,t,∀ j. (IA.39)

The second framework is the dividend-earning model as in De La O and Myers (2021)

e t+1 = xt +ϵt+1 (IA.40)

xt+1 =µ+ xt + (1−θ)ϵt+1 (IA.41)

dt+1 = (1−ω)e t+1 +ωdt +ϵd
t+1, (IA.42)

where e t+1 (dt+1) is the log aggregate earning (dividend). The model-implied term structure of divi-

dend growth is

Ẽ t∆dt+ j =ω j−1(1−ω)(−θϵt − (dt − e t)). (IA.43)

De La O and Myers (2021) use ω= 0.66 and θ = 0.6 when inferring the expected dividend growth.

Finally, we consider a variation of our two-component model (8). We drop two components but

similar to (9) and (10), we use the following framework

dt −λyt =µd,t +σdϵd,t, (IA.44)

µd,t+1 =µd,t +σµdϵ
µ

d,t+1, (IA.45)
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where dt now is the log aggregate dividend. We apply the same learning rule as in Section 2.2 but

omit the information from the cross-section.

We still assume the CRRA utility when calculating the asset prices. The left part of Table IA.3

reports the correlation between the implied term structure of equity forward yields from different

models and the data. We find that our two-component model outperforms existing models in terms

of explaining the equity term structure. In particular, we find that omitting the cross-sectional in-

formation will substantially worsen the model performance even in our framework, suggesting the

usefulness of separating total dividend into two components. The right part of Table IA.3 reports the

correlation between the 10-year nominal bond yield in the data and the model-implied spot yield of

dividend strips. Note that since those papers do not model the bond market, we directly input the

bond yield data when calculating the spot yield and the correlation. Consistent with their perfor-

mance of explaining equity term structure, existing models cannot generate realistic sign-reversals

in bond-stock correlation. They actually imply a positive bond-stock correlation throughout the whole

sample.

Table IA.3: Comparison with existing learning models

The table compares the performance of our model with existing learning models. We consider learning about
the mean in Nagel and Xu (2022), the dividend-earning model in De La O and Myers (2021), and one modi-
fication of our model that ignores the two components in the total dividend. The table reports the correlation
between the implied term structure of equity forward yields from different models and the data. The table
also reports the correlation between the 10-year nominal bond yield in the data and the model-implied spot
yield of dividend strips. The sample period is from 1987Q4 to 2019Q4.

Corr with equity fwd yields Bond-stock corr (before 2000) Bond-stock corr (after 2000)
Maturity 1Y 10Y 10Y-1Y 1Y 5Y 10Y 1Y 5Y 10Y
Data 0.83 0.85 0.84 -0.47 -0.60 -0.62
Learning about the mean (NX2022) -0.53 -0.41 N/A 0.59 0.89 0.95 0.91 0.95 0.90
Dividend-earning model (DM2021) 0.47 0.46 0.42 0.64 0.74 0.81 -0.09 0.14 0.41
Ignoring two components 0.17 0.53 -0.01 0.52 0.91 0.92 0.53 0.79 0.87
Two-component model 0.66 0.77 0.59 0.68 0.88 0.91 -0.54 -0.31 -0.12
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D.2 Robustness analysis using alternative duration measures

Table IA.4: Robustness: alternative decomposition of aggregate dividends

The table reports the unconditional mean and standard deviation of equity yields from both our model and
data, and their correlation coefficients. For the model-implied quantities, we change our way of decomposing
aggregate dividend in (8) based on different measures of equity duration. These include the measures proposed
by Weber (2018), Gonçalves (2021a), and the book-to-market ratio in Lettau and Wachter (2007). Alterna-
tively, when decomposing dividend using our baseline measure of duration (LTG), we change the breakpoint
to the 40th or 60th cross-sectional percentile. The sample period is from 1987Q4 to 2019Q4.

1Y 10Y 10Y-1Y
Data Mean -4.39 -1.34 3.05

Volatility 8.89 2.70 7.22

Mean -3.13 -1.33 1.79
Weber (2018) Volatility 10.35 2.68 8.09

Corr. 0.59 0.82 0.43

Mean -6.67 -1.34 5.34
Gonçalves (2020a) Volatility 10.73 1.84 9.00

Corr. 0.62 0.71 0.50

Mean -4.02 -1.34 2.68
Book-to-market Volatility 8.70 1.86 7.10

Corr. 0.62 0.85 0.47

Mean -5.33 -1.34 3.98
40th Volatility 7.79 1.49 6.54

Corr. 0.64 0.71 0.55

Mean -4.95 -1.34 3.61
60th Volatility 10.25 2.05 8.73

Corr. 0.63 0.72 0.56
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Table IA.5: Correlation between subjective and rational news

The table reports the average correlation between rational news defined in (IA.7) and the subjective news
when learning gain is ν instead of the Kalman gain K . For each path, we simulate both the rational news and
subjective news under the specified learning gains in the table, with the sample length identical to our sample
period from 1987Q4 to 2019Q4 (129 observations). The simulation is repeated 100,000 times, and reported
numbers are the average correlation over all simulated paths.

Panel A: ρ = 0.9
Kalman gain K

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.01 1 0.99 0.99 0.96 0.91 0.82 0.72 0.63 0.56
0.05 0.99 1 0.99 0.98 0.94 0.87 0.78 0.70 0.64
0.1 0.99 0.99 1 0.99 0.97 0.92 0.85 0.77 0.71
0.2 0.96 0.98 0.99 1 0.99 0.97 0.93 0.87 0.82

Subjective 0.3 0.91 0.94 0.97 0.99 1 0.99 0.97 0.94 0.89
gain ν 0.4 0.82 0.87 0.92 0.97 0.99 1 0.99 0.97 0.94

0.5 0.72 0.78 0.85 0.93 0.97 0.99 1 0.99 0.98
0.6 0.63 0.70 0.77 0.87 0.94 0.97 0.99 1 0.99
0.7 0.56 0.64 0.71 0.82 0.89 0.94 0.98 0.99 1

Panel B: ρ = 1
Kalman gain K

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.01 1.00 0.99 0.98 0.95 0.86 0.70 0.53 0.38 0.30
0.05 0.99 1.00 0.99 0.97 0.93 0.83 0.69 0.56 0.47
0.1 0.98 0.99 1.00 0.99 0.96 0.90 0.80 0.69 0.60
0.2 0.95 0.97 0.99 1.00 0.99 0.97 0.92 0.84 0.77

Subjective 0.3 0.86 0.93 0.96 0.99 1.00 0.99 0.97 0.93 0.87
gain ν 0.4 0.70 0.83 0.90 0.97 0.99 1.00 0.99 0.97 0.94

0.5 0.53 0.69 0.80 0.92 0.97 0.99 1.00 0.99 0.97
0.6 0.38 0.56 0.69 0.84 0.93 0.97 0.99 1.00 0.99
0.7 0.30 0.47 0.60 0.77 0.87 0.94 0.97 0.99 1.00

E Model with Ambiguity

E.1 Equilibrium bond and equity yields

We extend the analysis to consider the agent’s fear over model misspecification of the real GDP

growth and dividend growth. We show that the extended model better explains the dynamics of bond

and equity yields relative to the benchmark model in Section 2. To begin with, we assume that the

representative agent has a recursive multiple-priors preference (see e.g., Epstein and Schneider ,

2003).
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Vt(Ct)= min
pt∈P t

Ept [U(Ct)+βVt+1(Ct+1)], (IA.46)

where P t denotes the set of alternative models (probability measures) and the CRRA utility function

U(Ct) = C1−γ
t

1−γ . The agent is ambiguous about real endowment growth and dividend growth. The set

of alternative measures is generated by different mean growth rates around respective reference

mean values. We assume that the reference model is the posterior distribution obtained from agent’s

learning over the real GDP growth and real dividend, as discussed in Subsection 2.2 and 2.3, but

the agent evaluates future prospects under the worst-case measure. More explicitly, the agent will

select the lowest real GDP growth and dividend growth forecasts when pricing assets.1 Hence, the

worst-case beliefs over the real GDP and dividend growth are:

Ẽ t∆gt+1 = µ̃g,t +ρg x̃g,t −ag,t

Ẽ t∆dt+1 =λ(µ̃g,t +ρg x̃g,t −ag,t)+ (ρd −1)x̃d,t + (νs
d −1)(ds

t −ρd x̃d,t−1)+ (νl
d −1)(dl

t −λyt − µ̃d,t−1)−ad,t,

(IA.47)

where ag,t denotes the ambiguity over real endowment growth. The ambiguity over total real

dividend growth consists of two parts arising from distorting real endowment growth (λag,t) and

dividend-specific growth (ad,t). We assume that they follow the standard AR(1) processes:

ag,t+1 =µag +ρagag,t +σagϵag,t+1

ad,t+1 =µad +ρadad,t +σadϵad,t+1, (IA.48)

with i.i.d. standard normal shocks εag,t+1, εad,t+1. The equilibrium n−period bond and equity yields

1The worst-case distortion for dividend growth rests on the assumption that dividend shocks are positively
correlated with endowment shocks. However, when learning from past data, we do not ask the agent to con-
sider such correlation. This assumption greatly simplifies our analysis because it avoids additional parameters
that are hard to pin down under correlated learning. Croce et al. (2015) consider a similar setting where the
agent ignores some shock correlations when pricing assets.
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are then solved out as:

y(n)
t =

A(n)
b

n
+γ(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)+ (µ̃π,t +

1−ρn
π

n(1−ρπ)
ρπ x̃π,t)−

1−ρn
ag

n(1−ρag)
γag,t, (IA.49)

ey(n)
t = A(n)

e

n
− (λ−γ)(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)+

1−ρn
d

n
x̃d,t −

νl
d −1

n
(dl

t −λyt − µ̃d,t−1)

−
νs

d −1

n
(ds

t −ρd x̃d,t−1)+
1−ρn

ag

n(1−ρag)
(λ−γ)ag,t +

1−ρn
ad

n(1−ρad)
ad,t, (IA.50)

with constant A(n)
b and A(n)

e given by iterations similar to those in Subsection A.2.

E.2 Ambiguity parameters

We use standard empirical measures for the ambiguity to calculate related parameters and equilib-

rium yields. First, the ambiguity over real GDP growth is constructed from the Survey of Professional

Forecasters (SPF). For each quarter, we calculate the ambiguity by dividing the interquartile range

of forecasts for the next year real GDP growth by two (see also Drechsler , 2013; Ilut and Schneider

, 2014; Zhao , 2017). Second, a new variable that we need to obtain from the survey data is the

dividend-specific ambiguity ad,t. From Equation (IA.47), as long as the ambiguity over aggregate

real dividend growth is empirically available, we can back out ad,t after removing the real GDP am-

biguity part. To achieve this, we resort to firm-level earnings survey data from the IBES. Given that

the IBES summary file does not provide the upper and lower quartiles of analyst forecasts for each

firm, we retrieve them from the IBES unadjusted detail file.2 For each firm and quarter, we collect

individual analyst forecasts of future earnings per share (EPS) for multiple forecasting horizons. For

each forecasting horizon, we obtain the upper and lower quartiles of analyst forecasts, and then we

apply linear interpolations to obtain the forecasts at the 1-year horizon. After multiplying those in-

terpolated forecasts with the shares outstanding in each quarter and aggregate over all stocks, we

obtain the 25th and 75th percentiles of predicted 1-year-ahead earnings levels for the aggregate mar-

ket. Ambiguity over aggregate cash-flows is then calculated as one-half of the log difference between

these quartiles.

In spite of using earnings survey data when estimating dividend ambiguity, we show empiri-

cally that the obtained measure is sensible. Figure IA.1 displays reasonable time-variations in our

2We do not use the dividend forecast in the IBES detail file when constructing the ambiguity measure,
primarily because the dividend forecast is only available after 2003 and this will shorten the period for our
analysis substantially. Also, the average number of analysts providing dividend estimates in the IBES detail
file is much smaller than that for the earnings, which may yield inaccurate measure.
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ambiguity measure within the sample, with a correlation of 0.62 with the ambiguity over real GDP

growth. Meanwhile, Ilut and Schneider (2014) suggest that valid empirical measure of ambiguity

should not exceed twice the volatility of the forecasted time-series itself (see their Section III.B).

In compliance with their ambiguity bound, we find that the sample average of ambiguity over an-

nual real dividend growth is around 4% while the volatility of realized annual real dividend growth

is around 7%. Finally, with the empirical measures in hand, we obtain ambiguity parameters by

matching the simulated moments with the mean, volatility, and AR(1) coefficients from the ambigu-

ity data. Table IA.6 displays the parameters.

Figure IA.1: Ambiguity over aggregate dividend growth

The figure plots the annualized ambiguity over 1-year-ahead aggregate dividend growth. Shaded areas corre-
spond to NBER recessions. The sample period is from 1987Q4 to 2019Q4.

Table IA.6: Parameters for ambiguity processes

µag ρag σag µad ρad σad
0.0004 0.65 0.05 0.0002 0.978 0.09
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E.3 Asset pricing implications

We then discuss the asset pricing performance from the extended model. First, Table IA.7 reports

the model-implied bond yield statistics, and they closely match the data. Second, the left panel of

Figure IA.2 displays the time-series fit for the term structure of equity yields. Comparing this with

Figure 2, we see that introducing the ambiguity helps improve the model’s explanatory power for

equity yields, especially during the 2008 global financial crisis. Table IA.8 summarizes the moments

for data and model-implied quantities. The correlation coefficients between the data and the model

indeed increase relative to the benchmark model. Furthermore, the right panel of Figure IA.2 plots

the time-series fit for the term structure of equity forward yields, defined as the difference between

equity and nominal bond yields. The model explains well both the level and variability of equity

forward yields, as can be confirmed in the right panel of Table IA.8.

Table IA.7: Term structure of nominal bond yields: data vs. model

The table reports the mean and standard deviation of nominal bond yields. These numbers are in annualized
percentage terms. We report statistics from both our model and the data, and also their correlation coefficients.
The sample period is from 1987Q4 to 2019Q4.

1Y 2Y 5Y 7Y 10Y

Data
Mean 3.40 3.63 4.25 4.57 4.92

Volatility 2.59 2.56 2.35 2.24 2.14

Model
Mean 4.84 4.89 4.95 4.94 4.91

Volatility 1.77 1.71 1.62 1.58 1.56
Corr. 0.89 0.92 0.94 0.95 0.95

Table IA.8: Summary statistics of equity yields

The table reports the mean and standard deviation of spot and forward yields of dividend strips. These num-
bers are in annualized percentage terms. We report statistics from both our model and the data, and also their
correlation coefficients. Sample period is from 1987Q4 to 2019Q4.

Spot Forward
1Y 10Y 10Y-1Y 1Y 10Y 10Y-1Y

Data
Mean -4.39 -1.34 3.05 -7.79 -6.26 1.53

Volatility 8.89 2.70 7.22 9.14 2.80 7.18

Model
Mean -4.60 -0.55 4.05 -9.44 -5.46 3.97

Volatility 8.39 1.89 6.92 8.65 1.96 7.09
Corr 0.68 0.85 0.59 0.67 0.81 0.59
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Figure IA.2: Term structure of equity spot and forward yields

The figure compares the model-implied spot (left panel) and forward yields (right panel) of dividend strips
with the data from Giglio et al. (2021). The forward yields in the data are computed by subtracting the spot
yields with the maturity-matched zero-coupon nominal Treasury bond yields. The last row plots the spread
between 10-year and 1-year spot or forward yields. Shaded areas correspond to NBER recessions. The sample
period is from 1987Q4 to 2019Q4, and all numbers are in annualized percentage terms.

Third, following Van Binsbergen et al. (2013), we run variance decomposition on forward equity

yields to understand determinants of their time-variations. We can write the forward yields as:

e f (n)
t = Const(n)−λ(µ̃g,t +

1−ρn
g

n(1−ρg)
ρg x̃g,t)︸ ︷︷ ︸

RGDP (n)
t

+
1−ρn

d

n
x̃d,t −

νl
d −1

n
(dl

t −λyt − µ̃d,t−1)−
νs

d −1

n
(ds

t −ρd x̃d,t−1)︸ ︷︷ ︸
Div−speci f ic(n)

t

−(µ̃π,t +
1−ρn

π

n(1−ρπ)
ρπ x̃π,t)︸ ︷︷ ︸

Inf l(n)
t

+
1−ρn

ag

n(1−ρag)
λag,t +

1−ρn
ad

n(1−ρad)
ad,t︸ ︷︷ ︸

Ambiguity(n)
t

, (IA.51)

from which we obtain the following decomposition:

var(e f (n)
t )= cov(e f (n)

t ,RGDP(n)
t )+ cov(e f (n)

t ,Div− speci f ic(n)
t )

+ cov(e f (n)
t , Inf l(n)

t )+ cov(e f (n)
t , Ambiguity(n)

t ). (IA.52)
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Table IA.9 illustrates the proportion of total forward yield variability explained by each component.

Consistent with our mean decomposition results in Table 3, the subjective real dividend-specific

growth contributes over 90% to the yield volatility at the 1-year horizon. Interestingly, the impor-

tance of subjective real GDP growth increases steadily with the horizon. For the 10-year forward

yield, it explains 23% of total yield variance while the proportion of dividend-specific growth de-

creases to 59%. A similar pattern is observed for the ambiguity part, which explains around 10%

of total variance at the 10-year horizon. Zooming in on different economic regimes, we find that

the explanatory power of subjective real GDP growth is stronger during the expansion period, yet

the ambiguity channel is more important during the recession. For instance, it explains 18% of the

10-year forward yield variance.

Table IA.9: Variance decomposition of forward equity yields

The table reports the model-based variance decomposition (IA.52), where forward yields are decomposed to the
components related to the real GDP growth, dividend-specific growth, inflation, and ambiguity. The decompo-
sition is run over the full sample from 1987Q4 to 2019Q4, or over expansion and recession periods identified
via the NBER business cycle dating. The decomposition is done for the dividend strip with the maturity of
1-year, 5-year, 7-year, and 10-year.

1Y 5Y 7Y 10Y
RGDP 0.04 0.11 0.15 0.23

Unconditional
Div.-spec. 0.93 0.80 0.73 0.59

Infl. -0.01 -0.01 0.01 0.05
Ambiguity 0.05 0.10 0.12 0.13

RGDP 0.04 0.12 0.17 0.26

Expansion
Div.-spec. 0.95 0.84 0.76 0.60

Infl. -0.01 -0.01 0.01 0.06
Ambiguity 0.01 0.05 0.06 0.08

RGDP 0.03 0.09 0.11 0.15

Recession
Div.-spec. 0.94 0.78 0.71 0.61

Infl. -0.01 0.01 0.03 0.06
Ambiguity 0.04 0.11 0.14 0.18

Incorporating ambiguity into the model also improves the fit for equity returns. Figure IA.3

shows that the correlation coefficients of 2-year (10-year) realized strip returns slightly increase, and

the model matches better the significant return crash during the global financial crisis. The model

further matches two stylized facts regarding return variations: (1) long-term dividend strips co-move
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more strongly with the market returns (Van Binsbergen and Koijen , 2017; Gonçalves , 2021b); (2)

return volatilities of long-term dividend strips are higher than those of short-term strips (Lettau

and Wachter , 2007; Van Binsbergen and Koijen , 2017). Previous studies reconcile the facts via the

idea that long duration assets have higher exposures to discount rate variations (see e.g., Campbell

and Vuolteenaho , 2004; Brennan and Xia , 2006; Lettau and Wachter , 2007; Gonçalves , 2021b).

Such an explanation may not be consistent with recent literature that casts doubt on the relevance

of discount rate variations at both short and long horizons. Indeed, if discount rate variability per

se does not contribute much to price volatility, we might expect it will explain little about the above

patterns for return variations. Because our model imposes minimal discount rate variations, we have

to use variations in beliefs over cash-flows to match these two stylized facts. Table IA.10 reports the

results, where Panel A estimates CAPM betas of strip futures returns to gauge the magnitude of

comovements and Panel B calculates volatilities of futures returns. Results imply that our model

replicates well the upward-sloping term structure of both CAPM betas and volatilities, although the

model-implied return volatilities are slightly smaller than the data.

Figure IA.3: Strip futures returns: data vs. model

The figure compares the model-implied futures returns of dividend strips with the data calculated from Giglio
et al. (2021). We display results for 2-year and 10-year strip returns, and the sample period is from 1988Q4 to
2019Q4. All numbers are in annualized percentage terms.
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Table IA.10: Strip return comovements and volatilities

Panel A reports the model-implied CAPM betas of strip futures returns, and the Newey-West standard errors
are in parentheses. Panel B reports the volatilities of strip futures returns in annualized percentage terms.
The sample period is from 1988Q4 to 2019Q4.

2Y 5Y 7Y 10Y
Panel A: CAPM betas

Data 0.47 0.80 0.88 0.93
(0.10) (0.10) (0.10) (0.11)

Model 0.25 0.44 0.53 0.61
(0.06) (0.06) (0.06) (0.08)

Panel B: return volatilities
Data 11.94 16.37 17.56 18.84
Model 7.33 8.30 9.40 10.81

Finally, Figure IA.4 plots the model-implied market returns together with the data. They are

close with each other and the correlation coefficient is 0.47.

Figure IA.4: Aggregate stock returns: data vs. model

The figure compares the model-implied aggregate market returns with the data. The sample period is from
1987Q4 to 2019Q4. Plotted numbers are in annualized percentage terms.

1987 1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020

-40

-30

-20

-10

0

10

20

30

40

50

60

Corr= 0.47

Data

Model

20



References

Brennan, M.J. and Xia, Y., 2006. Risk and valuation under an intertemporal capital asset pricing

model. Journal of Business, 79(1), pp.1–36.

Campbell, J.Y. and Vuolteenaho, T., 2004. Bad beta, good beta. American Economic Review, 94(5),

pp.1249–1275.

Coibion, O. and Gorodnichenko, Y., 2015. Information rigidity and the expectations formation pro-

cess: A simple framework and new facts. American Economic Review, 105(8), pp.2644-78.

Croce, M.M., Lettau, M. and Ludvigson, S.C., 2015. Investor information, long-run risk, and the term

structure of equity. Review of Financial Studies, 28(3), pp.706–742.

De La O, R. and Myers, S., 2021. Subjective cash flow and discount rate expectations. The Journal of

Finance, 76(3), pp.1339–1387.

Drechsler, I., 2013. Uncertainty, time-varying fear, and asset prices. Journal of Finance, 68(5),

pp.1843–1889.

Epstein, L.G. and Schneider, M., 2003. Recursive multiple-priors. Journal of Economic Theory,

113(1), pp.1–31.

Giglio, S., Kelly, B. T., Kozak, S., 2021. Equity term structures without dividend strips data. Working

Paper .

Gonçalves, A.S., 2021a. The short duration premium. Journal of Financial Economics.

Gonçalves, A., 2021b. What moves equity markets? A term structure decomposition for stock returns.

A Term Structure Decomposition for Stock Returns (July 15, 2021). Kenan Institute of Private

Enterprise Research Paper, (20–08).

21



Ilut, C.L. and Schneider, M., 2014. Ambiguous business cycles. American Economic Review, 104(8),

pp.2368–99.

Lettau, M. and Wachter, J.A., 2007. Why is long-horizon equity less risky? A duration-based expla-

nation of the value premium. Journal of Finance, 62(1), pp.55–92.

Lintner, J., 1956. Distribution of incomes of corporations among dividends, retained earnings, and

taxes. The American economic review, 46(2), pp.97-113.

Nagel, S. and Xu, Z., 2022. Asset pricing with fading memory. The Review of Financial Studies, 35(5),

pp.2190–2245.

Van Binsbergen, J., Hueskes, W., Koijen, R., Vrugt, E., 2013. Equity yields. Journal of Financial

Economics, Lead Article 110, 503–519.

Van Binsbergen, J.H. and Koijen, R.S., 2017. The term structure of returns: Facts and theory. Journal

of Financial Economics, 124(1), pp.1–21.

Weber, M., 2018. Cash flow duration and the term structure of equity returns. Journal of Financial

Economics 128, 486–503.

Zhao, G., 2017. Confidence, bond risks, and equity returns. Journal of Financial Economics, 126(3),

pp.668–688.

Zhao, G., 2020. Ambiguity, nominal bond yields, and real bond yields. American Economic Review:

Insights, 2(2), pp.177–92.

22


