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I. Introduction

The forward equity yield—the sum of a dividend growth expectation and a risk premium—is

pivotal for understanding various economic outcomes. Measurement of equity yields usually

comes from dividend futures on indices of large companies (Van Binsbergen et al., 2013;

Van Binsbergen and Koijen, 2017). While these futures contracts provide direct measure-

ments of equity yields, limited available maturities, short time-series, and small cross-sections

raise concerns regarding statistical power and the generalizability of the results.

While this literature made substantial progress in extending the data on equity yields

(see Giglio et al. (2021) for extending the US time-series, and see Gormsen (2021) for cross-

sectional extensions), a panel dataset with a long time-series is missing. Filling this gap is

important for several reasons. First, panel data makes it possible to study equity yields with

market and calendar time-fixed effects, which control for market-specific characteristics and

aggregate shocks. Second, it allows for more precise inference of model output (e.g., the

term-structure of risk premia). Third, inference based on a global panel is not liable to the

concern by Karolyi (2016) regarding a US bias in academic research in finance.

In this paper, we make the affine model of equity prices, dividends, and returns developed

by Giglio et al. (2021) suitable for an international context. The model makes it possible to

calculate equity yields for the market index and diversified equity portfolios, without data

on dividend futures. We use the model to extend the data on equity yields across markets

and anomalies, starting in the early 1990s, covering local and global recessions in 12 equity

markets.1 In total, this gives about 3,000 market-months of “new data” on equity yields.

We start by verifying the model’s usefulness outside the US. We do so by showing that

the model-implied forward equity yield closely matches the forward equity yield based on the

FTSE 100 Dividend Index Futures, the most liquid non-US contract. Having verified that

the model matches the dynamics of forward equity yields observed in the futures market

1These markets are: Austria (AT), Australia (AU), Switzerland (CH), Germany (DE), France (FR),
United Kingdom (GB), Hong Kong (HK), India (IN), Malaysia (MY), Sweden (SE), United States (US),
and South-Africa (ZA).
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outside the US, we use it to compute long time-series of forward equity yields for various

markets. We use this output in multiple contexts.

We first analyze the dynamics of global forward equity yields over time, crisis periods,

and portfolios. Second, we study the dynamics of the slope of forward equity yields (long-

term minus short-term yields). Third, we use a variance decomposition to calculate the

relative importance of risk premium and dividend growth expectations in explaining time-

series variation in forward equity yields. Fourth, we study comovements in risk premia and

expected dividend growth across markets and Fama and French (1993) portfolios. Fifth, we

provide estimates of global equity risk premia for different investment horizons. Sixth, we

link forward equity yields to exchange rates. Seventh, we test whether the risk premia and

dividend growth expectations are useful in forecasting macroeconomic outcomes.

Across all markets and periods, the average forward equity yield is negative in regular

periods and positive or flat in crisis periods. The average slope of equity yields is procyclical;

in good (bad) times it is 8.2% (-3.7%). Restricting the analysis to within-country variation

in economic conditions, we find that the slope shifts down from its unconditional mean by

8.4% in crisis periods. Our estimates are precise, with standard errors of less than 0.4%. We

repeat the analysis for portfolios formed on market capitalization and book-to-market in the

spirit of Fama and French (1993). We find that the slope of the short legs of the Fama and

French 3-factor model (i.e., big companies and growth stocks) drops substantially more in

crisis periods than the long legs (i.e., small companies and value stocks).

Our conclusions regarding the dynamics of forward equity yields at the market level

are similar to Bansal et al. (2021); despite they are using futures prices, other measures of

the state of the economy, and US data. We show that their results are unlikely driven by

confounding slow-moving events in the time-series, or are specific to the US.

By the definition of forward equity yield, we decompose its slope into two terms. The

first term is the risk premium on the longest maturity strip above the 1-year maturity strip.

The second term is long-term expected dividend growth in excess of short-term growth. The
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slope is the first term minus the second term. We find that the main reason for the flatting of

the slope in crisis periods is a large drop in short-term expected dividend growth. We come

to similar conclusions for the Fama and French portfolios. Overall, our findings are in line

with Van Binsbergen et al. (2013) in their study of dividend futures for the US (S&P500),

JP (Nikkei 225), and the Euro-area (Eurostoxx 50).

We then use the global panel to understand variation in forward equity yields. We have

two main findings. First, most of the time-series variation in forward equity yields, both in

the US and outside the US, reflect changes in dividend growth expectations, especially at

short maturities. Although the picture is more balanced for long-maturity yields, the high

volatility of dividend growth expectations contradicts the view that most of the time-series

variations in stock prices are due to changes in discount rates (Campbell, 1991; Cochrane,

2017). Second, we decompose the variance of risk premia and dividend growth expectations

into a within-market component and a between-market component. A market refers to five

portfolios, the four long and short portfolios in the Fama and French 3-factor model, and

the region-specific market portfolio. We find that markets are highly integrated concerning

risk premia and dividend growth expectations in the short run, while country-specific effects

matter more in the long run, echoing the findings of Asness et al. (2011).

We use Fama MacBeth cross-sectional (Fama and MacBeth, 1973) regressions to estimate

the evolution of maturity-specific global equity risk premia since 1995. The 1-year maturity

risk premium reflects the discount rate in excess of the one-year risk-free rate on a dividend

payment from an equally weighted global equity index. The n-period risk premium is defined

analogously. Our main finding is that the risk premium increases with the horizon; consistent

with the predictions of the habit model (Campbell and Cochrane, 1999) and the long-run

risk model (Bansal and Yaron, 2004).

Several theories have recently been developed to understand the dynamics of exchange

rates (see Verdelhan, 2020, for an excellent overview). Gabaix and Maggiori (2015) develop a

theory of exchange rate determination based on capital flows in imperfect financial markets.
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Their idea is that shifts in the demand and supply of assets result in large-scale capital flows

fed through the global financial system, which affects exchange rates. Following this logic,

we hypothesize that when expected dividend growth in market i exceeds that of the US,

capital will flow into market i, which results in currency appreciation.

We test our hypothesis by regressing changes in exchange rates on two lagged spreads.

The first is the wedge in expected dividend growth between country i and the US. The second

is the corresponding wedge in the risk premium. In line with the capital flow mechanism in

Gabaix and Maggiori (2015), we find that high expected growth in non-US countries with

respect to the US predicts currency appreciation relative to the US dollar. In regard to risk

premia, we find that when the risk premium in a non-US country exceeds the risk premium

in the US, the currency depreciates relative to the US dollar. To the best of our knowledge,

we are the first to link forward equity yields and exchange rates.

In our final application, we test whether the risk premia and dividend growth expec-

tations are useful in forecasting macroeconomic outcomes. Given that we have data on

markets whose macroeconomic conditions and equity yields differ, we gain substantial power

in decoupling the role of risk premia from growth expectations as leading indicators of the

macroeconomy; measurable by consumption growth, unemployment changes, and industrial

production growth. These variables have homogenous definitions across markets and have

either a long tradition in macro-finance (see, e.g., Hansen and Singleton, 1982; Chen et al.,

1986), or have recently been linked to the theoretical literature on the term-structure of the

equity premium (Hall, 2017). The forecasting regression is a dynamic model with a market-

specific intercept. Our central finding is that dividend growth expectations have significant

predictive power on all macro outcomes, while risk premia are less important.

Our paper is related to several strands of literature. First, we build on the literature

that applies affine models to understand the risk-return properties of financial assets (Lemke

and Werner, 2009; Cochrane and Piazzesi, 2005; Giglio et al., 2021). We closely follow the

setup in Giglio et al. (2021) and focus on equities. The central idea is to use both the time-

4



series and cross-sectional variation in equity portfolios to identify a set of model parameters

that makes it possible to value any equity portfolio “dividend-by-dividend” in the spirit of

Brennan (1998). Previous literature has also attempted to measure the term-structure of

equity from the cross-section of equities (Bansal et al., 2005; Hansen et al., 2008; Lettau

and Wachter, 2007).2 Importantly, Giglio et al. (2021) differ from these efforts by specifying

their model dynamics in accordance with recent empirical US evidence brought forward by

Kozak et al. (2020) and Haddad et al. (2020). The key insights are that the returns of a few

principal components of anomaly portfolios price the cross-section of stock returns, and that

their valuation ratios predict future returns. We replicate these analyses in the additional

markets we study and find that these results generalize to many countries outside of the US.

Second, we contribute to the literature aiming to understand forward equity yield and

their components following the seminal work by Van Binsbergen et al. (2012).3 The some-

what “irregular” sample of mostly US data, covering the last 20 years, with frequent economic

crises, has led to a dispute about the dynamics of forward equity yields. Critics of the “new

facts”, which are inconsistent with a host of asset pricing models, argue that the sample

is unrepresentative and inference from derivative contracts is unreliable due to low market

liquidity (Mixon and Onur, 2017; Bansal et al., 2021; Kirshon, 2020). In addition, the prices

of these contracts may be influenced by the views and preferences of financial intermediaries,

rather than the preferences of the aggregate household sector; the decision-making unit in

most asset pricing models . Our panel dataset and the focus on listed equities—possible due

to Giglio et al. (2021)—solve these concerns.

Finally, we add to the literature that links global capital allocation to country-specific risk

premia and growth expectations. Lucas (1990) noted that, from a macroeconomic point of

view, returns on assets correlate negatively with GDP per capita. David et al. (2014) suggest

that the differences in levels of invested capital are due to differences in risk premia and

2The idea is to exploit information in portfolios of stocks with different cash-flow growth and discount
rates properties. Related work studying the term-structure of the equity risk premium using firm-level
measures of duration includes: Weber (2018); Jankauskas et al. (2021); Gormsen and Lazarus (2021).

3For a literature review, see Van Binsbergen and Koijen (2017).
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required rate of return, which again can be accounted for by differences in exposure to long-

run risk across countries. We find that differences in risk premia and growth expectations

affect exchange rates, possibly due to the reallocation of capital.

The paper is organized as follows. Section II contains the empirical model. We present

our data sources, variable definitions, and the estimation procedure in section III. The main

results are in Section IV. Sections V and VI contain additional analysis and conclusions.

II. The Empirical Model

We make the model developed by Giglio et al. (2021) (henceforth GKK) work internationally.

The model makes it possible to price dividend strips—claims on realized dividends of an

equity portfolio n periods ahead—without data on dividend strips. We aim to recover the

discount rate and dividend growth expectations for different equity portfolios at different

horizons around the world. To do so, we use a slight modification of GKK. In the following,

we define discount rate and dividend growth expectations in terms of model output and

provide a minimum of details about the model necessary to understand the output.

A. Equity Yields

We denote the price of the dividend strip at time t that pays Dt+n at time t + n by P
(n)
t .

Its current dividend is denoted by Dt. The realized gross return on the dividend strip is

R
(n)
t:t+n = Dt+n/P

(n)
t = (Dt/P

(n)
t )(Dt+n/Dt). The (annualized) equity yield is defined as:

e
(n)
t :=

1

n
ln

(
Dt

P
(n)
t

.

)
(1)

It is the annualized log expected hold-to-maturity return minus the annualized log expected

dividend growth on the strip. To see this, start with the realized gross return on the dividend
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strip, then condition on information available at time t, take logs, and rearrange:

R
(n)
t:t+n =

Dt+n

P
(n)
t

Dt

Dt

Et

[
R

(n)
t:t+n

]
=

Dt

P
(n)
t

Et

[
Dt+n

Dt

]
1

n
ln
(
Et

[
R

(n)
t:t+n

])
=

1

n
ln

(
Dt

P
(n)
t

)
+

1

n
ln

(
Et

[
Dt+n

Dt

])
e
(n)
t =

1

n
ln
(
Et

[
R

(n)
t:t+n

])
− 1

n
ln

(
Et

[
Dt+n

Dt

])
︸ ︷︷ ︸

:= g
(n)
t

(2)

We use g
(n)
t to denote expected dividend growth from time t to t+n. The forward equity yield

is defined as the equity yield in excess of the annualized log risk-free rate: ef
(n)
t := e

(n)
t −rft:t+n.

Subtracting the log risk-free rate from Eq. 2 gives the forward equity yield:

ef
(n)
t =

1

n
ln
(
Et

[
R

(n)
t:t+n

])
− rft:t+n − g

(n)
t

=
1

n
ln

(
Et

[
R

(n)
t:t+n

Rf
t:t+n

])
︸ ︷︷ ︸

:= θ
(n)
t

−g
(n)
t . (3)

We use θ
(n)
t to denote the risk premium associated with the expected dividend n periods

from time t. Therefore, the forward equity yield is the difference between the log expected

hold-to-maturity excess return of the strip θ
(n)
t (henceforth risk premia) and the log expected

dividend growth on the strip g
(n)
t (henceforth expected dividend growth).4

The model gives equity yields e
(n)
t , risk premia θ

(n)
t , and dividend growth expectations

g
(n)
t as a function a state vector Ft. The state vector Ft summarizes all future investment

4Van Binsbergen et al. (2013) and Bansal et al. (2021) define the risk premia as: θt,n := Et

[
ln

(
Rt:t+n

Rf
t:t+n

)]
.

We deviate slightly from them as our definition follows from the closed-form solution of GKK.
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opportunities. Starting with the equity yields:

e
(n)
t =

1

n
ln

(
Dt

P
(n)
t

)
=

1

n

[
ln(exp(yt)− 1)− ln

(
P

(n)
t

Pt

)]
,

where yt ≡ ln(1 + Dt

Pt
). The price of the dividend strip P

(n)
t as a fraction of the price of the

portfolio Pt all strips n = 1, 2, ...,∞ is given by:

P
(n)
t

Pt

= EQ
t

(
Dt+n

Pt

exp(−
n∑

i=1

rf,t+i−1)

)

= EQ
t

(
[exp(yt+n)− 1] exp(

n∑
i=1

∆pt+i) exp(−
n∑

i=1

rf,t+i−1)

)

= EQ
t

(
exp

(
yt+n +

n∑
i=1

(∆pt+i − rf,t+i−1

))
− EQ

t

(
exp

(
n∑

i=1

(∆pt+i − rf,t+i−1

))

= exp(an,1 + dn,1Ft)− exp(an,2 + dn,2Ft), (4)

where ∆pt+1 := ln(Pt+1/Pt) is the capital gain from t to t + 1, EQ
t denotes the conditional

expectation under the risk-neutral measure, and an,1, an,2, dn,1, dn,2 are parameters defined

in Appendix C.C. The log expected hold-to-maturity excess return of the strip θ
(n)
t is:

ln
(
Et

[
R

(n)
t:t+n

])
− rft = lnEt

[
Dt+n

Pt

R−1
f,t

]
− ln

[
P

(n)
t

Pt

]

= ln
[
exp(ân,1 + d̂n,1Ft)− exp(ân,2 + d̂n,2Ft)

]
−

ln [exp(an,1 + dn,1Ft)− exp(an,2 + dn,2Ft)] , (5)

where the notation x̂ refers the physical counterpart to the risk-neutral parameters.

We interpolate local risk-free bond yields (rft:t+n) to get a complete term-structure with

maturities ranging from 1 month to 15 years. Specifically, we fit a Nelson-Siegel-Svensson

model month-by-month and use the following maturities: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,

20, 30 years; given data on at least four maturities.5 The one-year local government bond

5Columns 2 to 14 in Table VIII show the starting dates for our sample of local bond yields per maturity
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yield is the risk-free rate with the shortest maturity. If unavailable, we use the one-year

interpolated yield. For a few cases, interpolated yields are also unavailable. In these cases,

we estimate the local one-year risk-free via a regression that includes US yields and exchange

rate changes as predictors. The average R2 of these regressions is 61% for all markets and

70% for developed mar. Additional details are available in Appendix A.B.

B. A Linear Factor Model

The state vector Ft that determines the dynamics of equity yields follows a linear model

Ft+1 = c+ ρFt + ut+1, (6)

with log-normally distributed shocks and vart(ut+1) = Σ. Let mt+1 be the log-linear SDF

with time-varying risk prices λt:

mt+1 = −rf −
1

2
λ′
tΣλt − λtut+1, (7)

where ut+1 represent a vector of priced shocks. The price of risk follows:

λt = λ+ ΛFt. (8)

The Euler equation contains provides restrictions to the factor model, which we now

describe. Any asset satisfies the Euler equation:

1 = Et

[
exp(mt+1)

(
Pt+1 +Dt+1

Pt

)]
= Et [exp(mt+1 +∆pt+1 + yt+1)] .

(9)

per market. The last column shows the initial date from which we have a complete local bond yield term-
structure.
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Under log-normality we have:

0 = Etmt+1 + Et∆pt+1 + Etyt+1 +
1

2
Vt[mt+1 +∆pt+1 + yt+1]. (10)

We now specify the dynamics of log price changes ∆pt+1 for any assets that satisfy the

Euler equation. This gives functional forms for the dividend process yt+1 and the total

returns (rt+1 = ∆pt+1 + yt+1). We start by specifying p assets that are fully diversified and

exposed to the priced shocks ut+1. For these assets, log price changes ∆pt+1 follow:

∆pt+1 − rf = γ0 + γ1Ft + γ2ut+1. (11)

It then follows that the yield yt := ln(1 +Dt/Pt) will be linear in the factors Ft:

yt = b0 + b1Ft. (12)

Thus:6

rt+1 − rft+1 = β0 + β1Ft + β2ut+1. (13)

As in the bond literature (see e.g., Cochrane and Piazzesi, 2005), we will have portfolios

spanning the same risks as the fully diversified portfolios but measured with error. For these

portfolios, log price changes and yields follow:

∆pt+1 − rf = γ0 + γ1Ft + γ2ut+1 + νt+1, (14)

yt = b0 + b1Ft + ϵt. (15)

Thus:7

rt+1 − rft:t+1 = β0 + β1Ft + β2ut+1 + εt+1 (16)

6β0 = γ0 + b0 + b1c, β1 = γ1 + b1ρ, and β2 = γ2 + b1.
7εt+1 = ϵt+1 + νt+1
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The state vector Ft contains the returns and yields of p fully diversified portfolios: the

market and p − 1 principal component constructed from long-short equity anomalies. As

a result, the state vector Ft contains k = p + p variables; half from returns of the fully

diversified portfolios (Fr, t), and the remaining are yields (Fy, t):

Ft ≡

Fr,t

Fy,t

 . (17)

GKK impose three restrictions. First, there are p priced risks, and the p fully diversified

portfolios span them. This implies that only the first p elements of λt are non-zero, which

implies that λy, Λy,r and Λy,y are zero. Second, time-variation in investment opportunities

is driven solely by the dividend yields of the fully diversified portfolios (Λrr = 0p×p). Re-

strictions 1 and 2 imply that conditional expected excess returns are a function of lagged

yields but not lagged realized returns (ρr,r = 0p×p). We implement these two assumptions

as follows:  λr,t

0p×1

 =

 λr

0p×1

+

 0p×p Λry

0p×p 0p×p


Fr,t

Fy,t

 . (18)

Third, the conditional mean of yields is only a function of lagged yields, not lagged

returns (ρy,r = 0p×p), which implies the following restrictions:

ρ =

0p×p ρr,y

0p×p ρy,y

 . (19)

III. Data and Estimation

We first explain where the data come from, define variables, and explain how we construct

the data we use in the estimation. Details about variable definitions are in Appendix A and

details on how we construct the state-vector Ft are in Appendix B. We then explain in brief

how we estimate the model. Details about the estimation are in Appendix C.
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A. Data Sources

We use data from multiple sources. Data on US equities come from Serhiy Kozak’s website.8

The data source for the international sample is Compustat Global (CG). Exchange rates

and dividend futures (for the UK) come from the same source. FX comes from Refinitiv

DataStream (DS).9 For local bond yields, we use DS whenever available; otherwise, Global

Financial Data (GFD). Dividend futures for the UK are also obtained from this source.

B. Equities

We download the US market portfolio from CRSP and its dividend yield from Robert Shiller’s

dwebsite.10 Anomaly returns and dividend yields are from Serhiy Kozak’s. For all other

markets, we get market returns and dividend yields from DS and stock-specific information

necessary to construct characteristic sorted portfolios from CG. For the market portfolios,

we use the market indices from DS instead of a value-weighted portfolio of the stocks in CG

because—as we explain below— we need to impose a few restrictions on the sample we use

to form characteristic sorted portfolios.

We construct 35 of the 50 characteristic-sorted portfolios in GKK.11 These 35 characteris-

tics cover five types of anomalies defined by Hou et al. (2020) and works well internationally.12

We construct anomaly portfolios in local currency and use the same filters in all markets

but adjust them to local conditions. We proceed as follows. We first download daily stock

prices (PRC), daily adjustment factors (AJEXDI), volume (Code: CSHTRD), daily return

factors (Code: TRFD), shares outstanding (Code: CSHOC), share codes (Code: TPCI),

standard industry classification codes (Code: SICCD), delisting reason (Code: DLRSN),

8https://www.serhiykozak.com/data
9Data on dividend futures starts in July 2011. Mnemonics: LYZ1211, LYZ1212, LYZ1213, LYZ1214,

LYZ1215, LYZ1216, LYZ1217, LYZ1218, LYZ1219, LYZ1220, LYZ1221, LYZ1222, LYZ1223, LYZ1224,
LYZ1225, LYZ1226, LYZ1227.

10http://www.econ.yale.edu/~shiller/data.htm
11We use as many anomalies as possible (usually 35). The exact number depends on the availability of

data in the specific market. Appendix A.A contains a list of the anomalies.
12Namely: trading frictions, value-versus-growth, momentum, profitability, and investment.
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delisting date (Code: DLDTE), currency codes for prices (CURCD) and dividends CUR-

CDV), and dividends (DIVD). For the international sample. dividends, D, refers to DIVD.

We exclude firms in public administration and unclassified companies by removing all firms

whose sic codes begin with 9. We also remove firms in the miscellaneous investment sector

(Sic: 679) and telecom (Sic: 4812 and 4813). We remove telecoms because the largest firms

in this sector can make up a substantial part of the total market value in certain periods

for some markets. This is problematic for estimation because these large companies often

pay high dividends, making the dividend yields of anomaly portfolios very volatile. CG does

not contain information on delisting returns. Therefore, we follow Jensen et al. (2021) and

assign a return of -30% in the month a stock is delisted for delisting reasons 2 or 3.

The data coverage in CG is lower than in the US. To ensure that we have sufficient

stocks in all portfolios, we impute missing accounting data as follows. First, we download

all relevant accounting characteristics in GBP. We then apply Random Forest imputation

recursively. Specifically, we use the so-called miceforest algorithm by Wilson (2022) over a

rolling window, which uses a random forest estimated and tuned based on data available at

the time of the prediction to predict missing data. In total, we impute ca. 1,4 million data

points out of a total of 1,85 million missing data points.

To select which equity markets to include in the analysis, we first calculate the top 20

markets by market capitalization using the market capitalization indices from GFD. From

1990 to 2020, the top 20 countries always account for more than 85% of global market

capitalization. For each market, we construct characteristic sorted portfolios. Of the 20

markets, 11 had a sufficient cross-section to create well-diversified anomaly portfolios.13

We form three portfolios for each characteristic using 70/30 breakpoints. For the interna-

tional sample, we restrict anomaly portfolios to stocks that have paid dividends over the last

12 months (Dimson et al., 2003, use a similar assumption in their analysis of the UK equity

market). At the beginning of the sample, a few anomalies are missing data (for example,

13Excluding the US.
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shvol, llrev, ivol. All anomalies are defined in Appendix A.A). This happens at most 2% of

the time. In these cases, we fill in with the time series median.

C. Interest Rates

We need local government bond yields to calculate forward equity yields. For the US, we use

data from Gürkaynak et al. (2007).14 Outside the US, we use yields from DS and GFD, which

complement each other. For instance, DS does not provide yields for maturities shorter than

one year, whereas Global Financial Data does. In addition, the starting point of the bond

yields generally differs between the two databases (for example, 1-year local bond yields for

the UK start in 1970 in DS, whereas only in 1979 in GFD). For every market, we download

all available maturities that may be available after June 1972 (monthly data). When bond

yields from DS are unavailable, we use GFD.15 Appendix A.B lists starting and ending dates

for bonds with and without interpolation.

D. Currency Adjustments

We use the first two digits of the isin code to assign stocks to markets (for example, we

assign all stocks whose isin starts with “GB” to Great Britain). We download exchange

rates from CG. We use the exchange rates to ensure that all market and accounting data

for firms belonging to a given market are reported in the same currency throughout our

sample period. With the purpose of estimating market-specific risk forward equity yields,

we estimate the model from the point of view of a local investor (e.g., for the UK, a British

investor). For that reason, returns and interest rates are always in local currency.

14Available at https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
15Tickers are available upon request.
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E. A Global State Vector

The state-vector Ft contains returns and yields of the market portfolio and principal com-

ponent portfolios from long-short anomalies. GKK motivate the use of principal component

portfolios by leveraging two empirical results from the US equity market. First, Kozak et al.

(2020) show that a small number of principal components from a large set of anomaly port-

folios can explain the cross-section of returns. Second, Haddad et al. (2020) show that the

returns of the first principal components are predictable by valuation ratios. In Appendix

B.A, we present results showing that the second finding holds internationally.16

To construct our state-vector Ft, we combine local equities with US equities, as the long

history featured by the US data is crucial for the estimation. Concretely, the market port-

folio included in Ft is an equally weighted portfolio between the US market portfolio and

the relevant local market portfolio (i.e., the UK market portfolio).17 Similarly, the principal

component portfolios are constructed from a set of anomalies that includes both US anoma-

lies and anomalies for the relevant local market (i.e., the UK anomalies). Due to the latter

implementation choice, the state vector Ft will contain 10 elements (i.e., p = 5) and not 8

as in GKK. This is due to the fact that in a larger set of anomalies, an additional principal

component is required to achieve an explained variance level of about ca. 50% (54.7% in

GKK).

The construction of the combined set of anomalies is as follows. The first year is 1973,

for which we only have data for the US. Consequently, we need to impute local anomalies—

usually starting in 1990—back to 1973 using the complete set of US anomalies. This is

a common preliminary step before performing principal components when a dataset has a

small number of missing variables. We use the function “imputePCA” from the R library

“missMDA”. This function imputes the missing values of a dataset using an iterative PCA al-

16In unreported results, we have verified that the first finding also holds internationally.
17As not every market has available data for the market portfolio since 1973, the weight of the US portfolio

in the first years of some equally weighted market portfolios will be 100%.
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gorithm. This procedure ensures a balanced panel of anomalies. Definitions of the anomalies

that enter the state-vector Ft are in Appendix B.B.

Jointly using US and local equities raises the concern of whether US data subsume infor-

mation in the local market. To alleviate this potential concern, we show in Appendix B.C

that the elements of a state vector constructed uniquely with US data can explain at most

two (the first two) elements of the state vector constructed following our empirical choices.

F. Estimation

We relegate details about the estimation to Appendix C and explain the procedure in brief

in the following. The model is estimated using GMM. The moment conditions for the

fully diversified portfolios come from Eq. 6, 12, and 13. The moment conditions for other

portfolios (with returns and yields measured with error) come from Eq. 15 and 16. Our

estimated parameters are then the ones that jointly minimize these moment conditions and

comply with the parameter restrictions implied by the Euler Equation. The system is over-

identified.

GKK also price portfolios “measured with error”.18 In practice, this means that the

system will fit the returns r and yields y of 50 long anomalies and 50 short anomalies (i.e., size,

value, etc.). Proceeding exactly as in their setting would require us to price 35 long and 35

short anomalies per market, an endeavour that would suppose a tremendous computational

cost. Thus, we deviate from their implementation and price a smaller number of portfolios:

A local market portfolio (as the state vector Ft does contains an equally weighted portfolio,

and we want to ensure that the local market is priced), and both the long and short legs of a

size, value, profitability, investment, momentum and “principal component” portfolio. The

principal component portfolio is the first principal component of the set of anomalies of a

given market. Using a principal component portfolio works well because anomaly portfolios

have a strong factor structure.19

18More formally, they estimate their model so that the moment conditions for equations 16 and 15 hold.
19For example, the first principal component of anomalies explains on average ca. 80%. of the cross-
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IV. Main Results

A. Validity Checks

We first examine the internal and external validity of the model. We stick to the setup we use

for international markets in both validity checks. For internal validity, we use the US market

and compare our results with GKK. We use the UK, the most liquid non-US contract, for

external validity. For the US, the original data come from Serhiy Kozak’s website. For the

UK, we use our data.

For internal validity, we compare our 1-year forward equity yields (ef 1
t ) and their slope

(ef 7
t − ef 1

t ) to the similar quantities in GKK. Figure 1 shows the results.

[Insert Figure 1 here]

The model-implied yields closely track the movements in the data over the entire sample.

Comparing the results for 1-year and 7-year, we match both yields and the difference between

them, the slope (the correlation coefficient is 88%).

The model generates a secular decline in equity yields since the late 1980s, followed by an

upward trend post-2000, and replicates the forward equity yield spikes during the recession

periods in the 1990s and around 2008. In Appendix D, we show that conclusion also holds

for both large and small companies and value and growth companies. As a result, using a

lower-dimensional set of portfolios has little impact on the results. This is important for

smaller equity markets, where we often must choose between how diversified the typical

anomaly portfolio is and how many portfolios we can construct.

Regarding external validity, we compare the model-implied forward equity yields for the

UK with the yields on the corresponding futures in Figure 3. We present maturities of 2

and 7 to ease the comparison with Figure 3 in Gormsen (2021). The plot shows that the

model-implied yields closely track the equity yields based on futures prices in the UK.

sectional return variation of anomalies.
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[Insert Figure 3 here]

B. The stylized facts about model implied forward equity yields

Table I provides the summary statistics of the forward equity yields from 12 markets. The

upper panel reports the results using all stocks. The lower panel is restricted to companies

with high market capitalization, mimicking the universes of stocks included in the divided

futures. The first seven columns present the forward equity yields covering maturities from 1

to 7 years. The eighth column shows the unconditional slope, which is the difference between

the 7 and 1-year forward equity yield.

[Insert Table I here]

The slope is positive across markets and periods. Rows two and three highlight the

behavior of equity yields conditional on the economy’s state. Following Gormsen (2021),

we define “Bad-times” as months in which the dividend price ratio is above its time series

median. These periods are market specific.

We find a positive (negative) slope in good (bad) times. These results are similar to

Bansal et al. (2021); despite their inference relies on futures prices and other measures of the

state of the economy. The last two rows show that our conclusions are unaffected by excluding

the US. Therefore, our findings are not liable to the concern by Karolyi (2016) regarding a

US bias in academic research in finance. Overall, the results highlight the pivotal role of the

state of the economy in understanding time-series variation in forward equity yields. Going

forward, we present the results based on all stocks (the market portfolio) and relegate the

portfolio analysis to the Appendix.

In Table II, we regress the slope on the “Bad-times” dummy variable with various controls.

To set a benchmark, we report the unconditional average, as in Table I, but now with

standard errors. The average slope in good (bad) times is 8.2% (-3.7%). These estimates are

precise, with standard errors between 0.3-0.4%. In the second column, we control for market-
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and time-fixed effects, thus focussing exclusively on within-market variation in the slope. The

resultant coefficient on the “Bad-times” dummy is -11.4%. The third column shows a similar

pattern for the US; albeit with a more modest decline in the slope in bad times. The last

two columns show that our general conclusions are unaffected by excluding the countries

where dividend futures were available at some point in our sample. In conclusion, the slope

is much flatter in crisis periods than in regular periods.

[Insert Table II here]

We repeat the above analysis for portfolios formed on market capitalization and book-

to-market in the spirit of Fama and French (1993). All results are in Appendix D.B. To

summarize, we find that the slope of the short legs of the Fama and French 3-factor model

(i.e., big companies and growth stocks) drops substantially more in bad-times than the

long legs (i.e., small companies and value stocks). For example, with the specification with

country and time fixed effects, we find a slope coefficient of -8.3% for growth stocks but only

-3.6% for value stocks. The difference is statistically significant.20

We can decompose the slope into two terms by using Eq. 3. The first term is the risk

premium on the longest maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t . The

second term is long-term expected dividend growth in excess of short-term dividend growth,

g
(7)
t − g

(1)
t . The slope is the first term minus the second term. The decomposition tells

whether the flat slope in crisis periods reflects changes in the term-structure of risk premia

(θ
(n)
t ) or growth expectations (g

(n)
t ). Table III presents the results from regressing the slope

on these two components.

[Insert Table III here]

The slope flattens in crisis periods because of the differences between expected dividend

20The slope coefficient on the “Bad-times” dummy exceeds that of all Fama French portfolios. This is
because we get the market series from DataStream while we construct the Fama French portfolios from data
available through Comustat Global.
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growth in the short and long-term spikes. The wedge between short and long-term expecta-

tions mainly reflects a large drop in short-term dividend growth expectations. These results

are consistent with the findings of Van Binsbergen et al. (2013) in their analysis of dividend

futures for the US (S&P500), JP (Nikkei 225), and the Euro-area (Eurostoxx 50). In Ap-

pendix D.B, we show that the dynamics of dividend growth expectations also is the main

reason for the flat slope in crisis periods for the Fama and French portfolios.

C. Variation in forward equity yields

In this section, we explain the variation in forward equity yields. We start with the definition

of the forward equity yield: ef
(n)
t = θ

(n)
t − g

(n)
t and decompose its time-series variation into

two components: V ar(ef
(n)
t ) = Cov(ef

(n)
t , θ

(n)
t ) − Cov(ef

(n)
t , g

(n)
t ). By normalizing the two

components by total variance, we get the fraction of time-series variation in yields due to

movement in risk premia (θ
(n)
t ) and growth expectations (g

(n)
t ). We report the results for the

US and all non-US markets together. For the latter, we report the equally-weighted average

across markets. The results are in Table IV. Each row represents a maturity-specific variance

decomposition.

[Insert Table IV here]

Variation in expected dividend growth explains most of the time-series variation in for-

ward equity yields, both in the US and outside of the US. In both regions, the relative

importance of time-series variation in risk premia increase with the maturity of the forward

equity yield. The high volatility of dividend growth expectations calls into question the

dominant view that most time-series in stock prices are due to changes in discount rates

(Campbell, 1991; Cochrane, 2017).

In Table V, we study the comovement in risk premia and dividend growth expectations.

In the variance decomposition, a market contains five portfolios, the four long and short

portfolios in the Fama and French factor model, and the market portfolio. We then de-
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compose the variance of risk premia and dividend growth expectations into a within-market

component and a between-market component.

In the short-run, almost all of the variation in both components comes from variation

within a region. This finding provides multiple insights. First, the five portfolios in the Fama-

French 3-factor model exhibit substantial variation in risk premia and expected dividend

growth. Second, investing in Fama and French portfolios across regions provides limited

diversification benefits. In the medium to long-term, the relative importance of variation

within- and between regions becomes more balanced. This suggests that short term risk

premia and growth expectations are almost perfectly correlated across markets in the short

run, and that country-specific effects matter only in the long-run.

D. Term-structure of Global Equity Risk Premium

The term-structure of equity risk premia plays a pivotal role in capital budgeting and as

a diagnostic tool for asset pricing theory (Van Binsbergen and Koijen, 2017). We now use

Fama MacBeth cross-sectional (Fama and MacBeth, 1973) regressions to estimate the global

risk premium for different horizons. Starting in 1995, we run the following regression for

each month t:

θ
(n)
j,t = γ

(n)
θ 1M + ϵ

(n)
θ,j,t, (20)

where j = 1, 2, ...M index geographical region and 1M is a vector on ones with length M .

For example, when the independent variable is a 1-year risk premium, θ
(1)
j,t , we can interpret

the coefficient γ
(1)
θ as the discount rate in excess of the one-year risk-free rate on a dividend

payment from an equally weighted global equity index. In Figure 4, we plot the risk premia

for investment horizons n of 1,7, 15, 25, and the term premium 7-1 years.

[Insert Figure 4 here]

Plot a) of Figure 4 shows that the 1-year risk premium fluctuates around 2.2%, with

a 95% confidence level of roughly -5 to 5%. Plot b) shows the corresponding results for
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the 7-year risk premium. The mean is 5%, almost 3% above the short-term risk premium.

The 95% confidence bounds are tighter than for the short-term risk premium; now ranging

from roughly +/- 2.5%. We see a gradual decline in the risk premium leading up to the

dot-com bubble reaching its lowest point in the sample in 2000. The risk premium quickly

reverted to its unconditional mean after the burst of the dot-com bubble. Although we see

a somewhat similar pattern for the 2008 financial crisis, it is much less pronounced. Using

a VAR, Campbell et al. (2013) come to a similar conclusion after decomposing US stock

market returns into a discount rate and a cash flow component.21

The lower panels of Figure 4 focus on the term-structure of risk premia. Plot c) shows the

15 and 25-year risk premia. The risk premium on the longest maturity claim is almost always

the highest; consistent with the predictions of the habit model (Campbell and Cochrane,

1999) and the long-run risk model (Bansal and Yaron, 2004). In panel d) of Figure 4,

we estimate the term-premium, here the 7-year risk premium in excess of the 1-year risk

premium. The unconditional mean is 2.7%, and it is almost always positive. Toward the

end of the sample, we mostly reject the null hypothesis that the term premium is zero.

V. Additional Analysis

In this section, we first examine the relationship between forward equity yields and exchange

rates. Second, we test whether the risk premia and dividend growth expectations are useful

in forecasting macroeconomic outcomes.

A. Exchange Rates, Risk Premia, and Growth Expectations

Recent theoretical and empirical work motivates the analysis. On the theory side, Gabaix

and Maggiori (2015) develop a theory of exchange rate determination based on capital flows

in imperfect financial markets. The central idea is that shifts in the demand and supply of

21They find that the stock market collapse in the early 2000s mainly reflected increases in discount rates,
while in the drop in the late 2000s was also driven by a revision in investors’ expectations of future cash-flows.
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assets result in large-scale capital flows fed through the global financial system, which affects

exchange rates. On the empirical side, Hau et al. (2009) show that countries experiencing

plausibly exogenous capital flows, due to changes in the weights of the MSCI World Equity

Index, saw their currencies appreciate.

To establish the hypothesis, let Si,t denote the exchange rate, that is, the number of

units of local currency i per US dollar at time t. Let q ∈ {1, 3, 6, 12} denote frequency.

For example, with monthly data, we have q = 1 with the previous month denoted by q−1.

The outcome variable of interest is ∆Si,t,q = Si,t/Si,t,q−1 − 1. A positive value indicates

depreciation of the local currency i with respect to the US dollar. Define g
(n)
US,t,q−1

as the

expected dividend growth for the US equity market and let g
(n)
i,t,q−1

be the corresponding

expected dividend growth for market i. Similarly, let the risk premium for the US equity

market and market i be θ
(n)
US,t,q−1

and θ
(n)
i,t,q−1

. We use these variables to construct two variables

potentially informative about capital flows and changes in exchange rates. The first is the

wedge in expected dividend growth,
(
g
(n)
US,t,q−1

− g
(n)
i,t,q−1

)
, and the second is the wedge in risk

premium,
(
θ
(n)
US,t,q−1

− θ
(n)
i,t,q−1

)
. Adding up, we run regressions of the following type:

∆Si,t,q = ai + βt + bg(n)q

(
g
(n)
US,t,q−1

− g
(n)
i,t,q−1

)
+ bθ(n)q

(
θ
(n)
US,t,q−1

− θ
(n)
i,t,q−1

)
+ εi,t,q, (21)

where ai is a country specific intercept and βt is calendar time-fixed effects.

Motivated by the theory and empirics introduced above, we hypothesize that when ex-

pected dividend growth in market i exceeds that of the US, capital will flow into market i,

which increases demand for the local currency i, which appreciates. As a result, we expect

b
g(n)
q to be negative. A similar mechanism could be at play for risk premia, but the sign of

the relationship is less straightforward.

Table VI presents the results for monthly changes in exchange rates. Each column rep-

resents a maturity n, ranging from 1 year to 15 years.

[Insert Table VI here]
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The coefficients in the first row show that when expected dividend growth in country i is

higher than in the US, the country’s currency appreciates. The coefficients are statistically

insignificant for short to medium-term growth expectations, but statistically significant for

10 and 15 years growth expectations. In regard to risk premia, the coefficients are positive,

and as with the growth expectations, increasing in significance with maturity. As opposed

to growth expectations, when the risk premium in a country i is higher than in the US, the

country’s currency depreciates.

B. Forward equity yields as Leading Indicators

We now test whether the risk premia and dividend growth expectations are useful in forecast-

ing macroeconomic outcomes. Given that we have data on markets whose macroeconomic

conditions and equity yields differ, we gain substantial power in decoupling the role of risk

premia from growth expectations as leading indicators of the macroeconomy. Our macroeco-

nomic variables are consumption growth, unemployment changes, and industrial production

growth. We choose these variables because they have homogenous definitions across markets

and have either a long tradition in macro-finance (see, e.g., Hansen and Singleton, 1982;

Chen et al., 1986), or have recently been linked to the theoretical literature on the term-

structure of the equity premium (see Hall, 2017). The forecasting regression is a dynamic

model with market-specific intercepts given by:

yi,t,q = ai + bg(n)q g
(n)
t,q−1

+ bθ(n)q θ
(n)
t,q−1

+ ρi,qyi,t,q−1 + ϵi,t,q, (22)

where t denotes calendar time, q = {3, 6, 12} is the frequency, and yi,q the outcome variable.

The outcome variables are defined as follows. First, consumption growth over q-months is:

gCi,t,q = Ci,t,q/Ci,t,q−1 − 1, where Ct is the level of consumption at time t. Second, changes

in the unemployment rate is: ∆Ui,t,q = Ui,t,q − Ui,t,q−1 , where Ut is the unemployment rate

at time t. Third, growth in industrial production is: gIPi,t,q = IPi,t/IPi,t,q−1 − 1, where IPt is
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industrial production at time t.

Table VII presents the results from the estimation based on long-term risk premia and

dividend growth expectations.22

[Insert Table VII here]

Dividend growth expectations have significant predictive power on all macro outcomes.

The role of risk premia is statistically weak. A few examples are helpful for understanding

the economic magnitudes. The numbers refer to US data. First, higher expected growth

g
(7)
i,q−1 predicts higher consumption growth gCi,q. A one standard deviation increase in expected

dividend growth (2.9%) predicts an increase in consumption growth of roughly 10 basis points

(2.9%×3.2% ≈ 0.1%). The coefficient in front of expected dividend growth increases with the

forecast horizon. For example, at the 12 months horizon, the same shock predicts an increase

in consumption growth of roughly twice the size of the 3 months horizon. Second, higher

expected dividend growth predicts a lower unemployment rate. A one standard deviation

increase in expected dividend growth predicts a drop in the unemployment rate over the

next 12 months of 7 basis points. Third, higher expected growth predicts higher industrial

production growth. A one standard deviation increase in expected dividend growth predicts

roughly a 60 basis points increase in industrial production over the next 12 months.

An income effect can explain the positive association between expected dividend growth

and consumption growth. When investors expect dividends to be high in the future, their

demand today increases due to consumption smoothing. As a result, expected dividend

growth predicts consumption growth. The positive association between expected dividend

growth and future growth in industrial production can have a similar explanation, albeit

more direct as the equity market is related to changes in industrial activity in the long run.

If investors and managers have similar expectations, expected long-term dividend growth

22The corresponding results for short term risk premia and dividend growth expectations are in Appendix
D.C. They are qualitatively similar but with smaller coefficients in absolute value and are generally less
statistically significant.
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should predict industrial production growth.

The association between expected dividend growth and fluctuations in employment is

negative. This is intuitive—again, if investors and managers have a similar view on the

future—as we expect companies to scale down on employment in periods with low expected

long-term growth.

The association, or lack of it, between long-term risk premia and unemployment, is

somewhat puzzling. The central idea in Hall (2017) is that unemployment is high when risk

premia are high; as a higher cost of capital implies a lower present value of the benefit of a

new hire to an employer. While the third column under unemployment in Table VII is in

line with Hull’s hypothesis, the standard errors of the coefficient are too large to reject the

null of no relationship between current risk premia and changes in unemployment.

To sum up, we extend the analysis of Van Binsbergen et al. (2013). which are the first to

show the usefulness of equity yields in macroeconomic forecasting, along several dimensions.

First, we use model-implied yields rather than equity yields backed out from dividend futures.

This is a step forward as model-implied yields can, in principle, be constructed for any equity

market with a reasonably large cross-section of stocks. Second, we show the relevance of

equity yields for predicting not only consumption growth but also changes in unemployment

rates and growth in industrial production. Third, the size of our panel allows us to restrict

the variation we use to identify the associations between the components of forward equity

yields and future macroeconomic outcomes to within-country variation.

VI. Conclusion

We use a modified version of the model developed by Giglio et al. (2021) to construct a panel

of global equity yields. We test the model outside the US by comparing the model-implied

forward equity yield for the UK, the most liquid non-US contract, with the equity yield

based on the FTSE 100 Dividend Index Futures. We closely match both the levels of yields
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and the slope (long-term minus short-term yields). We use our newly built panel of equity

yields from 12 markets to revisit a set of stylized facts about equity yields, primarily based

on US data, and to provide several new ones.

Across all markets and periods, the average forward equity yield is negative in regular

periods and positive or flat in crisis periods. We decompose its slope into two terms by the

definition of forward equity yield. The first term is the risk premium on the longest maturity

strip above the 1-year maturity strip. The second term is the expected long-term dividend

growth above short-term dividend growth. The slope is the first term minus the second

term. We find that the main reason for the flatter slope in crisis periods is a large drop

in short-term expected dividend growth. Our estimates are precise and robust to include

country and calendar time fixed effects.

We decompose the variance of forward equity yields. Regarding time-series variation,

most of the variation, both in the US and outside the US, comes from changes in dividend

growth expectations, especially at short maturities, contradictory to the dominant view

that most time-series in stock prices are due to changes in discount rates (Campbell, 1991;

Cochrane, 2017). Regarding cross-sectional variation, markets appear highly connected in

the short run. In the long run, country-specific effects matter more.

We use Fama MacBeth cross-sectional (Fama and MacBeth, 1973) regressions to estimate

the global risk premium for different horizons. Our estimates are remarkably precise, with

standard errors equal to 20-50% of the unconditional mean. For example, the mean 7-year

risk premium estimate is 5% with a 95% confidence interval of roughly +/- 2.5%. We use

the same method to estimate the term premium, defined as the 7-years risk premium in

excess of the 1-year risk premium. Since 1995, the start of our sample, the term-premium

is almost always positive. Since 2010, we mostly reject the null hypothesis that the global

term premium is zero. Taken together, our findings regarding the global risk premium align

well with leading asset pricing models (Campbell and Cochrane, 1999; Bansal and Yaron,

2004). Our estimates of the term-structure of risk premia have implications for investors and
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theorists. For investors, knowing the maturity-specific discount rate is useful for valuation.

For theorists, these estimates work as diagnostic tools for assessing asset pricing theories.

We link forward equity yields to changes in exchange rates. Motivated by the theoretical

work by Gabaix and Maggiori (2015), we predict changes in local currencies relative to the

US dollar with risk premium and dividend growth expectations in the US in excess of non-US

countries. The idea is that when expected dividend growth in market i exceeds that of the

US, capital will flow into market i, which increases demand for the local currency i, which

then appreciates. Our results line up with their prediction.

Given that we have data on markets whose macroeconomic conditions and equity yields

differ, we gain substantial power in decoupling the role of risk premia from growth expec-

tations as leading indicators of the macroeconomy. As a result, we test whether the risk

premia and dividend growth expectations forecast macroeconomic outcomes. Our results

suggest a pivotal role for dividend growth expectations in predicting consumption growth,

unemployment changes, and industrial production growth.
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Tables

Table I
Global Forward Equity Yields (eft,n)

This table reports the average forward equity yields for 12 markets and the US, conditional
on the state of the economy. “Bad times” is based on Gormsen (2021) and refers to periods
in which the dividend price ratio is above the time series median. “Good Times” refers to
the complement. The unconditional mean contains all periods.

Market Portfolio

Economic state 1 2 3 4 5 5-1 6 7 7-1

Unconditional -6.03 -5.50 -4.95 -4.49 -4.10 1.93 -3.78 -3.54 2.49
Good Times -14.35 -11.44 -9.69 -8.43 -7.47 6.89 -6.72 -6.14 8.21
Bad Times 3.01 0.96 0.18 -0.21 -0.44 -3.45 -0.59 -0.71 -3.71
Good Times ex-US -12.65 -9.90 -8.29 -7.14 -6.26 6.39 -5.59 -5.08 7.57
Bad Times ex-US 4.24 1.65 0.77 0.35 0.12 -4.12 -0.02 -0.11 -4.35

Large Stocks

Economic state 1 2 3 4 5 5-1 6 7 7-1

Unconditional -4.53 -4.22 -3.91 -3.62 -3.37 1.16 -3.16 -3.00 1.53
Good Times -11.79 -9.30 -7.86 -6.87 -6.12 5.67 -5.56 -5.12 6.67
Bad Times 3.34 1.29 0.37 -0.10 -0.38 -3.73 -0.57 -0.69 -4.04
Good Times ex-US -9.75 -7.70 -6.53 -5.69 -5.05 4.69 -4.57 -4.20 5.55
Bad Times ex-US 4.27 1.88 0.91 0.43 0.16 -4.11 -0.00 -0.11 -4.38
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Table II
Panel Regression: Forward Equity Yields (Market)

This table reports the results from regressing the slope of the equity forward equity yields
(ef 7

t −ef 1
t ) on the dummy variable “Bad times”. It takes the value of one for the months the

dividend price ratio is above the time series median and is market specific. Statistical signif-
icance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Forward Equity Yield Slope: ef 7
t − ef 1

t

Bad Times −0.119∗∗∗ −0.114∗∗∗ −0.050∗∗∗ −0.122∗∗∗ −0.122∗∗∗

(0.004) (0.005) (0.004) (0.005) (0.007)

Constant 0.082∗∗∗ 0.040∗∗∗

(0.003) (0.003)

Markets: All All US All ex-US All
Excluded Markets: Non Non Non-US US US, UK, FR
Market fixed effects: No Yes No Yes Yes
Time fixed effects: No Yes No Yes Yes
Observations 3,394 3,394 532 2,862 2,237
R2 0.202 0.157 0.188 0.171 0.145

Table III
Decomposition of the equity forward equity yield (Market)

The table presents the results from regressing the slope of the equity forward equity yield
(ef 7

t −ef 1
t ) as well as its two terms on the dummy variable “Bad times”. The first term is the

risk premium on the 7-years maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t .

The second term is long-term expected dividend growth in excess of short-term dividend
growth, g

(7)
t − g

(1)
t . The “Bad-times” dummy variable takes the value of one for the months

the dividend price ratio is above the time series median and is market specific. Statistical sig-
nificance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable ef 7
t − ef 1

t θ7t − θ1t g7t − g1t

Bad-times −0.114∗∗∗ −0.002 0.112∗∗∗

(0.009) (0.004) (0.009)

Market fixed effects: Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes
Observations 3,394 3,394 3,394
R2 0.157 0.0002 0.154
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Table IV
Time-series Variation in Forward Equity Yields

This table reports the average (across markets) variance decomposition of forward

equity yields (ef
(n)
t ). By definition, the forward equity yield equals the sum ex-

pected dividend growth rates (g
(n)
t ) and a risk premium (θ

(n)
t ). As a result,

V ar(ef
(n)
t ) = Cov(ef

(n)
t , θ

(n)
t )− Cov(ef

(n)
t , g

(n)
t ).

US Market Outside US

Maturity (n)
Cov(ef

(n)
t ,θ

(n)
t )

V ar(ef
(n)
t )

−Cov(ef
(n)
t ,g

(n)
t )

V ar(ef
(n)
t )

Cov(ef
(n)
t ,θ

(n)
t )

V ar(ef
(n)
t )

−Cov(ef
(n)
t ,g

(n)
t )

V ar(ef
(n)
t )

1-Year 0.31 0.69 0.05 0.95
2-Years 0.39 0.61 0.08 0.92
3-Years 0.43 0.57 0.10 0.90
4-Years 0.43 0.57 0.12 0.88
5-Years 0.43 0.57 0.14 0.86
6-Years 0.42 0.58 0.15 0.85
7-Years 0.41 0.59 0.16 0.84

Table V
Variance Decomposition

This table presents the results from decomposing the variation in risk Premium (θ
(n)
t ) and

dividend growth expectations (g
(n)
t ) into a within-market component and a between-market

component. A market consists of a market portfolio and four portfolios formed based on a
firm’s size (small and big) and book-to-market ratio (value and growth).

Risk Premium (θ
(n)
t ) Growth Expectations (g

(n)
t )

Maturity Between Within Between Within
(n) Variation Variation Variation Variation
1-Year 0.10 0.90 0.04 0.96
2-Years 0.12 0.88 0.05 0.95
3-Years 0.19 0.81 0.08 0.92
4-Years 0.23 0.77 0.10 0.90
5-Years 0.27 0.73 0.12 0.88
6-Years 0.30 0.70 0.14 0.86
7-Years 0.33 0.67 0.16 0.84
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Table VI
Panel Regression: Predicting FX 1-months returns (Market)

This table presents the results from regressing changes in the exchange on lagged values of
risk premia and expected dividend growth in the US in excess of the local market i. The
dependent variable is ∆Si,t,q = Si,t/Si,t,q−1 − 1, where Si,t, denote the exchange rate (i.e., the
number of units of local currency i per US dollar) and q = 1 stands for monthly frequency.
A positive value (∆Si,t,q > 0) implies a depreciation of the local currency i with respect
to the US dollar. The independent variables are the wedge in expected dividend growth,(
g
(n)
US,t,q−1

− g
(n)
i,t,q−1

)
, and the wedge in risk premium,

(
θ
(n)
US,t,q−1

− θ
(n)
i,t,q−1

)
. The components

are: g
(n)
US,t,q−1

, which is the expected dividend growth for the US equity market, g
(n)
i,t,q−1

, which

is the corresponding expected dividend growth for market i, θ
(n)
US,t,q−1

, which is the risk pre-

mium for the US equity market, and θ
(n)
i,t,q−1

. which is the risk premium for market i. All
regressions include market- and calendar-time fixed effects. Statistical significance is indi-
cated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are based on the
Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable: ∆Si,t,q

Maturity (n) n = 1 n = 5 n = 7 n = 10 n = 15

g
(n)
US,t,q−1

− g
(n)
i,t,q−1

−0.005 −0.017 −0.029 −0.051∗ −0.076∗∗

(0.004) (0.016) (0.020) (0.027) (0.036)

θ
(n)
US,t,q−1

− θ
(n)
i,t,q−1

0.018 0.067∗ 0.085∗ 0.122∗∗ 0.157∗∗

(0.013) (0.040) (0.045) (0.055) (0.064)

Market fixed effects: Yes Yes Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes Yes Yes
Observations 2,851 2,851 2,851 2,851 2,851
R2 0.002 0.002 0.003 0.003 0.004
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Table VII
Predicting Macroeconomic Variables (Market)

The table presents the results from predicting macroeconomic outcomes observed at time
q with short-term risk premia (θ

(7)
q−1) and growth expectations (g

(7)
q−1). All specifications in-

clude the lagged value of the variable we predict. The macroeconomic outcomes include 1)
consumption growth, gci,q := Ci,t/Ci,t−q − 1, where Ct is consumption at time t, 2) changes
in unemployment rate, ∆Ui,q = Ui,t − Ui,t−q, where Ut is the unemployment rate at time
t, and 3) growth in industrial production, gIPi,q := IPi,t/IPi,t−q − 1, where IPt is industrial
production at time t. All regressions include market-fixed effects. N denotes number of ob-
servations. Statistical significance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10
levels. Standard errors are based on the Robust Covariance Matrix Estimator developed by
Driscoll and Kraay (1998).

Horizon Consumption (gci,q) Unemployment (∆Ui,q) Industrial Production (gIPi,q )

(months) q = 3 q = 6 q = 12 q = 3 q = 6 q = 12 q = 3 q = 6 q = 12

g
(7)
i,q−1 0.032∗∗∗ 0.046∗∗ 0.070∗ −0.007∗∗ −0.010∗∗ −0.024∗∗ 0.100∗∗∗ 0.118∗∗∗ 0.201∗∗∗

(0.009) (0.017) (0.030) (0.002) (0.003) (0.008) (0.017) (0.015) (0.028)

θ
(7)
i,q−1 −0.022 −0.029 −0.041 0.008 0.004 −0.014 −0.062 −0.046 −0.033

(0.018) (0.036) (0.082) (0.006) (0.011) (0.023) (0.038) (0.064) (0.163)

yi,q−1 −0.063 0.102 0.105 0.314∗ 0.423∗∗∗ 0.231∗∗ 0.052 0.115∗∗ −0.095
(0.111) (0.129) (0.098) (0.146) (0.067) (0.068) (0.086) (0.048) (0.054)

N 709 703 693 1,941 1,938 1,932 2,125 2,119 2,104
R2 0.190 0.328 0.426 0.123 0.204 0.079 0.048 0.060 0.055
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Figure 1 US Forward Equity Yield (efn
t ). The figure compares forward equity yields

from Giglio et al. (2021) against forward equity yields derived form our model specification
- estimation (dotted line).
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Figure 2 US Forward Equity Yield Slope (ef 7
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t ). The figure compares forward
equity yields from Giglio et al. (2021) against forward equity yields derived from our model
specification - estimation (dotted line).
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from the data (solid line) against forward equity yields derived from the model (dotted line).
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Figure 4 Global Risk Premium. This figure plots the estimated equity risk premium
for different investment horizons for a global market portfolio consisting of 12 Markets. The
solid line shows the point estimate, and the shaded area shows the confidence interval based
on +/- 2 standard deviations. Standard errors are based on 1000 bootstrap replications for
each month.
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Appendices

Appendix A. Data

Appendix A. Appendix to the section “Equities”.

In the following, we define all the characteristics we use. We use the lag operator (L) to

denote lagged values (e.g., Xt−1 = L(Xt)) and ∆ to denote first differences (e.g., ∆Xt =

Xt − Xt−1). We only use annual accounting data and rebalance all portfolios annually or

monthly. We refer to the definitions in Kozak for additional details.23

Size (size). End-of-June price times shares outstanding. Rebalanced annually.

Value (value). Book equity from the previous year scaled by market equity from De-

cember of the previous year. Book equity is calculated following Fama and French (1993).

Rebalanced annually.

Gross Profitability (prof). (REVT-COGS)/(AT), where REVT is the total revenue,

and COGS is the cost of goods sold. Rebalanced annually.24

Accruals (accruals). accruals = (∆ACT -∆CHE - ∆LCT + ∆DLC + ∆TXP - ∆DP)/(1
2

(AT + L(AT)), where ∆ACT is the annual change in total current assets, ∆CHE is the annual

change in total cash and short-term investments, ∆LCT is the annual change in current

liabilities, ∆DLC is the annual change in debt in current liabilities, ∆TXP is the annual

change in income taxes payable, ∆DP is the annual change in depreciation and amortization,

and (1
2
(AT + L(AT)) is average total assets over the last two years. Rebalanced annually.

Asset Turnover (aturnover). aturnover = SALE/AT. Sales to total assets. Rebalanced

annually.

Earnings/Price (ep). ep = IB/MEDec. Net income scaled by market value of equity

at the end of December. Rebalanced annually.

23https://sites.google.com/site/serhiykozak/data
24The standard definition based on US data is: prof = GP/AT, where GP is gross profit, and AT is total

assets.
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Net Operating Assets (noa). We do not adjust for non-controlling interest (MIB)

as is common with US data because this variable is rarely available in the international

dataset. Therefore, noa = ((AT - CHE) - (AT - DLC - DLTT PSTK - CEQ)) / L(AT),

where AT is total assets, CHE is cash and short-term investments, DLC is debt in current

liabilities, DLTT is long-term debt, PSTK is preferred capital stock, and CEQ is common

equity. Updated annually.

Investment (inv). inv = (∆PPEGT + ∆INVT)/L(AT) where ∆PPEGT is the annual

change in gross total property, plant and equipment, ∆ INVT is the annual change in total

inventories, and L(AT) is lagged total assets. Rebalanced annually.

Investment-to-Capital (invcap). invcap = CAPX/PPENT is the ratio of capital ex-

penditure to property, plant, and equipment. Rebalanced annually.

Investment Growth (igrowth). growth = CAPX/L(CAPX), where CAPX denotes

capital expenditures. Rebalanced annually.

Sales Growth (sgrowth). sgrowth = SALE/L(SALE). Rebalanced annually.

Leverage (lev ). lev = AT/MEDec. Market leverage is the ratio of total assets (AT) to

the market value of equity at the end of December. Rebalanced annually.

Return on Assets (annual) (roaa). roaa = IB/AT, which is net income scaled by total

assets. Rebalanced annually.

Return on Equity (annual) (roea). roea = IB/BE, which is the net income scaled by

the book value of the equity. Rebalanced annually.

Growth in LTNOA (gltnoa). gltnoa = GRNOA - ACC, where ACC=((RECT -

L(RECT)) + (INVT - L(INVT)) + (ACO - L(ACO)) - (AP - L(AP)) - (LCO - L(LCO)) -

DP) / ((AT + L(AT)/2), where RECT = Receivables, INVT denotes total inventory, ACO

stands for current assets, AP is accounts payable, LCO means current liabilities (Other), DP

denotes depreciation and amortization, AT is total assets, PPENT is net property, plant and

equipment, INTAN measures intangible assets, AO refers to assets (Other) and LO refers to

liabilities (Other). GRNOA = ∆NOA, where NOA = (RECT + INVT + ACO + PPENT
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+ INTAN + AO - AP - LCO - LO) / AT. Rebalanced annually.

Momentum (6m) (mom). mom =
∑7

l=2(1+ rt−l), which is the cumulative performance

in the previous 6 months by missing the most recent month. Rebalanced monthly.

Industry Momentum (indmom). indmom = rank(
∑6

l=1(1 + rindt−l)) We deviate from

the standard definition, which uses the Fama and French 49 industries, and use only the 12

Fama and French industries. The reason is to make sure that the industry portfolios are well

diversified in all markets. Rebalanced monthly.

Value-Momentum. valmom = rank(value) + rank(mom). value and mom are defined

earlier. Rebalanced monthly.

Value-Momentum-Profitability (valmomprof). valmomprof = rank(value) + rank(prof)

+ rank(mom). value, mom, and prof are defined earlier. Rebalanced monthly.

Momentum (mom12). mom12 =
∑1

l=2 2(1 + rt−l) Cumulative performance in the pre-

vious year by skipping the most recent month. Rebalanced monthly.

Momentum-Reversal (momrev). momrev =
∑19

l=14(1+rt−l) Buy and hold returns from

t− 19 to t− 14. Rebalanced monthly.

Short-term Reversal (strev). strev = rt−1, which is the return in the previous month.

Rebalanced monthly.

Idiosyncratic Volatility (ivol). ivol = std(ri,t − βirm,t − siSMBt − hiHMLt). It is

the standard deviation of the residual from a stock-level regression of daily stock returns on

the Fama and French three-factor model using an estimation window of three months. The

factors are country-specific and constructed following Fama and French. Before running the

regressions, we winsorize the daily returns at the 98% level. The ivol characteristic is lagged

one month. Rebalanced monthly.

Beta Arbitrage (betaarb). beta = βt−60:t−1 with respect to a country-specific equal-

weighted return index. Estimated over the past 60 months (minimum 36 months) using daily

data. Before running the regressions, we winsorize the daily returns at the 98% level. The

beta characteristic is lagged one month. Rebalanced monthly.
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Industry Relative Reversals (indrrev). indrrev = ri,t − rindt . It is the the return on a

stock in excess of the return on its industry. We deviate from the standard definition, which

uses the Fama and French 49 industries, and use only the 12 Fama and French industries. The

reason is to ensure that the industry portfolios are well diversified in all markets. Rebalanced

monthly.

Price (price). price = ln(ME/shrout), where ME is market equity and shrout is the

number of outstanding shares. Rebalanced monthly.

Share Volume (shvol). Here, we deviate slightly from the standard definition. We use

the average number of shares traded during the previous three months, scaled by outstanding

shares. In calculating the average over the three months, we only include months with non-

zero volume. If all months have zero volume, we assign a zero value to shvol. Rebalanced

monthly.

Cash Flow-to-Price (cfp). cfp = (IB + DP) / MEDec, which is net income plus

depreciation and amortization, scaled by the market value of equity measured at the same

date. Rebalanced monthly.

Industry Momentum-Reversal (indmomrev). indmomrev = rank(industry momen-

tum) + rank(industry relative-reversals low-vol). Sum of Fama and French 49 industries

ranks on industry momentum and industry relative reversals (low vol). Rebalanced monthly.

Industry Relative Reversals (indrrevlv). indrrevlv = r1 − rind−1 if ivol of the firm

is smaller than the median ivol in the cross-section. Thus, only stocks with idiosyncratic

volatility lower than the median for the month are included in the sorts. r1 − rind−1 measures

the difference between a stock’s prior month’s return and the prior month’s return of its

industry (based on the Fama and French 49 industries). Rebalanced monthly.

Value-Profitability (valprof). valprof = rank(value) + rank(prof). Sum of ranks in

univariate sorts on book-to-market and profitability. Annual book-to-market and profitabil-

ity values are used throughout the year. Rebalanced monthly.

Long-term Reversals (lrrev). lrrev =
∑60

l=13 rt−l. Cumulative returns from t60 to t13.
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Rebalanced monthly.

Seasonality (season). season =
∑5

l=1 rt−l×12 Average monthly return in the same cal-

endar month over the last 5 years.

Value (monthly) (valuem). valuem = BE/L(ME). Book-to-market ratio using the

prices from the previous month. Rebalanced monthly.

Sales-to-Price (sp). sp = Sale/MEDec. Total revenues divided by market value of

equity at the end of December. Rebalanced annually.
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Appendix B. Appendix to the section “Interest Rates”.

Table VIII shows the starting dates for our sample of local bond yields per maturity per

market. The last column shows the initial date from which we have a complete local bond

yield term-structure.
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Table VIII
Bond Yields: Starting dates before and after interpolation

The table presents the sample of interest rates before and after interpolation.

Before Interpolation After
Market 12m 24m 36m 48m 60m 72m 84m 96m 108m 120m 180m 240m 360m Interpolation

Austria Jan/89 Jan/89 Jan/89 May/02 Jan/89 May/02 Jan/89 May/02 May/02 Jan/89 Feb/12 Aug/97 Jan/89
Australia Sep/90 Jun/72 Jun/72 Mar/05 Jun/72 Mar/05 Mar/87 Mar/05 Mar/05 Jun/72 Jun/72 Jun/72
Switzerland Jan/88 Jan/88 Jan/88 May/02 Jan/88 May/02 Jan/88 May/02 May/02 Jan/88 Apr/11 Jan/88 Jan/98 Jan/88
Germany Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Jun/72 Dec/93 Jun/88 Jun/72
France Jan/84 Mar/85 Jan/78 May/02 Jan/84 May/02 Jan/85 May/02 May/02 Jun/72 Jul/92 Jan/99 Feb/89 Jan/84
United Kingdom Jan/79 Jan/79 Jun/72 Aug/08 Jun/72 Aug/08 Jan/80 Aug/08 Aug/08 Jun/72 Jan/80 Jun/72 Jan/80 Jun/72
Hong Kong Jan/08 Nov/91 Oct/93 Feb/12 Sep/94 Nov/95 Oct/96 Aug/07 Nov/95
India Jan/93 Sep/11 Feb/12 Feb/12 Nov/94 Feb/12 Feb/12 Feb/12 Feb/12 Jun/72 Feb/12 Feb/12 Sep/11
Malasya Jun/72 Jan/92 Jan/92 Jun/72 Jan/92 Jan/92
Sweden Jul/82 Jan/87 Jan/84 May/02 Jan/84 May/02 Jan/87 Jun/72 May/93 Oct/10 Mar/09 Jan/84
South Africa Jun/72 Jun/72 Sep/00 Jan/86 Sep/00 Sep/00
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We estimate local one-year risk-free rates back to 1973 via regressions with US yields and

exchange rate changes as predictors:

ln(1 +Rf
i,t:t+12) = a0 + a1 ln

(
Si,t+12

Si,t

)
+ a2 ln(1 +Rf

US,t:t+12) + ωi,t:t+12, (A1)

where Rf
i,t:t+12 and Rf

US,t:t+12 are the one-year local and US interest rate at time t, and Si,t

denotes the exchange rate—number of units of local currency i per US dollar—at the same

point in time. For each market, we estimate this regression at the monthly frequency using

all available information. Table IX presents the results.

Table IX
Regressions to Estimate Risk-Free rates back to June 1973

The table presents the results from regressing a risk-free rate in country i on the US risk-

free rate and the exchange: ln(1 + Rf
i,t:t+12) = a0 + a1 ln

(
Si,t+12

Si,t

)
+ a2 ln(1 + Rf

US,t:t+12) +

ωi,t:t+12. R
f
i,t:t+12 and Rf

US,t:t+12 are the one-year local and US interest rate at time t, and Si,t

denotes the exchange rate—number of units of local currency i per US dollar—at the same
point in time.

Market R2 Start End N

Austria 62.3% 01/31/1989 12/31/2020 384
Australia 67.6% 06/30/1972 12/31/2020 583
Switzerland 59.4% 01/31/1988 12/31/2020 396
Germany 68.2% 06/30/1972 12/31/2020 583
France 74.8% 01/31/1984 12/31/2020 444
United Kingdom 80.3% 06/30/1972 12/31/2020 583
Hong Kong 83.2% 11/30/1995 12/31/2020 302
India 52.9% 01/31/1993 12/31/2020 336
Malasya 27.8% 06/30/1972 12/31/2020 583
Sweden 73.1% 07/31/1982 12/31/2020 462
South Africa 50.3% 09/30/2000 12/31/2020 244

The key takeaway is that the exchange and the US interest rate do a good job of predicting

foreign interest rates. The average R2 of Eq. A1 across all markets is 61%. For developed

markets, it is 70%.
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Appendix B. The State Vector

Appendix to the section “A Global State Vector”.

Appendix A. Factor Timing Outside the US

The key motivation for the choice of the state vector in Giglio et al. (2021) comes from Had-

dad et al. (2020). Haddad et al. (2020) claim that the dividend yield of principal component

portfolios (of anomalies) can predict their future returns. This has been shown in the US. As

a preliminary analysis, before estimating many local models, we test whether this hypothesis

holds for the markets in our sample.

To do this, for each market, we compute returns and dividend yields of the principal

components of the corresponding market’s anomalies. Then, we evaluate the claim in Haddad

et al. (2020); namely, the dividend yields of such principal components predict their returns.

We do so by running the following regressions:

rpcj,t:t+12 = a+ bDY pc
j,t + ξt

Where rpcj,t:t+12 represents the log return ofthe j-th principal component from period t to

t+12, DY pc
j,t represents the dividend yield of the same j-th principal component at time t. If

the claim in Haddad et al. (2020) holds internationally, we should expect to find a positive

and significant estimate of b, and a high R2 (i.e., comparable to the one in the US).

The results shown in Table X are clear: Almost every estimate of b is positive and

significant. Moreover, the average R2 is 15%, a quantity comparable to 20% in the US.

This suggests that the evidence brought forward by Haddad et al. (2020) seems to work

internationally.
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Table X
Return Predictability Regressions

This table presents the results of the predictability regressions: rpcj,t:t+12 = a+ bypcj,t. For com-
pleteness, we include the market. t-statistics (in parenthesis) are computed using Newey
and West (1987) robust standard errors with a maximum of six lags.

rm rpc1 rpc3 rpc3 rpc4

AT b 10.18 5.53 7.02 5.15 8.95
t-stat (2.36) (3.48) (3.50) (1.67) (4.15)
R2 (%) 0.06 0.17 0.17 0.04 0.20

AU b 10.64 4.09 6.66 -0.27 0.00
t-stat (4.08) (2.67) (5.11) -(0.14) (0.00)
R2 (%) 0.12 0.11 0.27 0.00 0.00

CH b 8.55 6.03 2.21 0.94 1.90
t-stat (2.41) (2.50) (0.86) (0.50) (1.35)
R2 (%) 0.07 0.08 0.01 0.00 0.01

DE b 12.03 5.12 6.33 3.19 -1.00
t-stat (2.58) (3.23) (2.90) (1.25) -(0.31)
R2 (%) 0.09 0.09 0.10 0.01 0.00

FR b 13.07 0.81 4.32 0.47 2.26
t-stat (2.98) (0.57) (2.84) (0.30) (2.24)
R2 (%) 0.12 0.00 0.05 0.00 0.03

GB b 17.30 3.94 -0.38 6.33 6.16
t-stat (4.27) (3.50) -(0.13) (2.96) (3.96)
R2 (%) 0.22 0.11 0.00 0.11 0.19

HK b 28.66 4.28 5.33 0.50 -2.29
t-stat (6.06) (1.61) (2.82) (0.24) -(1.30)
R2 (%) 0.38 0.03 0.07 0.00 0.01

IN b 58.37 4.50 0.06 11.06 -2.00
t-stat (7.32) (3.07) (0.03) (3.18) -(1.32)
R2 (%) 0.50 0.22 0.00 0.34 0.02

MY b 15.18 8.50 1.10 -1.57 -0.27
t-stat (4.24) (1.81) (0.69) -(1.36) -(0.22)
R2 (%) 0.18 0.06 0.00 0.01 0.00

SE b 11.84 3.34 3.44 2.71 -1.74
t-stat (2.31) (0.76) (2.28) (1.25) -(1.57)
R2 (%) 0.10 0.02 0.05 0.01 0.01

TW b 5.49 4.26 1.69 3.95 -0.20
t-stat (1.89) (2.01) (0.51) (2.13) -(0.11)
R2 (%) 0.06 0.06 0.00 0.03 0.00

US b 18.47 11.59 4.56 3.11 -1.86
t-stat (4.68) (2.00) (1.64) (1.43) -(1.66)
R2 (%) 0.21 0.14 0.05 0.02 0.01

ZA b 8.92 -7.26 1.67 7.21 -0.44
t-stat (2.78) -(3.27) (0.91) (3.18) -(0.48)
R2 (%) 0.05 0.13 0.01 0.19 0.00
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Appendix B. Constructing the State-Vector

The state-vector Ft contains returns and dividend yields of an equally market portfolio and

PC portfolios of anomalies:

Ft =



Fr,t

Fy,t



=



rmt

rpc1,t

rpc2,t

rpc3,t

rpc4,t

ymt

ypc1,t

ypc2,t

ypc3,t

ypc4,t



.

Equally weighted market portfolio. The first element in the Ft, rm,t, is the 12-month log

(excess) return of an equally weighted market portfolio (local and US market). Let Rm,t:(t+1)

be the one-month return of the local market in local currency (i.e., in pounds), and Rm,US
t:(t+1)

be the one-month return of the US market, also in local currency (i.e., in pounds). Recall

that we assume perfect hedge. Then:

rmt ≡ rm,EW
(t−12):t − rf(t−12):t (B1)

Where rft:(t+12) is the one year log risk free rate, rm,EW
(t−12):t =

∑t+12
s=t rm,EW

(s−12):(s−11) is the 12-month

cumulative sum of the one-month log return rm,EW
t:(t+12) = ln(1+Rm,EW

t:(t+1)) of an equally weighted
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portfolio defined by Rm,EW
t:(t+1) = 0.5× (Rm

t:(t+1) +Rm,US
t:(t+1)).

The p-th element of the state vector (ym,t) is the the yield as defined by Giglio et al. (2021),

of an equally weighted market portfolio between the local market and the US.

Let DYt be the dividend yield of the market in local currency (i.e., in pounds), and DY m,US
t

be the one-month return of the US market, also in local currency (i.e., in pounds). Recall

that we assume perfect hedge. Then:

ymt = ln

(
1 +

DY m
t +DY m,US

t

2

)
(B2)

Principal component portfolios. rpcj,t represent the 12 month log return on long minus short

anomalies with weights derived from a principal component decomposition on the one month

log returns of long minus short anomalies. Let rli,(t−1):t be the one month log return of the

long (l) leg of anomaly i. Let rsi,(t−1):t the one month log return of the short (s) leg of anomaly

i. Then, the long minus short log return of anomaly i is given by: rlsi,t−1:t ≡ rl(t−1):t − rs(t−1):t

We run principal components on the variance-covariance matrix of:

rls(t−1):t = [rls1,(t−1):t, r
ls
2,(t−1):t, . . . r

ls
N,(t−1):t], (B3)

and obtain the eigenvectors w = [w1, w2, . . . wN ], where wj is the eigenvector associated

with the j-th eigenvalue. Then we use w to construct: rpc(t−12):t = w′ × rls(t−12):t, where

rpc(t−12):t = [rpc1,(t−12):t, r
pc
2,(t−12):t, . . . r

pc
N,(t−12):t]. Similarly, for the dividend yields we have that

ypct = w′ × ylst , where ypct = [ypc1,t, y
pc
2,t, . . . y

pc
N,t].
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Appendix C. The Informational Content of Local PCs

One might wonder if we could use the US model for every other market. One way of

shedding some light on this is by testing whether the principal components derived from the

US substitute the ones derived from local anomalies. Therefore, we estimate the following

regressions:

rm(t−12):t = rm,US
1,(t−12):t + rpc,US

1,(t−12):t + rpc,US
2,(t−12):t + rpc,US

3,(t−12):t + rpc,US
4,(t−12):t + error (B4)

rpc1,(t−12):t = rm,US
1,(t−12):t + rpc,US

1,(t−12):t + rpc,US
2,(t−12):t + rpc,US

3,(t−12):t + rpc,US
4,(t−12):t + error (B5)

rpc2,(t−12):t = rm,US
1,(t−12):t + rpc,US

1,(t−12):t + rpc,US
2,(t−12):t + rpc,US

3,(t−12):t + rpc,US
4,(t−12):t + error (B6)

rpc3,(t−12):t = rm,US
1,(t−12):t + rpc,US

1,(t−12):t + rpc,US
2,(t−12):t + rpc,US

3,(t−12):t + rpc,US
4,(t−12):t + error (B7)

rpc4,(t−12):t = rm,US
1,(t−12):t + rpc,US

1,(t−12):t + rpc,US
2,(t−12):t + rpc,US

3,(t−12):t + rpc,US
4,(t−12):t + error (B8)

Figure ?? shows the R2 for each of these 4 equations, per market. For example, the UK mar-

ket portfolio (GB) rm(t−12):t can be explained with anR2 of 98% by rm,US
1,(t−12):t, r

pc,US
1,(t−12):t, r

pc,US
2,(t−12):t, r

pc,US
3,(t−12):t,

and rpc,US
4,(t−12):t., but the return of the third principal component rpc3,(t−12):t can only be explained

by those same variables with an R2 of less than 25%. In general, the patterns suggest that

the returns of principal components of US anomalies explain relatively well the returns of

first principal components of local anomalies, but this association becomes much weaker as

we move onto the returns of the subsequent principal components of local anomalies.
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We repeated the exact same analysis for yields y and estimated the following equations:

ymt = ym,US
1,t + ypc,US

1,t + ypc,US
2,t + ypc,US

3,t + ypc,US
4,t + error (B9)

ypc1,t = ym,US
1,t + ypc,US

1,t + ypc,US
2,t + ypc,US

3,t + ypc,US
4,t + error (B10)

ypc2,t = ym,US
1,t + ypc,US

1,t + ypc,US
2,t + ypc,US

3,t + ypc,US
4,t + error (B11)

ypc3,t = ym,US
1,t + ypc,US

1,t + ypc,US
2,t + ypc,US

3,t + ypc,US
4,t + error (B12)

ypc4,t = ym,US
1,t + ypc,US

1,t + ypc,US
2,t + ypc,US

3,t + ypc,US
4,t + error (B13)

Figure 5 shows the R2 resulting from the estimation of for such regressions. The patterns

are even stronger than the ones we found in the returns analysis:
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Figure 5 Local PC Overlapping analysis: Yields. The figure shows the R2 for the
specifications described in the text.
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Appendix C. Estimation

Appendix to the section “Estimation”.

Appendix A. The VAR

The starting point is a linear factor model, Ft, with p pricing portfolios, k = 2p rows, that

has homoskedastic normally distributed error terms, ut+1 with VCV matrix Σ = Vt(ut+1).

Ft+1
(k×1)

= c
(k×1)

+ ρ
(k×k)

Ft + ut+1
(k×1)

(C1)Fr,t+1

Fy,t+1

 =

cr

cy

+

0p×p ρr,y

0p×p ρy,y


Fr,t

Fy,t

+

ur,t+1

uy,t+1

 (C2)

The first p rows of Ft are excess returns and the last p rows are the dividend yields of the

same portfolios. Fr,t and Fy,t are returns and yields of 4 portfolios. The realized excess

capital gains of the p pricing portfolios are given by:

∆pt+1
(p×1)

− rf,t = γ0
(p×1)

+ γ1
(p×k)

Ft + γ2
(p×k)

ut+1, (C3)

with:

γ2 =

(
Ip×p − Ip×p.

)
(C4)

For the corresponding dividend yields we have yt = Fy,t:

yt
(p×1)

= b0
(p×1)

+ b1
(p×k)

Ft
(k×1)

(C5)

yt = b0 +

(
b1,r by,1

)Fr,t

Fy,t,

 (C6)
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with:

b0 = 0p×1 (C7)

b1 =

(
b1,r by,1

)
=

(
0p×p Ip×p.

)
(C8)

Total log return return, rt+1, is the sum of capital gains, ∆pt+1 and the divided yield yt+1.

Because this is an identity that holds both ex-post and ex-ante, we can write log returns,

rt+1, as a linear function of Ft and the shock ut+1:

rt+1 =
(Pt+1 +Dt+1

Pt

)
= ln

(Pt+1

Pt

)
+ ln

(
1 +

Dt+1

Pt+1

)
(C9)

≡ ∆pt+1 + yt+1

= (rf,t + γ0 + γ1Ft + γ2ut+1) + (b0 + b1Ft+1)

= (rf,t + γ0 + γ1Ft + γ2ut+1) + (b0 + b1(c+ ρFt + ut+1))

= (rf,t + γ0 + γ1Ft + γ2ut+1) + (b0 + b1c+ b1ρFt + b1ut+1)

= rf,t + (γ0 + b0 + b1c)︸ ︷︷ ︸
β0

+(γ1 + b1ρ)︸ ︷︷ ︸
β1

Ft + (γ2 + b1)︸ ︷︷ ︸
β2

ut+1 (C10)

with:

β0 = cr (C11)

β1 =

(
0p×k ρr,y

)
(C12)

β2 =

(
Ip×p 0p×p

)
(C13)

The last two parameters are:

γ0 = cr − b1c (C14)

γ1 =

(
0p×p ρr,y

)
− b1ρ. (C15)
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We assume the following dynamics for the log SDF:

mt+1
(1×1)

= − rf,t
(1×1)

− 1

2
λ′
t

(1×k)

Σ
(k×k)

λt
(k×1)

− λ′
t

(1×k)

ut+1
(k×1)

(C16)

mt+1 = −rf,t −
1

2

(
λr,t λy,t

)Σrr Σry

Σyr Σyy


λr,t

λy,t

+

(
λr,t λy,t

)ur,t+1

uy,t+1

 (C17)

The prices of risk follow:

λt
(k×1)

= λ
(k×1)

+ Λ
(k×k)

Ft
(k×1)

(C18)λr,t

λy,t

 =

 λr

0p×1

+

 0p×p Λry

0p×p 0p×p


Fr,t

Fy,t

 (C19)

In total, we end up with 2p (c) + k × k (ρ) + p (λr) + p× p (Λry) + k × k (Σ) parameters

to estimate. With 2p = k = 8, we have 156 parameters to estimate. We label the parameter

vector θ.

Appendix B. The Objective Function

The objective function is to choose the parameter vector θ to minimize the Euler equation

errors for all i = 1, 2, ..., I portfolios.

Et

[
emt+1+∆pit+1+yit+1

]
= 1 ∀i (C20)

We write the equation with i′s to make it clear that this equation refers to one asset at

the time. Because the random variables mt+1,∆pit+1, y
i
t+1 are normally distributed, we can

restate the Euler equation as:

Et

[
mt+1 +∆pit+1 + yit+1

]
+

1

2
Vt

[
mt+1 +∆pit+1 + yit+1

]
= 0∀i (C21)
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Two tricks are useful to see how the Euler restriction is used in the estimation. First,

separate the restriction into one that applies to the p pricing portfolios and one that applies

to the r additional portfolios. Second, stack the asset-specific Euler Equations into a vector.

Because the expectation of a vector of elements is the stacked vector of the expectations of its

elements, we letAt = Et [mt+1 +∆pt+1 + yt+1] denote the vector of means whose i-th element

is Et

[
mt+1 +∆pit+1 + yit+1

]
. For the second term, define Bt ≡ Vt [mt+1 +∆pt+1 + yt+1].

We can express At,Bt as functions of the model parameters. We separate between the p

pricing portfolios and the r additional portfolios. Starting with the p pricing portfolios, let

Ap,t denote the first term in Eq. XX. By plugging in Eq. XX and Eq. YY we get:

Ap,t = Et

[
(−rf,t −

1

2
λ′
tΣλt − λ′

tut+1) + (rf,t + γ0 + γ1Ft + γ2ut+1) + (b0 + b1Ft+1)

]
(C22)

= Et

[
(−1

2
λ′
tΣλt − λ′

tut+1) + (γ0 + γ1Ft + γ2ut+1) + (b0 + b1(c+ ρFt + ut+1))

]
(C23)

= Et

[
−1

2
λ′
tΣλt + (γ0 + γ1Ft) + [b0 + b1(c+ ρFt)]

]
(C24)

= −1

2
λ′
tΣλt + (γ0 + γ1Ft) + [b0 + b1(c+ ρFt)]. (C25)

Similarly for the second term:

Bp,t = Vt

[
(−rf,t −

1

2
λ′
tΣλt − λ′

tut+1) + (rf,t + γ0 + γ1Ft + γ2ut+1) + (b0 + b1Ft+1)

]
(C26)

= Vt

[
(−1

2
λ′
tΣλt − λ′

tut+1) + (γ0 + γ1Ft + γ2ut+1) + (b0 + b1(c+ ρFt + ut+1))

]
(C27)

= Vt [−λ′
tut+1 + (γ2 + b1)ut+1] (C28)

= λ′
tΣλt + (b1 + γ2)Σ(b1 + γ2)

′ − 2(b1 + γ2)Σλt (C29)
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The p× 1 vector of Euler equations is therefore:

0 = Ap,t +
1

2
diag (Bp,t) (C30)

= −1

2
λ′
tΣλt + (γ0 + γ1Ft) + [b0 + b1(c+ ρFt)]+

1

2
diag (λ′

tΣλt + (b1 + γ2)Σ(b1 + γ2)
′ − 2(b1 + γ2)Σλt) (C31)

= −1

2
λ′
tΣλt + (γ0 + γ1Ft) + [b0 + b1(c+ ρFt)]+

1

2

λ′
tΣλt + diag ((b1 + γ2)Σ(b1 + γ2)

′)︸ ︷︷ ︸
≡Ω

−2(b1 + γ2)Σλt

 (C32)

= (γ0 + γ1Ft) + [b0 + b1(c+ ρFt)]− 2(b1 + γ2)Σλt + diag(Ω) (C33)

Matching coefficients gives p + p × k restrictions. With 2p = k we have 36 restrictions and

156 parameters to estimate.

0 = (γ0 − γ2Σλ) + b0 + b1(c− ρΣλ) +
1

2
diag(Ω) (C34)

0 = (γ1 − γ2ΣΛ) + b1(ρ− ΣΛ) (C35)

Having specified the dynamics of the p pricing portfolios we add r additional portfolio.

The returns on these portfolios are less than perfectly correlated with the SDF because of

the residual unpriced risk attached to them. Following the notation in Giglio et al. (2021)

we refer the unpriced risk as measurement errors. We use the notation γ̃ to distinguish these

parameters from their corresponding parameters γ for the pricing portfolios. The dynamics

of the log-prices of the r additional portfolios is:

∆pt+1
(r×1)

− rf,t = γ̃0
(r×1)

+ γ̃1
(r×k)

Ft + γ̃2
(r×k)

ut+1 + νt+1
(r×1)

. (C36)
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The dynamics of the yields is given by:

yt
(r×1)

= b̃0
(r×1)

+ b̃1
(r×k)

Ft + ϵt
(r×1)

(C37)

Log total returns are given by:

rt+1
(r×1)

− rf,t = β̃0
(r×1)

+ β̃1
(r×k)

Ft + β̃2
(r×k)

ut+1 + εt+1
(r×1)

, (C38)

By proceeding in the same way as before, we first express the intercept, slopes, and shocks

of the total return as a function of the other parameters and their shocks:

β̃0 = γ̃0 + b̃0 + b̃1c (C39)

β̃1 = γ̃1 + b̃1ρ (C40)

β̃2 = γ̃2 + b̃1 (C41)

εt+1 = ϵt+1 + νt+1 (C42)

It is important to notice that β̃2 is restricted in the same way that β2 is restricted. The next

step is to express the mean and and variance of the Euler equations of the r portfolios as

functions of the model parameters. Let Ar,t denote the first term in Eq. XX. By plugging

in Eq. XX and Eq. YY we get:

Ar,t = Et

[
(−rf,t −

1

2
λ′
tΣλt − λ′

tut+1) + (rf,t + γ̃0 + γ̃1Ft + γ̃2ut+1 + νt+1) + (b̃0 + b̃1Ft+1 + ϵt+1)

]
= Et

[
(−1

2
λ′
tΣλt − λ′

tut+1) + (γ̃0 + γ̃1Ft + γ̃2ut+1 + νt+1) + (b̃0 + b̃1(c+ ρFt + ut+1) + ϵt+1)

]
= Et

[
−1

2
λ′
tΣλt + (γ̃0 + γ̃1Ft) + [b̃0 + b̃1(c+ ρFt)]

]
(C43)

= −1

2
λ′
tΣλt + (γ̃0 + γ̃1Ft) + [b̃0 + b̃1(c+ ρFt)], (C44)

which follows from Et[ut+1] = 0, Et[ϵt+1] = 0, and Et[νt+1] = 0. For the second term, we
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have:

Br,t = Vt [mt+1 +∆pt+1 + yt+1] (C45)

= Vt

[
(−rf,t −

1

2
λ′
tΣλt − λ′

tut+1) + (rf,t + γ̃0 + γ̃1Ft + γ̃2ut+1 + νt+1) + (b̃0 + b̃1Ft+1 + ϵt+1)

]
= Vt

[
(−1

2
λ′
tΣλt − λ′

tut+1) + (γ̃0 + γ̃1Ft + γ̃2ut+1 + νt+1) + (b̃0 + b̃1(c+ ρFt + ut+1) + ϵt+1)

]
= Vt

[
−λ′

tut+1 + (γ̃2 + b̃1)ut+1 + νt+1 + ϵt+1

]
(dropped variables at t)

= Et

[(
−λ′

tut+1 + (γ̃2 + b̃1)ut+1 + νt+1 + ϵt+1

)(
−λ′

tut+1 + (γ̃2 + b̃1)ut+1 + νt+1 + ϵt+1

)′]
= Et[λ

′
tut+1u

′
t+1λt − λ′

tut+1u
′
t+1(γ̃2 + b̃1)

′ − λ′
tut+1ν

′
t+1 − λ′

tut+1ϵ
′
t+1

− (b̃1 + γ̃2)ut+1u
′
t+1λt + (b̃1 + γ̃2)ut+1u

′
t+1(b̃1 + γ̃2)

′ + (b̃1 + γ̃2)ut+1ν
′
t+1

+ (b̃1 + γ̃2)ut+1ϵ
′
t+1 − νt+1u

′
t+1λt+1 + νt+1u

′
t+1(b̃1 + γ̃2)

′ + νt+1ν
′
t+1

− ϵt+1u
′
t+1λt + ϵt+1u

′
t+1(b̃1 + γ̃2)

′ + ϵt+1ν
′
t+1 + ϵt+1ϵ

′
t+1]

= λ′
tEt

[
ut+1u

′
t+1

]
λt − λ′

tEt

[
ut+1u

′
t+1

]
(γ̃2 + b̃1)

′ − λ′
tEt

[
ut+1ν

′
t+1

]
− λ′

tEt

[
ut+1ϵ

′
t+1

]
− (b̃1 + γ̃2)Et

[
ut+1u

′
t+1

]
λt + (b̃1 + γ̃2)Et

[
ut+1u

′
t+1

]
(b̃1 + γ̃2)

′ + (b̃1 + γ̃2)Et

[
ut+1ν

′
t+1

]
+ (b̃1 + γ̃2)Et

[
ut+1ϵ

′
t+1

]
− Et

[
νt+1u

′
t+1

]
λt+1 + Et

[
νt+1u

′
t+1

]
(b̃1 + γ̃2)

′ + Et

[
νt+1ν

′
t+1

]
− Et

[
ϵt+1u

′
t+1

]
λt + Et

[
ϵt+1u

′
t+1

]
(b̃1 + γ̃2)

′ + Et

[
ϵt+1ν

′
t+1

]
+ Et

[
ϵt+1ϵ

′
t+1

]
, (C46)

where Et

[
ut+1u

′
t+1

]
= Σ, Et

[
ϵt+1ϵ

′
t+1

]
≡ Σϵ, and Et

[
νt+1ν

′
t+1

]
≡ Σν . Moreover, both ϵ and

ν are idiosyncratic shocks. Thus: Et

[
ut+1ν

′
t+1

]
= 0, Et

[
ϵt+1ν

′
t+1

]
= 0, and Et

[
ut+1ϵ

′
t+1

]
= 0.

Thus, equation (C46) becomes:

Br,t = λ′
tΣλt − λ′

tΣ(γ̃2 + b̃1)
′ − (b̃1 + γ̃2)Σλt + (b̃1 + γ̃2)Σ(b̃1 + γ̃2)

′ + Σν + Σϵ

= λ′
tΣλt + (b̃1 + γ̃2)Σ(b̃1 + γ̃2)

′ − 2(b̃1 + γ̃2)Σλt + Σν + Σϵ. (C47)
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The r × 1 vector of Euler equations is therefore:

0 = Ar,t +
1

2
diag (Br,t) (C48)

By matching coefficients, we end up with r + r × k restrictions and r (γ̃0) + r × p (γ̃1) +

r × k (γ̃2) + r (b̃0) + r × p (b̃1) + 2r (diag(Σϵ) + diag(Σν)) additional parameters.

0 = (γ̃0 − γ̃2Σλ) + b̃0 + b1(c− ρΣλ) +
1

2
(diag(Ω + Σν + Σϵ)) (C49)

0 = (γ̃1 − ˜̃γ2ΣΛ) + b1(ρ− ΣΛ) (C50)

Appendix C. Model Output

The parameters an and dn satisfy the following recursions:

an = an−1 + γ⋆
0 + dn−1c

⋆ +
1

2
(dn−1 + γ2)Σ(dn−1 + γ2)

′ +
1

2
σν (C51)

dn = γ⋆
1 + dn−1ρ

⋆. (C52)

With initial values a0,1 = b0 +
1
2
(σ2

r − σ2
ν), d0,1 = b1, a0,2 = 0, d0.2 = 0, σ2

r = var(ϵt), σ
2
ν =

var(νt). In these formulas, stars indicate risk-neutral parameters.
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Appendix D. Additional Results

Appendix A. Appendix to the section IV.A

Figure 6 compares the equity yield for large and small companies we estimate with those in

GKK. Figure 7 presents the same statistics for value and growth company. Both plots show

that the additional assumptions we impose on the VAR system do not affect the inference.

(a) One-year forward equity yields eft,1

(b) The forward equity yield slope eft,7 − eft,1

Figure 6 US Forward Equity Yields For Large and Small Companies
The figure compares the forward yields reported by GKK (blue) against the output from our
specification of their model (red). Both specifications use the data provided by GKK.
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(a) One-year forward equity yields eft,1

(b) The forward equity yield slope eft,7 − eft,1

Figure 7 US Forward Equity Yields For Value and Growth Companies
The figure compares the forward yields reported by GKK (blue) against the output from our
specification of their model (red). Both specifications use the data provided by GKK.

65



Appendix B. Appendix to the section IV.B

Table XI
Panel Regression: Forward Equity Yields (Big Stocks)

This table reports the results from regressing the slope of the equity forward equity yields
(ef 7

t −ef 1
t ) on the dummy variable “Bad times”. It takes the value of one for the months the

dividend price ratio is above the time series median and is market specific. Statistical signif-
icance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Forward Equity Yield Slope: ef 7
t − ef 1

t

Bad times −0.107∗∗∗ −0.084∗∗∗ −0.066∗∗∗ −0.091∗∗∗ −0.094∗∗∗

(0.005) (0.007) (0.007) (0.007) (0.009)

Constant 0.067∗∗∗ 0.052∗∗∗

(0.004) (0.005)

Markets: All All US All ex-US All
Excluded Markets: Non Non Non-US US US, UK, FR
Market fixed effects: No Yes No Yes Yes
Time fixed effects: No Yes No Yes Yes
Observations 3,394 3,394 532 2,862 2,237
R2 0.112 0.052 0.137 0.058 0.051
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Table XII
Panel Regression: Forward Equity Yields (Small Stocks)

This table reports the results from regressing the slope of the equity forward equity yields
(ef 7

t −ef 1
t ) on the dummy variable “Bad times”. It takes the value of one for the months the

dividend price ratio is above the time series median and is market specific. Statistical signif-
icance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Forward Equity Yield Slope: ef 7
t − ef 1

t

Bad times −0.071∗∗∗ −0.051∗∗∗ 0.055∗∗∗ −0.057∗∗∗ −0.087∗∗∗

(0.008) (0.009) (0.015) (0.010) (0.013)

Constant 0.005 −0.012
(0.006) (0.011)

Markets: All All US All ex-US All All
Excluded Markets: Non Non Non-US US US, UK, FR
Market fixed effects: No Yes No Yes Yes
Time fixed effects: No Yes No Yes Yes
Observations 3,394 3,394 532 2,862 2,237
R2 0.022 0.011 0.023 0.013 0.023
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Table XIII
Panel Regression: Forward Equity Yields (Value Stocks)

This table reports the results from regressing the slope of the equity forward equity yields
(ef 7

t −ef 1
t ) on the dummy variable “Bad times”. It takes the value of one for the months the

dividend price ratio is above the time series median and is market specific. Statistical signif-
icance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Forward Equity Yield Slope: ef 7
t − ef 1

t

Bad times −0.090∗∗∗ −0.036∗∗∗ −0.012 −0.034∗∗∗ −0.079∗∗∗

(0.008) (0.011) (0.010) (0.012) (0.015)

Constant 0.032∗∗∗ 0.007
(0.006) (0.007)

Markets: All All US All ex-US All
Excluded Markets: Non Non Non-US US US, UK, FR
Market fixed effects: No Yes No Yes Yes
Time fixed effects: No Yes No Yes Yes
Observations 3,394 3,394 532 2,862 2,237
R2 0.032 0.004 0.003 0.003 0.014
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Table XIV
Panel Regression: Forward Equity Yields (Growth Stocks)

This table reports the results from regressing the slope of the equity forward equity yields
(ef 7

t −ef 1
t ) on the dummy variable “Bad times”. It takes the value of one for the months the

dividend price ratio is above the time series median and is market specific. Statistical signif-
icance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Forward Equity Yield Slope: ef 7
t − ef 1

t

Bad times −0.099∗∗∗ −0.083∗∗∗ −0.035∗∗∗ −0.096∗∗∗ −0.107∗∗∗

(0.007) (0.010) (0.010) (0.011) (0.014)

Constant 0.067∗∗∗ 0.035∗∗∗

(0.005) (0.007)

Markets: All All US All ex-US All
Excluded Markets: Non Non Non-US US US, UK, FR
Market fixed effects: No Yes No Yes Yes
Time fixed effects: No Yes No Yes Yes
Observations 3,394 3,394 532 2,862 2,237
R2 0.049 0.024 0.024 0.030 0.030

Table XV
Decomposition of the equity forward equity yield (Big stocks)

The table presents the results from regressing the slope of the equity forward equity yield
(ef 7

t −ef 1
t ) as well as its two terms on the dummy variable “Bad times”. The first term is the

risk premium on the 7-years maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t .

The second term is long-term expected dividend growth in excess of short-term dividend
growth, g

(7)
t − g

(1)
t . The “Bad-times” dummy variable takes the value of one for the months

the dividend price ratio is above the time series median and is market specific. Statistical sig-
nificance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable ef 7
t − ef 1

t θ7t − θ1t g7t − g1t

Bad-times −0.084∗∗∗ 0.004 0.088∗∗∗

(0.015) (0.003) (0.015)

Market fixed effects: Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes
Observations 3,394 3,394 3,394
R2 0.052 0.001 0.053
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Table XVI
Decomposition of the equity forward equity yield (Small stocks)

The table presents the results from regressing the slope of the equity forward equity yield
(ef 7

t −ef 1
t ) as well as its two terms on the dummy variable “Bad times”. The first term is the

risk premium on the 7-years maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t .

The second term is long-term expected dividend growth in excess of short-term dividend
growth, g

(7)
t − g

(1)
t . The “Bad-times” dummy variable takes the value of one for the months

the dividend price ratio is above the time series median and is market specific. Statistical sig-
nificance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable ef 7
t − ef 1

t θ7t − θ1t g7t − g1t

Bad-times −0.051∗∗∗ 0.002 0.053∗∗

(0.020) (0.013) (0.021)

Market fixed effects: Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes
Observations 3,394 3,394 3,394
R2 0.011 0.00001 0.005

Table XVII
Decomposition of the equity forward equity yield (Value)

The table presents the results from regressing the slope of the equity forward equity yield
(ef 7

t −ef 1
t ) as well as its two terms on the dummy variable “Bad times”. The first term is the

risk premium on the 7-years maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t .

The second term is long-term expected dividend growth in excess of short-term dividend
growth, g

(7)
t − g

(1)
t . The “Bad-times” dummy variable takes the value of one for the months

the dividend price ratio is above the time series median and is market specific. Statistical sig-
nificance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable ef 7
t − ef 1

t θ7t − θ1t g7t − g1t

Bad-times −0.036∗ −0.003 0.033
(0.021) (0.007) (0.023)

Market fixed effects: Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes
Observations 3,394 3,394 3,394
R2 0.004 0.0001 0.003
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Table XVIII
Decomposition of the equity forward equity yield (Growth)

The table presents the results from regressing the slope of the equity forward equity yield
(ef 7

t −ef 1
t ) as well as its two terms on the dummy variable “Bad times”. The first term is the

risk premium on the 7-years maturity strip in excess of the 1 year maturity strip, θ
(7)
t − θ

(1)
t .

The second term is long-term expected dividend growth in excess of short-term dividend
growth, g

(7)
t − g

(1)
t . The “Bad-times” dummy variable takes the value of one for the months

the dividend price ratio is above the time series median and is market specific. Statistical sig-
nificance is indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are
based on the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Dependent variable ef 7
t − ef 1

t θ7t − θ1t g7t − g1t

Bad-times −0.083∗∗∗ −0.005 0.078∗∗∗

(0.017) (0.004) (0.016)

Market fixed effects: Yes Yes Yes
Calendar time fixed effects: Yes Yes Yes
Observations 3,394 3,394 3,394
R2 0.024 0.001 0.021
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Appendix C. Appendix to the section V.B

Table XIX
Predicting Macroeconomic Variables (Market)

The table presents the results from predicting macroeconomic outcomes observed at time
q with short-term risk premia (θ

(1)
q−1) and growth expectations (g

(1)
q−1). All specifications in-

clude the lagged value of the variable we predict. The macroeconomic outcomes include 1)
consumption growth, gci,q := Ci,t/Ci,t−q − 1, where Ct is consumption at time t, 2) changes
in unemployment rate, ∆Ui,q = Ui,t − Ui,t−q, where Ut is the unemployment rate at time
t, and 3) growth in industrial production, gIPi,q := IPi,t/IPi,t−q − 1, where IPt is industrial
production at time t. All regressions include market-fixed effects. Statistical significance is
indicated by ***, **, and * for the 0.01, 0.05, and 0.10 levels. Standard errors are based on
the Robust Covariance Matrix Estimator developed by Driscoll and Kraay (1998).

Horizon Consumption (gci,q) Unemployment (∆Ui,q) Industrial Production (gIPi,q )

(months) 3 6 12 3 6 12 3 6 12

g
(1)
q−1 0.010∗∗∗ 0.014∗∗∗ 0.017∗∗ −0.002∗ −0.004∗ −0.009∗∗ 0.027∗∗ 0.036∗∗ 0.063∗∗

(0.002) (0.004) (0.006) (0.001) (0.002) (0.003) (0.008) (0.011) (0.021)

θ
(1)
q−1 0.006 0.011∗ 0.019 0.004 0.007 0.018∗ −0.003 −0.013 −0.024

(0.003) (0.005) (0.012) (0.002) (0.004) (0.009) (0.027) (0.036) (0.053)

yi,q−1 −0.068 0.098 0.108 0.311∗ 0.424∗∗∗ 0.215∗∗ 0.046 0.116∗∗ −0.101
(0.108) (0.127) (0.098) (0.134) (0.059) (0.064) (0.081) (0.048) (0.072)

Observations 707 699 685 1,932 1,920 1,896 2,116 2,101 2,071
R2 0.194 0.331 0.423 0.128 0.221 0.098 0.043 0.062 0.055
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