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Abstract

This paper challenges the conventional wisdom that exchange-traded funds (ETFs) are
more liquid than open-end mutual funds. I build a model and establish that same-index
ETFs and mutual funds provide liquidity at different horizons. Investors facing higher
(lower) liquidity risk and thus shorter (longer) investment horizons prefer mutual funds
(ETFs). Since they can be redeemed at NAV, mutual funds holding illiquid assets provide
higher short-term liquidity, but the resulting payoff complementarities make them under-
perform ETFs in the long run. ETFs, however, are subject to mispricing and illiquidity in
the short term due to arbitrageurs’ balance-sheet constraints. In equilibrium, both funds
coexist when investors face heterogeneous liquidity needs. The model generates novel,
testable predictions concerning the competition and future trajectory of index ETFs and
mutual funds.
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1 Introduction

A central idea in finance is that the average investor is best served by passively investing
in a diversified index of securities. The growing adoption of this approach is evident in the
shift from active to passive investing. Households generally rely on investment funds, such as
open-end mutual funds (MFs), or exchange-traded funds (ETFs) to obtain their desired in-
dex exposure. MFs and ETFs both perform liquidity transformation by pooling money from
many investors to purchase securities and hold virtually identical portfolios in the passive
investment sector. Furthermore, they control nearly equal portions of the over $9tn in assets
under management (AUM) within U.S-registered public index funds (figure 1). ETFs, how-
ever, have consistently garnered greater inflows than their mutual fund counterparts for each
of the preceding 15 years, leading some industry professionals to predict that mutual funds
will become obsolete (figures 2 and 3). Nevertheless, index MFs have continued to receive
net capital inflows. The gap between the perceived advantages of ETFs, such as superior tax
efficiency in the U.S., intraday trading, and lower minimum investments, and the continued,
substantial presence of index MFs begs the question what purpose MFs serve in the world of
passive investing. Understanding the differences between index ETFs and MFs is important
because of their size, central role in households’ portfolio allocation, with 68.6m (52%) and
16.1m (12%) of U.S. households invested in MFs and ETFs respectively (ICI 2023), and the
relevance to ongoing policy debates on regulatory measures to minimize the flow-induced
dilution of shareholders’ stakes in open-end mutual funds.

This paper seeks to rationalize the co-existence of same-index ETFs and MFs with their
unique liquidity-provision services. I propose a static, discrete-time portfolio choice model
featuring rational investors with ex-ante heterogeneous liquidity needs who allocate their
wealth between an index ETF and MF. My primary contribution is to emphasize the unique
liquidity-transformation characteristics inherent in alternative index fund structures. ETFs’
and MFs’ distinct trading and pricing mechanisms affect fund liquidity provision across dif-
ferent horizons. The central distinction between these two funds lies in the fact that relative
mispricing in ETFs affects investors’ returns in the short term. In contrast, MF share dilution
negatively impacts investors’ returns in the long term. I establish that the exchange-traded
nature of ETFs does not inherently make them more liquid than MFs. Instead, excessive
price fluctuations associated with ETFs’ intraday trading reduce their short-term liquidity-
provision compared to MFs. Rational index investors can optimize their portfolio allocation
by selecting the fund type that aligns best with their specific liquidity requirements and in-
vestment horizon.

In my model, investors generally invest for the long-term but may receive liquidity shocks,
necessitating the prompt liquidation of their portfolio holdings. ETFs and MFs are sim-
ply financial technologies that facilitate index-based investments by providing diversification
and access to otherwise inaccessible market segments. Both funds passively track the same
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benchmark index. ETFs are exchange-traded intraday at the prevailing market price, just
like stocks, whereas MFs are purchased or redeemed directly from the fund sponsor at the
end-of-day fund net asset value (NAV). I show that both funds are fundamentally different
investment vehicles. The key distinguishing features between ETFs and MFs are their distinct
payoff structures, specifically the mechanisms determining at what price their fund shares can
be redeemed at short notice.

I derive three main findings. First, I establish that the payoff structure differences between
index ETFs and MFs matter for fund liquidity provision at different horizons.1 In this con-
text, liquidity provision is defined by the relative payoffs of equity claims on identical index
portfolios issued by different financial intermediaries (ETFs and MFs). ETFs provide more
liquidity over the long-term, whereas MFs provide more liquidity at shorter horizons. Short
term, within this framework, corresponds to a few trading days, whereas the long term ex-
tends across periods of months to years. Outflows from ETFs only have temporary effects on
investors’ payoffs, whereas MF flows have persistent effects on investors’ payoffs.

These results emerge from the distinct mechanisms through which the costs of the liquidity
transformation provided by these investment funds are reflected in their share prices. ETF
liquidity provision occurs in secondary markets via authorized participants (APs). By con-
trast, MF liquidity provision takes place within primary markets among MF shareholders as
funds themselves stand ready to sell or repurchase any quantity of fund shares at the end-of-
day NAV on demand. Consequently, over the short-term, ETFs can be mispriced relative to
their fund NAVs when balance sheet capacity constraints prevent APs from providing liquid-
ity in secondary ETF markets via primary market creations or redemptions. Eventually, ETF
prices tend to converge back to the fund NAV once AP balance sheet capacity constraints
subside.

Unlike ETFs, MFs guarantee investors the ability to trade at the end-of-day fund NAV, re-
gardless of prevailing financial market conditions. MFs’ pricing mechanism gives rise to an
externality between fund investors. While ETF prices can fluctuate excessively relative to
the value of their underlying assets over the short term, as they depend on intermediary
arbitrage activities, MF NAVs can be insufficiently flexible as they do not fully reflect the
transaction costs and price impacts associated with shareholders’ redemptions. Accordingly,
MF redemptions dilute the shareholdings of the remaining fund investors. This share dilu-
tion represents the liquidity premium investors pay in exchange for the short-term liquidity
protection offered by MFs, should they choose not to redeem their shares prematurely. Due
to the in-kind nature of ETF creations and redemptions, there is no share dilution risk in
ETFs.

1To avoid ambiguity, MFs in my paper refers to index mutual funds, unless otherwise specified.
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I demonstrate that ETFs’ market-based pricing mechanism gives rise to reverse run incentives,
as strategic substitutabilities encourage shareholders to remain invested when intermediaries
are balance sheet constrained. Investors who do not need immediate access to liquidity will
always abstain from selling their ETF shares prematurely. The opposite is true for MFs.
The insufficient flexibility of MF prices leads to payoff complementarities, encouraging early
redemptions by long-term investors during periods of market illiquidity, potentially culmi-
nating in mutual fund runs.

Importantly, in my model, illiquidity serves as the fundamental prerequisite for the inherent
frictions within ETFs and MFs. In highly liquid index fund segments, such as large cap
domestic equities (e.g., S&P 500 index funds), the relative mispricing risk in ETFs as well as
the share dilution costs in MFs are small. I establish that in such cases, both, ETFs and MFs,
offer virtually frictionless liquidity transformation. By contrast, in relatively more illiquid
and increasingly popular market segments such as corporate bonds or international equities,
the financial frictions tied to ETFs and MFs are predicted to attain economic significance,
leading to evident divergences in their respective payoffs across investment horizons. In this
context, financial frictions act as impediments to the seamless functioning of index fund mar-
kets.

In my second main finding, I show that within the realm of funds tracking benchmark indices
composed of imperfectly liquid securities, funds’ relative liquidity differences give rise to a
cut-off equilibrium wherein investors self-select into ETFs versus MFs depending on their liq-
uidity needs and expected investment horizons. Understanding funds’ different pricing risks
and run incentives, an investor with a long horizon ex-ante will optimally select the ETF,
while an investor with a shorter horizon will select the MF. Investors with lower liquidity
risks or longer horizons are positioned to circumvent the potential short-term mispricing of
ETFs. By contrast, opting for MFs would likely expose them to the costs associated with the
earlier redemptions by shorter-term fund investors. Conversely, when investors anticipate a
need to quickly sell their investments within a few days, they highly value the immediate
liquidity protection offered by MFs. These are agents who generally invest to smooth con-
sumption across different states of the economy, for example due to higher labor income risk,
unforeseen expense shocks, or the need to support their lifestyles through income from capital
investments. They are willing to forgo long-term expected returns to sidestep the potential
short-term mispricing in ETFs.

Third, I investigate the consequences of the co-existence of same-index ETFs and MFs for
funds’ vulnerabilities to outflows and for investors’ payoffs. I demonstrate that the existence
of ETFs makes MFs more vulnerable to premature investor redemptions, and the existence
of MFs reduces ETF mispricing. Investors who are likely to require urgent liquidity in the
future are worse off after the introduction of an ETF compared to the MF-only equilibrium.
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When index fund assets are divided between an ETF and MF, the liquidity risks encountered
by investors within the MF are pooled among a smaller set of agents, thereby diminishing
the extent of liquidity co-insurance provided to each individual investor within that group.
Investors with low expected liquidity needs benefit. The competition between ETFs and MFs
allows them to separate from higher liquidity risk investors, thereby avoiding the transaction
costs associated with those investors’ short-term liquidity needs.

These insights can inform decision-making processes for investors, regulatory authorities, and
asset managers. Despite the seemingly straightforward nature of index investing, investors
should look beyond fees or taxes and remain cognizant of the potential indirect liquidity-
provision costs tied to their chosen investment vehicle. This study also offers implications for
index fund selection within retirement accounts, an area of paramount significance. To avoid
a scenario where retirement investors in illiquid index MFs during the wealth accumulation
phase inadvertently subsidize short-term liquidity provision to retirees and non-retirement ac-
count holders, retirement plan sponsors should add ETFs to the menu of investment options.
An awareness of investors’ trade-offs between ETFs and MFs can further assist regulators
in designing fund liquidity management tools. In my model, MFs are subject to run risk.
ETFs’ payoff structure discourages early redemptions by patient investors but imposes ex-
cessive liquidation costs on impatient investors. One potential tool to reduce flow-induced
share dilution, and therefore run risk in MFs is swing pricing. Swing pricing is a mechanism
that adjusts MFs’ NAVs to account for flow-induced transaction costs, thereby protecting re-
maining shareholders’ interests. In November 2022, the SEC proposed to make swing pricing
mandatory for most U.S. based open-end mutual funds, sparking vehement criticism from
both asset managers and politicians.2 Contrary to the arguments of these stakeholders, I
show that swing pricing can reduce incentives for early MF liquidations while preserving
MFs’ relative appeal to investors with higher liquidity needs. If certain conditions are met,
including optimal swing factor calibration, along with rational and forward-looking investors,
swing pricing even enables MFs to dominate same-index ETFs in terms of liquidity provision.
From an asset management perspective, this paper sheds light on the recent trend involving
MF-to-ETF conversions by suggesting that the benefits of these reorganizations are larger
for MFs with less liquid assets and longer-term investors.

In practice, expense ratios and the tax implications associated with fund-level capital gains
realizations may also differ across fund types. Fee differences are less significant in the pas-
sive investing segment. Within the most popular index segments, ETFs and MFs charge
virtually identical fees on an asset-weighted basis (figure 6). From a tax perspective, in the
U.S. capital gains taxes on ETFs are deferred until fund shares are sold by the investor. In
contrast, mutual funds must distribute any capital gains to shareholders annually.3 In other

2For details on the U.S. Securities and Exchange Commission’s (SEC) proposed swing pricing rule, refer
to https://www.sec.gov/files/33-11130-fact-sheet.pdf.

3See appendix B for a detailed discussion of the institutional differences between ETFs and MFs.
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major fund markets, such as the E.U., ETFs have witnessed comparable growth to that seen
in the U.S, despite being subject to the same tax rules as MFs. Hence, variations in fees
and taxes alone do not suffice to offer a comprehensive rationale for the co-existence of same-
index ETFs and MFs. Besides, while fees and tax rules are at the discretion of fund sponsors
and regulators of the fund’s domicile country, the pricing and trading mechanisms constitute
intrinsic components of the structures of both ETFs and MFs. Accordingly, this paper puts
forth a novel, rational explanation, based on funds’ universally different security design, for
the trillions of U.S. dollars still allocated to index MFs.

Many asset managers and financial advisors promote ETFs as more liquid or easier to trade
than their MF peers. This may lead some to think that ETFs are more suitable for in-
vestors with short-term liquidity needs. I challenge this notion, demonstrating that ETFs are
typically better suited for investors with lower liquidity risks or longer investment horizons,
especially when underlying portfolio holdings are illiquid. Previously, expense ratios and the
tax implications associated with fund-level capital gains realizations have dominated discus-
sions on the merits of ETFs versus MFs. In fact, fee and tax disparities alone are insufficient
to explain the co-existence of same-index ETFs and MFs. Both fund types charge virtually
identical fees on an asset-weighted basis within the most popular index segments (refer to
Figure 6), and although U.S.-based ETFs allow deferring capital gains taxes until investors
sell their fund shares, ETFs have experienced similar growth in other markets where they are
subject to identical tax rules as MFs.4 Accordingly, this paper puts forth a novel, rational
explanation, based on funds’ universally different security design, for the trillions of U.S.
dollars still allocated to index MFs.

1.1 Related literature

I contribute to the growing ETF literature by formalizing a unified framework to understand
investors’ trade-offs between ETFs and MFs. I show that index ETFs and MFs are imperfect
substitutes because of differences in the nature of their liquidity provision.

Few other papers have explicitly considered investor trade-offs between ETFs and open-
end mutual funds, and the few that do, generally agree that ETFs and MFs can co-exist
in equilibrium. They attribute the co-existence of both fund types to clientele effects re-
sulting from different fee structures, ETFs’ intraday liquidity provision (Agapova 2011) and
tax efficiency (Moussawi, Shen, and Velthius 2022). Specifically, Agapova (2011) predicts
that investors with higher liquidity needs or longer time horizons prefer ETFs because of
their exchange-traded nature and lower fees, while short-term traders prefer MFs because
of their commission-free nature. Figure 6 illustrates that index MFs are now available at
similar expense ratios as their ETF competitors. Besides, many U.S. brokerage firms offer

4See appendix B for a detailed discussion of the institutional differences between ETFs and MFs.
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commission-free trading for retail investors. I contribute to this literature by showing that,
even abstracting from fee and tax differences, ETFs provide relatively larger payoffs over the
long term due to the absence of share dilution risks. In related work, based on a model
featuring ETFs that are frictionless and identical to the benchmark index, Huang and Guedj
(2009) show that ETFs are more suitable when investors have more correlated liquidity shocks
or underlying securities markets are less liquid. I endogenize the frictions in both ETFs and
MFs and demonstrate that MFs can be more suitable for investors with short-term liquidity
needs due to the potential for relative mispricing in ETFs. Investors with intraday trading
needs, such as hedge funds who trade ETFs for speculative or hedging purposes, are outside
of the scope of my paper, as they would never choose to invest in MFs in the first place.

My paper also adds to the literature on investment fund choice of organizational structure.
The previous literature largely focuses on the choice between the open- and closed-end fund
(CET) structure. While I focus on the liability-side competition between same-index ETFs
and MFs, this literature has emphasized complementarities in open- and closed-end fund
asset holdings. Deli and Varma (2002) empirically show that funds holding securities with
lower liquidity or price transparency are more likely to be structured as CEFs. Similar to my
model, Cherkes, Sagi, and Stanton (2009) theoretically argue that CEFs exist because they
facilitate investments in illiquid securities without the externality costs of open-end MFs.
Elton, Gruber, Blake, and Shachar (2013) highlight CEFs’ ability to use leverage. I extend
this line of research by considering the trade-off between the ETF and the open-end MF struc-
ture. ETFs represent a hybrid organizational form between open- and closed-end MFs. Their
shares are exchange-traded, similar to CEFs, but they also incorporate an intermediary-based
mechanism for the creation of new shares and the redemption of existing ones, akin to the
structure found in open-end MFs.5

This paper further complements the literature on liquidity provision by non-bank financial
intermediaries (NBFIs) and their associated risks. I build on work by Diamond and Dybvig
(1983) on bank liquidity provision. In contrast to their framework, investors in my model
are ex-ante heterogeneous and invest in index fund equity instead of bank deposits. Equity-
issuing intermediaries including ETFs and MFs also provide liquidity (Ma, Xiao, and Zeng
2022a), and similar to banks, the liquidity mismatch between ETF or MF shares and their
portfolio holdings is the key driver of frictions in this paper. For MFs, the literature has
identified the combination of payoff complementarities for MF investors with the liquidity
mismatch on MFs’ balance sheet as the central source of run risk. Chen, Goldstein, and Jiang
(2010) show empirically and theoretically in a global games framework that the guaranteed
redemption at the fund NAV gives rise to a first-mover advantage among investors which

5Another related literature strand studies competition among funds of the same type. Malamud
(2016), Box, Davis, and Fuller (2019) and Khomyn, Putnin, š, and Zoican (2023) examine the co-
existence of same-index ETFs. Hortacsu and Syverson (2004), Elton, Gruber, and Busse (2004) and
Choi, Laibson, and Madrian (2009) investigate the co-existence of same-index open-end MFs.
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increases in the illiquidity of fund assets. Payoff complementarities in MFs arise because
redemptions are associated with fund costs not fully reflected in fund NAVs at which ex-
iting investors trade. Edelen (1999) quantifies the significant cost of liquidity-motivated
trading for long-term MF investors, and Coval and Stafford (2007) show that MFs tend to
conduct costly and unprofitable trades ex-post large outflows at the cost of their remain-
ing shareholders. They estimate that most flow-induced MF trades occur with a lag of one
day after redemption events.6 Dickson, Shoven, and Sialm (1999) provide evidence for the
importance of capital gains taxes as a source of externalities among MF investors. Most re-
cently, the staleness in MF NAVs is documented by Choi, Kronlund, and Oh (2022) for fixed
income funds; previous evidence focusing on international and illiquid domestic equity MFs in-
clude Goetzmann, Ivković, and Rouwenhorst (2001), Chalmers, Edelen, and Kadlec (2001),
Boudoukh, Richardson, Subrahmanyam, and Withelaw (2002) and Zitzewitz (2003). An-
other source of staleness in MF NAVs are outdated portfolio weights (Tufano, Quinn, and Taliaferro
2012). I contribute to this literature by showing that the lag with which flow-induced trans-
action costs are reflected in MF NAVs provides liquidity insurance to investors with urgent
liquidity needs. Yet, over the longer term this liquidity insurance comes at the cost of share
dilution for the remaining MF investors. Consistent with prior studies, these payoff comple-
mentarities among MFs investors introduce MF run risk into my model.

The literature on risks in ETFs has focused on the spillover effects from ETFs to financial
markets caused by the AP arbitrage channel.7 From an investor’s perspective, the key friction
in ETFs is the potential for relative mispricing between the ETF price, at which investors
can trade, and the fund NAV, which is intended to reflect the fundamental value of a share in
the fund. Empirically, Haddad, Moreira, and Muir (2021) document large discounts in bond
ETFs during the Covid-19 sell-off. Petajisto (2017) shows that the relative ETF mispricing
remains statistically and economically significant, even after accounting for potential stale-
ness in fund NAVs. Other related studies include Todorov (2021), Gorbatikov and Sikorskaya
(2022) and Malamud (2016). Pan and Zeng (2019) demonstrate how the liquidity mismatch
between ETF shares and portfolio securities, coupled with APs’ balance sheet constraints,
leads to limits to arbitrage in ETF markets. Shim and Todorov (2022) suggest that ETFs
may be more effective in managing illiquid assets compared to MFs because APs can limit
adverse spillover effects from fund liquidations to asset markets. I add to this literature by

6See also Feroli, Kashyap, Schoenholtz, and Shin (2014) and Goldstein, Jiang, and Ng (2017).
Falato, Goldstein, and Hortaçsu (2021) and Ma, Xiao, and Zeng (2022b) offer empirical evidence from
the Covid-19 crisis. Kacperczyk and Schnabl (2013) and Schmidt, Timmermann, and Wermers (2016) docu-
ment shareholder runs in money market funds. Previous attempts to quantify the costs of MF redemptions
include Chordia (1996), Wermers (2000), Greene and Hodges (2002) and Johnson (2004).

7For example, previous studies have analyzed the effect of ETF ownership on non-fundamental asset price
volatility (Dannhauser and Hoseinzade 2017; Ben-David, Franzoni, and Moussawi 2018), asset price discovery
(Brown, Davies, and Ringgenberg 2021; Israeli, Lee, and Sridharan 2017; Glosten, Nallareddy, and Zou 2021;
Madhavan and Sobczyk 2016; Bhattacharya and O’Hara 2018) and return co-movement (Da and Shive 2018;
Shim 2019; Madhavan and Morillo 2018).
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demonstrating that ETFs’ distinct payoff structure discourages fund liquidations when mar-
kets are illiquid and endogenously attracts relatively more long-term investors.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section
3 presents the equilibrium predictions. Section 4 analyzes policy implications. Section 5
concludes.

2 Theoretical framework

I propose a portfolio choice model to study the tradeoffs faced by rational investors with
heterogenous liquidity risks when choosing to allocate their portfolio between index ETFs
and index open-end mutual funds built upon Diamond and Dybvig (1983). Investors gener-
ally invest for the long term, but they may occasionally need to liquidate financial assets at
short notice in times when overall market liquidity is scarce. The model is designed to mimic
adverse states of the economy characterized by low asset financial market liquidity and high
demand for liquidity. Asset market liquidity refers to the ease with which financial securi-
ties can be traded. Correspondingly, liquidity risk denotes the probability that an investor
needs to liquidate her financial assets for consumption purposes at times when it is costly to
do so. On the one hand, these episodes of market stress represent the states in which the
distinct frictions associated with same-index ETFs and MFs materialize and meaningfully
impact fund liquidity provision. On the other hand, it is during adverse market conditions
that liquidity is most valuable for investors.

I focus on investors’ discretionary portfolio allocations outside of retirement savings accounts.
This allows me to capture a wide range of investment motives and liquidity needs, crucial for
examining liquidity-provision differences across competing investment funds. Even though the
model can accommodate investments within retirement accounts, many employer-sponsored
retirement accounts do not offer ETFs yet.8 More generally, the model is not limited to retail
investors. It is sufficiently flexible to accommodate any type of investor relying on investment
funds.

The model is designed to capture the fundamental economic differences between ETFs and
MFs, the mechanisms by which both funds’ shares are priced and traded in financial markets.9

There are three periods, t = {1, 2, 3}; time is discrete and financial markets are competitive.
There is a single consumption good, dollars. The economy consists of a continuum unit mass

8According to estimates by the Investment Company Institute, 48% of assets across IRAs, 401(k) plans and
other DC plans were invested in mutual funds as of June 2023. See Investment Company Institute, Release:
Quarterly Retirement Market Data, available at https://www.ici.org/statistical-report/ret_23_q2.

9I do not aim to capture all dimensions on which funds may differ. Most importantly, I abstract from
variation in fund expense ratios and capital gains taxation. I refer to Moussawi et al. (2022) and Agapova
(2011) for a detailed empirical analysis of the implications of tax and fee differences between ETFs and MFs.
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of investors i and financial intermediaries. Investors are heterogeneous in terms of their liq-
uidity risk exposure. Liquidity risk in this context refers to the possibility that unexpected
financial needs or obligations may arise, requiring investors to sell their investments quickly
under less-than-ideal market conditions. Some investors are more likely to be forced to liqui-
date their assets earlier than others. There is also a group of “sleepy” or inattentive investors;
for the ease of exposition, I call them retirement investors. Consistent with the menu of funds
in practice offered by many retirement plans, retirement investors can often only invest in
mutual funds. Generally, these sleepy investors reflect agents who do not actively monitor or
adjust their investment portfolios in response to changing market conditions or new informa-
tion. They follow a simple buy-and-hold strategy, making no portfolio re-allocation decisions
between the initial and terminal period.

Financial markets feature risky composite securities: index MFs, and index ETFs both of
which are investment technologies that pool money from investors to invest in a diversified
portfolio of potentially illiquid securities. The composite security represents a benchmark
index and can only directly be traded by fund managers and intermediaries. Investors can
only invest in financial securities via investment funds, and they cannot trade directly in the
index. For benchmark index j, there exists both a MF and an ETF tracking it through phys-
ical replication. I consider the case of a single benchmark index so the notation j illustrates
the dependence of key parameters, and consequently the model predictions, on the return
distribution and liquidity of the benchmark portfolio. Hence, j generally denotes the overall
liquidity of the asset market segment under consideration. I abstract from individual securi-
ties markets; ETFs and MFs simply hold the composite security. Abstracting from portfolio
differences allows me to focus on non-portfolio differences as the source of heterogeneity be-
tween ETFs and MFs. There is also a risk-free asset which pays zero interest Rf = 1.

Key model frictions directly arise from the different payoff structures of ETFs and MFs. They
emerge in ETFs from the potential for ETF prices at which investors transact in secondary
markets to diverge from the fund’s net asset value. I refer to this difference between ETF
market prices and fund NAV as relative mispricing. If the ETF trades at a discount (pre-
mium), long ETF investors receive a payoff below (above) the funds’ fundamental value. In
contrast, frictions in MFs are due to payoff externalities between fund investors. I abstract
from agency frictions between fund sponsors, intermediaries and investors: MFs and ETFs
serve solely as investment technologies that facilitate liquidity transformation and diversifi-
cation for investors. Objectives of fund sponsors are outside of the scope of my model.

Figure 7 summarizes the model information structure and the timing of agents’ decisions.
The index fundamental, xj , serves as the state variable, reflecting the exogenous fundamen-
tal value of the composite security j, is distributed xj ∼ N(µj , σ2

j ) with µj > 1 and observed
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Figure 7: Timeline of information and investor actions

t = 0

Investors allocate portfolio
between ETF & MF

Index value xj ∼ N(µj , σ
2
j )

Investor i’s liquidity risk: λi ∼ U [0, 1]

t = 1
Index value (state) xj realized

Investor types = Patient, Impatient

Early redemption decision

t = 2

Terminal
index & fund payoffs

at the beginning of period t = 1.10 For tractability, I disregard the dynamics of individual
security prices and instead directly model the price of the benchmark index as a composite
security. I focus on investors’ portfolio allocation decision between the ETF and MF within
a given benchmark segment j. Since my focus is on the tradeoffs across index fund types, I
do not consider investors’ portfolio choices across different asset classes and index segments.
Hence, the relation between the fundamentals xj across j is not relevant for this paper’s
analysis. I assume that all agents have identical information about xj . Table 3 summarizes
notation.

The model is intentionally designed to capture adverse economic conditions characterized by
an overall net demand for liquidity among fund investors, manifested through redemptions
from MFs and sales of ETFs. In the interim period, individual investors confront two possible
scenarios: a liquidity shock necessitating the immediate liquidation of their entire portfolios,
or the absence of a liquidity shock allowing them to choose between immediate or future
portfolio liquidation. Investors can be impatient consumers but not impatient savers. Given
the lack of positive cash flows shocks, there are no fund inflows in the interim period. There
is no potential for trade among fund investors. In fact, following the assumptions placed on
the distribution of investor liquidity risks, outflows from the fund sector are strictly positive
at t = 1. Even though liquidity risks are independent at the investor level, the model features
systemic liquidity risks at the aggregate level. At least half of fund investors will liquidate
their portfolio holdings early. As a result, investors are unable to fully insure themselves
against liquidity risks: they depend on financial markets and intermediaries for liquidity pro-
vision. In practice, even during periods of market stress, index funds typically experience
inflows from some investors who consistently allocate a fixed dollar amount to these funds
as part of a savings plan. In this model, fund outflows can be understood as investors’ net
withdrawals.

2.1 Financial markets

Benchmark index. A benchmark index j represents a diversified portfolio of securities
(e.g., S&P 500 Index, Bloomberg Aggregate Bond Index, MSCI Emerging Markets Index).

10Since xj represents the terminal index payoff, µj < 1 would imply a negative expected return for index j.
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In what follows, I focus on a single index j tracked by one ETF and one MF. The terms com-
posite security and index are used interchangeably. The composite security pays a terminal
dividend at t = 2. This composite security can be traded by mutual fund managers, financial
intermediaries in their role as APs, and market makers (broker-dealers) specialized in pro-
viding liquidity in these index markets at t = 1. Composite security markets are segmented,
a standard assumption in the literature (e.g., Malamud (2016), Gromb and Vayanos (2002))
which allows for potential relative mispricing between markets. Segmented index markets
imply that MFs and APs trade with distinct index market makers, potentially at different
prices. The timing of when MFs and APs trade in index markets also differs: APs respond to
demand imbalances in secondary ETF markets in real time intraday, while MFs adjust their
portfolio holdings with a lag after observing their investors’ net redemptions. More funda-
mentally, the segmented index markets assumption allows to me to distinguish ETF and MF
respective price impacts in the underlying security markets. MFs and APs are both price
takers and do not compete on the asset side in index markets. In an extension of the model, I
relax this assumption and show that the same overall predictions continue to hold when ETFs
and MFs trade with a common index market maker.11 The extension provides additional in-
sights on how asset-side competition between ETFs and MFs affects fund investors’ payoffs.
Investors cannot directly trade composite securities. In theory, it is equivalent to assuming
that the transaction costs investors face under autarky when trying to replicate, and se-
quentially rebalance, the index themselves, for instance through direct indexing in separately
managed accounts (SMAs), are always strictly larger than the cost of holding an ETF or MF.

The index price in the interim period is endogenous, given by P jt and determined by market
clearing between market makers, MFs and APs. In the terminal period, the index pays a
terminal dividend equal to its fundamental value, Divj2 = xj . Hence, the cum-dividend index
price at t = 2 is given by:

P j2 = xj .

Investment funds. ETFs and MFs passively track the benchmark index by physically
replicating its underlying securities portfolio. I implicitly assume that there exists both an
open-end mutual fund as well as an ETF tracking every benchmark, j.12 For simplicity, nei-
ther ETFs nor MFs charge fees, so management expense ratios are zero, fETF,jt = fMF,j

t =
0 ∀t and j. I abstract from differences in ETF and MF portfolio-replicating methodologies.
Funds hold no cash, so the portfolio holdings of the ETF and MF tracking benchmark j are
identical.

11The assumption that market makers are distinct from banks acting as APs in ETF markets is a simpli-
fication. In practice, different trading desks of the same broker-dealer may act in multiple roles as market
maker in index markets, as a counterparty to MFs, as well as an AP for ETFs. Studying the implications of
the associated conflicts of interests is beyond the scope of this paper but will be explored in future research.

12Funds’ ex-ante choice about which benchmark index to track is outside the scope of this model.
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ETFs. ETFs are traded intraday on competitive financial markets. The ETF market price,
PE,jt , arises endogenously in equilibrium from market clearing between ETF investors and
APs. The ETF NAV is simply equal to the value of all its index holdings divided by the
number of shares outstanding.

Assumption 1 ETF creation and redemption baskets are always identical to the ETF bench-
mark index.

Lemma 1 Following assumption 1, the ETF NAV is always equal to the value of the bench-
mark index, NAV E,j

t ≡ P jt . The ETF perfectly replicates its benchmark. There is no tracking
difference.13

What matters to ETF investors is not the ETF NAV but the ETF market price at which
they trade. PE,jt is linked to the index price, P jt , via arbitrage. There are limits to arbitrage,
so the ETF price can deviate from its NAV, resulting in relative mispricing vis-à-vis the
benchmark index. Arbitrage constraints arise endogenously from APs’ balance sheet capac-
ity constraints. These balance sheet capacity constraints are increasing in the index segment
specific illiquidity. Intuitively, due to their greater illiquidity, redemptions of corporate bond
ETF shares consume more AP balance sheet capacity than redemptions of large cap equity
ETFs. Pan and Zeng (2019) establish the microfoundations for this modeling approach and
study the ETF arbitrage mechanism in an equilibrium model. In their model, APs face sev-
eral costs associated with ETF arbitrage, including transaction costs in illiquid underlying
securities markets, inventory costs, and creation or redemption fees. They show that limits
to arbitrage in ETF markets are time-varying and arise endogenously from optimal AP ar-
bitrage in the face of balance sheet constraints. The AP arbitrage mechanism in my model
builds on their framework, where for tractability, I focus on inventory costs as the driver of
variation in AP arbitrage intensity across index segments.

Definition 1 The relative ETF mispricing refers to the difference between the ETF’s net
asset value, NAV E,j

t , and its market price, PEt . At any given point in time, the relative
mispricing is given by:

ϵE,jt ≡ NAV E,j
t − PEt . (1)

When ϵE,jt > 0 (ϵE,jt < 0) the ETF trades at a discount (premium).

Then, the ETF price is given by:
13Here, tracking difference refers to the difference between the fund net asset value per share and the value

of its benchmark index at any time, NAV E,j
t − P j

t . In practice, however, tracking difference often refers to
the return difference between a fund and its benchmark. Given that the initial fund and its index price are
normalized to equal one and there are no dividend payments at t = 1, ETF returns and payoffs are identical
in this model.
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PE,jt = NAV E,j
t + ϵE,jt .

In equilibrium, ϵE,jt is endogenously determined by the AP’s optimal redemptions of ETF
shares. Given P jt , the mispricing captures the wedge between the index and the ETF price.
Because transaction costs for trading ETF shares are incurred at the investor level, investors’
effective (pre-tax) transaction price may deviate from PE,jt by the amount of bid-ask spreads
and trading commissions charged per ETF share. For simplicity, I assume ETF bid-ask
spreads are zero, and I also assume investors trade ETFs commission-free.

Open-end mutual funds. In contrast to ETFs, all MF creation or redemption orders
submitted throughout the trading day are executed at the end of each trading day, at the
fund NAV. The daily MF NAV is calculated based on the closing price of the funds’ portfolio
holdings (or estimates thereof). By design, MFs have zero relative mispricing. The price at
which investors trade MF shares is always equal to its estimated end-of-day portfolio value
per share:

PM,j
t ≡ NAVM,j

t .

Rational investors have perfect foresight and correctly anticipate the fund NAV, PM,j
t , when

submitting their MF orders throughout the trading day. This assumption is standard in the
literature. The MF NAV is flexible, to the extent that it accounts for new information on the
fundamental index value, xj . Yet, the NAV is not fully forward-looking: total net fund flows
and the price impact caused by MFs’ ensuing flow-induced trading are generally unknown
until the next trading day (Ma et al. 2022b). While ETF prices are determined in equilibrium
from the intraday supply-demand conditions in secondary ETF markets, MF prices are set
based on supply-demand conditions in underlying security markets at the end of the trading
day. The imperfect flexibility of MF prices constitutes the key friction of mutual funds in
this model. Formally, this is captured by the specification of the MF price at which investors
can redeem shares in the interim period. The MF NAV at t = 1 is quasi-exogenous and given
by:14

NAVM,j
1 = ψE1[xj ]. (2)

Since xj becomes common knowledge at t = 1, equation 2 reduces to NAVM,j
1 = ψxj . I

assume PM,j
t is a function of the expected terminal index value and a parameter ψ with

0 < ψ ≤ 1. Through its dependence on xj , the MF’s price reflects the latest information on
the value of its asset holdings, where ψ reflects a penalty for early liquidation of MF shares.

14In the extension in which the ETF and MF trade with a common index market maker, the MF NAV at
t = 1 is fully endogenous.
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The lower ψ, the higher the cost to the individual investor of liquidating her MF holdings
early (consistent with the literature Chen et al. (2010)).15 In an extension presented in sec-
tion 3.3.1, I fully endogenize the MF price at t = 1.

All net MF redemptions are executed in cash at the end of trading day t = 1, and MFs
cannot satisfy redemptions using in-kind transfers (RIK) of security baskets.16 Instead, after
observing the net redemption after the end of trading day t = 1, they must liquidate portfolio
holdings in financial markets on the following trading day, denoted by t = 1+, to pay off re-
deeming investors. Period t = 1+ can be interpreted as the morning of the next trading day.
Due to the specific structure of U.S. MF markets, fund sponsors generally only learn about
the volume of their investors’ net redemptions afer the market close on any given trading day.

In practice, index MF managers could use cash to actively manage fund redemptions: they
may first meet net redemptions by depleting cash holdings and only later sell portfolio se-
curities to restore fund liquidity buffers. The evidence regarding the effectiveness of cash
buffers in reducing MF fragilities is mixed. While Giuzio, Grill, Kryczka, and Weistroffer
(2021) argue that liquid asset reserves can limit run risks and costly liquidations of illiquid
asset holdings, Zeng (2017) shows that the predictable re-building of cash reserves ex-post
outflows may further exacerbates run risks. Empirically, Jiang and Wang (2021) find that
corporate bond funds are reluctant to liquidate their most liquid asset holdings during period
of market stress. For tractability, in this model I therefore abstract from such MF liquidity
management. This simplification, however, introduces a gap between the time when MFs
must pay off redeeming investors in cash (at t = 1), and when MFs receive the cash proceeds
from their trades in index markets (at t = 1+).17 To overcome this technical inconsistency, in
the model I posit that MFs initially meet net redemptions at t = 1 by drawing down overnight
credit lines from exogenous banks. Implicitly, I assume MFs can borrow overnight at t = 1
at the risk-free rate, which is normalized to equal one. They then fully repay any overnight
credit lines at t = 1+ by liquidating portfolio assets. There is no default. The existence of
these credit lines is only a technical feature of the model resulting from the assumption that
ETF and MF trades settle instantaneously but funds do not hold cash: it has no implications
on the model predictions. The only purpose of bank credit lines is to bridge the gap between
the time at which MFs must satisfy net redemptions by investors in cash, at t = 1, and when
trading in index markets starts again at the beginning of the subsequent period, t = 1+.
Eventually, MFs must eventually liquidate portfolio securities to meet net fund redemptions.
Because all portfolio trades are flow induced, MFs liquidate whatever amount of index shares

15The model predictions are robust to alternative specifications as long as the condition NAV M,j
1 < xj is

satisfied. ψ < 1 is a technical restriction. It is necessary to prevent early liquidation of all MF holdings,
regardless of the index fundamentals, from becoming the sole dominant strategy for risk-averse investors.
Intuitively, in the absence of any MF outflows at t = 1, investors can expect to earn a strictly positive return
from holding the MF between the interim and terminal period.

16Appendix B discusses MF redemptions in-kind.
17Appendix B provides details on the settlement of MF trades.
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necessary to pay off redeeming investors.

2.2 Agents

There is a continuum of individual investors with mass 1. There exists also a mass of the
sleepy investors, η. Sleepy investors only invest in MFs, while all other investors can choose
to allocate their portfolios between ETFs and MFs. The presence of sleepy MF investors is
a necessary technical assumption ensuring that MFs remain solvent in equilibrium, making
the model tractable.

Individual investors. Individual investors are the agents of interest, broadly defined to
include retail and institutional investors, such as endowments or family offices who may
choose to invest in ETFs or MFs. I refer to these agents simply as the investors, and their
fund market investments can be interpreted as additional savings, beyond the capital that
they may already have invested through individual or employer sponsored retirement ac-
counts. I abstract from capital gains taxes in this model. Investors, such as high-frequency
trading firms, who use ETFs for short-term bets or hedging purposes and require intra-day
liquidity are outside of the scope of the model. Since only ETFs provide intra-day liquidity,
such agents would never invest in MFs in the first place. They do not face an interesting
trade-off between different fund types and are hence not explicitly considered in what follows.

The unit mass of investors is homogenous in terms of initial wealth, which I normalize to
one unit of capital, θi0 = 1. They invest over the long term but may at times face short-
term liquidity shocks in the spirit of Diamond and Dybvig (1983). These liquidity shocks can
force investors to liquidate their fund holdings early at t = 1. In contrast to classic bank run
models, in which all investors initially face the same probability of a liquidity shock, here the
ex-ante probability of a liquidity shock, denoted by λi, differs across investors. Specifically,
λi is independently and identically distributed according to:

λi ∼ U [λ0, λ1],

where 0 ≤ λ0 ≤ λ1 ≤ 1 reflect the distribution of liquidity risk across agents in the economy.
For tractability, I assume λ0 = 0 and λ1 = 1: λi is privately observed at t = 0 and causes
ex-ante heterogeneity among investors. λi is directly linked to investor i’s investment horizon,
Ti, according to

E0[Ti] = 2 − λi.

The larger λi, the shorter an investor’s expected investment horizon. Investors of type λi = 1
must always sell all their assets at t = 1: These are investors who need liquidity on a specific
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date in the future. Investors of the type λi = 0 always have the option to wait until t = 2
before liquidating their portfolio holdings.

Heterogeneity in λi can reflect differences in investors’ probabilities of being hit by an un-
expected expense or income shock as well as differences in their holding periods. According
to survey estimates, 26% of mutual-fund owning households use these investment vehicles as
a tool to save for emergencies (ICI 2023). Intuitively, investors may face unforeseen costs
such as unexpected medical expenses, home repairs (e.g., after a natural disaster), or sud-
den job loss, necessitating immediate access to liquidity beyond what they hold in cash and
equivalents.18 If liquid asset reserves are already exhausted due to unforeseen expenses, in-
vestors may further be compelled to sell fund holdings in order to meet mortgage payments,
tuition fees, or other debt obligations. The sources of heterogeneity in λi are multifaceted.
Households with higher incomes and lower leverage generally possess greater disposable cash
flows, enabling them to cover unexpected expenses without resorting to asset liquidation.
Insurance coverage and access to credit can also serve as hedges against unforeseen health or
property-related expenses. Differences in occupations can significantly impact job security,
particularly during economic downturns. Households with more dependents or caregiving
responsibilities may face heightened liquidity risks due to more frequent and diverse financial
needs. The composition of a household’s portfolio, especially the allocation to highly liquid
assets such as money market mutual funds or government bonds, also plays a pivotal role.
Finally, investors early in their life cycles often maintain longer investment horizons, whereas
those in retirement may depend on the periodic liquidation of financial assets to cover essen-
tial living expenses.

I denote the expected mass of impatient investors, that is investors who receive a liquidity
shock at t = 1 and are forced to liquidate their portfolios early, by:

λ̄ =
∫
i
λidi = λ0 + λ1

2 .

Under my baseline assumptions, λ̄ = 1
2 .

Given λi and xj ∼ N(µj , σ2
j ), at t = 0 investors choose to allocate their endowments be-

tween ETFs and MFs. They do not have access to the risk-free asset in the initial period,
but instead they must invest their entire capital endowment in index funds. After observing
their idiosyncratic liquidity shocks, investors at t = 1 can decide to liquidate some of their
fund holdings early and store the proceeds in the risk-free asset until the terminal period.

18According to data from the Fed’s 2022 Survey of Household Economics and Decisionmaking (SHED), 23
percent of adults had unexpected medical expenses in the prior 12 months, with the median amount between
$1, 000 and $1, 999. During the same period, 13 percent of adults were directly affected by a natural disaster
and 3 in 10 adults experienced income variability from month to month. See https://www.federalreserve.gov/
publications/report-economic-well-being-us-households.htm.
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Investors hit by a liquidity shock always liquidate their entire fund portfolios. Investors can-
not reallocate assets between MF and ETF markets at t = 1. Conditional on their initial
allocations to MFs and ETFs, {θi,M,j , θi,E,j}, they can only retain or liquidate fund shares,
and they receive no income from sources other than their financial investments. They do not
have access to leverage and are subject to short-selling constraints. These restrictions allow
me to isolate the effect of different liquidity risk exposures on investors’ allocations across
fund types.

All investors have identical time-separable preferences. The primitive utility function, de-
noted as u(c), is defined with respect to consumption. Financial assets are agents’ sole
income source, with no additional income from labor. In the absence of storage technologies
for the consumption good cash, other than investment funds, an agent’s consumption always
equals her wealth at the end of her lifespan Ti, ciT = wiT . Consequently, the investor makes
her initial portfolio allocation choices between ETFs and MFs to maximize her expected util-
ity over terminal wealth, represented as E[u(wiT )], subject to her endowment, leverage, and
short-selling constraints in equations 4 - 6 respectively. I assume investors are risk-neutral:

max
θi,M ,θi,E

E[wiT ] (3)

s.t. θi,E,j0 PE,j0 + θi,M,j
0 PM,j

0 = 1, (4)

θi,E,j0 − θi,E,j1 > 0, θi,M,j
0 − θi,M,j

1 > 0, (5)

θi,E,jt ≥ 0, θi,M,j
t ≥ 0 ∀ t = 0, 1. (6)

θi,E,j0 and θi,M,j
0 are the number of shares of the ETF and MF tracking index j bought by

investor i at t = 0, respectively. I only model the allocation between funds tracking a given
benchmark index j and do not consider the investor’s choice between different index seg-
ments. Initial wealth is normalized to one unit of capital, θi0 = 1. The index serves as the
numeraire in the economy.

The terminal wealth of patient or late investors, characterized by their investment horizon
Ti = 2 and denoted by i = l, is given by:

wi2 = θi,E,j1 PE,j2 + θi,M,j
1 PM2 + (θi,E,j0 − θi,E,j1 )PE,j1 + (θi,M,j

0 − θi,M,j
1 )PM,j

1 ∀ i = l. (7)

Equation 7 holds under the assumption Rf = 1.

Investors subject to liquidity shocks in the interim period liquidate all portfolio holdings at
t = 1. At that time, these impatient or early investors are characterized by their investment
horizon Ti = 1 and denoted by i = e. They derive utility only from their wealth in the interim
period, wi1. The terminal wealth of impatient investors is given by:
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wi1 = θi,E,j0 PE,j1 + θi,M,j
0 PM,j

1 ∀ i = e.

The terminal wealth of impatient investors depends solely on their initial allocations, θi,E,j0

and θi,M,j
0 , as well as on the fund prices at t = 1.

Sleepy MF investors. Sleepy investors’ portfolio allocations are exogenous, and they invest
their entire endowment in MFs. There is a mass η of them who exist for technical reasons to
maintain model tractability. They prevent MFs from going bankrupt in scenarios where MF
runs occur in equilibrium. This simplifies the model solution and is consistent with modeling
conventions in the previous MF literature (Chen et al. 2010). Intuitively, η could be inter-
preted as index MF assets held via individual or employer-sponsored retirement plans. In
the U.S., these plans tend not to offer ETFs and constrain participants’ choice set to MFs
only. This exogenous market segmentation can be motivated by the data. In the U.S., 58%
of defined contribution (DC) pension fund assets were invested in mutual funds as of 2019.
Currently ETFs only play a minor role in DC plans: in turn, 54% of AUM in U.S. equity,
hybrid and bond MFs are held via retirement accounts. For ETFs to be accessible via em-
ployer sponsored retirement plans, the plan sponsor generally needs to include a brokerage
account (ICI 2023).

Sleepy investors are not exposed to short-term liquidity risks: they never rebalance their
portfolio holdings during the interim period and do not engage in early withdrawals. Instead,
they hold their fund shares until maturity. The terminal value of their aggregate fund portfolio
value is given by:

WSleepy
2 = ηPM,j

2 .

Without loss of generality, the model can be extended to also include sleepy ETF investors.
Since there are no payoff complementarities among ETF investors, their inclusion neither
alters the model’s predictions nor simplifies its solution. Consequently, sleepy ETF investors
are omitted for simplicity in the discussion below.

2.3 Financial intermediaries

Financial intermediation in the economy occurs at two levels: in fund and index markets.
In fund markets, the representative authorized participant (AP) and mutual fund provide
liquidity to their investors, while in index markets the AP and MF demand liquidity from
index market makers who act as the central index liquidity supplier.

Index market makers. Risk-neutral index market makers are the broker-dealers in com-
posite security markets: they appear only in the interim period, and their sole purpose is
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to provide liquidity to investment funds. Of course, these intermediaries are not frictionless.
Broker-dealers need to hold and manage a stock of potentially illiquid index constituent secu-
rities, incurring capital charges and funding costs, which can erode their profit margins and
constrain their market-making activities. Formally, I model these frictions as quadratic inven-
tory costs. In equilibrium, index market makers absorb the supply of index shares resulting
from MFs’ flow-induced portfolio liquidations and AP arbitrage activities. ETF arbitrage
occurs intraday at t = 1, while MFs trade in index markets with a lag on the next trading
day at t = 1+, after observing their investors’ net redemptions. To match this institutional
feature of fund markets, I assume that index markets are segmented: APs and MFs trade with
distinct but identical index market makers. This convention keeps the model tractable and
allows me to focus on liability-side competition between MFs and ETFs. Each representative
market maker submits a price schedule for index shares, P jt (ΘD,j

t ), to maximize her expected
trading profits given her inventory costs. Market makers’ optimization problem is given by:

max
ΘD,j

t

Et[Πj
t+1] (8)

s.t. Πj
t+1 = P jt+1 − P jt − cj

2 (ΘD,j
t )2 ∀ t = 1, 1+.

For each representative market maker, equation 8 implies a downward sloping demand sched-
ule for index shares:

P jt = Et[P jt+1] − cjΘD,j
t ∀ t = 1, 1+. (9)

P jt is the index price offered by dealer D for ΘD,j
1 units of index shares at t.

The inventory cost parameter, cj , is increasing in the index segment j specific liquidity. Intu-
itively, cEquity < cCorporate Bond: the inventory costs of holding corporate bonds are strictly
larger than those of holding stocks. When cj > 0, MFs and APs have price impact when
trading in index markets. This represents the baseline specification. Generally, c may be a
function of both, security market j and aggregate market liquidity conditions. This is con-
sistent with Ma et al. (2022b) who, amongst others, find that MFs had a significant price
impact even in generally liquid market segments during the Covid-19-related market sell-off.
Since my model is conditional on an adverse state of the economy, this specification is not
necessary. For cj = 0, the model nests the case in which funds have zero price impact in secu-
rity markets, a condition that may be satisfied for large cap domestic equities during periods
when financial markets overall are liquid. The representative market maker faces identical
inventory costs each period, at t = 1 and t = 1+, so APs and MFs face the same net de-
mand for index shares in composite security markets. Index market price impact generated by
the AP intraday does not impact the market conditions faced by MFs on the next trading day.
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In an extension, I explore a scenario where transactions in index markets by APs and MFs
are interconnected because APs and MFs trade sequentially with the same representative
market maker. First, the AP trades with the index market maker intraday at t = 1 to offload
index shares obtained as a result of ETF redemptions. Next, the MF trades with the index
market maker at the already depressed prices to satisfy its investors’ net redemption requests.
Thereby, the AP’s price impact affects the liquidity conditions faced by the MF. The index
demand schedule faced by the AP is still given by equation 9, and the index demand schedule
faced by the MF is given by:

P j1+ = P j1 − cjΘD,j
1+ ,

where P j1 follows from equation 9 conditional on market clearing between the index market
maker and AP at t = 1.

Authorized participants. APs are deep pocketed risk-neutral financial intermediaries with
the right to create and redeem ETF shares outright, via in-kind transactions with the ETF
sponsor. This role turns APs into the central and only counterparty between ETF investors
and fund sponsors. If liquidity shocks or optimal portfolio reallocation decisions by investors
at t = 1 generate excess demand (supply) for ETF shares, the AP can step in and create
(redeem) ETF shares by buying (short selling) the underlying creation (redemption) basket
in index markets and delivering (redeeming) the proceeds (corresponding security basket).
APs trade in index and ETF markets with the purpose of generating short-term profits. In
practice, there are also other reasons for APs to engage in ETF creations or redemptions: for
example, ETF arbitrage can help financial intermediaries manage their own liquidity risks or
hedge balance sheet exposures. I abstract from such motives, so APs immediately offload any
composite security or ETF positions obtained as part of their arbitrage trades in the same
period t = 1. They do not hold any assets overnight. There exists a single representative
AP for each ETF j. Like index market makers, APs only operate in the interim period, t = 1.

There are also costs associated with the AP’s ETF arbitrage trades. In their role as large
broker-dealers APs face regulatory capital constraints. Due to the potential time lag between
an AP’s transactions in ETF markets and its offsetting trade in composite security markets,
ETF arbitrage is not risk-free. Regulatory capital requirements for temporary security or
ETF holdings on intermediaries’ balance sheets give rise to limits to arbitrage. Pan and Zeng
(2019) document that AP balance sheet capacity constraints distort AP arbitrage of corpo-
rate bond ETFs. In addition, when ETF track indices composed of illiquid securities that are
traded in over-the-counter markets, such as corporate bonds, ETF arbitrage entails search
and matching costs (Koont, Ma, Pastor, and Zeng 2023). Finally, hedging ETF creation or
redemptions using derivatives is also costly.

Because regulatory capital requirements generally depend on intermediaries’ balance sheet
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size, AP arbitrage costs increase in the size of ETF creations or redemptions and are thus
modeled as variable costs.19 Besides, the time it takes them to liquidate index shares ob-
tained as a result of an ETF redemption trade, depends on the index specific market liquidity.
Due to the over-the-counter nature of corporate bond markets and the potential time lag be-
tween the market hours in domestic ETF and international equity markets, AP arbitrage
of corporate bond or international equity ETFs is generally more costly from a regulatory
capital perspective. The dependence of AP’s balance sheet capacity constraint parameter on
j reflects this feature of AP arbitrage.

I make the implicit assumption that these balance sheet costs are symmetric for both ETF
creations and redemptions. In equilibrium, the specification of investors’ liquidity shocks im-
plies that APs solely redeem ETF shares in exchange for index shares. Accordingly, balance
sheet costs can be interpreted to reflect the costs associated with ETF redemptions.

The AP’s profit maximization problem at t = 1 is:

max
ΘE,AP,j

1

ΠAP
1 (ΘE,AP,j

1 ) (10)

s.t. ΠAP
1 = (P j1 − PE,j1 )ΘE,AP,j

1 − 1
2ϕj (ΘE,AP,j

1 )2. (11)

Equation 11 is the AP’s profit function. The AP never engages in any ETF trades at a loss.
P j1 is the index price and PE,j1 is the ETF price per share. The AP takes the index price P j1
as given when deciding on its optimal arbitrage strategy. In equilibrium, P j1 is determined by
market clearing between the AP and the index market maker. Given the equilibrium index
price, PE,j1 will be the result of the AP’s constrained optimal arbitrage activity in ETF mar-
kets. ΘE,AP

1 is number of ETF shares redeemed by the AP. ΘE,AP
1 < 0 implies that the AP

creates ΘE,AP
1 units of new ETF shares by delivering a basket of ΘE,AP

1 units of the composite
security to the ETF sponsor. For ΘE,AP

1 > 0, the AP redeems ΘE,AP
1 existing ETF shares and

receives a basket of ΘE,AP
1 units of the composite security from the ETF sponsor in exchange.

ϕj ≥ 0 is the balance sheet capacity parameter that captures variable transaction costs and
balance sheet risks associated with ETF arbitrage. In periods of reduced market liquid-
ity, as depicted in this model, APs often encounter more stringent balance sheet capacity
constraints due to decreased asset valuations, increased loan loss provisions, and elevated
refinancing expenses, which curtail their capacity to support ETF arbitrage transactions. In
equilibrium, ϕj > 0 generates limits to arbitrage. ϕj is a function of the unconditional index
segment j specific liquidity. Generally, redemptions of corporate bond ETFs consume more
balance sheet capacity than redemptions of large cap equity ETFs which can be offloaded

19There are also fixed costs of ETF creations and redemptions. ETF sponsors charge a fixed fee per creation
(redemption) unit to cover administrative costs. Yet, these costs tend to be small economically relative to the
AP’s trading related costs.
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from APs’ balance sheet to liquid securities market quickly without significant price impact.
The dependence of ϕ on j captures this relationship: ϕCorporate Bond > ϕEquity. Overall, the
specification of ϕj gives rise to cross-sectional variation in AP arbitrage across ETF market
segments at any given point in time.

Assumption 2 Over the long term, that is at t = 2, APs face no balance sheet capacity
constraints. They resume ETF arbitrage until the ETF and index price have converged.
Formally:

ϵE,j2 = 0.

Open-end mutual funds. Open-end mutual funds pool capital from investors to purchase
securities. Due to the passive nature of index funds, MFs do not have any discretion over
portfolio allocation decisions. All trades in index markets by MFs are flow-induced. I abstract
from fund management fees, so there is also no scope for profit maximization. While ETF
liquidity provision is market-based and delegated to the AP, MF companies directly supply
liquidity to their investors. Whenever the MF experiences net capital inflows, it will purchase
index shares of equivalent value in securities markets. Amid net capital outflows, the MF
offloads the amount of shares required to repay redeeming investors at the fund NAV taking
as given the index demand schedule submitted by competitive market makers.

In any period, t, the quantity of index shares sold by the MF tracking benchmark j is given
by:

ΘM,j
t+ = ∆XM,j

t PM,j
t

P jt+
, (12)

where the net fund flows are defined as the product of the fund NAV, PM,j
t , and the change

in the number of fund shares outstanding between the end of time t and t − 1, represented
as ∆XM,j

t = XM
t−1 − XM,j

t . If ∆XM,j
t > 0, the MF experiences net redemptions at t. The

index price faced by the MF, P jt+ , is endogenously determined by market clearing with their
representative index market maker at t = 1+. In the initial period, t = 0, the MF NAV and
index price are both normalized to equal one, PM,j

0 = P j0 = 1.

While investors’ net redemptions and the fund NAV are determined by the end of period t,
∆XM,j

t is generally unknown to the fund until after the conclusion of the trading day or even
the commencement of the following day. Equation 12 captures this lag in the transmission of
information on investor trades to the MF. In order to trade in index markets, MFs require ac-
curate information regarding the volume of fund subscriptions or redemptions. In alignment
with these inherent institutional constraints, the subscript t+ denotes the beginning of the
subsequent trading day following t. Following the aggregation of all creation and redemption
orders, at t+ the MF proceeds to sell (or buy) index shares to satisfy net redemptions (or
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fulfill net creations).

Over time, the total number of fund shares outstanding changes as investors redeem shares.
Since investors cannot access the risk-free asset at t = 0, the shares outstanding for ETFs
and MFs are by construction decreasing over time. Impatient investors are forced to redeem
their fund shares at t = 1. Meanwhile, patient investors face leverage constraints, so they
cannot acquire additional shares beyond their initial investment. Their options are limited
to redeeming shares early or remaining invested until the terminal period. Sleepy investors,
who abstain from trading, do not influence the dynamics of outstanding fund shares as they
remain passive throughout. Consequently, the size of both ETF and MF markets shrinks as
the economy nears its terminal period.

2.4 Model timeline

The sequence of events and actions in the model is as follows. At t = 0, each investor i is
born with an endowment of one unit of capital, θi0 = 1. Each investor observes her idiosyn-
cratic liquidity risk exposure, λi, as well as the unconditional distribution of the fundamental
index value xj ∼ N(µj , σ2

j ). Investors then pool their endowments to form ETFs and open-
end MFs, in exchange for fund shares. Fund shares are simply equity claims on the fund’s
assets. Since they cannot own the index directly, investors must invest their entire endow-
ments in a portfolio of mutual fund and ETF shares. Neither MFs nor ETFs hold any cash,
CE,j0 = CM,j

0 = 0; they keep all shareholder capital fully invested in the benchmark index.

In the interim period, t = 1, the fundamental xj is realized and observed by everyone. At
the same time, investors privately learn about the realization of their liquidity shocks. All
investors who receive a liquidity shock liquidate their entire fund portfolios immediately. Re-
maining, patient investors retain the flexibility to either partially liquidate their fund holdings
prematurely and invest the proceeds in the risk-free asset until the terminal period, or main-
tain unchanged fund portfolios until t = 2. Investors submit orders in MF and ETF markets,
taking as given the MF NAV, PM,j

1 , and ETF price PE,j1 .

In response to the net supply of ETF shares from investors, the AP determines the quantity
of ETF shares to redeem and initiates corresponding offsetting orders to index market makers
for the composite security. APs trade in financial markets intraday at t = 1, concurrently
with ETF investors. In contrast, the MF conducts index trades at t = 1+ to fulfill its obliga-
tions to redeeming shareholders by t = 1 after observing their aggregate net redemptions at
t = 1.

Over the long term, at t = 2, the index pays a terminal dividend, denoted as P j2 = xj . The
final payoff for investors is contingent upon their proceeds from premature fund liquidations at
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t = 1 as well as their residual share holdings in ETFs and MFs and the terminal portfolio value
of the investment funds. The model sub-periods do not have uniform durations. Instead, the
time span between t = 0 and t = 1, which I refer to as the short term, should be interpreted
as a horizon of days or weeks. The intervals between t = 1, more precisely t = 1+, and t = 2
should be regarded as the long-term period, comprising months or years.

3 Optimal portfolio allocation between ETFs and MFs

Solving the model entails finding investors’ optimal portfolio allocations to ETFs and MFs as
a function of their liquidity risk, λi, and deriving the equilibrium sizes of the ETF and MF sec-
tors across market segments j. The two-period equilibrium is a perfect Bayesian equilibrium.
In every period, t = 0 and t = 1, conditional on her endowment, (expected) liquidity needs
and fund prices, each investor i chooses her optimal allocation to ETFs and MFs, θi,E,jt and
θi,M,j
t , to maximize her expected utility from terminal wealth, taking as given fund prices as

well as other investors’ portfolio strategies. I focus on pure strategy equilibria because mixed
strategy equilibria, in which investors randomly choose their allocation between ETFs and
MFs with some probabilities Prob(θi,E,jt = 1) and Prob(θi,M,j

t = 1) = 1 − Prob(θi,E,jt = 1),
are not economically meaningful in this context. Formally:

Definition 2 Within any index segment, j, given µj , σj , cj , ϕj , ψ, η and λi, a two-stage pure-
strategy perfect Bayesian equilibrium (PBE) is defined as a sequence of portfolio allocations
{θi,E,j0 , θi,M,j

0 , θi,E,j1 (xj), θi,M,j
1 (xj)} ∈ [0, 1] and asset prices, P j1 , P

j
1+ , P

E,j
1 , PE,j2 , PM,j

1 , PM,j
2 ,

such that

(i) given other investors’ allocations at t = 1 and the conditional probability of a mu-
tual fund run, πRun(xj), investor i’s portfolio allocation strategy {θi,E,j1 (xj), θi,M,j

1 (xj)}
maximizes her expected utility 3 at t = 1, and

(ii) given investor i’s expectation of other investors’ sequential allocation strategies, includ-
ing the probability of a mutual fund run at t = 1, i’s allocation {θE,i,j0 , θM,i,j

0 } maximizes
her expected utility 3 at t = 0, and

(iii) all investors share common beliefs about the probability of a mutual fund run at t = 1
conditional on the realization of xj, and

(iv) ETF and index markets clear at all times.

I solve for the equilibrium of the model using backward induction. First, I take as given the
realization of the fundamental index value xj at t = 1, as well as investors’ initial allocations,
θE,i,j0 and θM,i,j

0 , and I then solve for the MF, ETF, and index market equilibrium at t = 1. In
the baseline model in which APs and MFs trade with separate index market makers, the ETF
and MF market equilibria at t = 1 are not directly interlinked and can be solved separately.
This follows from the assumption that investors can no longer switch between fund types in
the interim period. MF prices are fixed at the fund NAV over the short term and do not
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instantaneously adjust to demand-supply imbalances in MF markets. Hence, MF investors
takes prices as given. They do not internalize the fund-level transaction costs caused by
their trades. In contrast, ETF investors take into account their aggregate price impact in
ETF markets as they trade intraday at the fully flexible market-clearing ETF price. Due
to the focus on passive investment funds, all index market trades by MFs are flow-induced:
They liquidate whatever amount of composite security shares necessary to meet investor net
redemptions. APs instead respond to investors’ ETF orders in real time. When deciding
on their optimal arbitrage strategy, they take into account price impact in index and ETF
markets, as well as their balance sheet capacity.

A complication emerges because patient MF investors’ optimal allocation at t = 1 depends on
their beliefs about other investors’ redemption decisions. The interdependency of investors’
allocation decisions and the potential for shareholder runs on MFs results in multiple equi-
libria in MF markets. I use the sunspot equilibrium selection technique to coordinate MF
investor behavior and select the unique MF market equilibrium at t = 1.20 Specifically, within
the realm of index fundamentals, xj , where multiple equilibria can arise in MF markets, I
assume an equal probability for both the run and no-run equilibria. Within this framework,
the run-equilibrium entails early redemption of all patient MF investors’ shares at t = 1, while
the no-run equilibrium involves patient MF investors remaining invested until the terminal
period.

An alternative method to address the challenge of multiple equilibria is the global games tech-
nique introduced by Morris and Shin (2003) and further explored by Goldstein and Pauzner
(2005) for panic-based bank runs. This approach has previously been employed to iden-
tify a unique equilibrium in context of mutual fund runs (Chen et al. 2010) but necessitates
asymmetric information about fundamentals among investors, which would compromise the
model’s tractability. Since this paper’s primary focus does not lie on the MF equilibrium
solution, I opt for the more pragmatic sunspot equilibrium selection technique.

Second, taking as given investors’ optimal investment policy and equilibrium asset prices as
a function of xj at t = 1, I solve for investor equilibrium allocations at t = 0 as a function of
their idiosyncratic liquidity risks, λi.

3.1 Fund payoffs in the terminal period

Asset prices at t = 2 directly follow from the terminal index payoff and are given by:
20The notion of sunspot equilibria originated with Cass and Shell (1983) and has found contemporary ap-

plications in financial intermediation models, including recent work by Dávila and Goldstein (2023).
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P j2 = xj , (13)

PE,j2 = P j2 , (14)

PM,j
2 = XM,j

2 P j2

κM,j
0 − ∆κM,j

1
. (15)

The terminal ETF price in equation 14 follows from assumptions 1 and 2, and equals the fun-
damental value of its benchmark index given by equation 13. There is zero ETF mispricing
in the terminal period. Over the long term, APs face no balance sheet capacity constraints,
and they resume ETF arbitrage until all relative mispricing has been eliminated. This is
akin to asserting that, even in illiquid market segments, the law of one price must eventually
prevail. Even though the terminal ETF payoff in the model is exogenous, it is straightforward
to endogenize. Specifying a time-varying function for the AP’s balance sheet cost parameter
ϕj(t) with the additional restriction ϕj(1) > 0 and ϕj(2) = 0 will generate the result in 14
endogenously. Besides, equation 14 also requires that ETF creation and redemption baskets
precisely match the ETF benchmark index, ensuring zero ETF tracking difference.

By design, the terminal MF payoff 15 is equal to the fund NAV as of t = 2. The fund NAV
is defined as the value of the fund’s portfolio assets divided by its shares outstanding. κM,j

0

is the number of MF shares outstanding at t = 0, which is equivalent to the proportion of
investors who initially invest in MFs, η is the number MF shares held by sleepy investors,
and ∆κM,j

1 = κM0 − κM1 is the number of MF shares redeemed in the interim period, so
κM1 = κM0 − ∆κM,j

1 . If the MF experiences net outflows: ∆κM,j
1 > 0. XM,j

2 is the num-
ber of index shares held by the MF at t = 2 after accounting for the fund’s interim trades
in index markets. Given short selling constraints, the MF’s minimum ownership of index
shares is zero units. Similarly, without the possibility of fund inflows at t = 1 the upper
bound on the MF’s index portfolio at t = 2 is determined by the fund’s initial investment
according to 0 ≤ XM,j

2 ≤ κM0 . All variables on the right-hand side of equation 15 are known
as of t = 1+. Overall, since one MF share initially represents a claim on one unit of the
index, the long-term MF payoff deviates from the terminal index value when XM,j

2 ̸= κM1 . I
use the term tracking difference to refer to these deviations between the fund and index payoff.

Definition 3 The MF tracking difference refers to the difference between the mutual fund
net asset value (NAV) and the benchmark index price at any time and is given by:

∆M,j
t ≡ P jt −NAVM,j

t . (16)

When ∆M,j
t > 0, the MF NAV is smaller than the value of its benchmark index: The MF

exhibits a positive tracking difference.
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∆M
t represents a wedge between the fund and index price. As evident from the definition of

NAVM,j
t in equation 15, ∆M

t ̸= 0 arises from the cumulative transaction costs incurred at
the fund level as a result of early redemptions by MF shareholders. Equation 16 defines the
tracking difference with respect to asset prices. In practice, the tracking difference typically
pertains to the deviation of fund returns from its benchmark return. Because all asset prices
are normalized to equal one in the initial period, prices and returns are equivalent in the
model.

Following lemma 1, for ETFs, the tracking difference is always zero, ∆E,j
t = 0 ∀t. That is,

ETF investors trading in secondary ETF markets bear their own transaction costs. Their
actions impact the ETF’s market price but do not affect the ETF’s net asset value. Outflows
from ETFs only have temporary effects on its investors’ payoffs, whereas outflows from MFs
can have persistent effects on investors’ payoffs.

Lemma 2 In the terminal period the MF tracking difference per unit of MF share is given
by:

∆M,j
2 =

P j2

(
∆κM,j

1 (NAV M,j
1 −P j

1+ )
P j

1+

)
κM,j

1
. (17)

The relative MF tracking difference, ∆̃M,j
2 = ∆M,j

2
P j

2
, per unit of MF share is given by

∆̃M,j
2 = 1

κM,j
1︸ ︷︷ ︸

Remaining
MF shares
outstanding

(
∆κM,j

1︸ ︷︷ ︸
# MF
shares

redeemed
early

(
NAVM,j

1 (P j,M1+ )−1 − 1︸ ︷︷ ︸
Excess # index
shares liquidated
to satisfy early

redemptions

))
.

P j1+ is the index price at which the MF trades when liquidating portfolio holdings in response
to MF investors’ redemptions in the interim period.

Corollary 1 The MF tracking difference in the terminal period is zero, ∆M,j
2 = 0, if and

only if at least one of the following three conditions is satisfied:

(i) Markets are perfectly liquid and funds have no price impact when trading index shares,
cj = 0 and ψ = 1.

(ii) The mutual fund NAV at t = 1 is perfectly forward looking and equal to the index price
at which the MF trades in index markets, NAVM,j

1 = PM,j
1+ .

(iii) Net mutual fund redemptions at t = 1 are zero, ∆κM,j
1 .
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If condition (i) is satisfied and MFs have no price impact in index markets, (ii) automatically
follows. In this case NAVM,j

1 = P j1+ = xj . Early investors trade the MF at a price reflecting
its fair value after accounting for (zero) price impact. They do not impose any negative exter-
nalities on the remaining MF investors. Condition (ii) may for example hold if the MF used
swing pricing and swing factors were calibrated optimally to reflect all flow-induced transac-
tion costs. I study the implications of swing pricing on MF payoffs and investors’ allocation
decision in section 4. Whereas (i) implies (ii), the reverse is not true. Finally, condition (iii)
illustrates that fund flows are necessary for the costs of the liquidity-transformation services
provided by investment funds to materialize.

Corollary 2 When at least one of the conditions in corollary 1 is satisfied, the mutual fund
NAV at t = 2 is equal to the terminal index payoff. In this case, the MF and ETF tracking
benchmark index j provide identical payoffs over the long term, PM,j

2 = PE,j2 = P j2 .

Equation 17 illustrates how frictions in MFs arise from flow-induced share dilution. The im-
perfect flexibility of the MF NAV relative to prices in underlying security markets, is the fun-
damental source of tracking difference, ∆M,j

2 ̸= 0, over the long term. When NAVM,j
1 −P j1+ >

0, short-term investors’ payoffs exceed the current liquidation value of their share holdings.
They get a better deal than they would if they had to bear the full cost associated with their
trading activity. Accordingly, the MF provides short-term investors with liquidity insurance
in the amount of NAVM,j

1 − P j1+ . This liquidity provision to short-term investors is not free
since the relatively higher payoff received by short-term investors comes at the cost of long-
term investors. In this sense, ∆M,j

2 can also be interpreted as a negative risk premium or an
“insurance” premium paid in exchange for the short-term liquidity-insurance service provided
by MFs. It represents a redistribution of assets from long-term to short-term investors.

3.2 Portfolio allocations in the interim period

At t = 1, the idiosyncratic liquidity shocks are realized. Each agent learns if she is the
impatient (e) or patient (l) type. Besides, the fundamental index value xj is revealed and
becomes common knowledge.

Lemma 3 Conditional on the realization of the idiosyncratic liquidity shocks at t = 1, there
are four groups of ex-post identical investors: patient and impatient ETF investors, and
patient and impatient MF investors. These investors are characterized by the following con-
ditions:

(i) Patient ETF investors: All i = l who initially invested in ETFs, θi,E,j0 = 1

(ii) Impatient ETF investors: All i = e who initially invested in ETFs, θi,E,j0 = 1.

(iii) Patient MF investors: All i = l who initially invested in MFs, θi,M,j
0 = 1.

(iv) Impatient MF investors: All i = e who initially invested in MFs, θi,M,j
0 = 1.
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Solving for the fund market equilibrium at t = 1 entails separately deriving the optimal
portfolio choice of each of these investor groups.

(i) Patient ETF investors are investors who invested in ETFs at t = 0 and received no
liquidity shock. At t = 1, they must decide if they wish to liquidate any of their ETF shares
early. Formally, their problem is given by:

max
θi,E,j

1

E[wi2|x] (18)

s.t. wi2 = θi,E,j1 PE,j2 + (θi,E,j0 − θi,E,j1 )PE,j1 Rf ,

θi,E,j0 − θi,E,j1 ≥ 0,

θi,E,j1 ≥ 0.

The optimization problem 18 follows directly from the assumption that investors are no longer
able to switch between fund types in the interim period. Rational investors anticipate that
the ETF mispricing will converge to zero in the terminal period, such that PE,j2 = P j2 . Since
the terminal index payoff is realized and observed at t = 1, E[P j2 |x] = xj . There remains no
uncertainty regarding the final ETF payoff. Hence, patient ETF investors’ optimal portfolio
allocation at t = 1 depends only on the current ETF price and the fundamental index value,
and the risk-free rate.

Assumption 3 If the payoff from holding the ETF until the terminal period is equal to the
payoff from immediate liquidation at t = 1, patient investors always hold the investment fund
until maturity.21

Using assumption 3, patient ETF investors’ optimal investment policy is given by:

θi,E,j1 =

0 if P j2 − (P j1 − ϵE,j1 )Rf < 0,

1 if P j2 − (P j1 − ϵE,j1 )Rf ≥ 0,

The ETF discount ϵE,j1 is the liquidity premium that ETF investors pay in exchange for
short-term liquidity provision. The larger the current ETF discount, the greater the payoff
from waiting to liquidate ETF shares until the terminal period. If the expected payoff of the
ETF in the terminal period is smaller than the current ETF share price reinvested at the
risk-free rate, xj < PE1 R

f , investors always liquidate all of their ETF shares prematurely.
In the absence of ETF inflows, this condition is never satisfied in the competitive equilibrium.

Proposition 1 In equilibrium, patient investors never liquidate any ETF shares early:

θi,E,j1
∗

= θi0 ∀i = l with θi,E,j0 = 1.
21If Rf > 1, ETF investors always strictly prefer holding their ETF shares until maturity.
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(ii) Impatient ETF investors are investors who invested in ETFs at t = 0 and received an
idiosyncratic liquidity shock. Their terminal wealth is given by:

wi1 = PE,j1 .

By definition, u(ci2) = u(wi1) ∀i = e.

(iii) Patient MF investors are investors who invested in MFs at t = 0 and received no id-
iosyncratic liquidity shock. Like patient ETF investors, at t = 1 they can decide to liquidate
any of their MF shares early. They solve the following problem:

max
θi,M,j

1

E[wi2|x] (19)

s.t. wi2 = θi,M,j
1 PM,j

2 + (θi,M,j
0 − θi,M,j

1 )PM,j
1 Rf ,

θi,M,j
0 − θi,M,j

1 ≥ 0,

θi,M,j
1 ≥ 0.

Patient MF investors trade off the payoff from early redemption, PM,j
1 , with the expected

payoff from holding on to their MF shares until the final period. In contrast to the ter-
minal ETF payoff, the terminal MF payoff is uncertain even at t = 1. Beyond xj , PM,j

2

depends on the early redemption decision of other MF investors. This interdependency arises
because the MF tracking difference, ∆M,j

2 , depends on fund flows at t = 1. By definition,
E[PM,j

2 |xj ] = xj − E[∆M,j
2 |xj ]. Because investors are risk-neutral, the solution to equation

19 will always be on the boundary of the permissible range of θi,M,j
1 .

Patient MF investors’ optimal allocation policy at t = 1 as a function of the expected MF
tracking difference is then given by

θi,M,j
1 =

0 if P j2 − E[∆M,j
2 |x] − PM,j

1 Rf ≤ 0,

1 if P j2 − E[∆M,j
2 |x] − PM,j

1 Rf ≥ 0.
(20)

According to equation 20, at t = 1, patient MF investors compare the payoff from early with-
drawal, PM,j

1 = ψxj , versus waiting until t = 2. In the latter case, they receive an uncertain
payoff, P j2 −E[∆M,j

2 |x], which depends on the known fundamental index value as well as the
uncertain redemption decisions by other MF investors. In equilibrium, investors are perfectly
forward looking and anticipate other investors’ actions conditional on the realization xj . In
the region of xj characterized by the potential existence of multiple mutual fund market
equilibria, the anchoring of expectations is achieved through a sunspot equilibrium.
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(iv) Impatient MF investors are investors who invested in MFs at t = 0 and received a
liquidity shock. Their final wealth is given by:

wi1 = ψxj .

3.3 Equilibrium prices in the interim period

Equilibrium prices in the interim period are determined by market clearing between the MF,
AP, index market makers and ETF investors, given MF investors’ fund liquidations. In the
baseline model with segmented index markets, prices are set in the following sequence: First,
at t = 1 the ETF price, PE,j1

∗
, is determined relative to the index price from the AP’s optimal

ETF arbitrage (redemption) policy and investors’ net demand for ETF shares. Simultane-
ously, the index price faced by the AP, P j1

∗, follows from the other side of the AP’s arbitrage
trade and the market maker’s net demand schedule for index shares. Second, given MF in-
vestors’ net redemptions at t = 1, at t = 1+ the index price faced by MFs, P j1+

∗ is determined
from market clearing between the MF’s flow-induced index sales and its market maker’s net
demand schedule for index shares. Thereby, P j1+

∗ is derived independently of P j1
∗ due to the

timing disparities between the intraday trading activity of the AP and the next-day index
trading activity of the MF.

ETF price. PE,j1 follows from market clearing between APs and ETF investors, taking as
given the equilibrium index price PE,j1. Since patient ETF investors never redeem early, the
aggregate number of ETF shares sold by investors at t = 1, denoted by ∆κE,j1 , is equal to
impatient investors’ liquidations:

∆κE,j1 =
∫
i
(θi,E,j0

∗
− θi,E,j1

∗
) di.22

From equation 10 follows the AP’s net demand function for ETF shares at t = 1:

ΘE,j,AP
1 = (P j1 − PE,j1 )

ϕj
. (21)

ΘE,j,AP
1 refers to the number of ETF shares redeemed by APs in exchange for an equivalent

amount of index shares. Equation 21 implies that when the ETF trades at a discount (pre-
mium), the AP opts to redeem (create) ETF shares to the extent permitted by its balance
sheet capacity. ETF market clearing requires ΘE,j,AP

1 = ∆κE,j1 . Hence, given the index price
and ETF outflows by impatient investors, the ETF price as a function of the index price is:

PE,j1 = P j1 − ∆κE,j1 ϕj .

∆κE,j1 ϕj = ϵE,j1 is the relative ETF mispricing. If ∆κE,j1 > 0, the ETF trades at a discount to
its benchmark index because ϕj > 0 ∀j. Intuitively, amid excess supply of ETF shares from
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investors, the ETF price has to adjust downward to incentivize the AP to step in and supply
liquidity on secondary ETF markets. ϵE,j1 represents the AP’s compensation for liquidity pro-
vision in times of aggregate illiquidity. The ETF discount increases with the demand-supply
imbalances in ETF markets, ∆κE,j1 , and the illiquidity of the ETF’s benchmark index. ϕj is
larger for more illiquid market segments. The latter aspect of the model mirrors the empirical
fact that corporate bond and international equity ETFs often exhibit more significant relative
mispricing when compared to large-cap domestic equity ETFs.

Index price at t = 1. Conditional on market clearing in ETF markets, the index price faced
by the AP at t = 1 follows from market clearing between itself and the index market maker.
The index market maker’s net demand for index shares is given by ΘD,j

1 = E[P j
2 |x]−P j,E

1
cj

and
defined over P j1 ∈ [0, xj ]. From ETF market clearing, the AP’s net supply of index shares
follows as:

ΘAP,j
1 = P j,E − (P j,E1 − ∆κE,j1 ϕj)

ϕj
.

ΘAP,j
1 = ΘE,AP

1 since the AP can always redeem one unit of the index in exchange for one
ETF share. Then, index market clearing requires ΘD,j

1 = ΘAP,j
1 .

In the case of cj > 0, when there is price impact in index markets, the t = 1 index price is:

P j1 = E[P j2 |xj ] − ∆κE,j1 cj .

For the ETF price it implies:

PE,j1 = E[P j2 |xj ] − ∆κE,j1 (cj + ϕj).

The relative ETF mispricing at t = 1 is strictly increasing in the AP’s balance sheet capacity
constraint and the selling pressure from ETF investors:

ϵE,jt = ∆κE,j1 ϕj .

ETF prices adjust in real time to supply and demand conditions in financial markets. ETF
investors internalize the price impact in index markets caused by AP arbitrage as well as
APs’ balance sheet capacity constraints. Because of AP balance sheet capacity constraints,
ϕj > 0, ETF prices are excessively flexible over the short term, PE,j1 < P j1 .

In the alternative scenario with cj = 0, the market maker’s net demand for index shares is
perfectly elastic. Index markets are infinitely liquid. APs do not have price impact. This
condition represents the reference point for liquid market segments, such as the SandP 500
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index, during periods of abundant market-wide liquidity. In this setting, both Authorized
Participants (APs) and Mutual Funds (MFs) face a common equilibrium index price at t = 1
and t = 1+, represented by P j1 = P j1+ = xj .

Proposition 2 The payoffs of the ETF and MF tracking index j are identical across all
investment horizons, PE,jt = PM,j

t ∀t = 1, 2 if one of the following two conditions is satisfied:

(i) Index markets are perfectly liquid and APs do not face any balance sheet capacity con-
straints, cj = 0, ψ = 0 and ϕj = 0.

(ii) Index markets are illiquid, but the MF NAV at t = 1 is perfectly forward looking, APs
do not face any balance sheet capacity constraints and the volume of outflows from ETFs
and MFs at t = 1 are equal, ∆κE,j1 = ∆κM,j

1 .

In these idealized environments, a fund structure irrelevance principle emerges. It posits
that, under assumptions (i) or (ii), the capital structure of a passive investment fund (if it
is structured as an ETF or an open-end mutual fund) has no impact on the payoffs to its
investors.

Proposition 2 constitutes a special case of my theory. On one side, the assumptions that
support condition (i) may be applicable to SandP 500 index funds and investment vehicles
with similarly liquid portfolio holdings in times of ample market liquidity. On the other side,
the requirement of equivalent volumes of fund outflows from the ETF and MF (ii) is unlikely
satisfied due to the random nature of investors’ liquidity shocks. There are two possible mod-
ifications of (ii): First, even if the ETF and MF tracking index j experience different outflows
ex-post at t = 1, their ex-ante expected payoffs are identical across investment horizons as
long as investors self-select into both fund types at t = 0 at random, irrespective of their λi.
Second, if the ETF and MF trade simultaneously in the index markets during the interim
period, they encounter identical index prices and offer equivalent payoffs to their investors,
regardless of their individual outflows. The latter result necessitates that MFs accurately
predict their investors’ net redemption requests.

Mutual fund price. Under the baseline specification, the MF NAV at which investors
transact at t = 1, is exogenously given by:

PM,j
1 ≡ ψE[P j2 |xj ], (22)

, where 0 < ψ < 1 reflects a penalty for premature fund liquidations. Formally, ψ < 1 ensures
that, in the absence of payoff complementarities, early redemptions would never be optimal
for patient investors. Investors earn a positive expected return when holding fund shares
until the underlying asset matures in t = 2. If PM,j

1 ≥ E[P j2 |xj ], patient MF investors would
always optimally choose to redeem their shares early even if they do not bear any losses from
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the redemptions by impatient investors.

In practice, trades of most U.S. MFs, with the exception of money market mutual funds
(MMFs), settle within one business day after the trade date, T + 1.23 Therefore, in the case
of MF redemptions, investors receive the cash proceeds from their sales with a delay of at
most one business day. In my model, investors receive the cash from their ETF and MF trans-
actions on the same day, a convention followed for simplicity. This assumption does not affect
the model predictions; rather, accounting for the later settlement date of ETF compared to
MF transactions strengthens model predictions. Nevertheless, as a result of this modeling
convention, MFs effectively must pay off redeeming investors before they can liquidate any
assets. In the absence of fund cash holdings, this may not feasible. To overcome the time lag
between the effective model settlement of MF trades at t = 1 and MFs’ trading activity in
index markets at t = 1+, I make another simplifying assumption, namely that MFs initially
meet net fund redemptions by drawing down credit lines held at exogenous intermediaries
borrowed overnight at the risk-free rate. This is only a technical assumption to abstract from
funds’ liquidity management and inconsequential for my key results. I do not explicitly model
these credit lines. They are risk-free because the MF always has sufficient assets to liquidate
for the repayment.

I denote the number of shares redeemed from MFs at t = 1 by

∆κM,j
1 = κM0 − κM1 . (23)

κM0 = 1 −κE,j0 is the fraction of investors who invested in MFs at t = 0. The remaining num-
ber of MF shares outstanding as of t = 1 is κM1 . Equation 23 is equivalent to

∫
i(θMi,0 − θMi,1)di.

Even in the case of a MF run in which all patient MF investors redeem their shares early, the
presence of the “sticky” MF investors ensures that the MF never fully disappears at t = 1,
κM ≥ η > 0. This assumption does not mechanically produce the model predictions. It is
only necessary to simplify the model solution as it allows to abstract from events in which
the MF goes bankrupt. The equilibrium co-existence of ETFs and MFs follows from investors
initial allocation decisions, θMi,0 and θEi,0, which are fully endogenous in the model.

Index price at t = 1+. At t = 1+ the MF liquidates index shares to repay its obligations
following investor redemptions at t = 1. The index price at t = 1+ follows from market
clearing between the market maker’s net demand for index shares, ΘD,j

1+ =
E[P j

2 |xj ]−P j

1+
cj

, and
MFs flow-induced trading in index markets. The net demand for index shares by market

23See SEC settlement cycle recommendation. Generally, the settlement cycle for transactions of publicly
traded securities, including equities, corporate bonds, municipal bonds, unit investment trusts and ETFs, in
the U.S. is T +2. MMFs tend to settle T +0 or T +1. On February 15, 2023, the SEC adopted an amendment
to an existing rule to further reduce the settlement cycle for standard securities transactions to T +1, see SEC
release Nos. 34-96930, IA-6239; File No. S7-05-22 .
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makers is defined over P1+ ∈ [0, x]. The supply of index shares by MFs is:

ΘM,j
1+ = ∆κM,j

1 PM,j
1

P j1+

.

The maximum number of index shares which the MF can sell to meet investor redemptions is
bounded by its portfolio holdings according to ΘM,j

1+ ≤ κM0 . The MF cannot engage in short
sales, 0 ≤ ΘM,j

1+ .

In the special case in which there is no price impact in index markets, cj = 0, the number
of index shares sold by MFs is given by ΘM,j

1+ = ψ∆κM,j
1 . When index markets are perfectly

liquid, there are no negative externalities among MF investors. Abstracting from potential
taxable distributions of capital gains and trading commissions, there are no transaction costs
associated with fund outflows. Accordingly, if cj = 0, patient MF investors would never
redeem MF shares early just like patient ETF investors.

Lemma 4 If index markets are frictionless, cj = 0, patient MF investors never choose to
redeem any MF shares early in equilibrium. There are no run risks in the index MF.

This result is consistent with prior empirical studies documenting higher run risk in more
illiquid fund market segments (e.g., Chen et al. (2010)).

In the more general case in which 0 < cj ≤ 1, investment funds have price impact in index
markets. The market clearing index price at t = 1+, follows from ΘM,j

1+ = ΘD,j
1+ and solves:

E[P j2 |x] − P j1+

cj
= ∆κM,j

1 PM,j
1

P j1+

. (24)

It exists as long as the fundamental index value x is large relative to the market maker’s
inventory costs, cj . To establish the uniqueness of this equilibrium index price at t = 1+, I
impose an additional assumption.

Assumption 4 If there exists a pair of candidate prices and quantities, {P ′
1+ ,Θ′

1+}{P ′′
1+ ,Θ′′

1+},
that satisfies equation 24, the equilibrium index market price is given by the larger price can-
didate:

P j1+ = P ′
1 if P ′

1 ≥ P ′′
1 ,

and ΘM,j
1+ = Θ′

1.

Assumption 4 is consistent with a model in which market makers and MF managers engage
in price negotiations for their trade, defined by {P ′

1,Θ′
1}. They start at P j = xj and adjust

the index price downward until the market clears.
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Proposition 3 If cj > 0 and
xj− 1

2 (xj−
√
x2

j −4cjψxj∆κM,j
1 )

cj
≤ 1 + η, for any volume of MF

redemptions ∆κM,j
1 ∈ [0, 1], the unique index market equilibrium at t = 1+ is given by:

P j1+ = 1
2(xj +

√
x2
j − 4cjψxj∆κM,j

1 ),

Θj
1+ =

xj + 1
2(xj −

√
x2
j − 4cjψxj∆κM,j

1 )
cj

.

The condition
xj− 1

2 (xj−
√
x2

j −4cjψxj∆κM,j
1 )

cj
≤ 1 + η follows from ΘM,j

1+ ≤ κM,j
0 . Intuitively, in

equilibrium, the MF can never sell more than the index shares held in its portfolio. It does
not have access to leverage and faces short-selling constraints.

Corollary 3 In the case with cj > 0, there exists an market clearing index price P j1+ that
solves 24 over 0 ≤ ΘM,j

1+ ≤ 1 + η if and only if xj ≥ 4cjψ, .

Corollary 4 In the special case in which MF net redemptions at t = 1 are given by:

∆κM,j
1 = (1 − ψ)xj

cj
,

the equilibrium index price at t = 1+ is exactly equal to the MF net asset value at t = 1,
P j1+ = ψxj. Then, Θj

1+ = ∆κM,j
1 , and the MF tracking difference is zero, ∆M,j

2 = 0. In this
special case, the fund NAV at t = 1 is perfectly forward looking.

Ex-post, this equilibrium is comparable to the case in which the MF employs swing pricing
to ensure that exiting investors at t = 1 bear the transaction costs associated with their
redemptions. Ex-ante it differs from a swing pricing equilibrium due to the effect of swing
pricing policies on investors’ expectations regarding others’ redemption decisions.

Corollary 5 When ∆κM,j
1 ̸= (1−ψ)xj

cj
, the equilibrium index price at which the MF trades at

t = 1+ deviates from the MF NAV at which fund investors can redeem shares at t = 1:

i. If ∆κM,j
1 <

(1−ψ)xj

cj
, the equilibrium index price at t = 1+ is larger than the MF NAV

at t = 1, P j1+ > ψxj. Then, ΘM,j
1+ < ∆κM,j

1 , and the terminal MF tracking differ-
ence becomes negative, ∆M,j

2 < 0. The remaining MF shareholders gain from other
investors’ redemptions at PM,j

1 because the latter sell at a fund NAV that is too low
given fundamentals. Premature redemptions are costly.

ii. If ∆κM,j
1 >

(1−ψ)xj

cj
, the equilibrium index price at t = 1+ is lower than the MF NAV

at t = 1, P j1+ < ψx. Then, ΘM,j
1+ > ∆κM,j

1 , and the terminal MF tracking difference
becomes positive, ∆M,j

2 > 0. The MF NAV at t = 1 is too high, as it does not fully
account for the full price impact associated with investor redemptions at t = 1.
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3.3.1 Fund and index prices with a common index market maker

In an alternative specification, APs and MFs sequentially trade with the same index market
maker, so index markets are not segmented. In this case they compete on the liability as
well as asset side. Because ETF arbitrage takes place intraday, the AP trades first at t = 1.
Next, given the price impact generated by the AP’s arbitrage activities, the MF trades with
the index market maker at t = 1+. The net demand schedule for index shares faced by the
AP remains the same as before. As a result, the index and ETF price at t = 1 are the same
under sequential trading with a common index market maker as in the baseline specification
with segmented index markets:

P j,Seq1 = P j1 ,

PE,j,Seq1 = xj − ∆κE,j1 (cj + ϕj) = PE,j1 .

The MF price at t = 1 as well as the index price faced by the MF at t = 1+ are different
with sequential index trading: First, the MF NAV is set at the end of trading day, so the
AP’s intraday trading activities directly impact the MF price paid to redeeming investors at
t = 1. Whereas the MF NAV was quasi-exogenous in the baseline specification, it is now
fully endogenous and equal to the marginal index price faced by the AP:

PM,j,Seq
1 = xj − ∆κE,j1 cj .

Selling pressure in ETF markets does not only negative impact ETF prices, through the AP
arbitrage channel, it also decreases the end-of-day NAVs of same-index MFs. The intraday
nature of ETF trading makes MF prices endogenously more flexible. Redeeming MF investors
at t = 1 still do not face the trading costs associated with their own redemptions, but they
internalize the price impact caused by impatient ETF investors’ early liquidations.

Second, the net demand schedule for index shares faced by the MF differs:

ΘD,j,Seq
1+ =

xj − ∆κE,j1 cj − P j1+

cj
.

Intuitively, the market maker’s index inventory expands after trading with the AP. To absorb
the additional supply of index shares from the MF, the market maker therefore demands an
even larger discount relative to the fundamental index value, xj .

Overall, asset side competition between same-index ETFs and MFs reduces the MF’s short-
term liquidity provision, PM,j,Seq

1 < PM,j
1 , to the benefit of long-term MF investors. The

greater flexibility of the MF price at t = 1 discourages early redemptions by patient MF in-
vestors as they are forced to bear the transient price impact cause by ETFs in index markets.
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The key model predictions regarding investors’ optimal allocation and funds relative liquid-
ity provision over time continue to hold. For tractability, the rest of the paper builds on the
simplified baseline model with segmented index markets. This is consistent with the practice
of broker-dealers to have separate trading desks responsible for ETF arbitrage as compared
to market making for mutual funds and other buy-side entities.

3.4 Equilibrium allocations in the interim period

Investors’ equilibrium portfolio allocations in the interim period, θi,E,j1
∗

and θi,M,j
1

∗
, directly

follow from market clearing in the ETF, MF, and index markets at t = 1 and investors’
optimal investment strategies.

ETF market equilibrium. From proposition 1, it follows:

θi,E,j1
∗

=

1 ∀i = l (patient types) with θi,E,j0
∗

= 1,

0 ∀i = e (impatient types) with θi,E,j0
∗

= 1

and

PE,j1
∗

= xj − ∆κE,j1
∗
cj︸ ︷︷ ︸

Price
discovery

+ ∆κE,j1
∗
ϕj︸ ︷︷ ︸

Relative
mispricing

. (25)

∆κE,j1
∗

=
∫

(θi,E,j0 − θi,E,j1 ) di is the fraction of ex-post impatient ETF investors.

Besides the fundamental, xj , the equilibrium ETF price in equation 25 depends on two
components, one reflecting price discovery and another relative mispricing. First, the price
discovery component is given by ∆κE,j1

∗
cj . It reflects the price impact generated in in-

dex markets as a result of the AP’s arbitrage trades. When deciding on its optimal ETF
redemptions, the AP takes into account its expected price impact in index markets and di-
rectly passes on index market transaction costs to the ETF investors who demand liquidity in
ETF markets. Through this mechanism, price discovery takes place in ETF markets intraday.
Early ETF investors pay the flow-induced transaction costs caused by their trading decisions.

Second, the equilibrium relative ETF mispricing is given by

ϵE,j
∗ = ∆κE,j1

∗
ϕj .

The equilibrium mispricing is increasing in ∆κE,j1
∗

and ϕj . It arises because ETF arbitrage
temporarily consumes the AP’s balance sheet capacity. The more illiquid the ETF’s index
holdings (higher ϕj), the more time it takes the AP to complete an ETF arbitrage trade and
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therefore, the longer the AP has to hold the index shares on its balance sheet. Intuitively,
the AP provides ETF investors with intraday liquidity but is not able to execute the other
side of its trade in real time.24

As a result, the ETF price is excessively flexible over the short term. It does not only reflect
index market price impact but also the balance sheet cost associated with AP’s liquidity-
provision services. Both costs are born by the investors who trade in ETF markets at t = 1.
Investors cannot create or redeem ETF shares themselves. They depend on the AP’s creation
and redemption activities and bear all associated costs. Overall, the more illiquid the index
segment j and the higher the mass of impatient ETF investors at t = 1, the larger the index
market price impact and ETF mispricing, and therefore the larger the liquidation costs for
any individual impatient investors. Consequently, patient ETF investors have no incentive
to liquidate their shares early. ETF investors only trade fund shares when they need liquidity.

In this model specification, price impact in index markets is transitory. Over the long term,
the index pays the terminal dividend xj . Its payoff at t = 2 is independent on index mar-
ket selling pressure in prior periods. Accordingly, by waiting to liquidate until the terminal
period, patient ETF investors can avoid both, the index price impact and relative ETF mis-
pricing. All results are robust to an alternative specification in which index market price
impact is persistent. The ETF mispricing risk alone is sufficient to deter early liquidations
by patient ETF investors.

MF market equilibrium. Patient MF investors’ early redemption incentives are increasing
in the expected volume of redemptions by other MF investors, E[∆κM,j

1 |xj ], index market
illiquidity, cj , and decreasing in the fundamental, xj , as well as the share of sleepy investors
η. As a result of the payoff complementarities among MF investors, the MF market at t = 1
is characterized by the possibility of multiple equilibria. Each MF investors’ optimal alloca-
tion strategy, 20 is a function of the expected terminal MF tracking difference, which in turn
depends on the allocation decisions of all MF investors at t = 1. To show this formally, I
first analyze two regions of very bad and very good fundamentals, where each patient MF
investor’s optimal allocation is independent of her beliefs regarding other patient MF in-
vestors’ actions. Following the previous literature (e.g., Goldstein and Pauzner (2005)), I
refer to these regions of fundamental values as the lower and upper dominance regions. In
these two regions, patient MF investors’ allocations at t = 1 are only a function of the fun-
damental index value and general model parameters.

Lower dominance region. The lower dominance region encompasses values of the funda-
mental in the range xj ∈ (0, xj ].25 In this region, fundamentals are sufficiently bad, such

24An alternative approach to generating the same results is by making the AP risk-averse and introducing
price risk in index markets.

25Even though xj is normally distributed, for the purpose of this model, I restrict the feasible range of

39



that early redemption is the dominant strategy for any individual patient investor. After
observing xj < xj , an investor redeems all her MF shares early, even if all other patient
MF investors choose not to redeem their shares early. At the boundary xj = xj , a patient
investor will be indifferent between redeeming early and remaining invested until t = 2. Let
ēM = E[eM ] be the expected mass of impatient MF investors at t = 1.26 Then, the lower
dominance region is characterized by the value xj , which solves:

E[P j2 − ∆M,j
2︸ ︷︷ ︸

Payoff from
liquidating

at t = 2

− PM,j
1 Rf︸ ︷︷ ︸
Payoff

from early
redemption

|xj = xj ∪ ∆κM,j
1 = ēM ] = 0. (26)

All remaining uncertainty in 26 comes from ∆M,j
2 ’s dependence on MF investors’ redemption

decisions according to equation 17.

Upper dominance region. The upper dominance region is defined by xj ∈ [xj ,∞). In
this region, fundamentals are extremely good, such that patient MF investors always choose
to keep all of their MF shares until t = 2. After observing xj ≥ xj , investors will never
redeem any of their MF shares early even if all other patient MF investors are liquidating at
t = 1. Before portfolio reallocation choices are made, the mass of all patient and impatient
MF investors at t = 1 is eM + lM ≤ 1. Even though liquidity shocks are privately observed by
investors and not common knowledge, the joint mass of all impatient and patient investors
is know. By definition, all MF investors who are not sleepy investors, must be either patient
or impatient at t = 1. Hence, eM + lM = κM,j

0 − η, where η is common knowledge and κM,j
0

is observed after allocation decision have been made in the initial period. Accordingly, the
upper dominance region is characterized by the value xj that solves:

E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = κM,j

0 − η] = 0 (27)

The condition 27 is similar to condition 26 except that it is derived conditional on all other
MF investors liquidating their shares early, ∆κM,j

1 = eM + lM .

Proposition 4 There exists a lower and upper dominance region with respect to the fun-
damental that is characterized by the boundary values xj and xj, with xj ≤ xj, such that
for any realization of the fundamental within these regions (xj ≤ xj or xj ≥ xj) the MF
market at t = 1 has a unique equilibrium in which patient MF investors always redeem all of
their shares early or never redeem any shares early at all, irrespective of their beliefs of other
patient MF investors’ portfolio allocations. Formally, ∃ xj , xj s.t.

fundamentals to be larger than zero.
26Because investors’ liquidity shocks are idiosyncratic, ēM only depends on the initial mass of MF investors,

κM,j
0 , and their liquidity risk λi. ēM does not depend on the realization of xj .
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θi,M,j
1

∗
(xj ≤ xj) = 0,

θi,M,j
1

∗
(xj ≥ xj) = 1.

If additionally xj < xj, the range of xj over which multiple equilibria exist in the MF market,
xj ∈ (xj , xj) is non-empty.

The lower dominance region in which a MF run is the unique equilibrium outcome irre-
spective of agents beliefs regarding other patient investors’ actions is defined by:

xj = cj(ψēM + (1 − ψ)κM,j
0 ))2

(1 − ψ)κM,j
0

. ∀ ēM > 0. (28)

In the special case in which ēM = 0, xj = 0, the lower dominance region is empty.

The upper dominance region in which no patient MF investors choose to sell any MF
shares early irrespective of their beliefs of other patient MF investors’ actions is defined by:

xj =
cj
(
κM,j

0 − ψη
)2

(1 − ψ)κM,j
0

. (29)

Intuitively, as the fundamental improves, the price impact of MF in index markets becomes
negligible, whereby the penalty for early liquidation increases in absolute terms. Fund out-
flows at t = 1 do not impose a significant cost on the remaining investors when expected
long-term returns are sufficiently high. The relative importance of payoff complementarities
in patient MF investors’ allocation decision diminishes with xj .

Corollary 6 The size of the run (lower dominance) region (0, xj ] is increasing in cj, the
illiquidity of the index segment, as well as in eM , the mass of impatient MF investors. The
size of the run region is decreasing in η, the share of sleepy MF investors who never redeem
early.

This result directly follows from the partial derivatives of equation 28. ∂x
∂cj

> 0 implies that
funds with more illiquid portfolios are more prone to runs by investors. In contrast, ∂x

∂η > 0.
Thus, the larger the base of sleepy or long-term investors, η, the smaller the run region. These
investors stabilize the MF as other investors rationally never anticipate them to redeem early,
thereby decreasing their own run incentives. Finally, ∂x

∂ej
> 0 suggests that a larger base of

investors with high short-term liquidity needs or shorter investment horizons makes the MF
inherently more prone to run risk.
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Corollary 7 The size of the no-run (upper dominance) region [xj ,∞) is decreasing in cj,
the illiquidity of the index segment, as well as in κM , the total mass of non-sleepy investors
who initially invested in MFs and may potentially redeem their shares early at t = 1. The size
of the no-run region is increasing in η, the share of sleepy MF investors who never redeem
early.

Corollary 8 In the special case in which cj = 0 and MFs do not have price impact in index
markets, xj = xj = 0. The region of xj over which a MF run is the unique or one possible
equilibrium outcome is empty. There are no negative externalities among MF investors and
MFs never occur in equilibrium.

For xj ∈ (xj , xj), there exist multiple equilibria in MF markets at t = 1. The equilibrium
outcome depends on agents’ beliefs regarding other patient investors’ redemption strategy,
E[∆κM,j

1 |xj ]. To overcome this multiplicity of equilibria using the sunspot equilibrium se-
lection technique. In the region (xj , xj), the equilibrium is determined by an i.i.d. sunspot
for every realization of xj . Specifically, I assume that investors believe that the run (no-
run) equilibrium will materialize with equal probabilities π = 0.5 (1 − π = 0.5) for every
xj ∈ (xj , xj). I use this specification to maintain tractability. The model predictions are
robust to different values for π.

Assumption 5 For any xj ∈ (xj , xj), investors beliefs are such that they expect all other
patient MF investors to run versus not run with equal probability. Formally:

π ≡ Prob(∆κM,j
1 = eM + lM |xj < xj < xj) = 0.5.

Consequently, Prob(∆κM,j
1 = eM |xj < xj < xj) = 1 − π = 0.5.

3.5 Equilibrium allocations in the initial period

At t = 0, investors simply trade off their expected lifetime wealth from investing in the
ETF with their expected wealth from investing in the MF. Each investor invests her entire
endowment in the fund type that provides her with a higher payoff in expectations. Formally
her initial allocation is given by:

θi,E,j0 =

1 if E0[wiT |λi, θi,E,j0 = 1] ≥ E0[wiT |λi, θi,M,j
0 = 1]

0 if E0[wiT |λi, θi,E,j0 = 1] < E0[wiT |λi, θi,M,j
0 = 1]

(30)

and

θi,M,j
0 =

1 if E0[wiT |λi, θi,M,j
0 = 1] > E0[wiT |λi, θi,E,j0 = 1]

0 if E0[wiT |λi, θi,M,j
0 = 1] ≤ E0[wiT |λi, θi,E,j0 = 1].

(31)
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The allocation policy defined by equations 30 and 31 assumes that an investor who is indiffer-
ent between investing in the ETF or MF invests her entire endowment in the ETF. Another
solution for this investor would be to mix between ETFs and MFs. For simplicity I abstract
from this possibility and only focus on pure-strategy equilibria. This simplification does not
affect the model predictions because the mass of investors with any given λi is infinitely small.
All remaining investors would never want to mix between ETFs and MFs.

Assumption 6 The investor who is indifferent between allocating her portfolio to ETFs or
MFs at t = 0 invests her entire endowment in ETFs.

Equations 30 and 31 depend on the investor-specific expected fund payoffs. An investor i’s
expected payoff from investing in the ETF at t = 0 is given by:

E0[wiT |λi, θi,E,j0 = 1] = µj − λiE0[eE ](cj + ϕj), (32)

where E0[eE ] is the expected mass of impatient ETF investors at t = 1. Equation 32 accounts
for the result that patient ETF investors never choose to redeem early. Given their type in
the interim period, i = e or i = l, ETF investors portfolio reallocation decision is independent
of the fundamental. Impatient ETF investors receive PE,j1 = xj − ∆κE,j1 (cj + ϕj) at t = 1.
Patient ETF investors always wait until t = 2 and receive PE,j2 = xj . They account for
the distribution of the fundamental and other ETF investors’ liquidity risks in their initial
allocation decision at t = 0.

Investor i’s expected payoff from investing in the MF at t = 0 is given by

E0[wiT |λi, θi,M,j
0 = 1] = λiE0[wiT |λi, θi,M,j = 1 ∪ i = e]

+ (1 − λi)E0[wiT |λi, θi,M,j = 1 ∪ i = l] (33)

= λiψjµj︸ ︷︷ ︸
i is impatient

+ (1 − λi)Rfψj
(∫ xj

0
xjdx+ 1

2

∫ xj

xj

xjdx

)
︸ ︷︷ ︸

i is patient x run equilibrium

+ (1 − λi)
(1

2

∫ xj

xj

(xj − ∆M,j
2 )dx+

∫ ∞

xj

(xj − ∆M,j
2 )dx

)
︸ ︷︷ ︸

i is patient x no-run equilibrium

.

In contrast to ETF investors, MF investors interim allocation does not only depend on their
type, but additionally depends on other MF investors’ types and decisions, the fundamental
and sunspot. They consider this interdependence in their initial allocation decision.

Overall, an investor’s demand for ETFs and MFs at t = 0 depends on i’s idiosyncratic liquidity
risk exposure, λi, the unconditional distribution of the terminal index payoff xj ∼ N(µj , σ2

j ),
as well as the parameters which characterize the index market specific liquidity, cj , ϕj and
ψj . Within a given index segment j, all cross-sectional variation in investors’ initial portfolio
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allocation is due to heterogeneity in λi because all investors have identical preferences and
there is no asymmetric information regarding the index fundamental. At the aggregate level,
the model is characterized by a cut-off equilibrium in the initial period. Investors self-select
into different fund types based on their idiosyncratic liquidity needs.

Proposition 5 Investors with high liquidity risk or short-term investment horizon self-select
into mutual funds, while investors with low liquidity risk or long-term investment horizon will
self-select into ETFs:

∃λ′ for which {θi,E,j0
∗
, θi,M,j

0
∗
} = {1, 0} ∀i with λi ≤ λ′

and {θi,E,j0
∗
, θi,M,j

0
∗
} = {0, 1} ∀i with λi > λ′.

To understand the intuition behind proposition 5 it is helpful to consider the problem faced
by investors at both ends of the liquidity risk distribution, λi. On one side, an investor with
λi = 1, who faces a certain liquidity need at t = 1, always prefers the MF over the ETF.
This investor values the short-term liquidity insurance provided by MFs’ guaranteed redemp-
tion at the fund NAV and wants to avoid the short-term mispricing risk in ETFs. Since she
always liquidates all fund holdings at t = 1, she does not face any MF share dilution risk.
On the other side, a definitive long-term investor with λi = 0 always prefers the ETF over
the MF. This type of investor wants to avoid the potential long-term share dilution in MFs
and is not concerned about the ETF’s short-term mispricing risk. By definition, as a long-
term investor she can flexibly time her fund liquidations to circumvent temporary mispricing.
Moving along the distribution starting at λi = 1, as λi decreases, the weight investors place
on the fund payoff at t = 1 decreases while the weight placed on the payoff at t = 2 increases.
Investors start to value MFs’ short-term liquidity insurance less and increasingly care about
reducing long-term share dilution risks. Eventually, when an investor’s liquidity risk crosses
the threshold level, λ′, her expected return from investing in the ETF begins to exceed her
expected return from the MF.

Corollary 9 An investor with λi = 1 always invests in the MF at t = 0, whereas an investor
with λi = 0 always chooses the ETF:

θi,M,j
0

∗
=

0 if λi = 0

1 if λi = 1

θi,E,j0
∗

=

1 if λi = 0

0 if λi = 1

Fund and index prices. At t = 0, the fund sponsors receive capital investments from
investors and convert them into MF and ETF shares respectively at an exchange rate of
one. Initially, both funds and the index have the same price because fund shares are created
outright at t = 0. ETF mispricing and MF tracking error are zero:
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PM,j
0 = PE,j0 = P j0 .

I normalize P j0 = 1.

Fund market shares. Following proposition 5, the equilibrium market shares of the ETF
and MF at t = 0 are given by:

MktShareE,j0
∗

= λ′

MktShareM,j
0

∗
= 1 − λ′

Corollary 10 The cut-off liquidity risk level, λ′, and therefore the equilibrium market share
of the ETF, is increasing in the index specific illiquidity.

Because λ′ is decreasing in the liquidity of the fund’s underlying benchmark index, the most
illiquid mutual funds attract the most liquidity sensitive investor base. MFs which are inher-
ently characterized by a larger liquidity mismatch become endogenously even more vulnerable
to early redemptions when investors have the choice to invest in an otherwise identical ETF
instead because only investors with high idiosyncratic liquidity risk choose to remain invested
in the MF.

3.6 Comparison to pre-ETF fund market equilibrium

This model presumes the co-existence of ETFs and MFs any given index market segment.
This assumption is consistent with the data. Many of the most popular benchmark indices
are tracked by an ETF and MFs. Investors do in practice generally have the choice between
both fund types. This has not always been the case. Before ETFs were introduced in 199327,
MFs were the only option for households to access diversified portfolios and illiquid market
segments. The first index MFs was launched already in 1976 by Vanguard.28 These develop-
ments beg the question of how the availability of ETFs, in addition to MFs, affects investors’
wealth as well as the overall characteristics of funds’ investor base and their vulnerability to
early redemptions.

Even though, a full welfare analysis is outside of the scope of this paper, the model can
shed light on the payoffs received by different types of investors, fund investors’ liquidity risk
profile and fund flows under different fund market structures. In principle, there are three
variations of the index fund market: (i) MF monopoly, (ii) ETF monopoly, (iii) co-existence
of ETF and MF. I refer to the baseline equilibrium in which ETFs and MFs co-exist as the

27SPY was the first ETF launched in the U.S. in January 22, 1993. Even earlier, the very first ETF was
launched in Canada in 1990.

28Vanguard 500 Index Fund.
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competitive equilibrium. Importantly, in this equilibrium there exists only one ETF and on
MF. They compete solely with each other based on their common index portfolio. Table 1
summarizes investors payoffs under the different fund market structures.

Table 1: Investors’ expected payoffs across different fund market structures

i with λi = 1 i with λi > λ′ i with λi ≤ λ′ i with λi = 0

CE ψjµj E[wi
Ti

|λi, θ
i,M = 1] µj − λi∆κE,j

1 (cj + ϕj) µj

MF only ψjµj E[wi
Ti

|λi, θ
i,M = 1] E[wi

Ti
|λi, θ

i,M = 1] E[wi
Ti

|λi, θ
i,M = 1]

ETF only µj − 1
2 (cj + ϕj) µj − λi

1
2 (cj + ϕj) µj − λi

1
2 (cj + ϕj) µj

Note: The matrix shows the expected equilibrium fund payoffs of investors, characterized by λi,
under various fund market structures. CE refers to the competitive equilibrium in which investors
have the choice between investing in an index ETF or MF. Expected CE payoffs are derived under
investors’ optimal investment policy following proposition 5. E[wi

Ti
|λi, θ

i,M = 1] is derived in
equation 33. In the MF (ETF) monopoly, all investors’ payoffs are conditional on investments in the
MF (ETF). ETF payoffs are in red and MF payoffs are in blue.

Table 1 provides three main insights. First, investors at the ends of the liquidity risk distribu-
tion characterized by λi = 0 and λi = 1 are indifferent between the competitive equilibrium
and the equilibrium featuring the monopoly of their preferred fund type. Investors with
λi = 0 (λi = 1) are significantly worse off in the MF (ETF) monopoly. Second, ETF in-
vestors overall, including those with 0 < λi ≤ λ′, are better off in the competitive equilibrium
than in the ETF monopoly. Third, MF investors in general, including those with λ′ < λi < 1,
are better off in the MF monopoly than in the competitive equilibrium.

MF monopoly. The MF monopoly represents a pooling equilibrium in which all investors
invest in the mutual fund irrespective of their λi. Investors may be able to invest in a risk-free
asset (autarky) besides the MF. As long as the expected return from the index is sufficiently
large, even after accounting for the MF-specific share dilution risk, investors will choose to
be fully invested in the index fund. In expectation, half of the investors need liquidity at
t = 1, while the other half are patient. Runs are possible. The run regions continue to be
defined by equations 28 and 29. The law of large numbers implies that the mass of early MF
investors in this setting is give by ē = 0.5.

On one hand, the run region in the MF monopoly is smaller than the run region in the
competitive equilibrium:

xMF
j > xCEj . (34)
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This happens because the ratio of impatient to patient MF investors decreases relative to the
competitive equilibrium. Intuitively, when relatively more long-term investors with λi ≤ λ′,
who would otherwise invest in ETFs, are pooled with more short-term investors (λi > λ′),
the average horizon of the MF’s investor base increases from 1.5 − λ′

2 in the competitive
equilibrium to 1.5. The average investment horizon in the MF monopoly is equal to the
horizon of the average investor in the economy:

T̄M,MF = E[Ti|θi,M,j
0 = 1 ∀ i] = 1.5,

T̄M,CE = E[Ti|θi,M,j
0 = 1 ∀ i with λi > λ′] = 1.5 − λ′

2 .

On the other hand, the no run region in the MF monopoly is also smaller than the run region
in the competitive equilibrium:

xMF
j < xCEj . (35)

As the fraction of impatient MF investors decreases, the share of patient MF investors in-
creases. As a result, the potential share dilution costs associated with other patient MF
investors early liquidations rise. Anticipating this possibility, every individual patient MF
investors faces stronger incentives to redeem her shares early.

Equations 34 and 35 together imply that the region over which multiple MF market equi-
libria are possible, xj ∈ (xMF

j , xMF
j ), is larger in the MF monopoly. Therefore, the effect

of moving from the competitive equilibrium to the MF monopoly for overall run risk in this
model is ambiguous as it depends on the exogenous sunspot probability of a run over the
region defined by xj ∈ (xMF

j , xMF
j ).

At the investor level, long-term investors characterized by a low λi are worse off in the pooling
MF monopoly compared to the competitive equilibrium. They have no choice but to subsidize
the MF’s short-term liquidity provision and are unlikely to benefit from the guaranteed MF
redemption at NAV themselves. States in which they do redeem early are likely associated
with a MF run. Investors on the other side of the liquidity risk spectrum, characterized by
a high λi, are equally well off under both equilibria. They would choose to invest in MFs
regardless and are likely to withdraw early. The medium λi investors benefit. These investors
are able to access the MF’s short-term liquidity insurance while sharing the long-term share
dilution cost with the even more long-term investors.

ETF monopoly. The ETF monopoly represents a pooling equilibrium in which all investors
invest in the ETF irrespective of their λi. Due to the absence of run risk in ETFs, in
equilibrium half of the ETF investors liquidates their shares early, while the other, patient
half waits until the terminal period. The total expected fund outflows in the interim period
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are strictly smaller in the ETF compared to the competitive equilibrium because there are
no inefficient early liquidation by patient investors:

E[∆κE,j,CE1 + ∆κM,j,CE
1 ] > E[∆κE,j,ETF1 ] = 0.5.

Following 25, the ETF monopoly equilibrium prices are given by:

PE,j,ETF1 = xj − 1
2(cj + ψj) < PE,j,CE1 ,

PE,j,ETF2 = xj = PE,j,CE2 .

The long-term ETF payoff is unaffected by the larger mass of short-term ETF investors rel-
ative to the competitive equilibrium because every ETF investor bears her own transaction
cost. The ETF price at t = 1 in the ETF monopoly is lower than in the competitive equi-
librium. Intuitively, when investors’ with λi > λ′ are invested in the ETF instead of the
MF, there are more early ETF liquidations, ∆κE,j,ETF1 > ∆κE,j,CE1 . Amid market maker
inventory costs and AP balance sheet capacity constraints, ETF investors’ increased selling
pressure leads to more index market price impact as well as more ETF mispricing. These
costs are born by the redeeming ETF investors. Investors facing the largest liquidity risks,
λi > λ′, who would choose to invest in MFs if offered the option, are significantly worse off
compared to the competitive equilibrium. They do not only face the price impact associated
with their trading activity, but also suffer from ETF mispricing. Similarly, investors facing
medium liquidity risks 0 < λi < λ′ also suffer from the pooling of liquidity risks in the ETF
monopoly if they receive a liquidity shock at t = 1. This result follows from the fact that
all ETF investors trade at the same equilibrium market price at t = 1. The larger the share
of short-term ETF investors, the higher the ETF selling pressure, and therefore the more
depressed the ETF price faced by all other ETF investors. Only ETF investors characterized
by λi = 0 are truly indifferent between the ETF monopoly and the competitive equilibrium.

3.7 Implications for index investments within retirement accounts

Although, I model portfolio allocations made by investors outside of their retirement invest-
ment accounts, this study applies to index fund selection within retirement accounts, an area
of paramount significance. Until they near their retirement, retirement investors are long-
term investors who face significant penalties for early withdrawals. Retirement assets invested
in index MFs are usually commingled with those originating from non-retirement accounts
offering daily liquidity. It is noteworthy that distinct share classes, catering to retirement, in-
stitutional, and retail investors, frequently coexist within a single MF, each sharing the same
underlying portfolios and associated trading costs. Consequently, investors holding index
MFs with illiquid portfolios within their retirement accounts may inadvertently subsidize the
short-term liquidity provision to non-retirement account investors. This cross-subsidization
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effect becomes particularly relevant when a substantial portion of the fund’s equity is held by
investors who exhibit a recurring demand for liquidity or a propensity to divest their holdings
when overall market liquidity is low. In contrast, I demonstrate that the long-term payoff of
index ETFs held within retirement accounts remains unaffected by other investors’ intraday
trading activities.

An additional cost of investing in ETFs as compared to no-load open-end MFs are bid-ask
spreads. Similar to the possibility of relative mispricing in ETFs, bid-ask spreads represent a
cost associated with providing short-term liquidity. While bid-ask spreads for broadly diver-
sified index ETFs typically remain modest during stable market conditions, it is noteworthy
that these spreads may accrue over time, potentially affecting the overall cost of ETF invest-
ments and making them less attractive within retirement accounts. The economic magnitude
of these effects is an empirical question and should be considered in future research on the
potential role of ETFs in retirement accounts.

4 Policy implications

The model can be used to analyze several ongoing policy debates. I consider two applications
– swing pricing and multi-fund share structures.

4.1 Swing pricing in open-end mutual funds

In November 2022, the SEC proposed a new rule to mandate the use of swing pricing for
all U.S. open-end mutual funds other than money market funds and ETFs.29 Swing pricing
is a price-based liquidity management tool. It allows funds to adjust their NAV when faced
with significant out- or inflows. For example, if the fund faces net outflows above a certain
threshold (the swing threshold), it will reduce the NAV at which investors can redeem their
shares by a pre-specified percentage factor (the swing factor). By imposing flow-induced
trading costs on exiting or entering investors, swing pricing aims to mitigate payoff comple-
mentarities among MF investors. Consistent with the key MF friction in my model, the SEC
highlighted the risk of flow-induced share dilution for MF shareholders as a main motivation
for their proposed rule. Specifically, the SEC argues “Even when a fund manages its liquidity
effectively, transaction costs associated with meeting redemption requests or investing the
proceeds of subscriptions can create dilution for fund shareholders”.30

I consider a model extension featuring full swing pricing. Under a full swing pricing policy,
the MF price is “swung” whenever there are any net fund flows, ∆κM,j ̸= 0. In this case the
swing threshold is effectively zero. The alternative version of swing pricing is partial swing

29See file number S7-26-22, Open-End Fund Liquidity Risk Management Programs and Swing Pricing; Form
N-PORT Reporting.

30See https://www.sec.gov/files/33-11130-fact-sheet.pdf.
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pricing. Under partial swing pricing the swing threshold is non-zero. The MF only applies
the swing factor if net fund flows exceed a pre-specified threshold level. For simplicity, I focus
on the case of full swing pricing. Accordingly, swing pricing simply imposes a wedge between
the MF NAV and the price at which investors trade. Given a swing factor of sj > 0, the MF
price at at t = 1 becomes

PM,j,Swing
1 =

NAV
M,j

1 − sj if ∆κM,j
1 > 0

NAVM,j
1 + sj if ∆κM,j

1 < 0.
(36)

In equilibrium the MF experiences net outflows in the interim period, ∆κM,j
1 > 0. Hence,

the price received by MF investors at t = 1 under the swing pricing policy is lower than their
payoff in the baseline model which is given by equation 22:

PM,j,Swing
1 < PM,j

1 .

Optimal swing factor. The main challenge in implementing swing pricing is the calibration
of the swing factor sj . In my model, the optimal swing factor is endogenously determined.

Proposition 6 Within any index segment j and conditional on the volume of MF redemp-
tions, ∆κM,j

1 , the optimal MF swing factor is given by

sj
∗ = cj∆κM,j

1 (37)

sj
∗ depends on the inventory cost of the market maker which is the root cause of flow-

induced price impact in illiquid index markets in this framework. Adjusting the MF NAV by
sj

∗ ensures that the MF’s index market price impact at t = 1 is passed on to the leaving MF
investors in proportion to their redemptions. If the MF price is set according to the pricing
rule in equation 36 and the swing factor is calibrated in line with proposition 6, the price
faced by MF investors at t = 1 is given by

PM,j,Swing
1 = xj − cj∆κM,j

1 .

In this case, PM,j,Swing
1 = P j1+ . Swing pricing makes the MF price perfectly forward looking.

Then, corollaries 1 and 2 imply that the MF tracking difference, ∆M,J
2 , must be zero under

the optimal swing pricing rule. There is no MF share dilution risk, and therefore also no
first-mover advantage.

Corollary 11 If the MF utilizes swing pricing, the swing factor is calibrated optimally ac-
cording to equation 37, and investors are rational and forward-looking, swing pricing elim-
inates any first-mover advantage within MFs. In equilibrium only impatient MF investors
choose to redeem their shares early at t = 1:
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∆κM,j,Swing
1 =

∫
i=e

θi,M,j
0 di

Corollary 12 Optimal swing pricing enables the MF to precisely replicate the index perfor-
mance across all time horizons:

PM,j,Swing
1 = P j1+ = xj − cj∆κM,j

1 ,

PM,j,Swing
2 = P j2 = xj .

MF liquidity transformation is frictionless. The MF strictly dominates the same-index ETFs
in terms of liquidity provision. In equilibrium, all rational investors choose to invest in the
swing-pricing MF over the ETF:

θi,M,j,Swing
0 = 1 ∀i

θi,E,j,Swing0 = 0 ∀i

In terms of the cut-off equilibrium, corollary 12 implies:

λ′Swing = 0.

With optimal swing pricing, the ETF and MF yield identical returns over the long term.
In the short term, MFs outperform ETFs when the latter experience relative mispricing due
to intermediary balance sheet constraints. As a result, index ETFs become redundant in
equilibrium. In this scenario, swing pricing does not only help MFs compete with ETFs, it
drives ETFs extinct.

Suboptimal swing factor. In practice, the optimal calibration of swing factors is challeng-
ing. While funds can observe the flow-based component of sj∗, the price impact parameter,
cj , is more difficult to estimate accurately.31 Unlike in this model, security market price
impact may not always be linear in fund flows. Especially in periods of extreme market
stress, trading costs can rise significantly. Price impact estimates derived from histori-
cal data may prove insufficient. Nonetheless, especially in these bad states (low xj), the
accurate calculation of swing factors is particularly important to minimize share dilution
and consequently reduce run risks.Prior studies provide evidence in favor of the insufficient

31Currently, many MFs in the U.S. do not observe fund flows before they set their end-of-day NAV. This
is an institutional constraint that could be eliminated by establishing a hard close on the time by which MF
orders must be received in order to be executed at the day’s NAV. Specifically, the MF, its transfer agent,
or a registered clearing agency would need to receive the order information before the daily NAV is set. The
latter typically happens at 4pm ET. The hard close requirement is part of the SEC’s swing pricing proposal.
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calibration of swing factors in jurisdictions where swing pricing is already commonly used
(Jin, Kacperczyk, Kahraman, and Suntheim 2021; International Monetary Fund 2022).

If swing factors fail to comprehensively account for all the costs associated with investor
flows, sj < cj∆κM,j

1 , same-index ETFs and MFs continue to coexist in the model equilib-
rium. Swing pricing curbs share dilution for long-term MF investors by reducing short-term
liquidity provision. Share dilution decreases but persists because payoffs to short-term MF
investors continue to exceed their “fair share” of the fund’s assets. Consequently, the marginal
investor, characterized by her indifference between investing in the index MF and ETF in
the no-swing pricing equilibrium, now prefers the MF over the ETF. The average expected
investment horizon of the MF investor base increases. This reduces relative MF outflows as
well as the risk of MF runs during states of market illiquidity.

Table 2 summarizes the fund payoffs under different calibrations of the MF swing pricing
policy. Overall, within any specific index fund category, investors facing higher short-term
liquidity risks are worse off following the implementation of swing pricing, regardless of its
calibration. By design, swing pricing redistributes payoffs from investors who are trading to
those who remain invested in the fund. If they had a choice, investors characterized by a
high λi would always choose the no-swing pricing index MF. Conditional on swing pricing,
they prefer suboptimally calibrated swing factors. Investors with “medium” liquidity needs
(λi) distinctly benefit from a swing pricing policy. Under optimal swing pricing, the MF
provides them with higher payoffs than the ETF in case they need liquidity at short notice
while offering identical long-term returns. Only definitive long-term investors, λi = 0, remain
indifferent between the ETF and MF. Under suboptimal swing pricing, the MF offers superior
expected payoffs to investors located at the boundary between ETFs and MFs, λi = λ′, in
the baseline model. Yet, investors who are less likely to need access to their capital at short
notice continue to prefer ETFs over same-index MFs.

Table 2: Fund payoffs under different swing pricing policies

PM,j
1 PE,j

1 PM,j
2 PE,j

2

sj = 0 NAV M,j
1 xj − ∆κE,j

1 (cj + ϕj) xj − ∆M,j
2 xj

0 < sj < s∗j xj − sj xj − ∆κE,j
1 (cj + ϕj) xj − ˜∆M,j

2 xj

sj = s∗j xj − ∆κM,j
1 cj xj − ∆κE,j

1 (cj + ϕj) xj xj

Note: The matrix shows the fund payoffs at different times, t = 1, 2, and under various MF swing
pricing policies. sj = 0 refers to the baseline model specification without swing pricing, sj = s∗

j to
swing pricing with optimally calibrated swing factors and 0 < sj < s∗

j to swing pricing with swing
factors that fall short of fully capturing the flow-induced trading costs in MFs.

52



Link to ETF prices. In this model, the optimal swing factor directly follows from the
equilibrium ETF price in the interim period 25. The ETF price is determined intraday by
market clearing between ETF investors and the AP. It reflects any price impact caused by AP
arbitrage because the profit-maximizing AP simply passes on all costs associated with ETF
creations or redemptions to the investors seeking liquidity in ETF markets. Yet, the ETF
price is excessively flexible because it also reflects AP balance sheet capacity constraints. In
the short-run, limits to ETF arbitrage imply that the law of one price does not necessarily
hold with respect to ETF and index markets. The difference between the NAV and market
price of an ETF tracking index j can reflect forward-looking price discovery and mispricing:

NAV E,j
1 − PE,j1 = xj − (xj − ∆κE,j1 (cj + ϕj)) = ∆κE,j1 cj︸ ︷︷ ︸

Price discovery

+ ∆κE,j1 ϕj︸ ︷︷ ︸
ϵE,j

1 , mispricing

(38)

Corollary 13 When APs face balance sheet capacity constraints, ϕj > 0, ETF discounts
represent an upper bound on the optimal swing factor:

NAV E,j
1 − PE,j1

∆κE,j1
>

sj
∗

∆κM,j
1

.

Anadu, Levin, Liu, Tanner, Malfroy-Camine, and Baker (2023) suggest to use observed ETF
discounts as a proxy to calibrate swing factors for MFs holding similar portfolios. Equation
38 and corollary 13 illustrate that in states where APs are balance sheet constrained and
ETF arbitrage is imperfect, swing factors derived from ETF discounts may lead to an overes-
timation of the trading costs associated with the redemption of MF investors. This, in turn,
can result in excessive liquidation costs being imposed on MF investors seeking redemption.

4.2 ETF share classes in open-end Mutual Funds

Another model application is the analysis of investor trade offs within dual fund share struc-
ture. In this structure the ETF is a share class of an existing MF portfolio instead of a
standalone fund. Vanguard is currently the only U.S. asset manager using this structure,
managing around $2 trillion of index ETF assets, equivalent to nearly 30% of all U.S. ETF
assets.32 The rationale behind this fund structure is that if investors expected to trade fre-
quently, they could invest in, or convert their MF shares into the ETF share class and sell
on the exchange without impacting any other fund investors. As a case in point Vanguard’s
former Chief Investment Officer George U. “Gus” Sauter explained the dual fund structure by
saying “I started thinking, if we had a share class of the funds that traded on the exchange,
then likely the people with a shorter time horizon would migrate to that share class. And if

32According to Morningstar data as of May 31, 2023. The structure has been patented under the U.S.
patent no.: US 6,879,964 B2 and been granted exempted relief from the 1940 Investment Company Act
by the SEC. See https://patentimages.storage.googleapis.com/0f/19/44/3755859e82d295/US6879964.pdf for
operational details regarding the dual MF-ETF share class fund structure.
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they decided they needed to get out of the market, they could sell off their stock in that share
class, as opposed to trying to come out of the traditional mutual fund share class.”33 Since
the expiry of its patent protection in May 2023, several other asset managers have submitted
applications to the SEC to copy this structure.34 Thus, it is important to understand the
implications of joint ETF-MF fund structures for investor payoffs and redemption incentives.

Abstracting from fee differences, in the joint ETF-MF fund structure the MF and ETF share
classes have the same NAV. ETFs are traded at the market price which may differ from the
fund NAV. As with multiple MF share classes, any trading costs are shared across all share
classes, including the ETF share class, on a pro rata basis. As usual, only MF shares are
traded at NAV. Holding constant the investor composition among funds, over the short-term
at t = 1 the ETF and MF payoffs are the same as in the baseline model:

PM,j,Dual
1 = NAVM,j

1 ,

PE,j,Dual1 = xj − ∆κE,j1 (cj + ϕj) = PE,j1 .

Here, κE,j,Dual1 refers to the volume of liquidations of the funds’ ETF shares on exchange at
t = 1. The fund NAV is determined through the same mechanisms as for a standalone MF
structure. At any time, it equals the value of the fund’s total index shareholdings divided by
the sum of its MF and ETF shares outstanding. From this follows the t = 2 NAV of the MF
and ETF:

NAVM,j,Dual
2 = NAV E,j,Dual

2 = xj︸︷︷︸
P j

2

(1 − ∆κM,j
1 PM,j

1
P jt+

− κE,j1︸ ︷︷ ︸
# index shares remaining

in joint fund portfolio

) ∗ (κM,j
1 + κE,j1︸ ︷︷ ︸
MF + ETF

shares
outstanding

)−1. (39)

It follows for the terminal ETF and MF payoff under the dual fund structure:

PM,j,Dual
2 = NAVM,j,Dual

2 > PM,j
2

PE,j,Dual2 = NAV E,j,Dual
2 < PE,j2︸ ︷︷ ︸

xj

.

Overall, MF investors get a better deal under the dual fund structure. ETF investors are
worse off. The relative payoffs for early MF investors stay unchanged but the payoff for long-
term MF investors increases. While the MF share class remains unaffected by ETF-specific
mispricing risk, the ETF share class inherits share dilution risks from the MF share class.
Specifically, for MF investors, the arrangement implies that share dilution costs caused by
redemptions from MF share classes are shared with the investors in the corresponding ETF

33See https://www.ft.com/content/e57771ce-bdcd-4ab2-ba8b-cb472279f366.
34See for example the application by Dimensional Fund Advisors available at https://www.sec.gov/Archives/

edgar/data/354204/000168035923000216/dimensional40app07122023.htm.
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share class. This is evident from a comparison of equation 39 and the terminal MF NAV of
the standalone MF given by equation 15. As a result, the expected liquidity insurance cost for
MF investors decreases. As long as some ETF investors remain invested until t = 2, κE,j1 > 0,
the MF tracking difference per share is lower under the dual fund structure compared to the
baseline model, ∆M,j,Dual

2 < ∆M,j,Dual
2 . Higher long-term payoffs for MF shareholders in a

multi-fund structure represent a redistribution from ETF investors. Patient ETF investors
subsidize the short-term liquidity provision of the MF share class. The specific magnitude
of this liquidity cross-substitution depends on the amount of early redemptions from the MF
share classes and the illiquidity of fund assets at the time of the redemptions. The relative
payoff received by early ETF investors remains the same as in a standalone fund structure.
Over the short term, ETF pricing depends on underlying asset value, market liquidity, and
intermediary balance sheet capacity. These factors do not change when an ETF shares its
portfolio with MF share classes.

In equilibrium, rational investors characterized by λi > 0 would never choose to invest in the
ETF structured as a as a separate share class of an existing MF. The ETF is dominated by
the MF share class:

PE,j,Dual1 < PM,j,Dual
1 ,

PE,j,Dual2 = PM,j,Dual
2 .

These findings corroborate the SEC’s concerns about cross-subsidization in multi-fund share
structures, as articulated in its 2019 ETF rule. They also bolster the regulatory reluctance
to authorize additional fund companies to merge ETF and MF share classes within a single
fund.35

5 Conclusion

I study rational investors’ optimal portfolio allocations between ETFs and index open-end
mutual funds. This paper’s main message is that the distinct trading and pricing mecha-
nisms underlying ETFs and mutual funds matter for relative liquidity provision at different
investment horizons. Although same-index ETFs and MFs share identical fundamental risks
through their common security portfolios, their payoffs may not always be equivalent. When
investors face heterogeneous liquidity needs, ETFs are not universally preferred over same-
index mutual funds by all investors. Instead, both fund types can co-exist in an index fund

35In the final rule the SEC states, “For example, an ETF share class that transacts with authorized par-
ticipants on an in-kind basis and a mutual fund share class that transacts with shareholders on a cash basis
may give rise to differing costs to the portfolio. As a result, while certain of these costs may result from
the features of one share class or another, all shareholders would generally bear these portfolio costs.” See
Exchange-Traded Funds Release No. IC-33646 (Sept 25, 2019) p. 122-123.
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market equilibrium because they cater to investors’ varied liquidity needs.

This result follows directly from the distinct mechanisms through which the costs of the liq-
uidity transformation provided by these investment funds are reflected in their share prices.
ETFs and MFs represent alternative technologies designed to provide investors’ with access to
inherently illiquid market segments and cheap diversification. MFs are an intermediary-based
index investing technology as part of which investors co-insure each other against short-term
liquidity needs through the guaranteed redemption of fund shares at the end-of-day fund
NAV. Particularly in illiquid index segments, such as corporate bond or international equity
funds, and during periods of market stress, MFs’ unique payoff structure shields investors
with urgent liquidity needs from potentially high trading costs. The costs of MFs’ short-term
liquidity provision manifest as share dilution and are borne by remaining, long-term MF in-
vestors. The resulting payoff complementarities among MF investors give rise to run risks,
the key friction associated with this technology.

Conversely, ETFs constitute a market-based investing technology. Liquidity provision occurs
via intermediaries at two levels, in security and ETF markets. There is no co-insurance be-
tween fund investors as each ETF investor bears her own transaction costs when trading ETF
shares in secondary markets. This forces ETF investors to internalize their price impact in
illiquid security markets and limits the potential for flow-induced share dilution. Yet, because
the pricing of ETF shares depends on the continuous secondary-market liquidity provision by
APs, over the short term, AP balance sheet constraints may cause disparities between ETF
prices and their underlying portfolio NAV, resulting in excessive price volatility. ETF mis-
pricing represents the liquidity premium earned by APs in exchange for their ETF creation
and redemption activities. Over the long term, the law of one price generally prevails, and
once AP balance sheet constraints subside, ETF prices tend to converge back to the fund
NAV.

In this framework, MFs are naturally preferred by investors with relatively higher liquid-
ity needs or shorter investment horizons. These investors are willing to sacrifice long-term
expected returns in exchange for MFs’ short-term liquidity insurance. ETFs in turn are pre-
ferred by investors with lower liquidity needs and longer-term investment horizons. ETFs
may be more suited for less liquid index market segments favored by long-term investors,
whereas MFs may be a better fit in liquid fund market segments favored by investors with
short-term liquidity needs, such as money market funds. Both funds are virtually perfect
substitutes in highly liquid market segments, such as large-cap domestic equities.

These findings hold significant implications for policy makers. Firstly, the SEC’s proposed
swing pricing rule could benefit MFs by reducing share dilution costs tied to early redemp-
tions, attracting more long-term investors, and thereby allowing funds to maintain a larger
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size. Secondly, regulators should encourage retirement plan sponsors to include ETFs as part
of their investment options. This would enable retirement investors to adjust their portfolio
allocation between ETFs and MFs, aligning their investments more effectively with their liq-
uidity needs and investment horizons, both before and during retirement.
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Appendices

A Figures

Figure 1: Size of U.S. index fund market by fund type in bn USD

Note: This figure shows the AUM in the CRSP sample of U.S. based index ETFs and open-
end mutual funds. The sample includes unit investment trusts (UITs) but excludes closed-end
funds as well as levered and inverse funds.
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Figure 2: Cumulative flows into U.S. index ETFs and MFs in bn USD

Note: This figure shows the cumulative monthly USD fund flows into U.S. based index
ETFs and open-end mutual funds since January 2023. Cumulative flows are calculated as
Cum FlowETFt =

∑T
t=1(Shares Outt−Shares Outt−1)∗NAVt for ETFs and Cum FlowMF

t =∑T
t=1AUMt − AUMt−1 ∗ (1 + rNAVt ) for MFs, where rNAVt is the monthly NAV-based MF

return. Fund flows are winsorized at the 1st and 99th percentile before aggregation.

Figure 3: ETF % market share in cumulative U.S. index fund flows

Note: This figure shows the percent of cumulative flows into U.S. based index funds received
by index ETFs.
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Figure 4: Asset-weighted relative ETF mispricing

Note: This figure shows the asset-weighted relative mispricing for U.S. based index ETFs.
The relative mispricing is defined as the difference between the ETF market price and its
NAV in percent of the fund NAV.

Figure 5: Distribution of relative ETF mispricing

Note: This figure shows the cross-sectional distribution of the relative mispricing for U.S.
based index ETFs.
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Figure 6: Asset-weighted net expense ratio for the top 5 benchmark segments in basis points

Note: This figure shows the asset-weighted net expense ratio for U.S. based index ETFs
and open-end mutual funds tracking one of the top five benchmark segments. The top five
benchmark indices are based on the average AUM of funds tracking a given benchmark
index over the sample between Q2 2000 and Q1 2023 and include the SandP 500, CRSP
US Total Market, Bloomberg US Aggregate Float Adjusted, FTSE Global All Cap ex US,
and Bloomberg Global Aggregate ex-USD index. The estimates are based on the quarterly
sample of CRSP index funds.
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B Institutional setting

Figure 8: Trading of ETFs and open-end Mutual Funds
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C Proofs

Proof of Lemma 1. The only way for a non-zero tracking difference to occur in ETFs is
for creation and redemption baskets to diverge from the underlying benchmark index. This
is ruled out by assumption 1. Hence, one ETF share is always equivalent to one unit of the
composite security, implying zero tracking error.

Proof of Lemma 2. By definition ∆M
2 ≡ P j2 − NAVM

2 . The terminal index price is given
exogenously by P j2 = xj . The MF NAV at the end of any given trading day is defined by the
accounting identity NAVM,j

t ≡ XM,j
t P j

t

κM,j
t

, where XM,j
t is the number of index shares held by

the fund, P jt is the market price per unit of index share and κM,j
t is the remaining number

of MF shares outstanding.

In the model, the number of index shares held by the MF at t = 1 and t = 2 are given by

XM,j
1 = κM,j

0 , (40)

XM,j
2 = κM,j

0 − ψxj∆κM,j
1

P j,M1+︸ ︷︷ ︸
Flow-induced

index sales

, (41)

where Θj,M
1+ = ψxj∆κM,j

1
P j,M

1+
is the number of index shares sold by the MF at t = 1+ to meet net

fund redemptions in the interim period as derived in equation in ??.

It follows

∆M,j
2 = P j2 −NAVM,j

2

= P j2 − P j2X
M,j
2

κM,j
0 − ∆κM,j

1

= P j2 −
P j2 (κM,j

0 − Θj,M
1+ )

κM,j
0 − ∆κM,j

1
. (42)

Substituting the expression for Θj,M
1+ from ??,
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∆M,j
2 = P j2 −

P j2 (κM,j
0 − ∆κM,j

1 ψxj

P j,M

1+
)

κM,j
0 − ∆κM,j

1︸ ︷︷ ︸
NAV M

2

= P j2 − P j2

(
κM,j

0

κM,j
0 − ∆κM,j

1
−

(
∆κM,j

1 ψxj

P j,M

1+

)
κM,j

0 − ∆κM,j
1

)

= P j2 − P j2

(
(κM,j

0 − ∆κM,j
1 + ∆κM,j

1 )
κM,j

0 − ∆κM,j
1

−

(
∆κM,j

1 ψxj

P j,M

1+

)
κM,j

0 − ∆κM,j
1

)

= P j2 − P j2

(
1 −

(
∆κM,j

1 ψxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

)
(43)

Finally,

∆M,j
2 =

P j2

(
∆κM,j

1 ψxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

(44)

The MF tracking error represents the absolute cost of the share dilution per unit of MF share
experienced by remaining MF shareholders. It can expressed as a fraction of the terminal
index value (the numeraire):

∆̃M,j
2 ≡ ∆M,j

2
P j2

=
∆κM,j

1 ψxj(P j,M1+ )−1 − ∆κM,j
1

κM,j
0 − ∆κM,j

1
, (45)

The relative MF share dilution per unit of MF shares in 45 can further be decomposed into
three components:

∆̃M
2 = 1

κM,j
1︸ ︷︷ ︸

Remaining
MF shares

outstanding

(
∆κM,j

1︸ ︷︷ ︸
# MF
shares

redeemed
early

(
ψxj(P j,M1+ )−1 − 1︸ ︷︷ ︸

Excess # index
shares liquidated
to satisfy early

redemptions

))
. (46)

Proof of Corollary 1. First, from equation 44 it directly follows that ∆M,j
2 = 0 if net

mutual fund redemptions at t = 1 are zero, ∆κM,j
1 = 0.

Second, if the mutual fund NAV at t = 1 is perfectly forward looking and equal to the index
price at which the MF trades in index markets, ψjxj = P j,M1+ , ∆M,j

2 = 0 because
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∆M,j
2 =

P j2

(
∆κM,j

1 ψjxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 − ∆κM,j
1

)
κM,j

0 − ∆κM,j
1

= 0

Third, if markets are perfectly liquid and funds have no price impact when trading index
shares, ψj = 1 and cj = 0. As a result, NAVM,j

1 = xj and P j,M1+ = xj . It follows

∆M,j
2 =

P j2

(
∆κM,j

1 ψjxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 xj

xj
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 − ∆κM,j
1

)
κM,j

0 − ∆κM,j
1

= 0

Finally, if ∆κM,j
1 ̸= 0 and NAVM,j

1 ̸= P j,M1+ , then ∆M,j
2 ̸= 0. This follows directly from

equation 46 combined with the facts that xj > 0 and κM,j
1 = η + κM,j

0 − ∆κM,j
1 > 0.

Proof of Corollary 2. From proof 1 it follows that ∆M,j
2 = 0 when at least one of the

conditions in corollary 1 is satisfied. As a result,

PM,j
2 = P j2 − ∆M,j

2 = P j2 . (47)

Since PE,j2 = P j2 , PM,j
2 = PE,j2 = P j2 .

Proof of Lemma 3. I start by proving the results (i) and (iii): Conditional on receiving no
liquidity shock, ETF (MF) investors are ex-post identical. This is because at t = 0 investors
only had the choice between investing their entire, identical endowment into MFs or ETFs.
Investors did not have the option to invest parts of their endowment in the risk-free asset.
Due to their risk-neutrality, investors never choose to mix between the ETF and MF at t = 0.
All ETF (MF) investors at t = 0 with i = l at t = 1, that is patient ETF (MF) investors
within a given index segment j, have the same initial allocation θi,E,j0 = 1 (θi,M,j

0 = 1).
This allocation implies that all patient ETF (MF) investors’ budget constraints at t = 1
must be identical. In addition, by assumption, all investors have identical preferences over
terminal wealth. Finally, in equilibrium, all MF investors share the same belief regarding
other investors’ redemption decisions. Thus, all remaining patient ETF (MF) investors must
have the same optimal investment policy at t = 1, that is

θi,E,j1
∗

= θE,j1
∗

∀ i with θi,E,j0 = 1 and i = l (48)

θi,M,j
1

∗
= θM,j

1
∗

∀ i with θi,M,j
0 = 1 and i = l (49)

Result (ii) and (iv) follow the above argument: Conditional on receiving a liquidity shock,
ETF (MF) investors are ex-post identical. All ETF (MF) investors at t = 0, have the same
initial allocation θi,E,j0 = 1 (θi,M,j

0 = 1). Hence, all ETF (MF) investors with i = e at t = 1
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face the same budget constraint. When liquidating their entire portfolio upon receiving a
liquidity shock at t = 1, all impatient ETF (MF) receive identical payoffs. Thus,

θi,E1
∗

= 0 ∀ i with θi,E0 = 1 and i = e (50)

θi,M1
∗

= 0 ∀ i with θi,M0 = 1 and i = e (51)

Their terminal wealth is given by

W i
1

∗ = PE1
∗ ∀ i with θi,E0 = 1 and i = e (52)

W i
1

∗ = NAVM
1

∗ ∀ i with θi,M0 = 1 and i = e (53)

Proof of Proposition 1. Since investors are risk-neutral, patient ETF investors do not
liquidate any of their fund shares at t = 1, θi,E,j1 = 1 ∀i = l, whenever the expected ETF
payoff at t = 2 exceeds the ETF price at t = 1. Formally, when

PE,j1 ≤ E[PE,j2 ] (54)

, where the weak nature of the inequality follows directly from assumption 3.

Using assumption 2 and the expression for the market-clearing ETF price at t = 1 from
equation ??, 54 reduces to

0 ≤ ∆κE,j1 (cj + ϕj). (55)

The market maker’s inventory cost parameter as well as AP’s balance sheet capacity con-
straint parameter are both generally strictly positive, cj + ϕj > 0. Besides, the model only
features negative liquidity shocks. There are no positive liquidity (savings) shocks. There
are no dividends or non-financial income sources. As a result, ∆κE,j1 ≥ 0, there can only be
outflows. Hence, equation 55 is always satisfied and patient ETF investors always remain
invested until the terminal period.

The special case in which equation 55 is satisfied with equality occurs when ∆κE,j1 is zero
or when cj and ϕj are both zero. ∆κE,j1 = 0 holds when none of the investors who invested
in ETFs at t = 0 receives a liquidity shock at t = 1. cj = 0 and ϕj = 0 hold in the stylist
scenario case in which index markets are very liquid, such that the market maker can absorb
any index supply without price impact and the AP faces no balance sheet capacity constraints.

Proof of Proposition 2. The payoffs of the ETF and MF tracking index j at different
horizons are given by
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PE,j1 = xj − ∆κE,j1 (cj + ϕj) (56)

PE,j2 = xj (57)

PM,j
1 = ψxj (58)

PM,j
2 = xj − ∆M,j

2 (59)

(i) When cj = ψj = ϕj = 0, the ETF and MF price at t = 1 reduce to xj , the fundamental
index value. Besides, from corollaries 1 and 2 follows that ∆M,j

2 = 0. Hence, the ETF and
MF payoff at t = 2 are identical as well.

(ii) Following corollary 1, if the MF NAV at t = 1 is perfectly forward looking, PM,j
1 = P j1+ ,

the terminal MF tracking difference is zero, ∆M,j
2 = 0. Thus, PE,j2 = PM,j

2 = xj .

In the absence of AP balance sheet capacity constraints, ϕj = 0, the ETF price at t = 1
becomes PE,j1 = xj − ∆κE,j1 cj . By assumption, in this case cj > 0. Defining ∆κE,j1 =
∆κM,j

1 = ∆κj1, the fund payoffs at t = 1 simplify to

PE,j1 = xj − ∆κj1cj (60)

PM,j
1 = P j1+ = xj − ∆κj1cj (61)

Equation 61 follows directly from market clearing between the MF and index market maker
at t = 1+ according to 24 for the case that PM,j

1 = P j1+ .

Proof of Lemma 4.
Since investors are risk-neutral, patient MF investors do not liquidate any of their fund shares
at t = 1, θi,M,j

1 = 1 ∀i = l, whenever the expected MF payoff at t = 2 exceeds the MF price
at t = 1. Formally, when

PM,j
1 ≤ E[PM,j

2 |xj ]. (62)

Using the definition of the MF NAV at t = 1 and the results from equations 15 and 17, 62
reduces to

ψjxj ≤ E

[
P j2 −

P j2

(
∆κM,j

1 (NAV M,j
1 −P j

1+ )
P j

1+

)
κM,j

1

∣∣∣∣∣xj
]
. (63)

Simplifying and using xj > 0,
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ψj ≤ 1 −

(
E[∆κM,j

1 |xj ](ψjxj−P j

1+ )
P j

1+

)
E[κM,j

1 |xj ]
. (64)

If index markets are frictionless, cj = 0, there is no price impact as the index market maker
absorbs any supply of index shares at P j1+ = xj . It follows for 64:

ψj ≤ 1 −

(
E[∆κM,j

1 |xj ](ψjxj−xj)
xj

)
E[κM,j

1 |xj ]
. (65)

This in turn reduces to

(
1 + E[∆κM,j

1 |xj ]
E[κM,j

1 |xj ]

)
ψj ≤ 1 + E[∆κM,j

1 |xj ]
E[κM,j

1 |xj ]
. (66)

Since there can only be outflows or zero fund flows at t = 1, ∆κM,j
1 ≥ 0. In the presence of

sleepy investors, eta > 0, the number of remaining MF investors is strictly positive, κM,j
1 > 0.

Hence, 1 + E[∆κM,j
1 |xj ]

E[κM,j
1 |xj ]

is strictly positive. Because 0 < ψj < 1, equation 66 always holds and,

irrespective of other MF investors’ redemptions, ∆κM,j
1 , patient MF investors would never

liquidate any shares early if cj = 0.

Proof or Proposition 3. Market clearing in index markets between index market makers
and MFs, ΘM,j

1+ = ΘD,j
1+ , implies

E[P j2 |xj ] − P j,M1+

cj
= ∆κM,j

1 PM1

P j,M1+

(67)

⇐⇒
xj − P j,M1+

cj
= ∆κM,j

1 ψjxj

P j,M1+

⇐⇒ 0 = P j,M1+
2 − P j,M1+ xj + cjψjxj∆κM,j

1 (68)

.
Using assumption 4, it follows P j,M1+

∗
= 1

2(xj +
√
x2
j − 4cjψjxj∆κM,j

1 ).

Proof of Corollary 3. Using ∆κM,j
1 ≤ 1, there can never be more MF redemptions than

initial investments, it follows that the fundamental must satisfy xj ≥ 4cjψj for the solution
to equation 68 to exist. The fundamental must be large relative to the price impact and MF
NAV staleness parameter.

Proof of Corollary 4. This result directly follows from 67 and proposition 3.
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Proof of Corollary 5. These results directly follow from 67 and the fact that the inverse
net index demand function of the market maker, PD,j1+ , and the inverse net index supply
by the MF, PM,j

1+ , are strictly decreasing in the number of index shares. On one side, as
the supply of index shares by the MF increases, the market maker’s inventory cost increases
leading to a drop in its willingness to pay per index share. On the other side, as the index
price decreases, the MF has to liquidate more index shares to satisfy its obligations to MF
investors who redeemed at t = 1.

dPD,j1+

dΘD,j
1+

= −cj (69)

dPM,j
1+

dΘM,j
1+

= −∆κM,j
1 PM,j

1

(ΘM,j
1+ )2

(70)

over the permissible range of ΘM,j
1+ .

Proof of Proposition 4. xj must be such that after observing the fundamental xj < xj pa-
tient MF investors always decide to run and redeem their entire portfolio of MF shares early
no matter their beliefs of other patient MF shareholders’ actions. Patient MF investors will
choose to liquidate their shares at t = 1 even if they believe only impatient MF sharesholders
redeem early. Conversely, for any xj > xj , patient MF investors will never want to redeem
any of their shares early. In this region runs never occur in equilibrium.

Lower-dominance region (0, xj ]. Let ēM = E[eM ] be the expected mass of impatient
(early) MF investors at t = 1, with ēM ≤ 1. Using 20 and lemma 2, the lower dominance
region with respect to the fundamental xj is then defined by the following condition:

0 = E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = ēM ] (71)

Using the restriction xj > 0:

0 = 1 − E

[(∆κM,j
1 (PM,j

1 −P j

1+ )
P j

1+

)
κM,j

0 − ∆κM,j
1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = ēM

]
− ψjR

f . (72)

Substituting P j1+ from the index market clearing at t = 1+ following proposition 3:
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0 = 1 − E

[(∆κM,j
1 (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ∆κM,j
1 ))

1
2 (xj+

√
x2

j −4cj ψj xj ∆κM,j
1 )

)

κM,j
0 − ∆κM,j

1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = ēM

]
− ψjR

f ,

= 1 −

(
ēM (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ēM ))
1
2 (xj+

√
x2

j −4cj ψj xj ēM )

)
κM,j

0 − ēM
− ψjR

f . (73)

Note that κM,j
0 − ēM > 0 because of the presence of sleepy MF investors. Simplifying:

0 = (1 − ψjR
f )(κM,j

0 − ēM ) −
( ēM (ψjxj − 1

2(xj +
√
x2
j − 4cj ψj xj ēM ))

1
2(xj +

√
x2
j − 4cj ψj xj ēM )

)

= (1 − ψjR
f )(κM,j

0 − ēM ) −
( ēM (2ψj − (1 +

√
1 − 4cj ψj ēM

xj
))

(1 +
√

1 − 4cj ψj ēM

xj
)

)

= (1 − ψjR
f )(κM,j

0 − ēM )
(

1 +
√

1 − 4cj ψj ēM
xj

)
− 2ēMψj + ēM

(
1 +

√
1 − 4cj ψj ēM

xj

)

=
(

(1 − ψjR
f )(κM,j

0 − ēM ) + ēM
)(

1 +
√

1 − 4cj ψj ēM
xj

)
− 2ēMψj . (74)

Solving for xj and using Rf = 1:

2ēMψj
(1 − ψjRf )(κM,j

0 − ēM ) + ēM
= 1 +

√
1 − 4cj ψj ēM

xj(
2ēMψj

(1 − ψjRf )(κM,j
0 − ēM ) + ēM

− 1
)2

= 1 − 4cj ψj ēM

xj
. (75)

This gives:

xj = 4cj ψj ēM

1 −
(

2ēMψj

(1−ψjRf )(κM,j
0 −ēM )+ēM

− 1
)2 . (76)

Using the assumption Rf = 1 and simplifying:
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xj = 4cj ψj ēM

1 −
(
ēM (2ψj−1)−(1−ψj)(κM,j

0 −ēM )
(1−ψj)(κM,j

0 −ēM )+ēM

)2

= 4cj ψj ēM

1 −
(
ēM (2ψj−1)−(1−ψj)(κM,j

0 −ēM )
)2(

(1−ψj)κM,j
0 +ψj ēM

)2

=
4cj ψj ēM

(
(1 − ψj)κM,j

0 + ψj ē
M
)2(

(1 − ψj)κM,j
0 + ψj ēM

)2 −
(
ēM (2ψj − 1) − (1 − ψj)(κM,j

0 − ēM )
)2

=
4cj ψj ēM

(
κM,j

0 − ψj(κM,j
0 − ēM )

)2(
κM,j

0 − ψj(κM,j
0 − ēM )

)2 −
(
ēM (2ψj − 1) − (1 − ψj)(κM,j

0 − ēM )
)2

xj =
4cj ψj ēM

(
κM,j

0 − ψj(κM,j
0 − ēM )

)2(
κM,j

0 − ψj(κM,j
0 − ēM )

)2 −
(
2ψj ēM − (κM,j

0 − ψj(κM,j
0 − ēM ))

)2 (77)

Defining a = κM,j
0 − ψj(κM,j

0 − ēM ):

xj = 4cj ψj ēMa2

a2 −
(
2ψj ēM − a

)2
= 4cj ψj ēMa2

a2 −
(
4(ψj ēM )2 − 4aψj ēM + a2)

= 4cj ψj ēMa2

4aψj ēM − 4(ψj ēM )2 (78)

Note that a > 0 because a = κM,j
0 −ψj(κM,j

0 − ēM ) = (1 −ψj)κM,j
0 +ψj ē

M ) with 0 < ψj < 1,
κM,j

0 ≥ η > 0 and ēM ≥ 0.

Assuming ēM > 0, 78 gives:

xj = cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

. (79)

In the special case in which ēM = 0, xj = 0 according to equation 76. The lower dominance
region is empty. Since there exists a continuum of investors i with λi ∼ U [0, 1], the law of
large numbers implies that ēM = 0 only holds in one of two cases: Apart from the sleepy
investors, no one invested in MFs at t = 0, that is κM,j

0 = η, or only investors characterized
by λi = 1 invested in MFs at t = 0.

Existence of the lower dominance region. For the lower dominance region to be non-
empty it must hold that xj > 0. That is

0 < cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

. (80)
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Assuming ēM > 0, it is clear that this condition is satisfied if and only if

0 < cj (81)

0 < ψj < 1 (82)

0 < κM,j
0 (83)

Equation 81 follows from the fact that (1 − ψj)κM,j
0 − ψj ē

M ) > 0 because 0 < ψj < 1 and
eM < κM,j

0 . Equation 81 - 82 are always satisfied given the model’s parameter assumptions.
82 is satisfied because η > 0. The lower dominance region in which the MF run is the unique
equilibrium outcome always exists and is non-empty.

Upper-dominance region [xj ,∞). Let ēM = E[eM ] be the expected mass of impatient
(early) MF investors at t = 1 as before and l̄M = E[lM ] the expected mass of patient (late)
MF investors. k = κM,j

0 − η ≤ 1 denotes the total mass of non-sleepy MF investors and is
known after initial allocation decisions have been made at t = 0. Using 20 and lemma 2,
the upper dominance region with respect to the fundamental xj is defined by the following
condition:

E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = k] = 0 (84)

Equation 84 is similar to the condition for the lower dominance region, xj , in equation 71.
The distinguishing feature between both regions is the conditioning information in the ex-
pectations operator.

Using P j2 = xj and xj > 0, from 84 follows

0 = xj − xjE

[(∆κM,j
1 (PM,j

1 −P j

1+ )
P j

1+

)
κM,j

0 − ∆κM,j
1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = κM

]
− ψjxjR

f . (85)

Substituting P j1+ from the index market clearing at t = 1+ following proposition 3:

0 = 1 − E

[(∆κM,j
1 (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ∆κM,j
1 ))

1
2 (xj+

√
x2

j −4cj ψj xj ∆κM,j
1 )

)

κM,j
0 − ∆κM,j

1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = k

]
− ψjR

f .

0 = 1 −

(∆κM,j
1 (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ∆κM,j
1 ))

1
2 (xj+

√
x2

j −4cj ψj xj ∆κM,j
1 )

)

κM,j
0 − k

− ψjR
f . (86)
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Using the fact that κM,j
0 = k + η and Rf = 1,

1 − ψj =

(
k(ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj k))
1
2 (xj+

√
x2

j −4cj ψj xj k)

)
η

. (87)

Simplifying:

η(1 − ψj) =
2kψj − k(1 +

√
1 − 4cj ψj k

xj
))

(1 +
√

1 − 4cj ψj k
xj

)
,

η(1 − ψj) = 2kψj

1 +
√

1 − 4cj ψj k
xj

− k. (88)

Solving for xj :

xj =
4cjψjk

(
η(1 − ψj) + k

)2(
η(1 − ψj) + k

)2 −
(
(2ψj − 1)k − η(1 − ψj)

)2 . (89)

Finally, substituting k = κM,j
0 − η the upper dominance region is defined by:

xj =
cj
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

. (90)

Existence of upper dominance region. For the upper dominance region to be non-empty
it must hold that xj > 0 (necessary condition). Besides, xj ≤ xj (sufficient condition). Given
the lower dominance region exists, that is condition 80 is satisfied, if xj ≤ xj holds, the upper
dominance region must exist.

Necessary condition: The numerator and denominator of 90 must both be strictly positive.
First, the numerator of 90,

cj
(
κM,j

0 − ψjη
)2
> 0, (91)

is always strictly positive because κM,j
0 > η and 0 < ψ < 1. Second, for the same reasons the

denominator of 90 is also always strictly positive:

(1 − ψj)κM,j
0 > 0. (92)

Hence, xj > 0.
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Sufficient condition: xj ≤ xj requires:

cj

(
ψj ē

M + (1 − ψj)κM,j
0

)2
≤ cj

(
κM,j

0 − ψjη
)2
. (93)

For cj > 0, this simplifies into:

(
ψj ē

M + (1 − ψj)κM,j
0

)2
≤
(
κM,j

0 − ψjη
)2
,

ψj ē
M + (1 − ψj)κM,j

0 ≤ κM,j
0 − ψjη,

ēM + η ≤ κM,j
0 ,

(94)

which is always satisfied by definition because κM,j
0 = eM + lM + η.

Proof of Corollary 6. From 79 the lower dominance region is defined by:

xj = cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

, (95)

where κM,j
0 =

∫
i θ
i,M,j
0 di + η. Let k =

∫
i θ
i,M,j
0 di. Taking partial derivatives with respect to

the key model parameters and variables gives:

∂xj
∂cj

= (ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

> 0, (96)

∂xj
∂ēM

= 2cjψj(ψj ēM + (1 − ψj)κM,j
0 )

(1 − ψj)κM,j
0

> 0 (97)

∂xj
∂η

= cj

(
(1 − ψj) − (ψj ēM )2

(1 − ψj)(k + η)2

)
. (98)

Where 98 simplifies into:

cj

(
(1 − ψj) − (ψj ēM )2

(1 − ψj)(k + η)2

)
= cj

(1 − ψj)(k + η)2︸ ︷︷ ︸
> 0

(
(1 − ψj)2(k + η)2︸ ︷︷ ︸

> 0

− (ψj ēM )2︸ ︷︷ ︸
> 0

)
(99)

The sign of the partial derivative ∂xj

∂η depends on the relative magnitude of (1 −ψj)2(k+ η)2

and (ψj ēM )2. Specifically, for 98 it follows that ∂xj

∂η < 0 whenever (1 − ψj)(k + η) < ψj ē
M .

By assumption 0 < ψj < 1 is close to 1, while 9 ≤ k ≤ 1. Therefore, as long as η is relatively
small and the mass of early MF investors is large relative to the late (patient) MF investors,
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η <
ψj

(1 − ψj)︸ ︷︷ ︸
> 1

ēM − k︸︷︷︸
≥ ēM

, (100)

the size of the lower dominance region decreases as the mass of sleepy MF investors increases,
∂xj

∂η < 0.

Proof of Corollary 7. From 90 the upper dominance region is defined by:

xj =
cj
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

. (101)

where κM,j
0 =

∫
i θ
i,M,j
0 di + η. Let k =

∫
i θ
i,M,j
0 di. When xj increases, the size of the no-run

region decreases because xj marks the lower bound of this region.

Taking partial derivatives with respect to the key model parameters and variables gives:

∂xj
∂cj

=
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

> 0, (102)

∂xj

∂κM,j
0

=
cj((κM,j

0 )2 − ψ2
j η

2)
(1 − ψj)(κM,j

0 )2
> 0, (103)

∂xj
∂η

= cj
1 − ψj

(
1 + 2ψj(

ψj
(k + η)2 − 1)

)
(104)

102 and 103 follow from the facts that κM,j
0 = k+η and 0 < ψj < 1. 104 implies that the size

of the no-run region increases with the mass of sleepy investors, ∂xj

∂η < 0, when the following
condition is satisfied:

0.5 < ψj −
ψ2
j

(k + η)2 . (105)

Proof of Corollary 8. This is a direct result from equations 28 and 29 for cj = 0.
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D List of model variables

Table 3: Model notation

Exogenous parameters and their interpretation.
Parameter Definition
xj State variable / terminal index payoff
λi i’s probability of a liquidity shock at t = 1
ϕj AP balance sheet capacity constraint
cj Index market maker inventory cost
η Mass of sleepy investors
Rf Risk-free rate, normalized to equal one

Endogenous quantities and their interpretation.
Parameter Definition
κEt Share (mass) of ETF investors at t
κMt Share (mass) of MF investors at t
∆κE1 Volume of ETF liquidations (outflows) at t = 1
∆κM1 Volume of MF redemptions at t = 1
P jt Index market price at t
NAVM

t Mutual fund net asset value, PMt = NAVM
t

NAV E
t ETF net asset value

PEt ETF market price
ϵEt Relative ETF mispricing (discount), ϵEt = P jt − PEt

θi,Mt Units of MF shares held by agent i at t
θi,Et Units of ETF shares held by agent i at t
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