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Abstract

When firms choose their capacity and then compete a la Bertrand, the market equilib-
rium can correspond to the Cournot outcome (Kreps & Scheinkman, 1983). In the banking
sector, a bank’s lending capacity is constrained by its capital structure due to regulatory cap-
ital requirements. This paper establishes the conditions under which the Bertrand-Cournot
equivalence extends to banks. I treat capital as an imperfect capacity commitment, allowing
banks to distribute dividends and raise additional capital at a short-term premium during
the competition stage. I show under which conditions the Cournot outcome is the unique
equilibrium of the game. Such micro-foundations for Cournot competition in the loan mar-
ket open new perspectives to the modeling of an elaborate, yet tractable, banking sector in

macroeconomic models.
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1 Introduction

In recent years the macro-banking literature has received increased attention. An important
challenge for researchers in this field is to model an elaborate banking sector in order to capture
the special role of banks in the economy while keeping the framework tractable enough to be
embedded in a macroeconomic model. Researchers wish to incorporate key ingredients such as
risk, limited liability, regulation, and asymmetric information. When several of these features
are present, perfect competition is useful to maintain the model analytically tractable. However,
the banking sector is very concentrated and banks have substantial market power (Degryse &
Ongena, 2008; Freixas & Rochet, 2008). Consequently, assuming perfect competition may result
in outcomes or predictions that overlook important mechanisms driven by market power.

Several papers incorporate micro-founded financial frictions in a macroeconomic context, but often
lenders do not have the key characteristics of banks and are simple risk-neutral lenders (Bernanke
& Gertler, 1986, 1990; Brunnermeier & Sannikov, 2014). Another set of papers includes many
of the relevant bank characteristics, but run into tractability issues. Thakor (1996) and Begenau
(2020) include capital requirements, but bypass the challenges associated with limited liability by
proxying deposit insurance with a reduced-form subsidy from the government to banks. Christiano
et al. (2010) embed a banking sector in a DSGE framework, where banks face credit and liquidity
risk but compete perfectly, whereas Abadi et al. (2023) account for banks’ market power, but
they need to rely on a reduced-form cost function for banks, which is meant to capture agency
costs and regulations.

This paper proposes a partial solution of the overarching challenge of microfounding Cournot
competition in the loan market under well-defined conditions, which also delineate the limitations.
The Cournot approach effectively account for imperfect competition in a meaningful manner with
an inherent tractability that gives researchers flexible modeling choices.

There are other approaches to imperfect competition that offer a degree of tractability. In the

literature, the most commonly used forms of competition & la Salop and & la Dixit-Stiglitz !. In

For competition & la Salop, examples include but are not limited to: Dell’Ariccia (2001); Chiappori et al.



a Salop model, borrowers are uniformly distributed on a circle and banks decide their location.
Borrowers incur transportation costs to reach a bank. This type of competition can be narrowly
interpreted as purely spatial, emphasizing that physical distance is an important factor in the
lending market (Nguyen, 2019; Degryse & Ongena, 2005; Petersen & Rajan, 2002) or, in a broader
sense, the unit circle can be seen as the space of products where banks offer loans with different
features to gain market power. The standard interpretation of Dixit-Stiglitz also relies on product
differentiation, but it implies that, ceteris paribus, borrowers are better off by having multiple
loans with different banks rather than having one large loan with one bank. Ulate (2021) provides
a plausible micro-foundation: the CES demand can be generated by a two step decision process in
which first borrowers choose a bank through a taste shock and then decide on the loan quantity.
However, these models are microfounded only under the assumption of horizontal differentiation
(e.g. bank branding or location) where no product is objectively better than another. Vertical
differentiation (e.g. differences in contract terms such as maturity, collateral, or monitoring)
does not microfound the competitive structure in these models. Vertical quality differences affect
borrower choice, but they do not justify the taste-shock logic. For instance, if a bank offers
better terms due to superior screening or relationship lending, borrowers will strictly prefer it
in financial terms. This paper provides microfoundations for Cournot competition by modeling
agents as maximizing the risk-adjusted net present value of cashflows, offering a valid alternative
to taste-shock approaches. These foundations highlight both the advantages and the limitations
of Cournot, which, while tractable, should be adopted only when consistent with the environment
under study.

Cournot competition also offers analytical advantages that are particularly useful in dynamic
macroeconomic models. Li (2024) points out that monopolistic competition models a la Dixit—
Stiglitz do not generate time-varying loan markups over the business cycle without additional
assumptions. In the DSGE literature, such variation is typically introduced through mecha-

nisms like exogenous shocks to the elasticity of substitution (Gerali et al. , 2010), changes in
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banks’ marginal cost of lending (Hafstead & Smith, 2012), deep habits in financial intermedia-
tion (Airaudo & Olivero, 2019; Aliaga-Diaz & Olivero, 2010), or nominal rigidities a la Calvo
or Rotemberg (Hiilsewig et al. , 2009). By contrast, Li (2024) models the banking sector as a
Cournot oligopoly, where markups vary endogenously with the number of banks and the elasticity
of loan demand. This framework captures how imperfect competition can endogenously shape
macroeconomic fluctuations, without the need to introduce additional frictions.

The starting point of the micro-foundations of Cournot competition is Kreps & Scheinkman (1983)
(hereinafter KS) who show that in a two-stage game in which firms first choose capacity and then
compete a la Bertrand, the unique subgame perfect equilibrium is the Cournot outcome. Given
this setting, the banking sector seems a natural application for two reasons: (1) given a fixed
amount of regulatory capital, capital requirements constrain a bank’s lending capacity, therefore,
bank capital choices can be interpreted as capacity choices (Schliephake & Kirstein, 2013); (2)
banks typically do not raise capital and issue loans simultaneously, but have medium-term capital
targets (Couaillier, 2021). However, capital does not always represent a rigid constraint. Maggi
(1996) develops a model of capacity—price competition in which firms can expand capacity, though
the analysis is limited to differentiated goods under linear demand. This perspective is particularly
suited for banks, since bank capital appears to be a less rigid constraint than physical capital.
Schliephake & Kirstein (2013) prove that Maggi’s framework can be extended to banks that issue
risk-free loans, and show that if the cost of raising capital in the second stage is sufficiently high,
the Cournot outcome is the unique subgame-perfect equilibrium.

The contribution of this paper is to outline the conditions under which this result continues to
hold in a more general setup, given the following characteristics of the banking sector. First, banks
are protected by limited liability and deposits are insured by the government. Second, banks are
subject to capital requirements and can increase or decrease their capital in the competition stage.
In line with Schliephake & Kirstein (2013), I find that the cost of recapitalizing must be sufficiently
high in order to sustain the Cournot equilibrium. The intuition is that capacity constraints must

be relevant, otherwise the competition stage becomes a standard Bertrand game. Third, loans



are not only risky, but their risk is endogenous. In particular I allow the probability of default
to depend on the interest rate charged by the bank. This feature is important because it allows
for loan demand functions derived from bank—borrower interactions that incorporate asymmetric
information. The interest rate can affect the composition of the pool of borrowers or borrowers’
incentives. Depending on the friction taken into account, a higher loan rate can lead to a safer
(De Meza & Webb, 1987; Bernanke & Gertler, 1990) or a riskier portfolio (Stiglitz & Weiss, 1981;
Martinez-Miera & Repullo, 2010) or the effect may be ambiguous (House, 2006).

The impact of the loan rate on the probability of default requires particular attention, as it
threatens the Bertrand-Cournot equivalence. In KS, the Bertrand—Cournot equivalence holds
because, once firms are at full capacity, the demand-stealing mechanism of Bertrand competition
vanishes: price cuts reduce revenues without expanding output. In stage 1, firms anticipate that
they will operate at full capacity and therefore, the strategic choice of capacity is equivalent to the
strategic choice of quantity. This equivalence cannot be straightforwardly applied to environments
characterized by asymmetric information: a bank, even when operating at full capacity, may want
to charge a lower rate in order to improve its distribution of defaults. Whether the Bertrand—
Cournot equivalence holds depends on the nature and magnitude of the underlying friction. Two
conditions are required. First, the expected average residual cashflow—i.e. cashflows net of
deposits—must be increasing in the bank’s loan rate. This implies that in standard moral hazard
setups (Boyd & De Nicolo, 2005; Martinez-Miera & Repullo, 2010), borrowers’ incentives should
not be overly sensitive to small changes in the loan rate. Second, a bank’s default rate depends
only on its own interest rate, not on that of its competitor. This condition rules out setups such as
adverse selection with screening, where a bank always has the incentive to undercut its competitor
to be the cheapest lender and attract a better pool of borrowers (Broecker, 1990; Marquez, 2002).
Cournot offers desirable properties of tractability and modeling flexibility. This paper contributes
by establishing its microfoundations and delineating its limitations, thereby offering a tool that

may open new perspectives in the macro-banking literature.



2 Model Setup

2.1 The environment

The model builds on Kreps & Scheinkman (1983) (KS) and Martinez-Miera & Repullo (2010). All
agents are risk neutral and the gross risk-free rate is normalized to one. Consider the following
two-bank two-stage game. In stage 1, each bank i € {1,2} raises capital k; € R, , and in stage
2 banks compete a la Bertrand in the loan market. Capital regulation requires banks to fund a
fraction v € (0,1) of their loans, [; with capital. Loans can also be financed through deposits,
d; , which are supplied elastically. In the second stage, banks are allowed to adjust their capital:
they can either reduce capital by distributing dividends at a unit cost 0 or raise more capital at a
short-term premium . These costs can be broadly interpreted as capital adjustments costs, which
capture both purely transactional costs and deadweight losses (e.g. limited investor base to raise
more capital in the short-term). Their role in the model is to prevent banks from frictionlessly
adjusting their capital, thereby making stage 1 irrelevant.

In contrast with Schliephake & Kirstein (2013), loans are risky. Let r; be the interest rate charged
by bank i. The fraction of loans that default is governed by the random variable x, which is
distributed according to the cumulative distribution function F'(z|r;) which has support [0, 1].
[ assume that if a loan defaults its recovery rate is zero. Over its support, F'(z|r;) is twice
continuously differentiable in x and r;, and it is strictly increasing in x. How r; affects the
distribution of defaults depends on the underlying friction. This feature will allow the model to
nest some asymmetric information setups, provided that the conditions presented later in this
section are respected.

The solution concept is subgame perfect Nash equilibrium, hence I solve the game by backward
induction. In stage 2, banks take capital raised in stage 1 as given and every pair (kq, ko) represent
a different subgame which I denote by H(k1, ko). In every subgame, banks compete & la Bertrand
subject to capital requirements. Borrowers select banks according to a Bertrand allocation rule.

All borrowers first apply to the bank offering the lowest rate. If the cheapest bank has not sufficient



lending capacity to satisfy the entire demand at r; < r;, it has two options: (i) expand its capital
so as to increase lending capacity; or (ii) refrain from expanding, in which case total demand is
rationed. Rationing follows the efficient rule: borrowers who are more willing to pay, are served
first. The residual demand is then served by the rival bank at its quoted rate. Formally, denote
by L(r) the loan demand as a function of the loan rate and assume that it is twice continuously
differentiable and strictly decreasing where it is positive. In the subgame H(k1, k2), given the loan
rates posted r = (r1,73) and the additional capital raised e = (eq, e5) by each bank, the demand

served by bank ¢ is given by:

(

min (k%, L(ri)> if r; <rj

li(r,e) = ¢ min <—ki+ei,max (L(;i),L(ri) — —kj+ej>) ifr; =r,
y

min (k%, max (O, L(r;) — kj%)) if r; >r;

\

In every instance, a bank cannot extend loans beyond its capacity (k; + e;)/7 determined by the
capital requirement. If bank 7 sets the lowest rate, it serves the entire market up to its capacity.
If banks set the same rate, they equally split the demand; however if one bank does not have
sufficient capacity to serve half of the market, the other can serve the residual demand. Lastly, if
bank i names the highest rate, it serves the residual demand (if any). Note that efficient rationing
is not an inconsequential assumption; KS result does not hold under other types of rationing
without further assumptions 2. To ease readability let /;(r, e) = I;.

If cashflows generated by the loans are not sufficient to pay back deposits the bank defaults and
deposit are repaid though the government insurance. Therefore, from the bank’s perspective,
deposits are the cheapest source of funding®. I assume that the unit cost of paying dividends 4 is

sufficiently small to ensure that the bank always prefers to pay dividends and raise deposits when

2See Lepore (2009).

3Provided that the bank’s probability of default is strictly positive. If the bank’s probability of default is zero,
then the bank is indifferent between deposits and capital and the model reduces to a KS game where production
costs are equal to capacity costs.



the capital requirement constraint is slack 4. Given this, after stage 2 decisions have been made,
the capital requirement constraint binds.

Define n(l;, k;) as the capital adjustment function:

(1 —=0)(k; — i) if ki >l
n(lh kl) =

If capital raised in stage 1 is greater than what the regulation requires, then the bank pays back a
dividend, whereas if the bank needs to raise more capital, it must pay the short term premium?®.
Consequently, deposits are always equal to d; = (1 — 7)l;. Given the loan rate posted and the

additional capital raised by each bank, the stage 2 payoff of bank 4 is given by:

(/OI (1=2)(14+7r)—(1—=7) dF(x\ri)) L+ (ks 1)

T+
1+Ti

where 7 =

Z is the maximum fraction of defaults that allows the bank to repay deposits. Define m(r) =
fogE (1 —2)(L+7r;) — (1 —7))dF(x|r;) as the expected average residual cashflow, i.e. the average
cashflow left to shareholders after deposits are repaid. Note that, thanks to the deposit guarantee,

the bank pays deposits at the risk-free rate only in the states of the world in which it survives.

2.2 Payoffs and Equilibrium Concept

In addition to pure strategies, I also allow for mixed strategies, where players randomize over their
available actions. In stage 2, bank ¢ will choose a distribution over rates G;(r;) and how much

extra capital e; to raise in order to maximize its expected payoft:

4Given the evidence of bank payout behavior (Acharya et al. , 2022; Belloni et al. , 2024) this assumption does
not seem particularly restrictive. The assumption is important for tractability (for further discussion see Section
5). For the exact condition see the Appendix.

5Note that by construction k; < 7l; only if e; > 0.



max { (Gi Gy ene;) // Tzl—i—T]/{:z,l)]dGi(m)de(rj)}

GESr, e;€ERY

where r; and 7; are respectively the infimum and the supremum of the support of G;, and S, is
the space of distributions over rates.

In stage 1, each bank chooses capital according to some distribution u;(k), with support [k, k;] C
R, anticipating the equilibrium strategies of each subgame. Denote by Sy the strategy space of

stage 1. Bank 7 aims to maximize its expected profits:

max { (s, 15) / / (ki k) k-)dm(l@)dui(/@)}
wi(ki)ESk

where p; is the opponent’s strategy and M*(k;, k;) is the expected equilibrium payoff of H(k;, k;).

Definition. The tuple (u}, s, Gi(r1lky, k2), G5(ralky, k2), el (k1, k), €5(k1, k2)) is a subgame per-
fect Nash equilibrium (SPNE) if

e For all (ki, ko) € RL, (Gi(ri1|k1, ko), G5(ralk, ka), €i(k1, ka), €5(k1, ko)) are the equilibrium

strategies of the subgame H(ky, ks), i.e. for all i = 1,2

M(G;, Gl el e5) > M(Gy, Greel)  Y(Gie) €S, x Ry

3 i

e Forall:=1,2:

T, 15) 2 (e pi;) VY € Sk

2.3 Key Conditions

I now set out the sufficient conditions which allow me to prove that the Cournot outcome, defined

in the next section, is the unique equilibrium of this game.

Condition 1. (monotonicity) m(r) is strictly increasing in r where it is positive.



Condition 1 states that the average residual cashflow is increasing in own rate. While for firms
with linear costs it is trivial that an increase in price leads to an increase in the average margin,

for banks there are other channels at work:

i i -
omlr) _ ?(1+T)F(i\r)+/ Falr) + (4020 drZ0
r or ,, 0 S=— T

(+) Margin

TV
(+) Buffer (+£) Distribution shifting

In line with Schliephake (2016), there are three effects. First, the buffer effect: an increase in r
drives the increase in the threshold # and allows the bank to survive in more states of the world.
Second, the margin effect: an increase in the rate makes the bank earn more on non-defaulting
loans. Lastly, an increase in r affects the distribution of the default rate. The direction of this
distribution shifting effect is ambiguous and depends on the friction that F(-|r) captures. The
condition on monotonicity implies that if the distribution shifting effect is negative, its magnitude
cannot be too large. A negative distribution shifting effect implies that when the bank charges
a higher rate the portfolio becomes riskier, e.g. an entrepreneur protected by limited liability
chooses a riskier project when facing a higher loan rate (Boyd & De Nicolo, 2005; Martinez-Miera
& Repullo, 2010; Schliephake, 2016). In this context, Condition 1 impose that a small change in

the loan rate should not lead to a dramatically different probability of default.

Condition 2. (independence) The distribution function of default is independent from the

opponent’s rate F(z|r;,r;) = F(x|r;).

As T will discuss in detail in Section 4, this condition is generally not satisfied in adverse selection

settings, where relative prices affect the quality of the pool served.

2.4 The Cournot benchmark

Before proceeding to the characterization of the equilibrium, I define the one-stage Cournot bench-
mark. In this one-stage game, banks choose capital and loan quantities simultaneously, while facing

the same fundamentals as in the two-stage game—mnamely, the same regulation, the same demand,

10



and the same risk environment. Capital requirements are binding because of the government
guarantee, therefore k; = vl; and d; = (1 — v)l; for i € {1,2}. Denote the inverse loan demand by
r(L) = L7'(r), which is the interest rate on loans as a function of total loans supplied L = [; + ls.
Taking [; as given, bank ¢ solves the following problem:

mas ([ (=0 070~ =) aF ) -7 )

;>0

Define Z(L) = foi (1—=z)(14+r(L)— (1 —~))dF(z|r(L)) . Assume that —Z"(L)L/Z'(L) < 1.
This assumption ensures that the Cournot equilibrium is unique and therefore constitutes a valid

benchmark.

Lemma 1. Let

b(l;) = argmax(Z(L) — )l

;>0

The best response function b(-) has a unique fized point b(1¢) = 1. Therefore (1°,1¢) and r(21°)

are respectively the equilibrium quantities and the equilibrium rate of the Cournot game.

Proof. See Appendix. n

The independence condition implies that Z(L) = m(r(L)). In absence of this condition, the
equality is not obvious. When certain frictions are introduced, it is not possible to map the
two-stage game to this one-stage setup. For example, if banks can screen borrowers using an
informative but imperfect signal, the relative pricing between competitors becomes relevant: the
bank offering the more attractive rate will screen applicants before the other and therefore will
face a better pool of borrowers. The one-stage Cournot game, which implies a single prevailing
market rate, is not able to capture this kind of sorting effect across lenders. The monotonicity

condition implies that Z’(L) < 0 where it is positive.

11



Auxiliary Cournot game

Before turning to the two-stage game, I define an auxiliary Cournot game, whose best response
functions are useful to divide the space of the subgames into relevant regions. This auxiliary game
is a stage 2 Cournot game in which the bank has already raised capital and faces the opportunity

cost of paying dividends. Let:

~

b(l;) = argmax(Z (L) — (1 —9))l;

1;>0

It is straightforward to prove that b(-) has the same properties of b(-) and that b(l;) < b(l,), with
strict inequality when b(l;) is positive.
Now I proceed to the two stage game. In the next sections I show by backward induction that the

Cournot outcome is the unique subgame perfect Nash equilibrium.

3 The baseline model

For now, to streamline the core of the analysis, I assume k = +00 as in KS, therefore banks will
not be able to raise capital in the short term. This assumption is relaxed in Section 5. I also
assume 6 > 0 to rule out multiplicity of equilibria. In Section 5 I allow § = 0 and provide an
alternative set of assumptions to maintain uniqueness. Following the solution concept of SPNE

defined in the previous section, I proceed by backward induction.

3.1 Second stage: Bertrand competition with capital requirements

In this section, I characterize the equilibrium of every subgame H(kq, k2). Define p,(6) to be
the rate such that the expected average residual cashflow m(p,(6)) = v6, and A, (8) = L(p,(0))
the corresponding loan demand. In every subgame H(ki, k2) such that mini% > A, (1—90), the
capacity constraints are irrelevant and the game is a standard Bertrand competition in which the

average residual cashflows equals the opportunity cost of capital in equilibrium. In KS, this is

12



equivalent to have the price equal to the marginal cost with only two differences: first, banks care
about the average residual cashflow not about the price; second, because banks can pay dividends,
the cost of capacity is not completely sunk in the second stage. Optimal strategies (G, G3%) are
71 =12 = py (1 — &) with probability 1 and banks’ equilibrium payoffs are equal to M;(G},G}) =

(1 — 9)k;. For the rest of the paper consider only subgames in which min; % <A, (1-9).
Lemma 2. In every subgame equilibrium it must be that r; > r ("ﬁ—’”) = rfC for all i € {1,2}.

Proof. Given any Gj, if a bank names a rate r < 7C| then it is operating at full capacity with
probability one. Given that m(r) is an increasing function of r, any r < r' is strictly dominated
by rF¢. In other words, when a bank reaches maximum capacity has no incentive to undercut the
opponent as it would decrease the interest rate without improving the quantity. Therefore any
rate r < r“cannot be part of an equilibrium strategy and r; > rf¢.

Denote by «;(r) = Pr(r; = r) the probability mass that the distribution G; puts on r. O

Lemma 3. In equilibrium, if 7y = 75 = T and a;(T) > 0 for i € {1,2}, then

<
I
-
I
S

r,=r=r"" and ES (ﬁ)ViE{l,Q}
v v

Proof. See Appendix. O

Lemma 3 states that if there exists an equilibrium in which banks have the same supremum,
this supremum must be smaller or equal to the full capacity rate. The intuition is the following:
if 7 > rFC then the bank with (weakly) more capital has capacity to expand lending. Hence,
the strategy 7 would be dominated by 7 — ¢, with e arbitrarily small, which keeps the expected
average residual cashflow constant and increases the quantity. The second part of the lemma,
v

ki< py <%>, ensures that each bank has no incentive to charge a rate that is higher than 7 and be

the monopolist of the residual demand.

Lemma 4. In equilibrium, if 7; > 7; or 7; =7; and a;(7;) = 0, then:

13



MG 65) = () =21 =60 (2) 40

ks 7 (kj
(b) 5> b (7)
(¢c) r; =r; and a;(r;) = 0 for all i € {1,2}
(d) ki > k;
(e) the equilibrium payoff of bank j is uniquely determined by (ki ka) and

P(kj)2> + (1= 0)k; < M;(G5, Gf) < P(k;) + (1= 0)k;

Proof. See Appendix n

This lemma states the following: the bank that is competing less aggressively (7; > 7;) must be
the bank that has more capacity. The intuition is the following. To make the low-capacity bank
indifferent across rates in the support of its equilibrium strategy, it must have a relatively lower
probability of being undercut.

Under condition 1 and 2, Dasgupta & Maskin (1986) guarantee the existence of an equilibrium,
therefore every H(ki, k2) has an equilibrium that must respect Lemmas 2-4. We can divide the

subgames space into three relevant regions (see Figure 1 for reference) .

e Region 1 {’H(k‘l, ks) : mini% > A (1— 5)}: in this region banks are so much capitalized
that capacity constraints do not matter. The subgame equilibrium is 71 = 75 = p,(1 — 0)

with probability one and the equilibrium payoffs are M;(G},G%) = (1 — 0)k; for i € {1,2}.

e Region 2 {H(/ﬁ, ks) : % <b (%ﬂ) Vi € {1, 2}}: in this region banks operate at full capacity.
The subgame equilibrium is r, = ry = ¢ with probability one and the equilibrium payoffs

are M;(Gy,G%) = m(’r’Fc)% for i € {1,2}.

14



Y Region 1

Region 3A

A, (1-6)

Figure 1: Equilibrium regions of the baseline model. The axes represent the banks’ capacities, with each point
corresponding to a specific subgame. The lines l;() are the best response functions of the auxiliary Cournot game,
and A, (1—0)is the threshold such that, if both banks’ capacities lie above it, capacity constraints become irrelevant.
In Region 1 the equilibrium is Bertrand with marginal cost (1 —¢). Region 2 is the full capacity equilibrium region.

Region 3A and 3B are the mixed strategy equilibrium regions.
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e Region 3A {H(kl, ko) : k1 > ko and % >b (%) }: in this region there is a mixed strategy
equilibrium which has the characteristics described by Lemma 4. The equilibrium payoffs

e Region 3B: symmetric to Region 3A

Note that stage 2 payoffs are continuous functions of k; and k.

3.2 First stage: capital choice

Recall, from Stage 1 perspective, bank ¢ maximizes its overall profits:

max {W(Mihuj> _ /k /k'f (M (ki, kj) — k) dﬂj(kj)d,uz’(ki)}

i (ki) €Sk
where M/ (k;, k;) is the expected equilibrium payoff of H(k1, k).

Proposition 1. Under conditions 1 and 2, the Cournot outcome, ki = ky = I andry = ry = %,

18 the unique subgame perfect equilibrium of the two-stage game.
Proof. See Appendix for a formal proof. Below I provide a sketch of the proof. O
For the sketch of the proof consider just pure strategies.

e Region 1: bank ¢ profits are given by m;(k;, k;) = (1 — 0)k; — k; = —dk;. In this region the
bank has raises too much capital. As paying dividends is costly, from a stage 1 perspective,
the bank is better off by raising less capital. Hence any (k;, ks) that belong to region 1
cannot be a SPNE.

e Region 2: bank i profits are given by m;(k;, k;) = m(rFC)% —k; = (Z (@) - fy) % In
this region banks operate at full capacity and charge the full capacity rate, hence the stage 1
strategic choice of capacity is equivalent to the strategic choice of quantity. The only possible

subgame perfect equilibrium in this region the Cournot equilibrium (kj, k3) = (v1¢,v1)°.

6Note that the Cournot equilibrium belongs to this region because b(l) < b(l) for all I.
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Figure 2: Full game equilibrium. The axes represent the banks’ capacities, with each point corresponding to a
specific subgame. The black lines b(:) are the best response functions of the equivalent one-stage Cournot game.
The intersection of these lines is the SPNE of the game. The grey lines are the best response functions of the
auxiliary Cournot game.

e Region 3A: bank 1 profits are equal to m (ky, ko) = P(ke) — dk;. Bank 1’s profits are
decreasing in ki, hence bank 1 is better off by raising less capital. Note that this is true also
at the border of the region when k; = ko. The intuition is that in this region bank 1 has
raised too much capital and has to pay dividends in expectation. A positive cost for paying

dividends rules out the possibility of having an equilibrium in this region and ensures the

uniqueness of the SPNE.

e Region 3B: symmetric to 3A.
Therefore the only subgame perfect equilibrium is (7}, k3) = (7%, 71°), in stage 2 1y = ry = rF'¢ =

r(21¢) with probability one.
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4 Modeling the banking sector: When can we assume
Cournot competition?

The key conditions that must hold in order to assume Cournot competition are that (i) the average
expected residual cashflow must be increasing in own rate; (ii) a bank’s own default rate must
not depend on the interest rate charged by the opponent. Clearly, Cournot competition can be
assumed when risk is exogenous (%—f = 0) (e.g. Villa, 2023; Corbae & D’Erasmo, 2021; Bahaj

& Malherbe, 2020). In this section I show that moral hazard can be embedded in this model,

whereas adverse selection setups are often not consistent with the proposed microfoundations.

4.1 Moral Hazard

Consider a modified version of Boyd & De Nicold (2005). Due to limited liability, when en-
trepreneurs face a higher loan rate, they choose a riskier project or exert less effort, hence the
probability of default is increasing in loan rate. Entrepreneurs choose among projects that require

one unit of investment and have the following return function:

1+ a(p) with prob. (1 —p)
X =

0 with prob. p

Therefore entrepreneurs optimally pick a project by choosing the probability of default p. Assume
a(p) to be continuous, increasing and strictly concave. Each entrepreneur ¢ has her outside option
u; and solves the following problem
u(r) = max (1 —p)(a(p) —r)
p€[0,1]

such that u(r) > o,
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In order to have an interior solution I further assume that «(0) —/(0) < r < a(1). The first order
condition is given by:

r—a(p’) + (1 —p)d(p’) =0
By the implicit function theorem

dp* 1
d,r _ 20/(29*) _ (1 —p*)Oé”(p*)

>0

When charged a higher rate, entrepreneurs choose projects with higher probability of default. For
simplicity assume that all loans are perfectly correlated. The expected average residual cashflow
is given by:

m(r) = (1=p*(r))(r+7))
The monotonicity condition demands m(r) increasing, i.e.

d*
ml(r) = == (r+7) + (L= p(r)) > 0
d* ¥
dp* _1-p(r)
dr r 4y

=

This inequality implies that the probability of default must not be too sensitive to a marginal

increase in the loan rate. For instance, if p(r) = a + br, then:

m'(r)=—=b(r+~)+1—a—0br>0
1—a 1—a

<
2r+vy 7 v

S b <

In conclusion, provided that the marginal residual cashflow is increasing in the loan rate, Cournot
competition can be justified in frameworks that entail moral hazard (Martinez-Miera & Repullo,

2010; Schliephake, 2016; Gasparini, 2023; Corbae & Levine, 2025).
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4.2 Heterogeneous borrowers, adverse or favorable selection and screen-
ing
Heterogeneity of borrowers’ types requires a thorough discussion of the rationing rule. Recall the
assumption on efficient rationing: when demand exceeds capacity, borrowers that have a higher
reservation rate are served. Therefore, it is essential to ensure that willingness to pay is not
perfectly correlated with the borrower’s type. Otherwise the rationing rule would contradict the
fact that borrowers’ type is private information. Take a simplified version of De Meza & Webb
(1987). A borrower of type t has a project that requires a unitary investment returns (1 + a) with

probability p; and 0 otherwise. Also assume in that all borrowers have the same outside option u

constant. For a given loan rate r, a borrower of type t accepts the loan if

The reservation rate perfectly predict the type, hence this would be incompatible with the efficient
rationing rule. Now assume that the outside option is stochastic and depends on the type ;. For
simplicity, also assume that there are two types t € {H, L}, Pr(t = H) = X\ and py > pr. Type t

is willing to accept the loan rate r if

r<a-—=g
Dbt

Let & ~ G(&|t) and assume that G(|t) has a monotone hazard rate, i.e.

g(&lt)

—_— 1S monotonic in ¢t

1= G(¢)

where g(&|t) = G'(&|t) is the probability density function. If it is monotonically decreasing, H-

types are on average more willing to pay and adverse selection is modeled a la De Meza & Webb
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(1987), if it is increasing L-types are more willing to pay as in Stiglitz & Weiss (1981). In this
case, the willingness to pay does not fully reveal the type but induces a distribution over the types.
Therefore there is no inconsistency between the rationing rule and borrowers’ private information.
However, independently on how we model adverse selection, whenever the correlation between
type and the reservation rate is different from zero, the independence condition is violated. Take
the case of DeMeza and Webb: a bank has always the incentive to be the cheapest one as it selects
a better pool of borrowers in expectations.

To make the independence condition hold, very specific assumptions are needed. For example,
assume that u; = p,u, where 4 ~ G and it is independent of the type, in this case a borrower of
type t accepts the loan if

D _
r<a——=a—A1u.

Pt
Thanks to this assumption, the reservation rate is independent of borrower type. However, it
also implies that the rate charged by the bank does not affect the composition of the borrower
pool, effectively eliminating any adverse or favorable selection mechanism. Moreover, if we add a
screening technology, the independence condition is violated again. In particular, if banks receive
uncorrelated signals, there is always an incentive to undercut the opponent. The reason is that
the most expensive bank draws from a worse distribution as it includes borrowers that have
been rejected by the cheaper bank”. One way to avoid the breakdown of the equilibrium is to
assume that banks see the same signal (e.g. open banking). Therefore, to include heterogeneous
borrowers in the model, one must make strong assumptions: borrower’s willingness to pay must
be independent of its type and any signal about the borrowers’ type must be public (or perfectly

correlated across banks).

“For a formal proof see Broecker, 1990; Marquez, 2002
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5 Capital adjustment costs

In this section I first relax the assumption about the short-term capital premium x = 400 and set
out the condition under which the Cournot equilibrium is still the unique SPNE of the two-stage
game. Second, I discuss the assumptions on dividends payment and provide an alternative setup

to allow & = 0.

5.1 Raising more capital

Consider the same game of the baseline model, but allow k < co. In this game, when the capital
requirement is binding and borrowers are rationed, banks can decide to raise more capital and
serve the demand it is facing. In the IO literature, Boccard and Wauthy (2000; 2004) extend
KS by allowing firms to build extra capacity in the competition stage at a premium cost. They
show that if the Cournot price is lower than the short-term premium, the Cournot outcome is still
the unique SPNE of the two-stage game. Whereas if the short term premium is lower than the
Cournot price, the subgame becomes a standard Bertrand competition with marginal cost equal
to the short term premium. They seem to implicitly assume some parametric restrictions for the
short-term premium, which however does not change the core of the reasoning. In the model

notation:

Condition 3. p,(1 + k) > max {r(@(O)),rC}.

~

Where 7(b(0)) represents the monopolist rate in the auxiliary Cournot setting. Note that also in
this case the existence of an equilibrium in every subgame is guaranteed by Theorem 5 of Dasgupta

& Maskin (1986).

Lemma 5. In subgames H(k1, ka) such that @ < A, (1+ k), the unique subgame equilibrium is

r1 = ro = py(1 4+ k) with probability one.

Proof. See Appendix for a formal proof. The intuition is that @ < A, (1 + k) implies 77 >

p4(1 + k), hence at the full capacity rate banks find it optimal undercut the opponent and ex-
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Region 1

Region 3B

o)

Region 3A

Ay(l+x)

A, (1+x)

Figure 3: Equilibrium regions with capital increase in the second stage. The axes represent the banks’ capacities,
with each point corresponding to a specific subgame. The curves I;() are the best response functions of the auxiliary
Cournot game, and A (1 — §)is the threshold such that, if both banks’ capacities lie above it, capacity constraints
become irrelevant. In Region 1 the equilibrium is Bertrand with marginal cost (1 — §). Region 2 is the full capacity
equilibrium region. Region 3A and 3B are the mixed strategy equilibrium regions. In Region 4 the equilibrium is
Bertrand with marginal cost (1 4+ ). This region is delimited by A, (1 + «): if the sum of capacities is below this
threshold, the sub-game falls into Region 4.

pand their capacity. The typical demand-stealing mechanism of Bertrand competition is restored.

Therefore, banks undercut each other until they make zero profits, i.e. ry =179 = p,(1 + K). O]
Lemma 6. In subgames H(ky, ko) such that @ > A (1+ k), lemmas 2 to 4 hold.

Proof. See Appendix. n

The intuition is that when klvﬂ > A, (1 + k), which implies 7¢ < p. (1 + k), the possibility to
raise more capital does not create any profitable deviation in the subgames equilibria found in the
baseline game. The condition p,(1 4 k) > r(b(0)) is necessary to show that Lemma 4 is robust
to short-term capital expansions. Specifically, it ensures that the equilibrium payoffs are solely

determined by (ki, k2) and are the same of the baseline game.
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Now we can divide the subgames into four relevant regions. Regions 1 and 3A /B are the same of the

baseline game with the same payoffs. Region 2 has the same equilibrium strategies and payoffs of

k
v v

the baseline but it is now delineated by {H(kl, ko) : fathz > A,(1+ k) and % <b (—]> Vi=1, 2}.
Finally in Region 4, defined as {’H(k;l, ko) : @ <A1+ ﬁ)}, the equilibrium strategies are

Ay (1+k
2

ri=15=p,(1+k)and ef =~ ) — k;; the equilibrium payoffs (1 + «)k; for i = 1,2. Also in

this case, payoffs are continuous in (kq, k2).

Proposition 2. Under conditions 1-3, the Cournot outcome is the only SPNE of the two stage

game.
Proof. For a formal proof see Appendix. Below I provide a sketch of the proof. O

The only additional step with respect to the baseline model is to prove that there cannot be any
SPNE in Region 4. In in this region, m;(k;, k;) = kk;, hence both banks have the incentive to
increase capital. The intuition is that banks anticipate that they are going to expand capacity in
the second stage. As raising capital in the short term is more costly, hence they are better-off by

raising more capital in stage 1.

5.2 Paying dividends

In the baseline model I assume that the cost of paying dividends 6 must be positive. A positive
cost is necessary to rule out multiple equilibria. Alternatively, it is possible to assume that in the
first stage bank capital requires a premium rx > 0 and banks can pay dividends at no cost. In
this way is costly for the bank to raise excessive capital in stage 1. I also assume that the cost of
paying dividends must be small enough so that the bank never wants to have capital in excess of
the requirement. If § is too high or banks just cannot pay out dividends (§ — oo) the game needs
simplifying assumptions in order to become tractable. The reason is that the amount of bank
capital not only determines the lending capacity of the bank, but also the marginal cost of issuing
loans. If I; < k;, the marginal cost of issuing loans is zero as the bank does not need to raise

deposits. If [; > k;, the bank needs to raise deposits to finance its loans. Because of the deposit
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A,(1+5%)

Ay(1+7%) Ay(1-9)

Figure 4: Full game equilibrium with capital increase in the second stage. The axes represent the banks’ capacities,
with each point corresponding to a specific subgame. The black lines b(-) are the best response functions of the

equivalent one-stage Cournot game. The intersection of these lines is the SPNE of the game. The grey lines are
the best response functions of the auxiliary Cournot game.
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) — o0 with no risk, bank loans as imperfect substitutes and linear demand
Schliephake & Kirstein (2013)

> 0 but small* this paper

=0 multiplicity of equilibria (without additional assumptions)

K — 00 baseline game (for firms: Kreps & Scheinkman (1983))
< oo but large™  this paper (for firms: Boccard and Wauthy (2000; 2004))

=0 standard Bertrand competition

Table 1: This table summarizes how different values for the parameters of the model map to the litera-
ture.* small enough so that banks are always willing to pay back dividends when the capital requirement
constraint is slack.**sufficiently large to make Condition 3 hold.

guarantee, the marginal cost depends on leverage: the more leveraged is a bank, the cheaper the
deposits®. Whereas when banks can pay out dividends, banks’ leverage will just depend on the
capital requirement and the marginal cost of issuing loans is constant and independent of the
initial capital raised. Schliephake & Kirstein (2013) show that the Cournot outcome is SPNE in

a tractable model in which banks are not allowed to pay dividends, issue risk-free differentiated

loans, and loan demand is linear.

6 Conclusion

Cournot competition in the banking sector can be microfounded through a two-stage game in which
banks first choose capital and then compete a la Bertrand, subject to capital requirements. Three
key conditions must be satisfied: (i) the average marginal residual cashflow must be increasing in
the loan rate; (ii) in the two-stage game, the distribution of default rates must depend only on the
bank’s own rate and not on its competitor’s; and (iii) the short-term premium must be sufficiently
high. When these conditions hold, banks behave as if they were competing in quantities, leading
to a Cournot outcome in equilibrium. Cournot provides tractability and modeling flexibility. This

paper establishes the key conditions under which Cournot competition can be microfounded in

8Recall: from the bank’s perspective, the cost of deposits is the risk-free rate times the probability of survival
of the bank
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the banking sector. At the same time, these conditions delineate its limitations, thereby clarifying

the scope of its applicability.
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Appendix

Proposition 1: when b(l;) it is positive it must satisfy the following first order condition:
Z'(b(l;) + [;)b(l;) + Z(b(ly) +1;) =7 =0
Given the equation above, the best response function has the following properties:

la] b(l;) is strictly decreasing : by the implicit function theorem

db(l;) —  Z'(b(ly) +1;) + Z"(b(l;) + 1;)b(l5) <0
i 22'(b(l;) + ;) + 2" (b(l;) + 1;)b(1;)

[b] b'(l;) > —1: increase [; by € and decrease b(l;) by the same amount. The FOC is equal to:

Z'(b(ly) + 1;)(0(ly) — ) + Z(b(l;) +1;) —~

= Z'(b(ly) + ;)b(ly) + Z(b(l;) + 1) — v —=Z"(b(l) + ;)

N

-
=0

= —Z/(b(lj) + lj)E >0
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Hence it must be that b'({;) < —1.

[c] IfI; > b(l;), then b(b(l;)) < l;: set I; = b(l;) and b(l;) = [; and evaluate the FOC:

Z'(b(l;) + 1)l + Z(b(ly) +1;) —
= Z'(b(l;) + ;) (l; + b(l5) — b(l;)) + Z(b(l;) + 1;) —~

= Z'(b(l;) + 1;)(l; = b(l;)) < 0

as l; > b(l;) by hypothesis. This implies that the best response to b(l;) is smaller than [,

The last property ensures that b(/;) is a contraction and therefore has a unique fixed point.
Capital requirement binding in Stage 2. Given any triple (k;, l;,r;) if k; > ~yl;, bank i prefers

to pay dividends and raise more deposits to make the capital requirement binding

/OI (1—2)(T+7r) — (1 =) dF(x|r)li+(1—=0)(ki—l;) > /Ox ((1 —z)(14+r)l; — (l; — k1)+) dF (z|r;)

_ (Adr)li—(i—ki)*

where & GETALE

and (y)™ = max{0,y}. It is always possible to have a positive but

arbitrarily close to zero § that make the inequality above true. Re-arranging:

(1 =08)(ki =) > (L + 1)l /m F(x|r;)dz

The RHS is strictly smaller than (1 + r;)l;(# — &) = (k; — 7l;), hence there exists a § > 0, such

that

(1=0)(ki — L) = (1 +7)l; /r F(z|r;)dx

Hence for any § < ¢ the inequality holds.
Lemma 3: WLOG let k; > ky. By hypothesis 71 = 7o = 7. Now suppose 7 > 77, Bank 1 would

have a profitable deviation to name a rate that is lower but arbitrarily close to 7
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lim M, (F—e, G;)— My (7, G;) = as(7)(m(F)—~(1-4)) {min <@ L(r)> — max (@ L(7) — —)} >0

€l0 y

Hence it must be that 7 < 7. Now I prove the second part of the lemma. By lemma 1, it must

be that r, = 7; = 7' for all i. Then if bank i names a rate r > ¢ its payoff must be equal to

(m(r) = (1 - ) (L<r> - k—) (1= Ok,

Y

Let l; = L(r) — %, then it is equivalent to maximize (Z (li + ’%) —y(1— 5)) l;. By definition it
<

is maximized at [; = B(%), hence it must be that %

b (%), otherwise bank ¢ would have a
profitable deviation.

Lemma 4: WLOG assume 7; > 75. Before proceeding I must prove that ko > yA,(1 — 0) is
incompatible with the hypotheses of the lemma. By hypothesis, min; % < A,(1 —6), hence if
ky > A, (1 —9), then ky < A,(1—4). By naming r € <p7(1 —4),r (%)) bank 2 gets a payoff that
is strictly higher than (1 — ¢)k,. Hence in equilibrium it must be that 7, > p,(1 — ). However if
71 > 7o, it implies that when bank 1 names 7, the residual demand is always equal to zero and
M, (71, Gs) = (1—9)k,. However this cannot be part of an equilibrium as bank 1 has the profitable
deviation to name any rate r € (p,(1 — ), 72).

For (a) and (b): consider the function

kj

61r) = (m(r) —3(1 = 8)ymax (0, 2(r) — &)

By naming any rate r > 7y, bank 1 gets M;(r,G2) = ¢(r) + (1 — §)k;, hence it must be that
¢(r) is maximized at 7. In order to maximize ¢(r), bank 1 should choose r such that % <

L(r) < k“;—'” For any level of r there is a loan quantity, namely [(r) = L(r) — %, such that
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o(r) = (Z (l(r) + %) — (1 — (5)) [(r). Picking r to maximize ¢(r) is equivalent to maximize:

len[éagf] (Z (z + %) — (1 - 5)) l

77

This is maximized at min (%, b (%) ) , if the capital requirement binds we are in the case of Lemma
3, which is incompatible with the hypothesis of this lemma, hence it must be that ’% > 6(%)
and 71 =1 (l; (%) + %)

(c) Suppose that r; < r;. By naming r; bank i gets M;(r;, G;) = (m(r;) —v(1—4)) min <%, L(fi>) +
(1 —9)k;. Clearly if L(r;) > %, then the payoff is strictly increasing in rand bank ¢ would have
the profitable deviation to name r; + €; if L(r;) < %, it must be that r; = 7(b(0)) otherwise bank
i would have a profitable deviation. However r, < 7y = r <l; (%) + %) < r(b(0)), therefore it
cannot be an equilibrium. It must be that r, = r, = r. Note that r > rf“, otherwise for bank
1 would be profitable to deviate and name r (l; (’fy—2> + %) Now I prove that «;(r) = 0 for all
i € {1,2}. Let i denote the bank that has (weakly) more capital’ and bank j the bank that has
(weakly) less capital. Suppose bank j names r with positive probability. Then bank ¢ prefers to

name a rate that is smaller but arbitrarily close to r

i Mz, 6) =M. Gy) = (e 1 0-0) (min (. 260)) e (20 - 2))

Therefore it must be that a;(r) = 0. Bank j names r with zero probability, however r is the
infimum of the support, hence it must be that bank j names a rate that is arbitrarily close and

above r but not exactly r

My (2, Go) =l M+ ,Gy) = au(o)m(z) — 2 (1 — 6))\(mm (452~ mx (0.2 - %))

Hence it must be that «o;(r) = 0.

97 still have to prove that this is bank 1.
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d)r<rm=r ((A) (%2) + %), implies L(r) > 5(%) + % > %2 Hence the equilibrium payoff of
bank 2 must be equal to m(f)%. Now suppose ky > ki, it must be that the equilibrium payoft
of bank 1 is equal to m(f)%. By part (a) we also know that the equilibrium payoff of bank 1 is
equal to P(kz) + (1 — d)ki, which implies that m(r) = P(kz)7- + v(1 — ). The payoff of bank
2 can be re-written as P(k'g)’lz—j + (1 — 0)ky. If bank 2 names r = r (l; (%) + %) > 7y, it gets
P(k1)+ (1 —=9)ks. Therefore if P(ky)+ (1 —0)kqy > P(kg)Z—j + (1 —0)ks, which can be re-written as
ki1 P(ky) > ko P(ky), bank 2 has a profitable deviation and ky > k; contradicts the hypotheses of the

~

lemma. Define the function ¢:(k) = kP(k) = k (Z (b (%) +£) = 4(1-8)) b (%) and compute
(e 62) ) r-0) ()2
s [ (o2) 1) -5) o2)-)

Bank 2 has a profitable deviation if the expression above is negative. As B() is decreasing, this

the derivative

Hence:

integral is more likely to be positive when ks is as small as possible. From (b) we know that
ko > b <%>, hence:

- (K
(k) = (ky) < (07 | — ) ) — (k)

~y
- k k . k ~(k k ~(k
(0 (3) %) ) (3) - (20 (3) +5) e-9)e(3)) =0
Y Y Y Y Y Y
The term above is negative because by definition (Z (l + ’%) —y(1 - 5)) | is maximized at b (%) :
Therefore it must be that &k > ks.

Finally (e): from part (a), (c) and (d) we know that

E

m(r)

£ < () — 20 = o min (2,20 + (1= )k = Pk + 1 )k

Hence in equilibrium bank 2 can get at most P(kq)+(1—0)k;. We also know that P(ks)+(1—0)k; =
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(m(r) — (1 —0)) min (%, L([)) +(1—=98)ky <m(r ) , which implies m(r) > P(k2)- +~. Hence
m(z)% > P(kzg)z—f + (1 —9)ks.
Proposition 1: WLOG let k; > k.

e (Step 1) In equilibrium it must be that ki /v > b(ky/7). Suppose not: k; /v < b(k,/7), which
implies that b(k1/v) > b(b(ky/7)). As ky < Ky, it must be that k,/v < b(ky/7). Then it
must be that b(b(ky/7v)) > ky/7'°. By transitivity, k,/v < b(k1/7). Therefore when bank 2

raises k, is for sure in Region 2:

m(ky, p1) = /:1 (Z <k1 J;EQ) —7) %dul(/ﬁ)

1

The profits are strictly increasing in k, as k, < b(ky/7) for all k; € [k, k1], hence bank 2

can profitably deviate and name k, + €. Therefore it must be that k; /v > b(ky/7).

e (Step 2) ki/v < b(ky/7). Suppose not: ki /v > b(ky/7). Then when bank 1 raises k; is either

in region 2 or in region 3A:

i) = | j(kl) (2 (B22) ) Dot + | " (Plky) = k) (k)

v £(k1)

~

where £(k) = b ( ) The profits are strictly decreasing in &, in particular the first term
is decreasing because ki/y > b(ky/v) > b(ky/7) for all ky in the support. Therefore bank 1

would have the profitable deviation to raise k; — e. Hence it must be that ki /v < b(ky/7).

e (Step 3) The previous step imply that k; /v = b(ka/7) = b(ky/7), which implies that bank
2’s equilibrium strategy is a pure strategy ks; bank 1 best response to the pure strategy ko
is b <’;> In turn, bank 2 must best respond to that hence k"’ =b ( ) b ( <72>> . The

unique solution is k; = ko = 1%, and in the second stage banks name ¢ = r(2[¢) = r¢

with probability one.

10See proof of Proposition 1 for the properties of b(-)
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Lemma 5: Recall that demand is rationed according to the efficient rule as in the baseline game.
In particular, when banks name the same rate, they can raise more capital only if they cannot
serve the entire demand collectively, i.e. r;y =1y =r and L(r) > @

Step 1) r; > p,(1 + k) for all ¢ € {1,2}. Suppose not and let r; < p,(1 + k) for some ¢. By
‘) Y 1 Y

hypothesis p, (1 + x) < r'“, hence when bank ¢ names r,it gets:

L

Mi(r, G5) = mz)

Bank ¢ is operating at full capacity and does not find it profitable to raise more capital as r; <
p4(1 + k). However m(-) is an increasing function, hence bank i would be better off by naming
r; + €. Hence, this cannot be an equilibrium and it must be that r; > p,(1 + &) for all i € {1,2}.
(Step 2) 7; < py(1+ &) for all i € {1,2}. Suppose not and let 7; > p,(1 + k). WLOG divide the

proof into two cases:

o7, >7;or7; =7; and «;(r;) = 0. By naming 7; bank i gets M;(r;,G;) = (1 — §)k;. As
r; > py(1+ k), bank j will always find it profitable to raise more capital and supply the
entire market, therefore bank 7 has no residual demand to serve. Bank ¢ is better off by

naming p, (1 + ) and getting (1 + x)k;.

o 7, =7;=7and ;(F) > 0 for all i = 1,2. If p, (1 + k) <7 < rf¢:
MiG) = aylr) [l 2 4 (A 0) | + (= sy - o

2 2

If bank 7 instead names 7 — €:

lim M;(7 — €) = a(7) [m(P)L(7) + 0 (L(F), k)] + (1 — ;7)) (1 = 6)ks
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Hence:

hmMZ(f— 6) - Mi(f, G]) =

ay(r) [m() 5;> raemk) =0 (k)] >0

Finally if 7 > r¢ both banks have incentives to undercut as in every standard Bertrand

game.

Therefore it must be that 7; < p,(1 + &) for all i € {1,2}.

(Step 3) py(14+k) <r1; <7 < py(14+k), then that r; = p,(1+~) with probability 1 for all i € {1, 2}
is the only possible equilibrium (existence is guaranteed by Dasgupta & Maskin (1986), however
is immediate to show that given the opponent’s strategy there are no profitable deviations).
Lemma 6: Start with Lemma 2. The proof is the same of the baseline model as we are working
under the hypothesis that ’“TH“? > A, (1 + k), which implies r"® < p,(1 4+ k). Lemma 3 follows
exactly.

the possibility of expanding does not alter the first part of the proof. Hence, if iy = 7, = 7 and
a;(T) > 0 for all i € {1,2} it must be that # = r = rF'“. Banks do not have incentives to undercut
the opponent, so we must check that there are no incentives to charge a higher rate. Given the
,,,,FC)

opponent strategy o;( = 1, bank ¢ maximises its payoff:

Gyl (10 ((n(r) =21 = i (2,200 - ) ) 4 (- oy

v gl

the payoff is multiplied by G,(p,(1 4+ k)) because if the opponent charges a rate higher than
po(1 + k) it will serve the entire market. However a;(rf“) = 1 and @ > A,(1+ k), imply
Gj(py(1+ k)) = 1. The rest of the proof follows.

Finally. Lemma 4. WLOG of generality let 71 > 5. Before proceeding I must prove that ky >
YA(y(1—=46)) is incompatible with the hypotheses of the lemma. By hypothesis, min; % <A, (1-9),
hence if ks > A,(1—9), then k; < A,(1—4). By naming r € <p7(1 — ), min (r (%) ,py(1+ n)))
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bank 2 gets a payoff that is strictly higher than (1 — 0)ky. Hence in equilibrium it must be that
Ty > py(1 — ). However if 71 > 7, it implies that when bank 1 names 7, the residual demand is
always equal to zero and M (71, Gs) = (1 — §)k;. However this cannot be part of an equilibrium
as bank 1 has the profitable deviation to name any rate r € (p,(1 —6),72). By naming any rate
r > 71, bank 1 gets M;(r,G2) = Ga(py(1 + £))o(r) + (1 — 0)ky, hence it must be that ¢(r) is

maximized at 7;. The optimization problem is equivalent to the one of the baseline model, hence

Y Y

T=r <l; (k—2> + %) By Condition 3, 7(b(0)) < p,(1 + ), hence r (13 <k—2) + %) < py(1+ k) and
7o <71 < py(1 4 k). This implies that G2(p,(1 + £)) = 1 and the rest of the proof follows.
Proposition 2. WLOG let k; > ko. The proof follows the steps of Proposition 1, but we need to

add a preliminary step:
o (Step 1) ky /v > A, (1+k)—ky/ for alli € {1,2}. Suppose not and k, /v < A, (1+r) —ka/7.
When bank i raises k;, it is for sure in Region 4 and gets profits equal to
mi(ky, 1) = (1 + Rk — k) = kky
this is clearly increasing in k;, hence bank ¢ would have the profitable deviation to name
k, + €. This inequality implies that ki /vy >k, /v > A(1+ &) — ky /7.

e (Step 2) In equilibrium it must be that k; /v > b(ky/7). Suppose not: ki/v < b(ky/~), which

implies k,/v < b(k1/7). Therefore when bank 2 raises k, is either in Region 4 or in Region

5(&2’“) k1 k +k k
i) = [ ehadn(h) + [ )(Z( ) ) B

ky ﬁ(Ezw‘f

2:

where B(k,, k) = YA, (1 + k) — ky. Profits are strictly increasing in k, for all ky € [k, k1],
hence bank 2 can profitably deviate and name k, + €. Therefore, putting together step 0

and step 1 it must be that k; /v > max{b(ky/7), A, (1 + k) — ky/7}.

e (Step 3) ki /v < b(k2/7). Suppose not: ky/y > b(ky/v) and ki /v > A, (1 + k) — ky/7. Then
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when bank 1 raises k; is either in region 2 or in region 3A:

) = [ jwl) (Z (’“ - ’“) - 7) B (hs) + /5 :1)<P<k2> — 6k ) ()

where £(k) = %8_1 (%) The profits are strictly decreasing in &, in particular the first term
is decreasing because k; /v > b(k,/v) > b(ky/7) for all ky in the support. Therefore bank 1

would have the profitable deviation to raise ki — €.

(Step 4) Putting together the previous steps it must be that k;/y < b(ky/7y) and k; >
max{b(k,/v), A,(1 + k) — ky/~}, which implies that bank 2 is playing a pure strategy k.

Bank 1, must best respond to the pure strategy ks, hence Bank 1 will solve:

max 7y (k1, k2)
k1>0

where )
Kk 1f%1 <A(1+k) %2
i (ky, k2) = 4 <Z (@)—7)";—1 ifA7(1+/<;)<’;—1§I3<";—2)
| P(ka) = ok, if b > (%)
Hence %1 = max (b (%) A1+ k) — %) At the same time bank 2 will have to best

respond to that and similarly % = max (b <k71> AL (1+kK) — %) As 1% < p, (1 + k),

b (’“7) > Ay (1+r) — 5, which imply & = p <b (%)) el
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