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Abstract

This paper examines how the interplay between arbitrageurs, stockholders and
liquidity providers fuels bubble creation in a dynamic financial market with en-
dogenous entry. Credit lines contribute to the formation of bubbles and amplify the
impact of shocks, negatively impacting existing stockholders, but allow arbitrageurs
to enter the market at low cost, thereby rehabilitating the risk concentration channel
of limited participation models. Optimal liquidity balances arbitrage benefits and
costs; however, we demonstrate that excessive liquidity can destabilize markets.
This is particularly relevant in the current financial landscape, where the rise of
cryptocurrencies poses unique regulatory challenges.
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1 Introduction

Over the past few decades, specialized investors, such as hedge funds and other financial
intermediaries, have experienced significant growth in both activity and size. By the
fourth quarter of 2024, the global hedge fund industry’s assets under management reached
approximately 5.3 trillion, a substantial increase from 1.4 trillion in the fourth quarter of
2009. Notably, funds specializing in arbitrage strategies, including convertible arbitrage,
equity long/short, and merger arbitrage, represented nearly 5.5% of the 2024 total,
amounting to 265 billion.1 Given that hedge funds frequently utilize leverage, liquidity
providers have been crucial in financing this expansion.

To analyze the dynamics of these observed market developments, particularly the role
of arbitrageurs and liquidity providers, we propose a theoretical framework. Specifically,
this paper examines the incentives for their emergence within a dynamic competitive
equilibrium that features asset bubbles. We develop a general equilibrium model with
endogenous participation and funding liquidity to investigate how regulations and asso-
ciated market structures affect equilibrium prices, strategies, and investor welfare.

We build upon the restricted market participation framework established in Basak
and Cuoco (1998) and Hugonnier and Prieto (2015), where investors are exogenously
classified as participants and non-participants. However, our model distinguishes itself
by endogenizing segmentation and entry. We retain the same market primitives: a riskless
asset in zero net supply and a dividend-paying risky asset in positive supply. In these
models, asset price dynamics are driven by a risk concentration channel. Specifically, the
interest rate decreases, and the Sharpe ratio increases relative to a frictionless economy.
This occurs because liquidity providers, i.e., non-participants, generate an excess supply
of the riskless asset, which lowers the interest rate and consequently fuels the leveraged
positions (concentration) of market participants (stockholders).

A key contribution of this paper is to explain an often overlooked, yet critical, feature
of equilibria with limited participation: the potential for both traded securities to contain
bubbles.2 Specifically, we demonstrate how the emergence of these bubbles is linked
to the economy’s primitives, thereby establishing this family of models as a suitable
framework for microfounding the emergence of assets with no intrinsic value, such as

1See e.g. the estimates compiled by BarclayHedge.com in Hedge Fund Industry Assets Under
Management.

2A bubble on the price of a security is the difference between the market price of the security and
its fundamental value, defined as the minimal amount of capital that an unconstrained agent needs to
hold to replicate the security’s cash flows while maintaining nonnegative wealth (Santos and Woodford,
1997, Loewenstein and Willard, 2000a).
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cryptocurrencies, given that the riskless asset in our economy effectively functions as fiat
money.

We categorize market participants into three distinct types in our baseline model: Reg-
ular stockholders are unconstrained in their portfolio choice and are subject to a standard
non-negativity constraint on wealth. Arbitrageurs differ from regular stockholders along
two key aspects. First, they could initially not hold any capital prior to entry. Second,
they can pay to access a credit line that guarantees funding, even during transitory periods
of negative wealth, thus enabling them to execute more complex investment strategies.
Liquidity providers may be former stockholders willing to change roles and establish credit
facilities for which they receive compensation from arbitrageurs. Critically, they do not
participate directly in the stock market but instead provide riskless funding to other
market participants.

Our main contributions can be summarized as follows:
First, we investigate the link between stock market participation, investor hetero-

geneity and the formation of bubbles within an extension of Basak and Cuoco (1998).
We derive the equilibrium in closed-form in terms of aggregate consumption and an
endogenous state variable that measures the consumption share of liquidity providers,
providing rare explicit existence results through pathwise comparison arguments. Our
analysis reveals that heterogeneous risk aversion influences both the direction of liquidity
needs (i.e., the supply of funds) and the allocation of risk, thereby determining the
conditions for bubble emergence. Specifically, we demonstrate that bubbles arise if and
only if stockholders are equally or more risk-averse than liquidity providers, that is, they
emerge when stockholders must be levered on the stock, absorbing all of the market
risk, to encourage them to hold a position that is compatible with market clearing and
that is, a priori, a position that is opposite to their preferences absent the participation
friction. Conversely, when stockholders are less risk-averse than liquidity providers, both
securities are bubble-free. This finding provides a novel microfoundation for equilibrium
asset price bubbles, linking funding liquidity and arbitrage strategies to fundamental
economic parameters.

Second, we show how credit lines play a central role in the formation of bubbles and
the amplification of fundamental shocks. Liquidity providers cause the formation of asset
bubbles, as their emergence modifies portfolio strategies across investors so that bubbles,
both on the risky and riskless assets, are necessary in equilibrium. Simultaneously,
arbitrageurs tap the credit line to exploit mispriced assets and thus actively participate
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in price correction but generate a pecuniary externality as their trades increase stock
price volatility, limiting the ability of regular stockholders to exploit asset bubbles due
to their more stringent wealth constraints. This novel feedback loop has significant
quantitative implications. Specifically, we rehabilitate the risk concentration channel of
limited participation models, challenged by Khorrami (2022). His analysis of an extended
Basak and Cuoco (1998) model with entry suggests that if limited participation drives
large and volatile risk premia, implied participation costs would need to be exceptionally
high, approximately 90% of wealth, to replicate empirically observed asset prices. In our
equilibrium, where existing market participants can transition into liquidity providers
(non-participants), the effective cost of entry is reduced to approximately 10% of wealth.
This role transition is incentive-compatible within our framework. Our model retains the
desirable asset pricing dynamics consistent with empirical evidence, including substantial
countercyclical excess volatility, risk premia, and low interest rates, which initially made
the concentration channel a compelling mechanism.

Third, we endogenize the liquidity constraint by considering a utilitarian regulator
who maximizes a social welfare function, taking into account all agents. Optimal liquidity
balances the marginal benefits and costs of arbitrage for all agents and is consistent with
the existence of bubbles in equity and bond markets. Stock bubbles are only arbitraged
away when liquidity is maximal, which occurs when the marginal benefit of arbitrage
profits is low relative to the starting cash in the economy.

Fourth, we demonstrate that the economy’s fragility increases when liquidity is at its
maximum. Specifically, we show that unanticipated liquidity shocks, which can trigger
the insolvency of arbitrageurs, pose a risk of substantial losses for liquidity providers.
The proliferation of liquidity within markets may destabilize financial systems, particu-
larly given the rapid expansion of non-traditional channels such as crypto-lending and
decentralized finance (DeFi) platforms in recent years (OECD, 2022). These platforms
may present significant regulatory challenges as they achieve greater systemic importance
(Azar et al., 2022).3

3In January 2024, the U.S. Securities and Exchange Commission approved the first spot
cryptocurrency exchange-traded funds, marking a significant milestone. U.S. retail and institutional
investors, including pension funds, now have direct exposure to cryptocurrencies through regulated
products. The top five cryptocurrency ETFs have collectively surpassed 100 billion in assets under
management since their inception (iShares Bitcoin Trust ETF, Grayscale Bitcoin Trust (GBTC), Fidelity
Wise Origin Bitcoin Fund, ARK 21Shares Bitcoin ETF, Bitwise Bitcoin ETF) and are poised to exceed
the assets under management of arbitrage strategy hedge funds.
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Related literature

Rational bubbles in continuous-time models were introduced by Loewenstein and Willard
(2000a).4 Most papers in this literature have studied the impact but not the origin
of bubbles in partial equilibrium. For example, Cox and Hobson (2005) and Heston
et al. (2007) analyze bubbles in the context of option pricing. Jarrow et al. (2010)
examine general semi-martingale models with bubbles and Jarrow (2015) provides a
recent survey. Equilibrium papers are rare, with notable exceptions being Hugonnier
(2012) and Hugonnier and Prieto (2015). More recently, Weston (2022) shows that
prices are bubble free in an economy with limited participation, CARA investors, and
a financial market comprised of a stock and an annuity, both in positive supply. We
show that both riskless borrowing and lending and wealth effects play a crucial role in
bubble formation. Khorrami (2022) extends Basak and Cuoco (1998) to show that new
cohorts paying an entry cost to trade in the stock market prevent participants’ wealth
from approaching zero, avoiding the explosive behavior of local risk prices observed with
bubbles. We provide some nuance by incorporating heterogeneity in preferences and
participation frictions to show how liquidity needs and the allocation of risk induced by
heterogeneity determine the emergence of bubbles. Even models with explosive state
prices may be bubble free. Our results, thus, connect the literature of continuous time
bubbles with theories in macro-finance where risk absorption and asset supply/shortages
are the channels behind mispricing (Caballero, 2006, Caballero and Krishnamurthy, 2009,
Caballero and Simsek, 2016).

Our paper is naturally related to the large body of theoretical literature that studies
the impact of frictions in the amplification and propagation of aggregate shocks, see e.g.,
Bernanke and Gertler (1989), Kiyotaki and Moore (1997) and Bernanke et al. (1999).
Importantly, financial constraints and incomplete markets arise endogenously in our
setup,5 and we focus on the risk concentration channel. Earlier contributions include
Mankiw and Zeldes (1991), Gomes and Michaelides (2008), Parker and Vissing-Jørgensen

4The literature on speculative bubbles, see e.g., Miller (1977), Harrison and Kreps (1978) and
Scheinkman and Xiong (2003), uses a different definition of the fundamental value that is not based
on any cash flow replication considerations and, therefore, cannot connect bubbles to the existence of
arbitrage opportunities. Furthermore, these models are in general set in partial equilibrium as they
assume the existence of a riskless technology in infinitely elastic supply. See Brunnermeier and Oehmke
(2013) and Simsek (2021) for recent reviews that contrast different theories of bubbles.

5See e.g., Detemple and Murthy (1997), Kogan and Uppal (2001), Pavlova and Rigobon (2008),
Gârleanu and Pedersen (2011), Bhamra and Uppal (2009), Dumas and Lyasoff (2012), Buss et al. (2016),
Chabakauri (2013), He and Krishnamurthy (2013), Rytchkov (2014), Chabakauri (2015), Brunnermeier
and Sannikov (2016). A recent survey by Panageas (2020) provides a nice summary of this extensive
literature.
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(2009), Malloy et al. (2009), Guvenen (2009). More recently, and in addition to Khorrami
(2022), Gârleanu et al. (2020) study a model with endogenous entry with a continuum
of investors, assets and financial intermediaries. Agents are prevented from trading in all
assets due to participation costs and collateral constraints. This implies that diversifiable
risk is priced and exposes riskless arbitrage opportunities that cannot be eliminated due
to participation costs. By contrast, we show that costly credit lines allow for limited
participation and study the feedback effects of various equilibrium configurations with
asset bubbles. In Haddad (2014) agents choose dynamically whether to be levered in the
stock, bearing more aggregate risk, and entry is free. There are neither risky arbitrage
opportunities nor excess volatility as in our model.

Our welfare analysis is related to the large literature on inefficiencies and pecuniary
externalities in models with financial market imperfections, going back to Geanakoplos
and Polemarchakis (1986). The pecuniary externality that matters in our model is dis-
tributive, see e.g. Dávila and Korinek (2017), and comes through an unconventional credit
line channel. Our findings are related to those of Gromb and Vayanos (2002, 2008) who
investigate the welfare implications of financially constrained arbitrage in an exogenously
segmented market with zero net supply securities and an exogenous interest rate. In their
model arbitrageurs exploit the riskless arbitrage opportunities that arise across markets
and, thereby, allow Pareto improving trade to occur. In contrast, arbitrageurs in our
model compensate liquidity providers and their trading activity hinders the welfare of
regular stockholders. Relatedly, Guembel and Sussman (2015) and Caballero and Simsek
(2016) show that segmentation generally raises volatility and reduces investor welfare. In
contrast, we provide a model with endogenous incomplete markets and risky arbitrage
opportunities that persist in equilibrium despite the presence of unconstrained market
participants in the economy. Hébert (2022) explores an equilibrium model with financial
intermediaries and limited participation, where short-lived arbitrage opportunities exist
but are not fully exploitable due to regulation of intermediaries and limited participation
of other agents. We build on a similar theme, but importantly, we show how arbitrage
opportunities emerge endogenously from entry.

The remainder of the paper is organized as follows. In Section 2 we present as-
sumptions about the economy and solve two benchmark economies with complete and
incomplete markets. In Section 3 we extend the model to include heterogeneous risk
aversion and explain the emergence of bubbles. In Section 4 we motivate the credit
facilities and derive equilibrium in the economy. We provide existence results, and analyze
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the main properties and welfare implications. In Section 5 we solve the optimal liquidity
problem and discuss the impact of unanticipated liquidity shocks. We conclude in Section
6. All proofs are gathered in Appendix A. Additional results can be found in the Online
Appendix.

2 Bubbles in equilibrium

We review a complete market economy with three agents who trade on a stock and a
riskless asset, then a similar yet incomplete market economy with an exogenous partici-
pation constraint. These economies are variations of the two-agent economies in Basak
and Cuoco (1998). Bubbles on both the stock and the riskless asset are necessary for
markets to clear (Hugonnier, 2012).

We present novel computations for welfare functions in the incomplete market case,
which serves as benchmark for our economy with endogenous stock market participation
in Section 4.

2.1 Securities markets and bubbles

Primitive securities. We consider a continuous-time economy on an infinite horizon.
Uncertainty is represented by a probability space carrying a Brownian motion Zt. In
what follows, we assume that all random processes are adapted with respect to the usual
augmentation of the filtration generated by this Brownian motion.

Agents trade in two securities: a money market account in zero net supply and a
stock in positive supply of one unit. The price of the riskless asset evolves according to

S0t = 1 +
∫ t

0
S0urudu

for t > 0 and an interest rate process rt that is determined in equilibrium. The stock is
a claim to a dividend process et that evolves according to a geometric Brownian motion
with constant drift µe and volatility σe > 0. The stock price is denoted by St and evolves
according to

St +
∫ t

0
eudu = S0 +

∫ t

0
Su(µudu+ σudZu)

for t > 0 for some initial value S0 > 0, drift µt, and volatility σt that are determined in
equilibrium.
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A price system (S0t, St) may contain risky arbitrages but no riskless arbitrages, for
otherwise the market could not be in equilibrium. This implies that µt = rt + σtθt for
some process θt. This process is referred to as the market price of risk and is uniquely
defined on the set where volatility is non zero. Now consider the state price density
defined by

ξt = 1
S0t

exp
(
−
∫ t

0
θudZu −

1
2

∫ t

0
|θu|2du

)
. (1)

The ratio ξt,u = ξu/ξt is the pricing kernel used to characterize the feasible sets of agents
facing complete markets, as well as to identify fundamental values and rational bubbles
on any contingent claim.6

Bubbles. We refer to Ft ≡ Et [
∫∞
t ξt,ueudu] as the fundamental value of the stock and to

Bt ≡ St − Ft = St − Et
[∫ ∞
t

ξt,ueudu
]
≥ 0

as the bubble on its price. Bubbles are consistent with equilibrium because they constitute
only limited arbitrage opportunities due to wealth constraints.7 To see this, assume that
the stock has a bubble and consider the textbook strategy that sells short x > 0 units of
the stock, buys the portfolio that replicates the corresponding dividends and invests the
proceeds in the riskless asset until some fixed date T . The wealth process of this trading
strategy is given by

At(x;T ) = x (Ft(T )− St) + xS0t (S0 − F0(T )) = x (S0tB0(T )−Bt(T )) (2)

where Ft(T ) ≡ Et
[∫ T
t ξt,ueudu+ ξt,TST

]
denotes the fundamental value of the stock over

the interval [t, T ], and

Bt(T ) ≡ St − Ft(T ) = St − Et
[∫ T

t
ξt,ueudu+ ξt,TST

]
≥ 0 (3)

denotes the corresponding finite horizon bubble. This dynamic trading strategy requires
no initial investment and has positive terminal value AT (x;T ) = xB0(T )S0T > 0. Note

6See e.g. Santos and Woodford (1997), Loewenstein and Willard (2000a), Heston et al. (2007).
7In the model we develop in Section 4, regular stockholders will keep nonnegative wealth whereas

arbitrageurs will have access to a credit line that allows them to withstand periods of negative wealth. See
Dybvig and Huang (1988) for a discussion of the use of wealth constraints to prevent doubling strategies
versus other constraints, such as integrability constraints on portfolio strategies under a risk-neutral
probability measure. As we explain below, within our equilibrium model such a measure may not exist.
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however that this arbitrage opportunity is risky because it entails interim losses with
strictly positive probability and, therefore, cannot be implemented to an arbitrary scale
by the agents in the economy as they face wealth constraints.

Bubbles are similarly defined for the riskless asset. Indeed, over a time interval [0, T ]
the money market account can be viewed as a derivative that pays a single lump dividend
equal to S0T at date T . The fundamental value of such a security is F0t(T ) = Et [ξt,TS0T ]
whereas its market value is simply S0t, and this naturally leads to defining the finite
horizon bubble on the riskless asset as

B0t(T ) ≡ S0t − F0t(T ) = S0t

(
1− Et

[
ξt,T

S0T

S0t

])
. (4)

As was the case for the stock, a bubble on the riskless asset is consistent with both
optimal choice and the existence of an equilibrium in our economy.8

2.2 Trading strategies

A trading strategy is a pair (πt;φt), where πt represents the amount invested in the stock
and φt represents the amount invested in the riskless asset. A trading strategy is said to
be self-financing given initial wealth w and consumption rate ct ≥ 0 if the corresponding
wealth process satisfies

Wt = πt + φt = w +
∫ t

0
(φuru + πuµu − cu) du+

∫ t

0
πuσudZu. (5)

Implicit in the definition is the requirement that the trading strategy and consumption
plan be such that the above stochastic integrals are well defined.

2.3 Agents and endowments

The economy is populated by agents indexed by k ∈ {1, 2, 3} whose preferences are
represented by

U i
k(wk) ≡ E

[∫ ∞
0

e−ρt log(ct)dt
]

8Equation (4) shows that the riskless asset has a bubble over [0, T ] if and only if the processMt ≡ S0tξt
satisfies E[MT ] < M0 = 1. Since the economy is driven by a single source of risk this process is the
unique candidate for the density of the risk-neutral probability measure and it follows that the existence
of a bubble on the riskless asset is equivalent to the non existence of the risk-neutral probability measure.

8



for some subjective discount rate ρ > 0, where i ∈ {C, I} stands for complete and
incomplete markets, respectively. Agents have homogeneous preferences and beliefs but
may differ in their trading opportunities and endowments. Agents are free to choose any
strategy whose wealth remains non-negative, so that Wkt ≥ 0, ∀k. Agent 1 is endowed
with w1 = S0 −K > 0, i.e., the stock and a short position in cash, Agent 2 is endowed
only with cash w2 = K > 0, and Agent 3 has null initial endowment. Since S00 = 1,
the cash amount K is the number of bonds held at the initial price. The endowment
structure for the first two agents is the same as in the two-agent model of Basak and
Cuoco (1998), but the economy has the additional Agent 3.

Assumption 1. Let K = ne0/ρ with n ∈ (0, 1).

2.4 Definition of equilibrium

The concept of equilibrium that we use is similar to that of equilibrium of plans, prices
and expectations introduced by Radner (1972).

Definition 1. An equilibrium is a pair of security price processes (S0t, St) and an array
{ckt, (πkt;φkt)}3

k=1 of consumption plans and trading strategies such that (1) given (S0t, St)
the plan ckt maximizes Uk over the feasible set of Agent k and is financed by the trading
strategy (πkt, φkt); (2) markets clear: ∑3

k=1 φkt = 0, ∑3
k=1 πkt = St and ∑3

k=1 ckt = et.

2.5 Complete markets

When agents trade on both securities it is well known that there exists a Pareto optimal
no-trade equilibrium. The stock and riskless asset prices are given by St = Pt ≡ et/ρ,
S0t = ert, where the interest rate and market price of risk processes are constants,
respectively given by r = ρ + µe − σ2

e and θ = σe. The optimal consumption plans
are described by

c1t = (1− n)et, c2t = net, c3t = 0, (6)

so that the welfare indices are obtained from simple calculations.
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Proposition 1. Welfare functions of Agents 1 and 2 are given by

UC
1 (n) = E

[∫ ∞
0

e−ρt log ((1− n)et)dt
]

= U0 + 1
ρ

log(1− n), (7)

UC
2 (n) = E

[∫ ∞
0

e−ρt log (net)dt
]

= U0 + 1
ρ

log(n), (8)

where the constant U0 is given by

U0 ≡
1
ρ

log e0 + µe − σ2
e/2

ρ2 . (9)

The welfare of Agent 3 is UC
3 (0) = −∞.

The utility indices in (7)–(8) depend on initial wealth and exhibit similar dependence on
the moments of the aggregate dividend growth rate because UC(wk) = (1/ρ) log(ρwk) +
(µe − σ2

e/2)/ρ for k ∈ {1, 2}.9

2.6 Incomplete markets with exogenous constraint

Consider now the case of incomplete markets. As in Basak and Cuoco (1998), Agent 1
has access to a complete financial market, while Agent 2 is exogenously limited to trade
only in the money market account.10 Agent 3’s null initial endowment naturally results
in no trading. Prices can be readily characterized as follows.

Proposition 2. There exists a unique equilibrium. The stock price and money market
account are given by

St = Pt, S0t = eρt
Pt
P0

st
s0
, (10)

where st = c2t/et corresponds to the consumption share of Agent 2 and Pt = et/ρ. The
interest rate and the market price of risk are time-varying and given by

rt = ρ+ µe − σ2
e

(
1 + st

1− st

)
,

θt = σe

(
1 + st

1− st

)
,

9Setting UCk (n) = UC(wk) for k ∈ {1, 2} and substituting the values of endowments wk evaluated at
the equilibrium price S0 = e0/ρ gives the formulas stated.

10The dynamic model in Basak and Cuoco (1998) builds on a number of models incorporating agents
with restricted access to the stock market that were limited to one- or two-period settings, see e.g.,
Merton (1987), Hirshleifer (1988), Allen and Gale (1994) and Balasko et al. (1995).
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where the consumption share process st evolves according to

dst = −stσe
(
dZt + st

1− st
σedt

)
, (11)

with initial condition s0 = n ∈ (0, 1).

Given logarithmic utility function, the optimal consumption policy of Agent k ∈
{1, 2, 3} is proportional to wealth: ckt = ρWkt. Agent 3, whose wealth remains null at all
times, neither consumes nor invests. By definition of the consumption shares ((1−st), st),
we can also write W1t = (1− st)et/ρ and W2t = stet/ρ. The stock price, which by market
clearing equals aggregate wealth, is then given by St = W1t +W2t = (1− st)et/ρ+ stet/ρ,
leading to the formula in (10). At a given time t, it can be interpreted as the value of a
perpetuity with constant future cash flow et in a market with discount factor b(ρ)

t = e−ρt.
The bond price is related to the optimal wealth of Agent 2. Since optimal consumption of
Agent 2 is proportional to wealth dW2t/W2t = dS0t/S0t−ρdt = d(b(ρ)

t S0t)/(b(ρ)
t S0t), which

gives W2t = b
(ρ)
t S0t up to a multiplicative constant. Using the normalization S00 = 1 and

the expression for W2 gives the formula stated (see Appendix for details).
It is no surprise that this exogenously imposed constraint hinders non-participants’

welfare, as we see next. We use the superscripts {p, np} to denote if the agent participates
or does not participate in the stock market and provide welfare functions, which are
available in closed-form.

Proposition 3. The welfare functions of Agents 1 and 2 are given by

U I,p
1 (n) ≡ E

[∫ ∞
0

e−ρt log ((1− st)et)dt
]

= U0 −
1

1− n

∞∑
j=1

1
j
u(n, j), (12)

where

u(n, j) ≡ nj − nκ

ρ− j(j − 1)σ2
e

2

− nj+1 − nκ

ρ− j(j + 1)σ2
e

2

,

and

U I,np
2 (n) ≡ E

[∫ ∞
0

e−ρt log (stet)dt
]

= U0 + 1
ρ

log n− σ2
e

2ρ2
1+n−2nκ

1− n , (13)

where the value of U0 is given in (9). Agent 3’s welfare function is U I
3 (0) = −∞.

The next result provides limits and comparative statics with respect to initial wealth and
formalizes an intuitive result. As shown in (14) and (15), for the same level of initial
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wealth, summarized by n, Agent 1 (Agent 2) is better (worse) off in the economy with
incomplete markets, and the effects are decreasing (increasing) in the cash endowment
n.11

Lemma 1. The following inequalities hold for n ∈ (0, 1),

U I,p
1 (n) ≥ UC

1 (n), (14)

U I,np
2 (n) ≤ UC

2 (n), (15)

sign
(
∂U I,p

1 /∂n
)

= sign
(
∂UC

1 /∂n
)
≤ 0,

sign
(
∂U I,np

2 /∂n
)

= sign
(
∂UC

2 /∂n
)
≥ 0.

Furthermore, the limits when n ↓ 0 or n ↑ 1 are given by

lim
n→0

U I,p
1 (n) = lim

n→0
UC

1 (n) = U0,

lim
n→0

U I,np
2 (n) = lim

n↓0
UC

2 (n) = −∞,

lim
n→1

U I,p
1 (n) = U0 −

1
ρ

(
Hκ−1 −

κ− 1
κ

)
,

lim
n→1

U I,np
2 (n) = U0 −

σ2
e

2ρ2 (2κ− 1),

where Hx denotes the Harmonic Number.

The equilibrium with incomplete markets is very compelling as both primitive securi-
ties in this equilibrium contain bubbles. The next proposition, adapted from (Hugonnier
and Prieto, 2015, Prop. 5), shows the relative size of the bubbles on both the risky and
the riskless asset over any investment horizon.

Proposition 4. Over the time interval [t, T ] the stock and the riskless asset include
bubble components that satisfy

Bt(T )
St

= H (T − t, st; 2κ− 1) Bt

St
≤ H (T − t, st; 1) = B0t(T )

S0t
, (16)

11Since the stock price is invariant to Agent 2’s portfolio position, welfare indices would be the same
if Agent 2 were endowed with an amount n of shares of the stock and no cash (K = 0) and were allowed
to divest at time zero.
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where Bt = sκt Pt and

H(τ, s; a) = N(d+(τ, s; a)) + s−aN(d−(τ, s; a)), (17)

κ = 1
2 +

√
1
4 + 2ρ

σ2
e

, (18)

with d±(τ, s; a) = 1
σe
√
τ

(
log(s)± a

2σ
2
eτ
)

and N(x) is the standard normal cumulative
distribution function. The fundamental value of the stock is Ft = St −Bt = (1− sκt )Pt.

There are a number of observations that one can draw from this result. First, as
seen in (16) for each dollar of investment, the bubble on the riskless asset is larger
than that on the stock over any investment horizon. This relative ordering will have a
direct interpretation on the stockholder’s holdings. Second, this price system supports
an equilibrium with no trade in the stock, but continuous trading in the money market
account. Since Agent 1 is subject to a non-negative wealth constraint and cannot short
both securities at the same time, she chooses a strategy that exploits the bubble on the
riskless asset because it is more profitable. Her equilibrium portfolio consists thus of
holding the stock and borrowing, at the risk free rate, an amount equal to Agents 2’s
wealth,

W1t = c1t/ρ = (1− st)Pt = Pt −W2t. (19)

One can alternatively view Agent 1’s portfolio holdings as one that shorts the riskless
asset bubble and uses the stock as collateral, since she must maintain non-negative wealth.
The wealth of Agent 1 expressed as a self-financing strategy in the stock and the riskless
asset bubble over the interval (t, T ] can be written as

W1t = φS1t(T ) + φB0
1t (T ) (20)

where the positions have the signs

φS1t(T ) = 1− Σ0t(T )(1− st)
1− Σ0t(T ) Pt ≥ 0

φB0
1t (T ) = W1t − φS1t(T ) = − st

1− Σ0t(T )Pt ≤ 0

and the process Σ0t(T ) is the diffusion coefficient of (1/σe) logB0t(T ), with lim
T→∞

Σ0t(T ) =
0. Note that this limit recovers the primitive strategy in (19).
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Remark 1. Over an infinite investment horizon, the bubble on the riskless asset converges
to the market value of the riskless asset

lim
T→∞

B0t(T ) = lim
T→∞

H (T − t; st; 1)S0t = S0t. (21)

As a result, the fundamental value of the riskless asset over an infinite investment horizon
is zero and it follows that the money market account is akin to fiat money, micro-founding
the emergence of assets with no intrinsic value, such as cryptocurrencies, as store of value.

3 Investor heterogeneity and bubble formation

We solve an extension to the benchmark model which explains the emergence of asset
bubbles in equilibrium models based on liquidity flows and portfolio imbalances.

3.1 Marginal utility process

The behavior of the relative marginal utility process

λt = u′1 (c1t)
u′2 (c2t)

= c2t

c1t
= st

1− st
= c20

c10
+
∫ t

0
σeλ(su)

(
1 + su

1− su

)
dZu, (22)

determines the existence of bubbles on the stock and the riskless asset. Indeed, since

St = W1t +W2t = Et
[∫ ∞
t

ξt,u(eu − c2u)du
]

+ c2t

ρ

= Ft + stPt − Et
[∫ ∞
t

ξt,usueudu
]
, and

ξt,u = b
(ρ)
t,u

c1t

c1u
= b

(ρ)
t,u

(1− st)et
(1− su)eu

; ξt,u
sueu
stet

= b
(ρ)
t,u

λu
λt

; ξt,T
S0T

S0t
= λT
λt

where b(ρ)
t,u = b(ρ)

u /b
(ρ)
t and Ft = Et [

∫∞
t ξt,ueudu], the stock and bond price bubbles are

Bt = St − Ft = ρstPt

∫ ∞
t

e−ρ(u−t)
(

1− Et
[
λu
λt

])
du, (23)

B0t(T ) = S0t

(
1− Et

[
ξt,T

S0T

S0t

])
= S0t

(
1− Et

[
λT
λt

])
. (24)

In our baseline economy, prices contain bubble components as λt is a positive strict local
martingale, hence a strict supermartingale, implying λt > Et[λu].12 Inspecting (22), it is

12For a detailed derivation, see (A.9) in the Appendix
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clear that the non-participation constraint exogenously imposed on Agent 2 determines
the emergence of bubbles, since absent the constraint, the relative consumption process
is fixed at level λ0 = c20/c10 and bubbles would be identically zero in (23)–(24).

3.2 Heterogeneous risk aversion

Portfolio frictions are necessary but not sufficient for bubbles to emerge. We explain next
how investor heterogeneity sheds light on bubble formation with an extension. We let
Agent 1 have CRRA preferences, u1 (c) = c1−γ−1

1−γ with γ > 0, as in He and Krishnamurthy
(2013) and relax Agent 2’s participation constraint. We introduce partial participation
in the stock market by limiting Agent 2’s portfolio volatility, that is,

Ct =
{
|π̄tσt|2 ≤ (εσe)2

}
,

with π̄t = πt/Wt. The parameter ε ∈ [0, 1) is a measure of Agent 2’s risk bearing
capacity, and hence, of her stock market participation.13 The optimal policy is given by
π̄2t = ktθt/σt where the process kt =

[
1 + (|θt| /(εσe)− 1)+

]−1
∈ [0, 1] is the reduction

in risk taking induced by the constraint. The fact that kt depends only on the absolute
value of the market price of risk, and not on the price level or stock volatility, is the key to
a tractable characterization of equilibrium. There are two regions which are determined
by the primitives of the economy.

Proposition 5. The market price of risk is given by

θ(st) =

 γσe
1−εst
1−st , R(st) > ε,

γσe
1+(γ−1)st , R(st) ≤ ε,

(25)

where R(s) = γ[1 + (γ − 1) s]−1 is aggregate relative risk aversion and st = c2t/et.

The constraint is active in states where the aggregate relative risk aversion is relatively
high, R(st) > ε. The pair (ε, γ) = (0, 1) recovers the baseline model. To understand the
interaction between risk bearing capacity and risk aversion, let γ > 1. The constraint is
active in all states since R(st) ≥ 1 > ε. In these states, Agent 2 is less risk averse and
the constraint will limit her position in the stock. Now let γ < 1, which implies that
γ ≤ R(st) ≤ 1. The constraint binds in all states when ε ∈ [0, γ). As the risk bearing
capacity of Agent 2 increases, such that ε ∈ [γ, 1), the constraint is inactive since kt = 1.

13Partial equilibrium implications of risk constraints in dynamic settings have been studied by Cuoco
et al. (2008), Gârleanu and Pedersen (2007) among others.
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The relative marginal utility process under this extended model is given by

λt = u′1 (c1t)
u′2 (c2t)

= c2t

cγ1t
= st(1− st)−γe1−γ

t = λ0 +
∫ t

0
λuΦ(su)du

where Φ(st) = (k(st) − 1)θ(st). As in the baseline model, its behavior determines the
emergence of bubbles in equilibrium.

Proposition 6. The stock contains a bubble if γ ≥ 1. The stock is free of bubbles if
γ < 1.

The emergence of bubbles in the price system reflects an intuitive equilibrium mecha-
nism: since Agent 1 clears markets with Agent 2, bubbles arise to encourage Agent 1 to do
so, in other words, to mitigate an implicit liquidity provision constraint faced by Agent 1.
The latter is determined by the severity of the portfolio constraint and the risk aversion
disparity across agents. Bubbles thus are linked to how costly the constraint for Agent
2 is. The importance of both dimensions follows from the fact that the region where the
constraint binds is determined by both parameters. This result connects the literature
on continuous time bubbles with theories in macro-finance where risk absorption and
asset shortages are the channels behind securities mispricing (see e.g., Caballero (2006),
Caballero and Krishnamurthy (2009), and Caballero and Simsek (2016)).14

Revisiting the baseline model with ε = 0, so that Agent 2 cannot hold the stock as
in Basak and Cuoco (1998), provides the intuition. Bubbles arise in the stock and in the
riskless asset if Agent 1 is equally or more risk averse than Agent 2 (i.e. , γ ≥ 1). That
is, they emerge when the stockholder must be levered on the stock in order to hold a
position that is compatible with market clearing, even though it is, a priori, a position
opposite her preferences absent the participation friction. Prices are free of bubbles if
the stockholder (Agent 1) is less risk averse than the liquidity provider (Agent 2). These
positions with ε = 0, in contrast, coincide with the unconstrained flows whereby Agent
1, because she is less risk averse, would hold a levered on the stock and absorb all of the
market risk, while borrowing from Agent 2 at the risk free rate.

4 Endogenous stock market participation

In this section, we examine how stock market participation frictions arise endogenously
by extending the model in Hugonnier and Prieto (2015) where some agents investors tap

14Unlike these contributions, our equilibrium is constructed in a model with aggregate risk and risk
averse investors.
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an exogenous credit line to better exploit asset bubbles. An important contrast with their
model is that in our model credit lines are priced under incomplete markets using explicit
individual welfare functions, and non participating agents are fully compensated. This
result confirms the intuition that bubbles emerge as an equilibrium outcome to incentivize
unconstrained agents.

We provide existence results that highlight the different forms of entry and change
of roles in equilibrium. For example, a stock market participant may become non-
participant, and this shift may be important to explain the levels and dynamics of asset
prices. We also provide a welfare result that formalizes a pecuniary externality at play
that impacts stockholders.

4.1 Investor types

We construct equilibria with three types of agents, stockholders, liquidity providers and
arbitrageurs, described as follows:

1. Stockholders (h) are agents subject to a standard wealth constraint Wht ≥ 0. They
are akin to Agent 1 in our baseline model.

2. Liquidity providers (`) are non-participating agents who are compensated upfront
and trade only through the money market account. They are subject to a standard
wealth constraint W`t ≥ 0. They are akin to Agent 2 of our baseline model with
the fundamental difference that they are compensated.

3. Arbitrageurs (a) compensate non-participants and have access to a credit line that
allows them to withstand short-term deficits provided their wealth satisfies the lower
bound15

Wat + ψaSt ≥ 0, t ≥ 0 (26)

where ψa > 0 is a positive constant.

To grasp how an arbitrageur can exploit the stock bubble, consider again the strategy
in (2). This arbitrage opportunity is risky because it entails the possibility of temporary
losses, P(At(x;T ) ≤ 0) ≥ 0, however, arbitrageurs can implement this trade up to size
ψa because of the credit line embedded in (26), and thus generate arbitrage rents.

15See e.g., Loewenstein and Willard (2000b, 2013) for additional examples for how wealth constraints
allow investors to exploit bubbles.
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This credit facility may represent other types of short-term loan arrangements, in-
cluding non-traditional channels of liquidity creation that have boomed over the past
years with crypto lending and various DeFi platforms. These lending channels, based on
financial assets with zero fundamental value such as our riskless asset, see (21), bypass
the traditional financial firms that act as gatekeepers for loans or other products.16

As we will see below, arbitrageurs will pay liquidity providers an upfront fee to access
it.17 To capture the fact that the availability of arbitrage capital tends to be procyclical
(Ang et al., 2011, Ben-David et al., 2012), the facility is proportional to the market
portfolio.

4.2 Optimal policies

The optimal consumption–portfolio policy of an arbitrageur in the presence of stock
bubbles and the credit facility is given by

cat = ρ (Wat + ψaBt) , (27)

πat = (θt/σt)(Wat + ψaBt)− ψa(ΣB
t /σt), (28)

where the process ΣB
t denotes the diffusion coefficient of the bubble process Bt and we

assume for now (and later verify) σ 6= 0. For regular stockholders and liquidity providers,
the optimal policies are summarized by (cht, πht) = Wht(ρ, θt/σt) and (c`t, π`t) = W`t(ρ, 0),
respectively.

The optimal consumption policy of an arbitrageur, in (27), is proportional to total
wealth, i.e., liquid wealth augmented by the value of the credit line. The optimal portfolio,
in (28), has two components. The first is a standard mean-variance component, but now
proportional to total wealth. The second is a hedging term against fluctuations of the
bubble. Even though the standard logarithmic investor is myopic, this is not the case
here as her total wealth is exposed to fluctuations in the bubble, which prompts her
to hedge that exposure. In contrast, the consumption-portfolio policies of the regular
stockholders and the liquidity providers have the standard structures. The result in (27)

16One of DeFi’s most noteworthy products is an unsecured flash loan, which is mainly used to exploit
arbitrage opportunities and yield farming strategies (Schär, 2021).

17This is, of course, a simplified structure. A typical credit line contract specifies a maximum amount
that can be drawn over a given period (i.e., the commitment), an interest rate that applies to the amount
borrowed, and various fees, such as an upfront commitment fee, an annual fee levied on the total amount
committed and a usage fee levied annually on the undrawn portion of the commitment. Few credit lines,
however, carry all three types of fees, as most of them usually have a usage fee combined with an upfront
fee (Loukoianova et al., 2007).
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and (28) is notable because it indicates that non-zero consumption plans are feasible even
for investors like Agent 3 endowed with zero initial wealth. The credit facility effectively
allows for an additional income stream due to arbitrage profits.

Optimal consumption policies can alternatively be written in terms of aggregate
consumption shares

cht = 1
1 + ν

(1− st)et; clt = stet; cat = ν

1 + ν
(1− st)et

where ν is a positive constant and st a stochastic sharing rule. Optimal (total) wealth of
each agent is proportional to consumption as described in (27) for an arbitrageur.

4.3 Prices and bubbles

Optimal policies displayed above have important equilibrium implications. From market
clearing, the stock price satisfies

St = W1t +W2t +W3t = 1
1 + ν

(1− st)Pt + stPt + ν

1 + ν
(1− st)Pt − ψaBt

so that

St = Pt − ψaBt = Ft +Bt = (1− α)Pt + αFt (29)

with α ≡ ψa/(1+ψa). The stock price is thus a linear combination between the benchmark
bubbly price Pt and its fundamental value Ft. From equation (29) and noting that from
Proposition 4, the fundamental value of the stock is given by Ft = (1− sκt )Pt where κ is
given in (18), st = c`t/et is the consumption share of the liquidity provider and the stock
price and its bubble are given by

St = (1− αsκt )Pt, (30)

Bt = St − Ft = (1− α)sκt Pt. (31)

Absent the credit line, that is when α = 0, the equilibrium price of the stock is given
by the usual valuation formula with logarithmic utility St = Pt = et/ρ. Applying Ito’s
lemma to (30) shows that the stock price volatility is strictly positive and excess volatility
is given by σt − σe = v(st;α)σe where v(s;α) ≡ καsκ/(1− αsκ). Excess volatility in this
model thus increases with both the liquidity provider’s consumption share st and the
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size of the credit line, summarized by α, and goes in the right direction of matching the
empirical counterparts, as illustrated in Figure 1.

[Insert Figure 1 about here]

Notably, the equilibrium price system with bubbles (30)–(31) will exist as long as there
are well-defined consumption sharing rules skt = ckt/et for k ∈ {1, 2, 3}.

4.4 Aggregation and entry

Before we explain how each investor will be classified under a given type {a, h, `} in our
equilibrium, we make two remarks about the credit facility that will help provide intuition
for our results. First, one can think of the arbitrageur as a representative arbitrageur
composed by I investors with access to credit lines of size ψi. Indeed, the representative
arbitrageur’s consumption in (27) under this setting would correspond to

cat = ρ
∑
i∈I

Wit︸ ︷︷ ︸
Wat

+ρ
∑
i∈I

ψi︸ ︷︷ ︸
ψa

Bt,

so that α = ∑
i ψi/(1 + ∑

i ψi) = ψa/(1 + ψa) as before. Second, its size ψa can be
determined by entry. Take the following example: Assume that the economy is populated
by a unit mass continuum of price taking arbitrageurs who do not hold any initial capital
prior to entry and let entry be subject to a one-time fixed cost X > 0, which amounts
to the compensation received by liquidity providers as we explain in the next section.
Conditional on entry, a given arbitrageur benefits from a credit facility of size ω ≥ 0
and the cross-sectional distribution is represented by an exogenously given cumulative
distribution function Ψ(ω) with support [0,∞).

An arbitrageur enters the market if and only if her credit facility is such that

ωb−X > 0

where b ≥ 0 gives the initial bubble on the stock price. The aggregate consumption by
arbitrageurs is

cat = ρψ(b)(e−ρt/ξt)b with ψ(b) =
∫ ∞

0
(ω −X/b)+ dΨ(ω).
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This in turn implies that the equilibrium bubble is explicitly given by

Bt(b) = (1− α(b)) sκt Pt

where st denotes the liquidity provider’s consumption share in an economy with α(b) =
ψ(b)

1+ψ(b) . The initial value of the bubble on the stock solves the fixed point equation

f(b) = −b+B0(b) = 0.

In what follows, we abstract from aggregation and focus on the participation decision and
the cost X. However, the take-away is that our economy with credit lines can be easily
mapped into more sophisticated versions of types. We get back to this interpretation
when we compute for the credit line’s optimal size in Section 5.

4.5 Participation decision

The participation decision is at date 0. Non-participation is incentive compatible, mean-
ing that if an existing market participant ` = {1, 2} becomes the liquidity provider, the
compensation amount X` she receives must be such that she is at least as well off by
non-participating,

UC(w`) ≤ U I,np(w` +X`). (32)

This inequality compares the utility of the agent under complete markets and endowment
w` with her non-participating utility but compensated upfront so that she holds initial
wealth w` + X`.18 If Agent 3 becomes the liquidity provider, agents a ∈ {1, 2} may be
arbitrageurs as long as

UC(wa) ≤ U I,p(wa + ψaB0 −Xa`). (33)

This inequality compares the utility of the agent under complete markets and endowment
wa with her utility under incomplete markets and access to the credit line of size ψa after
compensating the liquidity provider by Xa`. Thus, agents a and ` optimally decide

18Comparison across different equilibria shares similarities with Khorrami (2022), and also Grossman
and Stiglitz (1980) where agents buy information ex-ante and this gives rise to an equilibrium
with endogenous information structure, or Alvarez and Jermann (2000) where agents weigh between
participation and autarky.
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whether to assume the roles prescribed. Agent 3, since she is endowed with zero wealth,
will take on the role assigned to her, as any outcome that allows her to enter is incentive
compatible from her viewpoint.19

The value of the compensation to the liquidity provider corresponds to the utility
valuation commonly used in models with incomplete markets.20 Throughout, we assume
that a reverse compensation (clawback) provision in the contract ensures that the liquidity
provider will never find it optimal to renege on non-participation at a later date.21

The definition of equilibrium now takes into account these date 0 decisions and
transfers:

Definition 2. An equilibrium is a pair of security price processes (S0t, St) and an array
{ckt, (πkt;φkt)} with k ∈ {a, h, `} of consumption plans and trading strategies such that (1)
given (S0t, St) the plan ckt maximizes Uk over the feasible set of Agent k and is financed
by the trading strategy (πkt, φkt) with initial endowments and transfers that satisfy (32)
and (33); (2) markets clear: φat + φht + φ`t = 0, πat + πht = St and cat + cht + c`t = et.

We first examine equilibria with only two types of agents. Equilibria with types {a, h}
or {h, `} are easily ruled out: An equilibrium with types {a, h} cannot occur without a
liquidity provider, whereas an outcome {h, `} is suboptimal as no agent would voluntarily
relinquish access to markets without adequate compensation, see Lemma 1. This means
that models with exogenous segmentation like Basak and Cuoco (1998), Hugonnier (2012)
are not nested.

An equilibrium with types {a, `},22 on the other hand, deserves closer scrutiny. To
simplify the intuition, suppose there is only one stockholder at the outset, so that K = 0,
i.e., n = 0. By inspecting the limits in Lemma 1 we see that a single agent who owns
the stock has utility U0 under complete markets. If she changes type to arbitrageur, and
a liquidity provider with zero-initial wealth enters, she cannot improve upon U0 because
she is sharing the dividend with the liquidity provider and must pay to tap the credit

19We assume that roles are prescribed by the regulator. The only issue from an agent’s point of view
is whether they are willing to participate in those roles or not. If not, the credit line shuts down and the
complete market equilibrium prevails. An alternative rationale is that roles correspond to natural skills
of agents and that mismatches between roles and skills are costly and un-implementable.

20Applications of utility-based valuation under incomplete markets can be found Karatzas and Kou
(1996), Hugonnier et al. (2005), among others.

21An extreme form of clawback provision confiscates the wealth of the liquidity provider upon a
breach. In this instance, consumption becomes null and ex-ante utility goes to −∞.

22For example, stockholders become arbitrageurs and are financed by a liquidity provider with zero-
initial wealth ({a, a, `}); or in a different configuration, a stockholder becomes a liquidity provider
and an arbitrageur with zero-initial wealth enters, joining an existing stockholder who changes type
({`, a, a}, {a, `, a}).
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line. Specifically, W1t = Wat = St−W`t, W1t+ψaBt = (1−st)et/ρ, and W`t = stet/ρ with
s0 = p. What if roles are reversed, i.e., the stockholder becomes the liquidity provider
and the zero-initial wealth agent enters as an arbitrageur. In this case, Agent 1 sells her
shares to the arbitrageur at price S0 = (1−αsκ0)P0 and collects pP0 = s0P0 for the credit
facility, leaving her with W10 = (1 − αsκ0 + p)P0. This is strictly less than her position
W10 = P0 if she chooses to remain an investor. Here welfare would decline as her maximal
utility would be U0 − σ2

e

2ρ2 (2κ − 1) < U0. This rules out existence of an equilibrium with
types {a, `} and a single initial stockholder. We note that it does not make any difference
if we split the stockholder in two.

This analysis suggests that for an equilibrium to exist, there must be agents with
initial positive endowment who do not change their type. As we will see in Section
4.8, the mechanism behind non-participation creates a pecuniary externality for those
stockholders who do not change types. In what follows, we construct equilibria where
either Agent 2 or 3 may become a liquidity provider whereas Agent 1 remains a regular
stockholder.23 We assume Agents 2 and 3 are sophisticated agents who are able to
compare welfare across equilibria and decide whether to assume the roles assigned to
them in equilibrium. In contrast, Agent 1 is a standard price taker acting on the basis of
a given price system.

Our next proposition describes changes to the consumption rules that sustain an
equilibrium with three types of agents.

Proposition 7. Let X` = pP0 and assume that an equilibrium exists where Agent 1
participates, another agent acts as a liquidity provider and the last agent as an arbitrageur.
In such an equilibrium, the stock price and its bubble are explicitly given by (30) and (31)
and the money market account is described in (10). The consumption shares of agents
are given by

s1t = sht = 1
1 + ν

(1− st); s`t = st; sat = ν

1 + ν
(1− st)

where the consumption share of the liquidity provider st satisfies (11) and

(s0, ν) =


(
n+ p, α(n+p)κ−p

1−(α(n+p)κ+n)

)
; if s2 = s`(

p, n+αpκ−p
1−(αpκ+n)

)
; if s3 = s`.

23Equilibrium configurations {a, h, `} and {`, h, a} lead to qualitatively similar results which we omit
for brevity.
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If Agent 2 is the liquidity provider (s2t, s3t) = (s`t, sat), otherwise (s2t, s3t) = (sat, s`t).

We highlight a few common elements across equilibria. First, the functional forms for
the interest rate and the market price of risk are identical to the baseline model in
Proposition 2. Second, the bubble ordering described in (16) carries over and the pair
(St, Bt) is now defined in (30) and (31). Third, the bubble on the stock vanishes as α ↑ 1
(unlimited borrowing capacity). This confirms the intuition that says if arbitrageurs are
allowed to increase the scale of the arbitrage that exploits the mispricing in the stock, the
bubble decreases in size, to the extent that, in the limit, it disappears and the stock price
converges to its fundamental value. This interpretation is starker if one thinks in terms
of more arbitrageurs entering the market. The bubble in the money market account, on
the other hand, persists as an equilibrium outcome that incentivizes stockholders to clear
markets.

Finally, the notion of fundamental value is inherently linked to the trading conditions
under which agents operate and, as a corollary, both fundamental values and bubbles
will be agent-specific. Take for example an investor i with access to credit facility ψi

and a security with payoff VT , at time T > 0. The minimal cost portfolio strategy that
replicates the payoff under agent i’s investment opportunity set is given by

Ft(VT , ψi) = Ft(VT )− ψiBt(T ) (34)

where Ft(VT ) = Et [ξt,TVT ] is the non-negative replication value of the claim over an
interval [0, T ] and the term −ψiBt(T ) arises from exploiting the limited arbitrage in
the stock by tapping a credit facility of size ψi. This has implications for pricing
beyond primitive assets and hence for financial innovation: As valuation depends on
credit conditions, contingent claim pricing out of this economy is not obvious. Note too
that characterizing fundamental value using the minimal cost strategy in (34) leads to
a redefinition of the security’s bubble component. Taking the stock as an example, its
fundamental value for Agent i is thus

Ft(T, ψi) = Ft(T )− ψiBt(T ), (35)

and it is easy to see that the bubble on the stock, now defined as the difference between
the stock price and (35)

Bt(T, ψi) = St − Ft(T, ψi) = St − (Ft(T )− ψiBt(T )) = (1 + ψi)Bt(T ),
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would amount to more than 100% of the market price, since the process (35) could be
negative in some states.24

4.6 Existence of equilibrium

We now detail the parametric restrictions that allow the equilibria described in Proposi-
tion 7 to exist.

Proposition 8. Assume n+α > 1 and define the following constants n̄ ≡ min(exp(−σ2
e(2κ−

1)/2ρ), 1),
¯
p ≡ ((1− n̄)/α)1/κ and p̄ ≡ ((1− n)/α)1/κ in the unit interval.

(i) {h, `, a}: Fix n ∈ (0, n̄). Let s0 ∈ (
¯
p, p̄) be a solution of 1

ρ
log(s0/n)− σ2

e

2ρ2
1+s0−2sκ0

1−s0 =
0, then there is a unique equilibrium where Agent 2 is the liquidity provider with
p = s0 − n and Agent 3 is the arbitrageur.

(ii) {h, a, `}: Let s0 ∈ (0, p̄) be a solution of 1
ρ

log
(
n+αsκ0−s0
n(1−s0)

)
− 1

1−s0
∑∞
j=1

1
j
u(s0, j) = 0

and assume U I,p
1 (p̄)−U0 > log(n)/ρ, then there is a unique equilibrium where Agent

3 is the liquidity provider with p = s0 and Agent 2 is the arbitrageur.

Necessary parametric constraints for ν > 0 for both types of equilibria can be summa-
rized by s0 − αsκ0 < n < 1− αsκ0 . These inequalities ensure that initial wealth positions
can support positive consumption for all agents and the required transfers to support
equilibrium. The right hand side n < 1 − αsκ0 implies that the wealth of Agent 1 must
be positive, w1 = S0 − nP0 = (1 − αsκ0 − n)P0 > 0. The left hand side s0 − αsκ0 < n

ensures that arbitrage profits extracted at time 0, ψaB0 = αsκ0P0, are sizable enough
to compensate liquidity providers, w0` + pP0 > 0, and allow for the arbitrageur’s initial
wealth to be positive, w0a + ψaB0 − pP0 > 0. The sharing rule ν(n, α) for both types of
equilibria is depicted in Figure 2 Panels (a)–(c).

[Insert Figure 2 about here]

However, there are differences across types of equilibria since the identity of the
arbitrageur varies. If Agent 2 (Agent 3) is the liquidity provider (arbitrageur), arbitrage
profits must cover the price of the credit line, ψaB0 − pP0 = (αsκ0 − p)P0 > 0, which is

24For the bubble in the money market account, note that the redefined bubble includes a long position
on the stock price bubble

B0t(T, ψi) = S0t − F0t(T, ψi) = S0t − (F0t(T )− ψiBt(T )) = Bot(T ) + ψiBt(T )

which, for the same reason, could exceed the price of the money market account.
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enough to ensure Agent 3 chooses to act as an arbitrageur. As long as this condition is
verified, the utility indifference condition fixes the compensation as a function of Agent
2’s wealth level only, p(n), since her endowment only depends on cash, nP0. This is
shown in Figure 2 Panel (b). This result will be useful when we discuss optimal levels of
liquidity in the next section, as quantities will be available in closed-form.

If Agent 3 (Agent 2) is the liquidity provider (arbitrageur), Agent 2’s initial wealth
must be strictly positive after payment, w2 + ψaB0 − pP0 = (n + αsκ0 − p)P0 > 0 . The
utility indifference condition fixes the price p(n, α) as a function of Agent 2’s wealth level
and the size of the credit line since her endowment depends on cash nP0 and the arbitrage
profits ψaB0, as illustrated in Figure 2 Panel (d). Agent 3 is automatically better off by
choosing to provide liquidity, provided the compensation is positive.

4.7 Entry costs

Khorrami (2022) questions the risk concentration channel by arguing the mechanism
relies on implausibly costly financial friction. Traditional models, e.g., (Basak and Cuoco,
1998, Vissing-Jørgensen, 2002) rely on exogenously fixed types and no entry. Khorrami
(2022) studies an OLG extension of (Basak and Cuoco, 1998) based in Blanchard (1985),
Gârleanu and Panageas (2015) that renders the equilibrium bubble free. In his baseline
model, non-participant new cohorts may pay a one-time cost to begin trading in risky
asset markets forever after. The intuition is that if entry is not too costly, the risk
concentration channel is completely severed as markets becomefully integrated and agents
share aggregate risk equally.25

We offer a rehabilitation of the concentration channel that highlights the importance
of the various forms of segmentation that arise with asset bubbles. These imply different
entry costs, as shown in Proposition 7, and are substantially different across equilibria.

Take the equilibrium {h, `, a}. Here Agent 2 shifts type to liquidity provider, a role
change that is suboptimal in Khorrami (2022), and Agent 3 enters as arbitrageur to
compensate Agent 2 so that their initial consumption shares are given by (s20, s30) =
(n+p, αsκ−p). As shown in Figure 2 Panel (b), the price (p) could amount to as little as

25Since participation provides an extra average return on wealth, which translates into a large present
discounted utility gain that outweighs small entry costs, in other words, small participation costs cannot
dissuade investors from taking these benefits. The corollary is that if limited participation is the
mechanism generating large and volatile risk premia, implied participation costs must be as large as
90% of aggregate wealth to induce enough segmentation and hence empirically realistic asset prices in
his calibration.
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12% aggregate wealth (10% with Khorrami (2022) calibration), using the pre-entry price
P0 as the basis, and then it increases with the initial cash holdings n up to 30%.

In contrast, in the equilibrium labeled {h, a, `} Agent 2 shifts the type to arbitrageur
and Agent 3 enters as liquidity provider so that their initial consumption shares are given
by (s20, s30) = (n + αpκ − p, p), echoes Khorrami (2022). Figure 2 Panel (d), the price
(p) amounts to large fractions of aggregate wealth, yet it decreases with the amount of
arbitrage profits extracted by Agent 2, dictated by α, and her cash endowment n.

4.8 Welfare impact of the credit line

The credit line has two negative effects on Agent 1. The first is a wealth reduction for
Agent 1 for any level of α, since her initial wealth w1 = P0(1− n− αsκ0) is decreasing in
α. The second is a dynamic effect, through the consumption share s0. By expressing the
wealth of Agent 1 as a self-financing strategy in the stock and the riskless asset bubble over
the interval (t, T ] as in (20) and computing the ratio bubble-to-stock holdings sensitivity
to the size of the credit line α

∂

∂α

∣∣∣∣∣φ
B0
1t (T )
φS1t(T )

∣∣∣∣∣ = −v(st)(1− st) + st
st + (1− Σ0t(T )) (1− st)

≤ 0 (36)

shows how the stockholder decreases her relative position on the riskless asset bubble as
the stock becomes more volatile. More formally, using the results from Propositions 7
and 8, it follows that:

Proposition 9. For any given α ∈ (1− n, 1], Agent 1, the regular stockholder, is worse
off in the equilibria with incomplete markets of Proposition 6 relative to the complete
market equilibrium.

To understand the comparison result take the counterargument U I,p
1 (·) > UC

1 (·). This
inequality implies that there is a feasible consumption allocation that Pareto dominates
the allocation in (6), since Agent 2 is indifferent and Agent 3’s consumption is nonzero.
This is a contradiction with respect to the first welfare theorem that states that if there
is an equilibrium in which markets are complete, then the corresponding consumption
allocation is Pareto optimal. At work, there is a pecuniary externality that arises from the
interaction between the participation decision and the loosening of the solvency constraint
via the credit line in (26).

The arbitrageur benefits, to the detriment of Agent 1, from a larger credit facility
because the liquidity provider’s consumption is invariant to α. As such it introduces
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a novel channel in the literature on the transmission of macroeconomic shocks through
credit markets with redistributive effects, whereby the stockholder faces a crowding out
effect due to increased volatility.26

[Insert Figure 3 about here]

Figure 3 illustrates portfolio positions for the arbitrageur and the regular stockholder
for various levels of the credit line. Panel (a) shows the arbitrageur takes a much larger
position on the stock than the regular stockholder and this position decreases with α as
the stock becomes more volatile. Panel (b) shows the extent to which the arbitrageur
exploits the credit line to finance her strategy relative to the regular stockholder.

5 Optimal liquidity

In this section, we develop a notion of optimal liquidity that determines the credit line
size, using a social welfare function that represents the concerns of a planner/regulator
that cares about zero-wealth investors. We then show this is a distinct channel by which
financial innovation may increase fragility, in the sense that too much liquidity leaves the
system open for larger losses for lenders upon unanticipated shocks.

There are well-known examples of optimal securities design based on social welfare
functions, based on a sizable literature on financial innovation.27 It is clear that the open-
ing of a credit facility does not improve the risk sharing of existing market participants.
On the other hand, there is evidence that new assets are endogenously introduced by
agents with profit incentives (Simsek, 2013), who may possibly manipulate the social or
political environment without creating, necessarily, new wealth (Krueger, 1974, Velasco,
2025).

5.1 Planner’s problem

In our economy, since Agent 3’s welfare is −∞ when she does not consume, a planner
maximizing a weighted average of (all) agents’ utilities would choose an equilibrium with
bubbles that allows for Agent 3’s participation. This is true provided the planner puts

26See e.g. Brunnermeier and Sannikov (2015), Dávila and Korinek (2017) for additional examples of
pecuniary externalities for competitive economies with financial constraints.

27See e.g., Allen and Gale (1988), Demange and Laroque (1995), Athanasoulis and Shiller (2000, 2001),
Simsek (2013), among others. There is also a growing literature, see, e.g., Schilling and Uhlig (2019),
Biais et al. (2024) that analyzes the welfare implications of introducing cryptocurrencies; however, their
null intrinsic/fundamental value is part of the assumptions rather than an endogenous result.

28



positive weight (even if very small) on Agent 3’s welfare, i.e., the planner cares about
Agent 3’s welfare.28 In order to calculate an optimal ψ (equivalently α) for the economy,
we proceed as follows. Consider a social welfare function, i.e., the sum of agents expected
utilities calculated using a set of non-negative weights η such that ∑3

k=1 ηk = 1, gives
U = ∑3

k=1 ηkU
i
k(Θk), where Θk includes the initial endowment, credit line and transfers,

and the superscript i denotes the market structure, complete or incomplete, under which
each agent operates. Maximizing the welfare criterion U with respect to α provides the
optimal design of the credit line with respect to the social welfare function.

Proposition 10. (i) {h, `, a}: Assume Agent 2 (Agent 3) is the liquidity provider
(arbitrageur). The optimal amount of liquidity α∗ is given by

α∗ = min
(

1, 1
(n+ p(n))κ

η1p(n) + η3(1− n)
η1 + η3

)
; p(n) = s0 − n. (37)

(ii) {h, a, `}: Assume Agent 3 (Agent 2) is the liquidity provider (arbitrageur). The
optimal amount of liquidity α∗ is given by the solution to

α∗ = argmax
α∈(1−n,1]

{
−η1
ρ

log
(
n+ αp(n, α)κ − p(n, α)

1− (αp(n, α)κ + n)

)
+ η3

(
log p(n, α)

ρ
− σ2

e

2ρ2
1+p(n, α)−2p(n, α)κ

1− p(n, α)

)}
(38)

In case (i), the regulator weights the impact of liquidity α on the consumption shares
of Agents 1 (regular stockholder) and 3 (arbitrageur). Agent 2 (liquidity provider) does
not influence this choice because her compensation p(n) does not depend on liquidity.
The regulator’s decision then boils down to the choice

max
α∈[0,1]

η1 log 1
1 + ν(α) + η3 log ν(α)

1 + ν(α)

; ν(α) = c3t

c1t
= α(n+ p(n))κ − p(n)

1− α(n+ p(n))κ − n

where the relative consumption weight ν(α) is an increasing function of liquidity. The
solution is driven by the fact that an increase in α favors the arbitrageur at the expense of
the regular stockholder. Balancing these effects gives ν(α∗) = η3/η1, leading to (37). This
expression shows that optimal liquidity is a weighted average of the compensation p(n)
paid by the arbitrageur and the endowment 1− n of the regular stockholder, normalized
by the marginal benefit of liquidity for arbitrage profits (n + p(n))κ. The average is
over post-transfer endowments of Agents 1 and 2 and the weights applied reflect the

28The role of the planner could be expanded to also include the choice between equilibria.
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regulator’s preferences. Furthermore, inspection of the formula shows that the limits
(η1, η3) = (1, 0), (η1, η3) = (0, 1) do not satisfy necessary conditions for existence of
equilibria p(n) < α(n + p(n))κ < 1 − n. Finally, if (η1p(n) + η3(1 − n))/(η1 + η3) ≥
(n + p(n))κ then unlimited borrowing capacity (α∗ = 1) is optimal. The trigger n∗

for this to happen equates the marginal benefit of liquidity for arbitrage to the average
post-transfer endowments of Agents 1 and 2.

[Insert Figure 4 about here]

Figure 4 illustrates the behavior of optimal liquidity in (38) as cash endowment n in-
creases. It shows liquidity is maximal at 1, i.e., the stock bubble is arbitraged away, if n
is sufficiently low. In this instance, the marginal benefit of α for arbitrage profits is low,
prompting the regulator to optimally select maximal liquidity. When cash n reaches the
threshold n∗, the marginal benefit becomes large enough to reduce optimal liquidity at
the margin. The regulator then balances the benefits and costs of liquidity for Agents 1
and 3 as described above.

The mechanisms underlying case (ii) are more intricate. Here, the regulator impacts a
priori all agents, as the equilibrium compensation p(n, α) depends on liquidity. Incentive
compatibility, however, ensures that Agent 2, who now serves as an arbitrageur, attains
the same utility as in the complete market model. It follows that her utility, ultimately,
does not depend on α and does not affect the regulator’s decision. Optimal regulation,
again, mandates a choice between the impact of liquidity on Agents 1 (regular stock-
holder) and 3 (liquidity provider), as described in the proposition. In this instance, the
utility of Agent 1 taking account of incentive compatibility, leads to −η1 log(ν(α)) where

ν(α) = c2t

c1t
= n+ α(n+ p(n, α))κ − p(n, α)

1− α(n+ p(n, α))κ − n

whereas the utility of Agent 3 leads to the second term. There are now two effects of
liquidity, direct and indirect. The direct effect balances the marginal impact on the
relative consumption shares of Agents 3 and 1, through arbitrage profits, keeping com-
pensation p(n, α) frozen. The indirect effect arises through the adjustment in equilibrium
compensation p(n, α). It affects the relative consumption shares as well as the utility of
Agent 3. The optimal liquidity policy in this case is not obtained in explicit form, but
can be calculated numerically using standard optimization routines.

[Insert Figure 5 about here]
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Figure 5 plots the social welfare function for different weights ζ = η3/η1. The characteri-
zation is slightly more challenging but it shows liquidity is maximal at 1 for the example,
i.e., the stock bubble is arbitraged away for all levels of the cash endowment n.

This showcases a distinct channel by which financial innovation increases portfolio
risk and, as we will see in the next section, induces fragility, in the sense that unlimited
borrowing capacity leaves the system open for larger losses for lenders upon unanticipated
shocks.

5.2 Fragility

We explore the impact of an exogenous liquidity shock that decreases the value of
α and thus might force investors to settle their positions. This type of shock can
represent a credit crunch originating from an unanticipated change in regulation or
from an unanticipated change in the economic environment prompting a reduction in
the flexibility afforded to arbitrageurs. Its impact is similar to agents neglecting some of
the risk (Gennaioli et al., 2012, Bolton et al., 2018) whereby credit is not rolled over if
the arbitrageur violates the wealth constraint in (26).29

Let us assume that the tightening liquidity shock occurs at time τ > 0 and decreases
the size of the credit facility to 0 ≤ α̃ < α. Depending on the distribution of wealth in
the economy, the shock will either lead to an equilibrium in which arbitrageurs are still
active but on a smaller scale, or to an equilibrium in which they are no longer present
because they are unable to satisfy the wealth constraint given the new prices.

To set up the main example, consider first the non-default outcome, that is, that
satisfies the inequality in (26). Denote by (πkτ , φkτ ) the portfolio holdings of the agents
prior to the occurrence of the shock:

(π1τ , φ1τ ) =
(

1
(1 + ν)(1 + v(sτ ))

; v(sτ )− (1 + v(sτ ))sτ
(1 + ν)(1 + v(sτ ))

)
Pτ

(π`τ , φ`τ ) = (0; 1) sτPτ

29There is extensive literature, see, e.g., Gromb and Vayanos (2008), Krishnamurthy (2010),
Brunnermeier et al. (2020), arguing that large financial shocks are often preceded by periods of credit
expansion during which market participants become increasingly vulnerable to a reversal in funding
conditions, i.e., a liquidity dry-up. These episodes are bound to occur in the crypto space (Hermans
et al., 2022, Financial Stability BIS, 2023, Lowrey, 2025).
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and

(πaτ , φaτ ) = ν(π1τ , φ1τ ) +
(

κ− 1
1 + v(sτ )

;−κ+ v(sτ )
1 + v(sτ )

)
αsκτPτ . (39)

Given these holdings, an equilibrium exists if and only if there exists ν̃ > 0 such that

φ1τ + π1τ (S̃τ/Sτ )︸ ︷︷ ︸
after

= 1
1 + ν̃

(1− sτ )Pτ >
1

1 + ν
(1− sτ )Pτ︸ ︷︷ ︸
prior

(40)

where Sτ = (1 − αsκτ )Pτ , S̃τ = (1 − α̃sκτ )Pτ give the equilibrium price of the stock an
instant prior and after the liquidity shock, respectively. As the regular stockholder is
long in the stock, this price appreciation benefits her unambiguously, while the liquidity
provider keeps her consumption path unaltered. This is why the same consumption share
sτ appears on both sides of the inequality.

Agent 1 has an incentive to reduce the size of the credit line in place for the arbitrageur
to zero, as this price adjustment leads to a decrease in the consumption share of the
arbitrageur

φaτ + πaτ (S̃τ/Sτ ) + α̃sκτPτ︸ ︷︷ ︸
after

= ν̃

1 + ν̃
(1− sτ )Pτ <

ν

1 + ν
(1− sτ )Pτ︸ ︷︷ ︸
prior

.

Risky liquidity. Next, consider a liquidity shock at time τ that shuts down the credit
line entirely. The economy would move to an equilibrium where the stock price is
equal to Pτ . If the arbitrageur’s wealth is nonnegative, then the economy looks like
the baseline economy of Section 2.6 where the arbitrageur is indistinguishable from a
regular stockholder, and her sharing rule ν̃ < ν is determined by a special case of (40)

φaτ + πaτ (Pτ/Sτ )︸ ︷︷ ︸
after

= ν̃

1 + ν̃
(1− sτ )Pτ <

ν

1 + ν
(1− sτ )Pτ︸ ︷︷ ︸
prior

.

On the other hand, if the arbitrageur is in violation of the constraint in (26),

Waτ = φaτ + πaτ
Sτ

Pτ = 1
1 + ν

(
ν(1− sτ )−

αsκτ
1 + (κ− 1)αsκτ

)
Pτ ≤ 0 (41)

the portfolio holdings of the remaining agents reflect the losses generated by her de-
fault/exit. Since arbitrageurs hold a long position in the stock prior to the shock, upon her
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exit the liquidity provider would simply take over her stock position in partial repayment
of her debt.

Let sτ+ denote the consumption share of the liquidity provider post shock. Assuming
there are not direct costs of default or other inefficiencies (e.g., costly repossession), it
follows from (41) that the change in the liquidity provider’s wealth is always negative

W`τ+

W`τ

− 1 = sτ+

sτ
− 1 =

−φ1τ + πaτ
Sτ
Pτ

−φ1τ − φaτ
− 1 = Waτ

W`τ

< 0 (42)

The arbitrageur’s exit impacts the liquidity provider through two channels: losses from
default and price changes. Keeping prices fixed, we have that the default imposes direct
losses on her. On the other hand, the price shift from St to Pt mitigates the direct losses
inflicted on the liquidity provider by increasing the value of her remaining stock holdings.
This type of event is akin to an LTCM or a sudden stop episode where the arbitrageur is
wiped out and the price recovers, all of it happening in an instant of time. To grasp the
magnitudes, the first term in (39) shows that the arbitrageur’s strategy mimics the positive
net position of the stockholder (π1τ , φ1τ ), in proportion to her weight ν. The second term
is a negative net position proportional to the stock bubble and the credit line, since αsκτPτ
is equivalent to ψaBt. The process Waτ is monotonically decreasing in sτ with positive
and negative extremes, lim

sτ→0
Waτ/Pτ = ν

1+ν and lim
sτ→1

Waτ/Pτ = −α
(1+ν)(1+(κ−1)α) .

Losses occur in states where sτ is high, that is, Waτ is negative in bad times, and are
expected to be greater for an equilibrium with small ν and high α, that is, when the net
negative position is relatively larger.

[Insert Figure 6 about here]

Figure 6 illustrates that losses for the liquidity provider could be substantial and they
are increasing in α,

∂

∂α
|Waτ/W`τ | =

sκτ
(1 + ν) (1 + (κ− 1)αsκτ )

2 > 0.

The rise of non-traditional financial channels, such as crypto-lending and decentralized
finance (DeFi) (OECD, 2022), exacerbates the risk to financial stability posed by markets
awash with liquidity. Regulators face a significant challenge (Azar et al., 2022) in this
environment, particularly as major players (e.g., BlackRock, Fidelity) enter the crypto
market, further amplifying liquidity and investor participation.
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6 Conclusion

This study demonstrates how the interplay of limited stock market participation and
credit lines generates asset price bubbles within a simplified three-agent exchange econ-
omy. Increased stock price volatility, driven by arbitrageurs leveraging these credit
facilities, reduces the profitability of bubbly prices for regular stockholders, negatively
impacting their welfare

Credit lines play a dual role in the dynamics of asset bubbles. They ease arbitrage
limitations imposed by wealth constraints, enabling arbitrageurs to actively participate
in market correction. Conversely, credit lines are provided by liquidity providers who,
by remaining non-participants in the stock market, contribute to asset bubble forma-
tion. The interplay between credit lines and liquidity provider behavior underscores the
complex and intertwined relationship between liquidity, funding constraints, and asset
bubbles.

Our model yields significant quantitative implications, demonstrating that credit lines
facilitate low-cost entry for arbitrageurs, thereby rehabilitating the risk concentration
channel of limited participation models.

Finally, we show how optimal liquidity levels balance the benefits and costs of ar-
bitrage; however excessive liquidity can increase market fragility. This is particularly
relevant in the current financial landscape, where the rise of cryptocurrencies and decen-
tralized finance platforms presents novel challenges for regulators.
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A Proofs
Proof of Proposition 1. The welfare of agents 1 and 2 follows from computing the utility
functions using the optimal consumption rules in (6). �

Proof of Proposition 2. We slightly generalize the setup in Section 2.6 to account for het-
erogeneity in risk aversion where γ defines Agent 1’s relative risk aversion and a weaker limited
participation constraint Ct =

{
|π̄tσt|2 ≤ (εσe)2} , with π̄t = πt/Wt. We then employ this result

in Section 3. Agent 1 faces a complete financial market and thus uses process ξt in (1) as a
state price density. Using standard probabilistic methods, it is well known that the solution of
the unconstrained agent’s problem is given by c1t =

(
eρty1ξt

)− 1
γ , σtπ̄1t = θt + h1t (ξtW1t)−1 ,

with π̄1t = π1t/W1t and W1t = Et [
∫∞
t ξt,uc1udu] = 1

ξt

[
H1t −

∫ t
0 ξuc1udu

]
represents the agent’s

wealth along the optimal path, h1 is the integrand in the stochastic integral representation of
the martingale H1 = Et [

∫∞
0 ξuc1udu] and the strictly positive constant y1 is chosen in such a

way that W10 = w1. Agent 2 solves the program supc,π̄∈A(w2) E
[∫∞

0 e−ρt log (c2t) dt
]
, subject to

log(W2t) = log(W20) +
∫ t

0

(
ru + π̄uσuθu −

1
2
∣∣∣σ>u π̄u∣∣∣2 − c̄2u

)
du+

∫ t

0
π̄uσudZu

where A(w2) =
{

(π̄, c) : π̄ ∈ Ct and Ww2,π̄,c
2t ≥ 0, t ∈ [0,∞)

}
and c̄2 = c2/W2. Using the ob-

jective function and the budget constraint, the problem can be expressed as the maximization
of

E
[∫ ∞

0
e−ρt

(
log (at) + log (W20) +

∫ t

0

(
ru + π̄uσuθu −

1
2 |σuπ̄u|

2 − au
)
du

)
dt

]
= E

[∫ ∞
0

e−ρt
[
log (at)− ρ−1at + log (W20) + ρ−1rt + ρ−1

(
π̄tσtθt −

1
2 |σtπ̄t|

2
)]

dt

]
where we conjectured a consumption policy of the form c̄2t = at. The problem is solved by
a pointwise optimization of supa>0{log (a) − ρ−1a}, which admits a unique solution given by
a = ρ, and the mean variance program

sup
π̄=π/W∈Ct

{
π̄σtθt −

1
2 |σtπ̄|

2
}
. (A.1)

Since Ct is a closed convex subset of R, the mean variance problem in (A.1) admits a unique
solution given by σtπ̄t = ktθt with kt =

[
1 + (|θt| /(εσe)− 1)+

]−1
. We construct an equilibrium

using the consumption sharing rule st = c2t/et and the optimality conditions of both agents.
We conjecture and verify that the consumption share process follows an Itô process given by

dst = stµs(·)dt+ stσs(·)dZt, (A.2)
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where the coefficients (µs, σs) are determined jointly with the interest rate and the market price
of risk. We briefly outline the steps to construct an equilibrium. (i) The state price density
is obtained from the first order condition of the unconstrained agent ξ(t, st, et) = e−ρty−1

1 (1 −
st)−γe−γt , and thus, (ii) an application of Itô’s lemma to this function identifies the market price
of risk and the interest rate as functions of the drift and diffusion terms of the consumption
share and the dividend dynamics,

θt = γ

(
σe −

stσs(·)
1− st

)
, (A.3)

rt = ρ+ γµe −
1
2(1 + γ)γσ2

e − γ
stµs(·)
1− st

+ 2γ2σe(1− st)stσs(·)− (1 + γ)γs2
tσs(·)2

2(1− st)2 .

(iii) An application of Itô’s lemma to the process st = c2t/et = ρW2t/et, where W2t is the
wealth process of the constrained agent along the optimal path, with dynamics dW2t/W2t =
(rt + ktθ

2
t − ρ)dt+ ktθtdZt, pins down the drift and volatility in (A.2),

µs(·) = rt + σeθt − µe − ρ+ (ktθt − σe) (θt − σe) ,
σs(·) = ktθt − σe. (A.4)

Using equations (A.3) and (A.4) and the fact that the process kt depends only on θt, we obtain
a nonlinear equation for θ,

θt = γ

(
σe −

st(ktθt − σe)
1− st

)
(A.5)

The solution of this problem is then used to express (r(·), µs(·), σs(·)) as functions of the
consumption share only. The pair (µs(·), σs(·)) is given in (B.2) and (B.3) in the Online
Appendix. The starting point, s0 ∈ (0, 1), is a solution to the equation W20 = P0s0 = nP0,
where P0 = e0/ρ by definition and w2 = K = nP0 by Assumption 1, when γ = 1. When
γ 6= 1, s0 is solved numerically. The lagrange multiplier of the unconstrained agent is set to
y1 = (1 − s0)−γe−γ0 > 0. The equilibrium requires two conditions: (i) s0 ∈ (0, 1) and (ii) the
process st never reaches either zero or one in t ∈ [0,∞). Condition (i) implicitly restricts the
size of the initial portfolios such that the initial endowments wk are strictly positive. Condition
(ii) indicates that boundaries cannot be reached when the process starts from s0 ∈ (0, 1),
otherwise, the consumption policies would not be optimal and equilibrium would fail to exist.
In the Online Appendix B.1 we offer a procedure to check for (ii). To obtain (10)–(11) for the
case (γ, ε) = (1, 0), we first note that k = 0 when ε = 0, then substitute the relevant parameter
values in (θ, r, µs(·), σs(·)) above. �

Proof of Proposition 3. Let β ≡ 1 +ν, we have that d log st = −σ2
e

2β (2λt+β)dt−σedZt. Next,
using integration by parts, we get that the utility of Agent 2 with incomplete markets is given
by

U I,np2 (n)− U0 = E
[∫ ∞

0
e−ρt log stdt

]
(A.6)

= E
[∫ ∞

0
e−ρt log sdt

]
− σ2

e

2βE
[∫ ∞

0
e−ρt

∫ t

0
(2λu + β)du dt

]
= log s

ρ
− σ2

e

2βρ

(
β

ρ
+ 2E

[∫ ∞
0

e−ρtλtdt

])
.
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To compute E
[∫∞

0 e−ρtλtdt
]
, we recall the definition of the fundamental value and use straight-

forward manipulations

F0 = e0(1−s)E
[∫ ∞

0
e−ρt/(1−st)dt

]
= e0E

[∫ ∞
0

e−ρt
( 1−s

1−st
− 1 + 1

)
dt

]
= e0E

[∫ ∞
0

e−ρt
(
λt−λ
β+λ + 1

)
dt

]
= e0
β+λ

(
E
[∫ ∞

0
e−ρtλtdt

]
+ β

ρ

)

and get E
[∫∞

0 e−ρtλtdt
]

= F0(β+λ)
P0ρ

− β
ρ = (1−sκ)(β+λ)−β

ρ where we use Pt = et/ρ and Ft = Pt(1−sκt ).
Using the above and continuing calculations in (A.6)

E
[∫ ∞

0
e−ρt log stdt

]
= log s

ρ
− σ2

e

2βρ

(2(1−sκ)(β+λ)− β
ρ

)
= log s

ρ
− σ2

e

2ρ2 (2(1−sκ)(1+λ/β)− 1) ,

the expression in (13) follows by using s = λ/(β+λ) and λ = βs/(1−s). Next, we use the
following series representation for the logarithm log(1 − x) = −∑∞j=1

1
jx

j for x ∈ (0, 1). Since
st ∈ (0, 1) we then obtain that

E
[∫ ∞

0
e−ρt log(1−st)dt

]
= −

∞∑
j=1

1
j
E
[∫ ∞

0
e−ρtsjtdt

]
(A.7)

and define g(λ, j) = E
[∫∞

0 e−ρtsjtdt
]

as the Laplace transform of n-th moment of st. Using Itô’s
lemma and the SDE for λ, the function g is the unique bounded solution to the Sturm-Liouville
problem

1
2
σ2
e

β2λ
2(β+λ)2g′′(λ, j) +

(
λ

β+λ

)j
= ρg(λ, j) (A.8)

with g(0, j) = 0. First solving the homogeneous equation and then by finding the particular
solution to (A.8), we get the following general solution

g(λ, j) = gh(λ) + gp(λ, j)

where gh(λ) = C1λ
(

λ
β+λ

)κ−1
+ C2λ

(
λ
β+λ

)−κ
and gp(λ, j) = A

(
λ
β+λ

)j
+Bλ

(
λ
β+λ

)j
with

A(j) = 1
ρ− j(j − 1)σ2

e
2

, B(j) = 1
β

 1
ρ− j(j − 1)σ2

e
2

+ 1
j(j + 1)σ2

e
2 − ρ

 .
Then using that g(0, j) = 0 and g is bounded at infinity we deduce that C2 = 0 and C1 = −B,
and therefore g can be written by straightforward simplifications as

g(s, j) =A(j)sj +B(j)λ(s)(sj − sκ−1)

where we used λ/β = s/(1 − s). We note that g does not depend on β. Now by plugging the
expression for g into equation (A.7) the formula in (12) obtains. �
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Proof of Lemma 1. We show that U I,p1 (n) ≥ UC1 (n) for all n ∈ (0, 1). For this we apply Itô’s
lemma and obtain that

d log (1− st) = σe
β
λtdZt + σ2

e

2β2λ
2
tdt

so that log(1 − st) has a local martingale term and an increasing bounded variation part. We
also note that log(1− st) is a negative process and hence standard arguments based on Fatou’s
lemma show that log(1− st) is a submartingale. By Fubini’s theorem,

U I,p1 (n) = E
[∫ ∞

0
e−ρt log ((1− st)et)dt

]
≥ U0 + log(1− n)

ρ
= UC1 (n)

which gives the desired result. Next, it is clear that σ2
e

2ρ2
1+n−2nκ

1−n ≥ 0 and thus UC2 (n) ≥ U I,np2 (n)
for n ∈ (0, 1). The inequalities for partial derivatives with respect to n follow from the
comparison principle for SDEs. Finally, the limits at the boundary points can be computed
either directly by inserting n = 0 and n = 1 into the welfare expressions or by L’Hôpital rule.
In particular, we have that

lim
n→1

U I,p
1 (n) = U0 +

∞∑
j=1

1
j

 j − κ
ρ− j(j − 1)σ2

e
2

− j + 1− κ
ρ− j(j + 1)σ2

e
2

 = U0 + 1
ρ

(
κ− 1
κ
−Hκ−1

)
,

lim
n→1

U I,np
2 (n) = U0 −

σ2
e

2ρ2 (2κ− 1)

which completes the proof. �

Proof of Proposition 4. We recall two lemmas (B.2, B.3) from Hugonnier and Prieto (2015).
First, the stochastic differential equation

Yt(a) = 1−
∫ t

0
Yu(a)

(
a+ su

1− su

)
σedZu (A.9)

where a ∈ R is a constant and st follows (11), admits a unique strictly positive solution which
satisfies

Et [Yt+T (a)] = Yt(a) (1−H(T, st; 2a− 1)) , (A.10)

where H(τ, s, a) is defined in (17). In particular, the process Yt(a) is a strictly positive local
martingale but not a martingale (Lemma B.3). Second, let T > 0 and the function defined by

qt(T ) = ρst

∫ T

t
e−ρ(u−t)(1− Et [λu/λt])du (A.11)

= sκtH(T − t, st; 2κ− 1)− e−ρ(T−t)stH(T − t, st; 1)

where H(τ, s, a) is defined in (17) (Lemma B.2). The bubble on the stock in (23) follows from
taking the limit in (A.11), BtPt = lim

T→∞
qt(T ) = sκt . Using (3) and the law of iterated expectations,

we obtain that the finite horizon bubble on the stock is given by

Bt(T ) = St − Et

[∫ T

t
ξt,ueudu+ ξt,TST

]
= St − Et

[∫ ∞
t

ξt,ueudu−
∫ ∞
T

ξt,ueudu+ ξt,TST

]
= Bt − Et

[
ξt,T

(
ST − ET

∫ ∞
T

ξT,ueudu

)]
= Bt − Et [ξt,TBT ].
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We next compute the right hand side. We include a constant ν to accommodate the model in
Section 4. In the baseline model ν = 0. We have,

Bt − Et[ξt,TBT ]
Pt

= sκt − e−ρ(T−t)Et
[1 + ν + λT

1 + ν + λt
sκT

]
= sκt − ρEt

[∫ ∞
T

e−ρ(u−t) λT − λu
1 + ν + λt

du

]

= sκt + qt(T )− lim
Θ→∞

qt(Θ)− e−ρ(T−t)Et
[
λT − λt

1 + ν + λt

]
= sκtH(T − t, st, 2κ− 1).

Note that the bubble on the riskless asset in (24) follows from a direct application of (A.10)

B0t(T )/S0t = 1− Et
[
ξt,T

S0T
S0t

]
= 1− Et [λT /λt] = H(T − 1, st; 1).

To complete the proof it remains to show that the relative bubble on the stock is dominated
by the relative bubble on the riskless asset over any horizon. Consider the function defined by
G(τ ; s; a) = s

1+a
2 H(τ, s; a). A direct calculation using (17) shows that

∂

∂a
(G(τ ; s; a)) = s

1−a
2 log(s)G(s),

∂

∂a
(s−aG(τ ; s; 2a− 1)) = 2s1−2a log(1/s)N(d−(τ ; s; 2a− 1)) ≥ 0,

with the function defined by G(s) = [saN(d+(τ ; s; a)) − N(d−(τ ; s; a))]/2, and since G(0) =
0 < N(d+(τ ; 1, b)) − 1/2 = G(1), and, G′(s) = (b/2)xb−1N(d+(τ ; s, b)) ≥ 0, we conclude that
the functions G(τ ; s, a) and s−aG(τ ; s, 2a − 1) are respectively decreasing and increasing in a.
Using these properties and the facts that st ∈ (0, 1), κ > 1, we then deduce Bt(t + T )/St =
G(T, st, 2κ− 1)) ≤ G(T, st, 1) ≤ s−1

t G(T, st, 1) = B0t(t+ T )/S0t. �

Asymptotic behaviour of the consumption share process in (21). . Since the consump-
tion share process is a nonnegative supermartingale we have that it converges to a well-defined
limit. On the other hand, an application of Itô’s lemma to (11) shows that

0 ≤ st = s0e
−
∫ t

0
σ2
e

1−su
du− 1

2σ
2
et−σeZt ≤ st = s0e

− 1
2σ

2
et−σeZt

and the desired result then follows from the fact that, by well-known results on geometric
Brownian motion, the process st converges to zero. �

Proof of Proposition 5. Using the portfolio choice of the constrained agent in the market
price of risk in equation (A.5) gives, θ =

[
1−

(
1− 1

1+(|θ|/εσe−1)+

)
R(s)s

]−1
R(s)σe which is

uniquely solved by the positive, continuous and piecewise differentiable function in (25). �

Proof of Proposition 6. Define the strictly positive process λt by

λt = c2t/c
γ
1t = st(1− st)−γe1−γ

t = λ0 +
∫ t

0
λuΦ(su)dZu

with Φ(st) = (k(st) − 1)θ(st), where θ(·) is given in (25). The bubble on the stock can be
characterized by the difference between Agent 2’s wealth and the fundamental value of her
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consumption plan,

Bt = ρ−1stet − Et
[∫ ∞
t

ξt,usueudu

]
= stetEt

[∫ ∞
t

e−ρ(u−t)
(

1− su(1− su)−γe1−γ
u

st(1− st)−γe1−γ
t

)
du

]

= eγt (1− st)γ
∫ ∞
t

e−ρ(u−t) (λt − Et [λu]) du

= etst

∫ ∞
t

e−ρ(u−t) (1− Et [λu/λt]) du.

which is identical to (23). Just as in the baseline case with γ = 1, the bubble on the stock
depends on λ. To assess the the martingality of λ, we use the exponential local martingale

Mλ
t = λt

λ0
= e−

∫ t
0

1
2 Φ(su)2du+

∫ t
0 Φ(su)dZu , (A.12)

where Φ(x) = εσe−γσe 1−εx
1−x as the density of a candidate equivalent change of measure Pλ. We

verify the properties of the consumption share process, whose dynamics under Pλ follows

dst = µλs (st)stdt− (1− ε)σestdZλt , (A.13)

µλs (x) = (γ − 1) 1− x
1 + (γ − 1)xµe + (γ − 1)γ [2− ε(2− ε)x]x− 1

2(1− x)[1 + (γ − 1)x]σ
2
e + (1− ε)2σ2

e ,

where dZλt = dZt − Φ(st)dt is a Pλ− Brownian motion. In equilibrium, the consumption share
lives in (0, 1) (see Appendix B) therefore, if under Pλ the process hits one of the boundaries
with positive probability, Pλ could not be equivalent to P because this behavior is not possible
under the objective measure. As shown in Heston et al. (2007, Theorem A.1), this is a test for
the martingality of λ, i.e., the failure of equivalence of measures implies the process is a strict
local martingale.

Define the stopping times T∆ = inf{t ≥ 0 : st ≥ ∆}, with ∆ ∈ I ≡ (0, 1), and let
T1 = lim

∆→1
T∆, T0 = lim

∆→0
T∆.

When γ = 1, the process in (A.13) under Pλ corresponds to a geometric Brownian motion,
and hence, it reaches 1 in finite time with positive probability, Pλ[T1 < T ] > 0. This contradicts
the equivalence between P and Pλ, and thus, λ is a strictly positive local martingale but fails
to be martingale.

When γ > 1, the drift diverges to plus infinity when s = 1 (note that the numerator in
the second term is positive as s ↑ 1), we get Pλ[T1 < T ] > 0 by using a standard comparison
argument (the drift can be bounded from below using a linear function). This contradicts the
equivalence between P and Pλ, and thus, λ is a strictly positive local martingale but fails to be
martingale.

When γ < 1, unlike the previous cases, the behavior of the process under Pλ resembles its
behavior under P, that is, its drift diverges to negative infinity when s ↑ 1. In order to obtain
information about the behavior of the consumption share as it approaches 1, we construct its
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scale function, Sc(x),

Sc(x) =
∫ x

c
exp

[
−2
∫ y

c

zµλs (z)
z2σs(z)2dz

]
dy

= (1− x)x
b3 − 1

(1− x
1− c

)−(1+γ) (x
c

)b3−1 (1 + (γ − 1)x
1 + (γ − 1)c

)−b2
F1

[
1, b1, b2, b3, x,

γx

1 + (γ − 1)x

]
− (1− c)c

b3 − 1 F1

[
1, b1, b2, b3, c,

γc

1 + (γ − 1)c

]
where c ∈ I is an arbitrary constant and F1(·) denotes the Appell Hypergeometric function of
two variables,30 with b1 = 2µe−γ[2−ε(2−ε)]σ2

e
(1−ε)2σ2

e
, b2 = −2γ µe−

1
2γσ

2
e

(1−ε)2σ2
e
−1, b3 = 2(1−γ)µe−

1
2γσ

2
e

(1−ε)2σ2
e
. When

b3 − 1 > 0 or equivalently, (1 − γ)
(
µe − 1

2γσ
2
e

)
− 1

2(1− ε)2σ2
e > 0, we obtain lim

∆→1
Sc(∆) = ∞,

which is a sufficient condition that guarantees that starting from any point in I, the right
boundary cannot be reached in finite time, i.e., Pλ[T1 < T ] = 0 (Karatzas and Shreve, 1991, p.
348). To ensure that the share process does not reach 0, we use a comparison argument, similar
to the procedure in Appendix B, we omit the details. �

Proof of Propositions 7. Let Nt be defined by

Nt = ξtWat + ψaξtSt +
∫ t

0
ξu(cau + ψaeu)du

= wa0 + ψaS0 +
∫ t

0
ξu ((πau + ψaSu)σu − (ψaSu +Wau)θu) dZu (A.14)

with ψa ≥ 0. Nt is a nonnegative local martingale for positive consumption plans, and hence, is
a supermartingale. This implies that E

[∫ T
0 ξt(cau + ψaeu)du+ ξT (ψaST +WaT )

]
≤ wa0 +ψaS0.

The arbitrageur optimization problem can be formulated as

sup
c≥0

E
[∫ ∞

0
e−ρu log cudu

]
subject to E

[∫ ∞
0

ξucudu

]
≤ wa0 + ψaB0

where the static budget constraint follows by letting T → ∞, fixing wa0 = w0 − pP0 and
applying the definition of the bubble component in (A.14). We will verify that the transversality
conditions lim

T→∞
E [ξTWT ] = lim

T→∞
E [ξTST ] = 0 are satisfied in equilibrium. The solution to this

problem and the corresponding wealth process are explicitly given by cat = (yaeρtξt)−1 and
Wat + ψaBt = 1

ξt
Et [
∫∞
t ξucaudu] = cat

ρ = e−ρt w0+ψaB0−pP0
ξt

. for the Lagrange multiplier ya > 0
given 1

yaρ
= w0 + ψaB0 − pP0. On the other hand, applying Itô’s lemma to the left hand side

of the above expression and using the fact that Bt = B0 +
∫ t

0

(
rsBsds+ ΣB

s (dZs + θsds)
)
, we

deduce that the optimal wealth process evolves according to

Wat =
∫ t

0

(
(rsWau − cau)du+

(
(Wau + ψaBu)θu − ψaΣB

u

)
(dZu + θudu)

)
and the result in (28) now follows by comparing this expression to (5). This process satisfies by
construction the constraint in (26).

As in the baseline model, we construct a sharing rule so that the consumption good market
clears. The process st ≡ c`t

et
= λt

1+ν+λt ∈ (0, 1) represents the consumption share of the liquidity

30See e.g., Whittaker and Watson (1990), Ex.22, p.300., or http://functions.wolfram.com/Hype
rgeometricFunctions/AppellF1/
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provider and c`t = stet, c1t = 1
1+ν (1 − st)et, and cat = ν

1+ν (1 − st)et. The equilibrium state
price density is given by ξt = e−ρt e0(1−s0)

et(1−st) . To compute the equilibrium price of the stock, we
rely on the financial market clearing condition which requires St = ∑3

k=1Wkt. Combining this
identity with the optimal consumption rules and the clearing condition of the consumption good
market gives St = Pt − ψaBt = Pt − ψa(St − Ft) where the process Ft is the fundamental value
of the stock. Setting α = ψa/(1 + ψa) and solving for the stock price we get (30). The stock
price includes the bubble, Bt = (1−α)et

1+ν+λtEt
[∫∞
t e−ρ(u−t) (λt − λu) du

]
since an application of Itô’s

lemma gives dλt = (1 + ν)d
(

st
1−st

)
= −λt(1 + ν + λt) σe

1+ν dZt,= −λt
(
1 + st

1−st

)
σedZt and the

uniqueness of the solution to (A.9) implies that λt = Yt(1), so that λ is a strict local martingale.
The characterization of relative bubbles follows from an identical procedure to the one described
in the proof of Proposition 4. We omit the details. To conclude, note that αsκT ≤ 1 and the
supermartingale property of the process λ implies that

E[ξTST ] = e−ρT
P0

1 + ν + λ0
E[(1 + ν + λT )(1− αsκT )] ≤ e−ρTP0

and since ρ > 0 it follows that the transversality condition holds. �

Proof of Proposition 8. {h, `, a}: Agent 2 as liquidity provider. Let Ak denote Agent k ∈
{1, 2, 3}. The equilibrium is determined by the following system of equations

(A2) 1
ρ

log(s)− σ2
e

2ρ2
1+s−2sκ

1− s = 1
ρ

log (n), (A.15)

(A2) s = n+ p, (A.16)

(A1) 1
1 + ν

(1− s) = 1− αsκ − n, (A.17)

(A3) ν

1 + ν
(1− s) = ψ(1− α)sκ − p = αsκ − p. (A.18)

Conditions for existence are characterized next. The left hand side in (A.15) is monotone
increasing in s by the comparison theorem for solutions of SDEs with limits {−∞,−(2κ −
1)σ2

e/(2ρ2)}, so the single root s ≡ s(n) ∈ (0, 1) to (A.15) exists as long as n ∈ (0, n̄), where
n̄ = min(1, u) with {u : 1

ρ log(u) = lim
s→1

1
ρ log(s)− σ2

e
2ρ2

1+s−2sκ
1−s } is the positive constant defined in

the Proposition. Furthermore, it follows from an application of the implicit function theorem
in (A.15) that p′(n) = s′(n)− 1 ≥ 0.31 Next, we use (A.17) and (A.18) to get ν

ν = ψ(1− α)sκ − p
1− αsκ − n . (A.19)

Agent 1 and 3’s initial (effective) wealth must be strictly positive in (A.17) and (A.18). This
implies that ν > 0 if and only if

ψ(1− α)sκ − p = αsκ − p > 0, (A.20)
1− αsκ − n > 0. (A.21)

From (A.16), we have that p = s − n, and substituting in the inequality (A.20), n > s − αsκ.
From (A.21), we have 1− αsκ − n > 0. Taken together, s− αsκ < n < 1− αsκ. We have two
cases:

31This condition amounts to (1 − s)2(s − n)ρ + nσ2
e(s + sκ((κ − 1)s − κ)) ≥ 0 which is verified as

s ∈ (n, 1).
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Case 1: n+α > 1, i.e., (1−n)/α < 1. From the upper bound n < 1−αsκ ⇔ s <
(

1−n
α

)1/κ
.

From the lower bound p < αsκ ⇔ s >
( p
α

)1/κ. Note that since p′(n) > 0 and p(n̄) = s(n̄)− n̄ =
1− n̄, a sufficient condition is s >

(
1−n̄
α

)1/κ
. Existence follows if the starting point s0 belongs

to the open set
((

1−n̄
α

)1/κ
,
(

1−n
α

)1/κ
)

.
Case 2: n + α < 1, i.e., (1 − n)/α > 1. The same steps apply, but the right hand side of

the interval becomes min(1, ((1 − n)/α)1/κ) = 1. Existence follows if s0 ∈
((

1−n̄
α

)1/κ
, 1
)

and
n̄+ α > 1.

{h, a, `}: Agent 3 as liquidity provider. A3 receives compensation pP0 ≥ 0, and this quantity
fixes the starting point for the consumption share of the liquidity provider. For this equilibrium
to be incentive compatible,

(A2) 1
ρ

log (ν/(1 + ν)) + U I,p1 (p)− U0 = 1
ρ

log (n), (A.22)

(A3) s = p,

(A1) 1
1 + ν

(1− p) = 1− αpκ − n, (A.23)

(A2) ν

1 + ν
(1− p) = n+ ψ(1− α)pκ − p = n+ αpκ − p. (A.24)

where we have from (12), U I,p1 (p) − U0 = − 1
1−p

∑∞
j=1

1
ju(p, j). Solving for ν using (A.23) and

(A.24),

ν = n+ αpκ − p
1− (αpκ + n) (A.25)

so that ν > 0 when p < αpκ + n < 1, or equivalently, p− αpκ < n < 1− αpκ. From the upper
bound n < 1 − αpκ ⇔ p <

(
1−n
α

)1/κ
. Assume for now the lower bound p − αpκ < n holds.We

will verify later that it does. There is one root in (A.22) at p = s = 0, we look for an additional
one. Substituting (A.24) into (A.22) and rearranging gives

f(p) = n+ αpκ − p
1− p = ne−ρ(UI,p1 (p)−U0) = g(p),

f ′(p) = q(p)
(1− p)2 ; g′(p) = −ρ∂U I,p1 (p)g(p) ≥ 0,

q(p) = αpκ−1(κ+ p(1− κ)) + n− 1,
q′(p) = αpκ−2(κ− 1)κ(1− p) > 0 for p ∈ (0, 1).

The function g(·) is non-decreasing with respect to p, because ∂U I,p1 (p) ≤ 0 by Lemma 1, with
limit values g(0) = n and g(1) < ∞. Under the condition α + n − 1 > 0, the function f(·)
is decreasing-increasing with minimum at po ∈ (0, 1) such that q(po) = 0 and limit values
f(0) = n and f(1) = +∞. In this case, there exists a positive solution in the open interval
(po, 1), denoted by p∗. If α + n − 1 < 0, there is no po ∈ (0, 1) such that q(po) = 0, hence no
solution in (0, 1). To complete the proof for the case α+n− 1 > 0, we need to verify ν(p∗) > 0,
i.e., p∗ < p̄, where ν(p) is given by the right hand side of (A.25) and p̄ = ((1− n)/α)1/κ. This
condition holds if f(p̄) > g(p̄). Since the left hand side equals f(p̄) = 1, a sufficient condition is
U I,p1 (p̄)− U0 > log(n)/ρ. �
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Proof of Proposition 9. The result follows from a direct application of the equilibrium al-
locations of Proposition 7 into the welfare functions described in Proposition 3. Assume
U I,p1 (·) > UC1 (·). Then there is a feasible consumption allocation rule that Pareto dominates
the allocation in (6), since the liquidity provider is indifferent, and the arbitrageur consumption
is nonzero. This is a contradiction with respect to the first welfare theorem that states that
if there is an equilibrium in which markets are complete, then the corresponding consumption
allocation is Pareto optimal. �

Computation of Equations (20)–(36). The expression for the equilibrium trading strategies
now follows by noting that we have πkt = 1

σt

[
∂Wkt
∂Pt

Ptσe − ∂Wkt
∂st

stσe
]

and φkt = Wkt − πkt as a
result of (5), (11) and Itô’s lemma. To establish the sign of φ1t we argue as follows. Using the
fact that v(s) ≥ 0 we deduce that

sign [φ1t] = sign [v(s)− s(1 + v(s))] = sign
[
−1 + αsκ−1(s+ κ(1− s))

]
.

Denote by h(s) the continuous function inside the bracket. Since κ > 1 we have that this function
is increasing with h(0) = −1 and h(1) = α−1 and the result now follows by continuity. Finally,
since −φat = νφ1t−φ3t ≥ 0 we have that φ3t ≤ 0. We find a pair of adapted processes such that
W1t = 1

1+ν (1−st)Pt = φS1t(T )+φB0
1t (T ) and dW1t = φS1t(T )

(
dSt
St

+ et
St
dt
)
+φB0

1t (T )dB0t(T )
B0t(T ) −ρW1tdt

where St denotes the equilibrium stock price and B0t(T ) denotes the bubble on the riskless asset
at horizon T . Expanding the dynamics of these two processes and using (5) shows that these
equations are equivalent to

φB0
1t (T ) + φS1t(T ) = W1t

φB0
1t (T )Σ0t(T ) + φS1t(T )(1 + v(st)) = π1t(1 + v(st))

and solving this system gives the desired decomposition. The sign of the riskless asset bubble
position follows by noting that signφB0

1t (T ) = signφ1t. To establish the sign of the position in
the stock and complete the proof it suffices to show that Σ0t(T ) ≤ 0 or, equivalently, that the
function H(τ, s; a) is increasing in s. Differentiating in (17) shows that

s1+a∂H

∂s
(τ, s; a) = aN(d−(τ, s; a)) + 2

σe
√
τ
N ′(d−(τ, s; a))

and the required result now follows by noting that the function on the right hand side is
increasing on [0, 1] and equal to zero at zero. The ratio in (36) depends on α only through v(·),
and the latter is increasing in α. Thus it decreases when the size of credit facility goes up. �

Proof of Proposition 10. The utility functions for each type are given by a : 1
ρ log ν

1+ν +
U I,p1 (s), h : 1

ρ log 1
1+ν + U I,p1 (s), and ` : U0 + 1

ρ log s− σe
2ρ2

1+s−2sκ
1−s .

{h, `, a}: since Agent 2 is the liquidity provider, then

U(Θ) =η1

(1
ρ

log 1
1 + ν(α) + U I,p1 (n+ p(n))

)
+ η2

(
U0 + 1

ρ
log(n)

)
+ η3

(1
ρ

log ν(α)
1 + ν(α) + U I,p1 (n+ p(n))

)
=η1

1
ρ

log 1
1 + ν(α) + η3

1
ρ

log ν(α)
1 + ν(α) +Q(n, η)
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where ν(α) is given in (A.19) and α is not an argument of Q(·). The first order condition gives
ν(α) = c3t/c1t = η3/η1, and solving for α using (A.19) and s(n) = n+ p(n) gives (37).

{h, a, `}: since Agent 3 is the liquidity provider, then

U(Θ) =η1

(1
ρ

log 1
1 + ν(α) + U I,p1 (p(n, α))

)
+ η2

(1
ρ

log ν(α)
1 + ν(α) + U I,p1 (p(n, α))

)
+ η3

(
U0 + log p(n, α)

ρ
− σ2

e

2ρ2
1+p(n, α)−2p(n, α)κ

1− p(n, α)

)

=− η1
ρ

log ν(α) + η3

(
log p(n, α)

ρ
− σ2

e

2ρ2
1+p(n, α)−2p(n, α)κ

1− p(n, α)

)
+ T (n, η)

where we used the compatibility condition in (A.22), rewritten as

U I,p1 (p(n, α)) = U0 + 1
ρ

log(n)− 1
ρ

log ν(α)
1 + ν(α)

to deduce

1
ρ

log 1
1 + ν(α) + U I,p1 (p(n, α)) = U0 + 1

ρ
log 1

1 + ν(α) + 1
ρ

log(n)− 1
ρ

log ν(α)
1 + ν(α)

= U0 + 1
ρ

log(n)− 1
ρ

log ν(α)

and simplify terms so as to arrive at the second equality. Finally, we note that the consumption
sharing ratio ν(α) is given in (A.25) and that α is not an argument of T (·). �
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(a) Stock volatility
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Figure 1: Equilibrium quantities. Parameters values are given by {ρ, σe} = {0.02, 0.05}.
As shown by the figure the impact in equilibrium quantities is sizable and increases with
both the consumption share of liquidity providers and the size of the credit line. For
example, with 80% of liquidity providers, the stock volatility is about 3 times the dividend
volatility, the equity premium near 5% and the Sharpe ratio around 0.25.
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(a) {h, `, a}: Sharing rule ν(n, α)
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(b) {h, `, a}: Credit line price p(n)
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(c) {h, a, `}: Sharing rule ν(n, α)
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(d) {h, a, `}: Credit line price p(n, α)

Figure 2: Equilibrium price and sharing rule. Upper panels {h, `, a}: Agent 2 is
the arbitrageur and Agent 3 is the liquidity provider. Lower panels {h, a, `}: Agent 2
is the liquidity provider and Agent 3 is the arbitrageur. Parameters values are given by
{ρ, σe} = {0.02, 0.05}.
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Figure 3: Portfolio positions. Panel (a): Scaled portfolio positions on the stock, Panel
(b): Scaled portfolio positions on the riskless asset. Parameters values are given by
{ρ, σe, ν} = {0.02, 0.1, 1}. Quantities are scaled by Pt instead of the agent’s own wealth to
facilitate comparison.
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Figure 4: Optimal α when Agent 2 is the liquidity provider, Agent 3 is the
arbitrageur {h, `, a}. Figure depicts the optimal liquidity level from the closed-form in
(37). Parameters values are given by {ρ, σe} = {0.02, 0.05}.
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Figure 5: Social welfare functions when Agent 2 is the arbitrageur, Agent 3 is
the liquidity provider {h, a, `}. The parameter ζ = η3/η1 is the relative weight across
investors in the social welfare function − 1

ρ log ν(α) + ζ
(

log p(n,α)
ρ − σ2

e

2ρ2
1+p(n,α)−2p(n,α)κ

1−p(n,α)

)
.

Parameters values are given by {ρ, σe} = {0.02, 0.1}.
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Figure 6: Impact of the liquidity shock. Figure depicts the impact of the liquidity shock
in the wealth/consumption share of the liquidity provider, eq. (42). Parameters values are
given by {ρ, σe} = {0.02, 0.1}.
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B Online Appendix
B.1 Existence of equilibrium with heterogeneous agents
The dynamics of the consumption share process are given by

dst
st

= µs(st)dt+ σs(st)dZt (B.1)

with

µs(x) =



(γ − 1) 1−x
1+(γ−1)xµe + (γ − 1)γ [2−ε(2−ε)x]x−1

2(1−x)[1+(γ−1)x]σ
2
e

+(1− ε)σ2
e

(
1− γ 1−εx

1−x

)
, R(x) > ε,

(γ − 1) 1−x
1+(γ−1)xµe + γ

1+(γ−1)xσ
2
e −

γ[1+γ+(γ−1)(1+2γ)x]
2[1+(γ−1)x]3 σ2

e

−(γ − 1) (1−x)[1−γ+(γ−1)x]
[1+x(γ−1)]2 σ2

e , R(x) ≤ ε,

(B.2)

and

σs(x) =


−(1− ε)σe, R(x) > ε,

σe
(

γ
1+(γ−1)x − 1

)
, R(x) ≤ ε.

(B.3)

The drift diverges to minus infinity as s ↑ 1 if the constraint binds. This behavior counterbal-
ances the effect of the linear diffusion in (B.3), such that the process never reaches 1 from the
interior. This observation, in conjunction with comparison arguments, gives us the following
existence result.

Proposition B.1. Suppose that the process in (B.1) has a starting point in (0, 1), the equilib-
rium exists as the boundary points {0, 1} cannot be reached in finite time.

Proof. Set I = (0, 1). (i) the drift and diffusion functions have continuous derivatives in I and
(ii) (sσs)2 > 0 in I. We also verify a (iii) local integrability condition, that for all x ∈ I, there
exists ε > 0 such that

∫ x+ε
x−ε

1+|µs(y)|
σs(y)2 dy <∞. It is well known that (i) implies that the coefficients

are locally Lipschitz, a sufficient condition for pathwise uniqueness of the solution (Karatzas
and Shreve, 1991, Th. 5.2.5). Also, conditions (i), (ii) and (iii) guarantee the existence of a
weak solution (Karatzas and Shreve, 1991, Th. 5.5.15) possibly up to an explosion time. A weak
solution combined with pathwise uniqueness imply that equation (A.2) admits a strong solution
possibly up to an explosion time, i.e., when st hits one of the endpoints of I. Define the stopping
times T∆ = inf{t ≥ 0 : st ≥ ∆}, with ∆ ∈ I, and let T1 = lim

∆→1
T∆, T0 = lim

∆→0
T∆. To rule out

explosions, we proceed as follows. From equation (A.12), λ is a nonnegative supermartingale
under P,

E[λT ] ≤ λ0 > 0, for all T ∈ [0,∞),

consequently, it is a.s. finite under the objective probability measure, which implies

P[T1 < T ] = 0, for all T ∈ [0,∞).
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Let s̄t = st∧T∆ . Using a comparison argument (Karatzas and Shreve, 1991, Prop. 5.2.18), we
bound the stopped process s̄t from below by a process s`, with dynamics

ds`t = µs`(s`t)s`tdt+ σs(s`t)s`tdZt.

We construct this process so that it never reaches the left boundary, and such that its diffusion
is the same as st, xσs(·). We fix s`0 = s0 and set the drift of s` such that µs`(x) ≤ µs(x), which
implies that for all constants ∆ ∈ I, with ∆ > s0,

P[T0 < T∆] = E[1{T0<T∆}] = 0, (B.4)

that is, the probability of the consumption share process of hitting 0 before it reaches ∆ is zero.
In order to show that P[T0 < T ] = 0, for all T ∈ [0,∞), it suffices to note that

E[ lim
∆→1

1{T0<T∆}] ≤ lim
∆→1

E[1{T0<T∆}] = 0,

which follows from Fatou’s lemma, and (B.4), implying P[T0 < T ] = 0, for all T ∈ [0,∞), since
the probability of reaching 1 in finite time is zero a.s.. To close the proof, we find a candidate
process s`, given by a geometric Brownian motion with dynamics

ds`t = µs`s`tdt− (1− ε)σes`tdZt,

such that µs(x) ≥ µs` . �
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