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1 Introduction

A defining objective of empirical asset pricing is to identify firm-level signals that help explain
the cross-section of expected stock returns, whether due to persistent mispricing or exposures to
risk factors. The prevailing approach, grounded in the assumption of self-predictability, posits that
a firm’s own characteristics forecast its own return (e.g., Cochrane, 2011; Harvey et al., 2016). A
complementary line of research, however, underscores the importance of cross-predictability—the
idea that the returns or characteristics of one asset can help forecast the returns of others (e.g., Lo
and MacKinlay, 1990; Hou, 2007; Cohen and Frazzini, 2008; Cohen and Lou, 2012; Kelly et al., 2023).
In particular, lead-lag effects—whereby price movements or information in one firm precede and
help predict subsequent movements in related firms—provide an intuitive mechanism for these
spillovers: through staggered information diffusion, industry peer influence, or supply-chain link-
ages, shocks propagate gradually across assets. Exploiting these spillovers can materially enhance
forecasting performance beyond what self-predictive signals alone deliver.

While recent advances mark substantial progress, several foundational questions remain un-
resolved. Chief among them: how should a mean-variance optimizing investor integrate multiple
predictive signals when returns exhibit cross-asset dependencies? And how can one jointly capture
both the relevance of signals and the structure of inter-asset predictability in a way that enhances
portfolio efficiency while maintaining interpretability?

This paper proposes a systematic framework to address these challenges by combining firm-
level signals via a flexible weighting vector and modeling predictive spillovers through a structured
connection matrix. The resulting strategy is derived by maximizing the Sharpe ratio and is solved
analytically using a tractable generalized eigenvalue decomposition. This formulation naturally
links the optimal strategy to the stochastic discount factor (SDF; e.g., Cochrane (2009); Back (2017)),
which, in this context, takes the form of a single factor that prices the cross-section of asset returns.

While the generalized eigenvalue problem provides a population-level characterization of the
Sharpe-optimal SDF, our empirical implementation relies on a regression-based procedure better
suited for high-dimensional settings. Specifically, we build on the approach of Britten-Jones (1999)
and apply ridge-type regularization with a single hyperparameter to estimate the signal weights

and the connection structure. This method converges to the eigenvalue solution in large samples



while offering improved numerical stability and interpretability. In contrast to expected-return
maximization—which under certain conditions, such as unconstrained portfolios or L; penalties,
places all weight on a single dominant predictor—Sharpe ratio maximization yields a diversified
weighting scheme across signals, enhancing robustness. Our framework complements recent ad-
vances in SDF estimation using firm characteristics (e.g., Kelly et al. (2019); Kozak et al. (2020);
Lettau and Pelger (2020); Gu et al. (2021); Chen et al. (2024); Feng et al. (2024); Didisheim et al.
(2024); Cong et al. (2025); Liu et al. (2025)) by explicitly modeling inter-asset return linkages in a
structured and interpretable manner.

To build intuition, we begin with a low-dimensional toy example based on five well-known
firm characteristics and nine portfolios sorted by size and book-to-market. This simplified setting al-
lows us to present the estimated signal weights, cross-asset linkages, and resulting trading strategy
in full detail. Performance is evaluated using a rolling out-of-sample procedure, where the strat-
egy is re-estimated each month using the prior 10-year data. Even in this controlled environment,
the Sharpe-maximizing strategy based on cross-stock predictability achieves an annualized Sharpe
ratio of 1.38, compared to 1.02 under the self-predictive benchmark. The improvement reflects
not only return spillovers captured by the off-diagonal elements of the connection matrix but also
meaningful shifts in signal relevance. These results suggest that incorporating cross-predictability
reshapes portfolio construction in fundamental ways.

We then scale the framework to a comprehensive empirical setting using 138 firm-level signals
from the Jensen et al. (2023) dataset. Our primary investment universe consists of 138 univariate
spread portfolios spanning 1960-2023. We also consider a broader set of 544 bi-variate portfolios
sorted by firm size and a secondary characteristic. Applying the same rolling 10-year estimation
scheme, the Sharpe-maximizing strategy attains annualized Sharpe ratios of 2.19 and 3.62 on the
spread and bi-sort portfolios, respectively—consistently outperforming both self-predictive bench-
marks and expected-return strategies.

To assess robustness, we evaluate performance across different market environments. We split
the sample by investor sentiment Baker and Wurgler (2006) and by volatility regimes based on the
VIX index. The Sharpe-maximizing strategy maintains strong performance across all subsamples.

For example, in high-sentiment periods, the strategy delivers a Sharpe ratio of 2.15 on spread port-



folios and 3.96 on bi-sort portfolios. Even in low-sentiment or high-volatility regimes—conditions
that typically challenge many anomaly-based strategies—the strategy sustains Sharpe ratios above
2.0. These results contrast with the more state-dependent performance of return-maximizing port-
folios as well as individual anomalies, which perform well only in certain regimes.

The Sharpe ratio-maximizing strategy, or the stochastic discount factor (SDF), defines a single
factor that ex ante prices the cross-sectional variation in expected returns of test assets. We examine
whether this factor’s returns are priced by leading asset pricing models and find sizable, statisti-
cally significant alphas relative to a broad set of benchmarks. These include the liquidity factor
(Pastor and Stambaugh, 2003), the Fama-French five-factor model (Fama and French, 2015), the
g-factors (Hou et al., 2015), the mispricing factors (Stambaugh and Yuan, 2017), the behavioral fac-
tors (Daniel et al., 2020), and a comprehensive fourteen-factor model. Across all specifications, the
strategy’s alphas remain both statistically and economically significant—approximately 0.16% per
month, with ¢-statistics exceeding 11—suggesting that existing models do not fully capture return
variation because they overlook the predictive content embedded in cross-asset spillovers.

Upon optimizing the Sharpe ratio, we offer insight into the underlying economic drivers of re-
turn predictability. By examining the estimated signal weights —which determine how firm-level
characteristics contribute to the Sharpe-maximizing stochastic discount factor—we identify the sig-
nals that play a central role in shaping the strategy. These weights reveal that the most influential
predictors are concentrated in the investment, value, and profitability categories, with top signals such
as liquidity of book assets, dividend yield, and return on equity consistently receiving high importance.
In contrast, return-based signals such as momentum, short-term reversal, and seasonality exhibit
persistently low weights. This pattern suggests that the cross-predictive SDF is anchored in stable
firm fundamentals rather than transitory market signals.

In optimizing the Sharpe ratio, we also obtain a connection matrix that encodes the predictive
relationships across stocks. Each entry U, ; reflects the extent to which signals from asset ¢ forecast
the returns of asset j, while diagonal elements represent self-predictive strength. Empirically, the
average off-diagonal entry is substantial—often exceeding the average diagonal—indicating that
inter-asset predictive linkages carry more information than self-predictive signals alone. Aggregat-

ing rows and columns of the matrix following Diebold and Yilmaz (2014), we uncover a directional



structure: certain stocks consistently act as net transmitters of predictive signals, while others serve
primarily as receivers. Transmitters are typically large and low-turnover, whereas receivers tend
to be smaller, high-turnover stocks with characteristics such as value orientation, high profitability,
low investment activity, and strong past returns.

Finally, it is worth noting that the Sharpe ratio of the cross-predictive strategy is time-varying
and has declined notably since 2000. In the 1990s, the strategy delivered exceptional performance,
with Sharpe ratios exceeding 3 on spread portfolios and above 5 on bi-sort portfolios. However,
performance attenuated in the post-2000 period, mirroring the broader decline in self-predictability.
For instance, Green et al. (2017) document that many return anomalies became less profitable after
2003, attributing the decline to the widespread adoption of anomaly-based strategies, improved
market liquidity, and the growth of passive ETF investing.

Despite this attenuation, our strategy maintained strong performance from 2000 to 2023, achiev-
ing Sharpe ratios of 1.33 (spread portfolios) and 2.42 (bi-sort portfolios)—substantially higher than
those of standard benchmark factors: 0.41 (market), 0.20 (size), 0.20 (value), 0.54 (profitability), 0.43
(investment), and 0.09 (momentum). By the end of 2023, five-year trailing Sharpe ratios declined to
approximately 1.5 for the bi-sort strategy and 1.0 for the spread strategy, yet both remained consis-
tently superior to traditional factors even in recent years.

Two important works by Kelly et al. (2023) and He et al. (2024) are closely related to ours.
The former develops principal portfolios that maximize expected returns using a single predictor,
while the latter extends this framework to accommodate multiple predictors. Our study introduces
a structured and interpretable analytical framework designed to estimate the stochastic discount
factor (SDF) in the presence of cross-asset linkages. The estimation procedure relies on a single
hyperparameter, and empirical evidence shows that the resulting SDF consistently outperforms
both self-predictive models and expected-return maximizers that incorporate cross-predictability.

The paper proceeds as follows. Section 2 presents the econometric framework for making
investment decisions based on cross-predictability and multiple signals. Section 3 outlines the esti-
mation methodology. Section 4 describes the data. Section 5 reports the empirical findings. Section

6 concludes.



2 Econometric Framework

We consider an investment universe of N risky assets. At time ¢, a hypothetical investor ob-
serves a signal matrix S; € RV*M whose ith row collects the M predictive attributes (e.g., market
capitalization, valuation ratios, profitability, investment, past returns) for asset i. Each column of S;
is standardized to have zero cross-sectional mean and unit variance. The vector of excess returns at
any future date s > t is denoted by r; € RY. We begin by analyzing linear portfolio strategies that

map the signal matrix into asset weights, and then proceed to consider nonlinear strategies.

2.1 Linear Strategy

A linear trading strategy with multiple signals and cross-predictability is formulated as
wy =N S0, (1)

where w; € RY is the vector of portfolio weights, A € RM assigns loadings to each signal, and
U € RVXN captures how signals for one asset influence positions not only in that asset but also in
all others. In particular, the weight on asset i is obtained by multiplying A’, Sj, and the ith column
of U, so that all the signals encapsulated in S; contribute to the position in each asset.

We construct managed portfolio returns in excess of the risk-free rate by interacting future

returns with the current values of predictive signals:
I = (IN ® Ts) St. ()

In this expression, II; is an N? x M matrix of managed portfolio returns, Iy is the N x N identity
matrix, and ® denotes the Kronecker product.
The expected returns on these managed portfolios are then defined as I = E[IL,|. Addition-
ally, define
b= Vec(\Il’), (3)

so that ® € RM”. The vectorized ® and the matrices II; and II streamline later expressions for

portfolio outcomes.



To aid interpretation, limit extreme positions, and stabilize estimation, we impose Euclidean-
norm constraints:

NA=1, @®=1. (4)

From a Bayesian perspective, these constraints correspond to zero-mean Gaussian priors on A and
®, yielding ridge-type regularization that penalizes large parameter values.
Proposition 1 formulates the realized return of the strategy in a convenient form, along with

the expected return and Sharpe ratio. Appendix A provides the proof.
Proposition 1. The investment metrics are as follows:
® The realized and expected returns can be expressed as

7o = NI, P, )

E(ns) = N'TI®. (6)

* The square of the Sharpe Ratio (SR?) is given by the following two equivalent expressions:

N AgA

2
SR® = Tp (7)
D'AND
2
SE = 3B ®)

Here, Apg = II'®D'I], By = (¢’ @ Ip)Xa (P @ Inr), Xo is the covariance matrix of vec(Il,), and Iy
is the identity matrix of order M. Similarly, Ay = THAN'I', By = (A @ In2) X5 (A ® In2), Xp is

the covariance matrix of vec(Il), and 12 is the identity matrix of order N2.

We make several notes regarding Proposition 1.

First, it extensively utilizes the vectorized ®, which retains all cross-predictive relationships
among assets encapsulated in ¥. Hence, the information for cross-predictability is fully preserved
in ®, ensuring that the trading strategy remains grounded in the same foundational predictive
content.

Second, we consider two investors optimizing distinct objectives. Investor I maximizes ex-

pected return, focusing solely on returns without explicit risk considerations, while Investor II



maximizes the Sharpe ratio, balancing return and risk. Although both rely on the same expressions
for expected return and the Sharpe ratio, their optimal estimates of A and @ differ: maximizing
expected return reduces to optimizing a bilinear form with closed-form solutions, whereas maxi-
mizing the squared Sharpe ratio requires solving a generalized eigenvalue problem via an iterative
algorithm.

Notably, to maximize the squared Sharpe ratio, it is essential to employ both representations
of the Sharpe ratio in Proposition 1 when estimating the optimal values of A and ®, with explicit
solutions to the corresponding maximization problems—both for expected return and for Sharpe
ratio—provided later.

Third, the expression for investment return offers an intuitive economic interpretation of our
trading strategy. Recall that II denotes the matrix of managed-portfolio expected returns, with
each of its N2 rows representing the expected value of one asset’s return multiplied by one of the M
signals across the N assets. Under the normalization E[S;] = 0, II simplifies to the covariance matrix
between future asset returns and contemporaneous signal values. If characteristic m of stock j helps
predict the future return of stock i, the corresponding element of II will be nonzero, reflecting this
predictability.

Thus, in this framework, A assigns relative weights to signals, ® encodes inter-asset interac-
tions, and together they operate on the predictive matrix II to optimize investment metrics.

Fourth, the expected return of the trading strategy can alternatively be expressed as
M
E(ﬂ-s) = Z A pim, )
m=1

where f1,, = Z;J)le I1,,,®, represents a weighted combination of portfolio expected returns, with
I1,,, denoting the expected return of the corresponding managed portfolio and ®,, capturing the
strength of the p-th relationship within the strategy.

This expected-return expression is informative because it demonstrates that, whether subject to
an L; constraint or left unconstrained, the optimal solution is a corner solution: the trading strategy
is entirely driven by the predictor with the largest absolute value of f,,,, denoted predictor j, with

|Aj| = 1 and all other elements of A equal to zero. In contrast, under an L, constraint, the optimal



A (given @) is proportional to the M-vector that collects the y, values. By comparison, Sharpe
ratio maximization effectively harnesses the benefits of diversification across predictors, assigning
meaningful weight to multiple signals.

Fifth, the realized return 7, of the maximum Sharpe ratio portfolio is proportional to the
stochastic discount factor (SDF). This follows directly from the fundamental asset pricing repre-

sentation (Cochrane, 2009; Back, 2017):

M,=1-b"r,, with E[M,r,]=0, (10)

where M, denotes the pricing kernel and b is a vector of slope coefficients. Solving this system re-
veals that b corresponds to the tangency portfolio weights. Consequently, projecting rs onto 7,—the
realized return of the maximum Sharpe ratio strategy—yields a population regression with zero in-
tercept, where the slope coefficients represent the SDF loadings. This allows us to estimate the SDF
in the presence of cross-stock return linkages—a capability that, to our knowledge, is novel.

For comparison, Kelly et al. (2023) decompose the returns of linear strategies with cross-stock
predictability into alpha and beta components when maximizing expected return. In their set-
ting, alpha arises because the optimal strategy is mean—variance efficient, even when expected
return is maximized under a volatility constraint. In our empirical analysis, we show that the
maximum expected return and maximum Sharpe ratio strategies—both accounting for cross-asset
spillovers—differ substantially, with the latter delivering significantly higher Sharpe ratios across

the full sample and in both expanding and contracting regimes.

2.2 Zero-Cost and Leverage Constraints

Up to this point, we have not explicitly imposed any constraints on the strategy’s positions.
The empirical asset pricing literature typically requires that a trading strategy, factor, or anomaly
take the form of a long-short portfolio. In other words, the total cost must be zero, and the total
leverage must equal two.

The proposition below imposes zero-cost constraints on the strategy.



Proposition 2. A zero-cost trading strategy can be expressed as follows:

W = A’S{W—%A’S{\I}A, (1)

= AS)ve, (12)

where A is an N x N matrix, with each element set to one, and © = Iy — %A.

Notice that wjty = 0, where ¢y is an N-vector of ones. Fortunately, all previous derivations
remain valid under the zero-cost constraint.

The necessary modifications are as follows. Define II;; = ©(r:S},) for each i = 1,2,..., N,
and construct Il by vertically stacking IIy;. All investment metrics in Proposition 1 can then be
re-derived under the zero-cost constraint.

In Appendix B, we demonstrate that the zero-cost constraint reduces the expected profitabil-
ity of the trading strategy. However, this constraint is essential for ensuring comparability across
strategies.

In our empirical analyses, we primarily focus on zero-cost strategies, where the long and short
positions are of equal magnitude by construction. To further ensure comparability, we rescale these
positions so that total portfolio leverage equals two. This adjustment aligns our strategies with

standard practice in the literature (e.g., Fama and French, 1993).

2.3 Economic Restrictions

The decision variable ® consists of N? elements, capturing the network among investable as-
sets. However, as IV grows large, the computational burden increases exponentially, posing chal-
lenges for both estimation and out-of-sample (OOS) performance. Thus, prior economic knowledge
about asset linkages can be incorporated into ®, allowing for a more structured and interpretable
model. The use of economic restrictions has proven beneficial in high-dimensional modeling and
machine learning applications in finance; see, e.g., Avramov, Cheng, and Metzker (2023).

In our context, if cross-predictability primarily flows from big stocks to small stocks but not
vice versa, it is reasonable to impose restrictions on ® by setting to zero the elements that represent

small stock signals predicting large stock returns. This constraint aligns with the findings of Lo and



MacKinlay (1990), who suggest that big stocks tend to lead small stocks.

By refining ® to emphasize meaningful economic connections, one can enhance both the in-
terpretability and predictive performance of the strategy. This approach can be applied to a broad
range of economically meaningful linkages, such as common ownership, industry classification,

liquidity spillovers, and supply chain relationships, among others.

3 Estimating the Unknown Parameters

We provide methods for estimating the unknown parameters underlying the trading strategy
by optimizing investment metrics.
3.1 Maximizing Expected Return

Proposition 3 presents the solution for the strategy that maximizes expected return. For no-
tational clarity, we focus on the linear case; however, the results extend to nonlinear strategies by

expanding the set of signals \S; to include polynomial transformations and random Fourier features.

Proposition 3. By the Singular Value Decomposition (SVD), I1 can be decomposed as
II=UAnV’, (13)

where U is an N? x N? orthogonal matrix, Ay is an N? x M diagonal matrix of singular values, and V' is
an M x M orthogonal matrix.

The estimated parameters that maximize expected returns are given by

A=V{(,1), (14)

d=U(,1). (15)

The estimated values of A and @ are selected as the first singular vectors from the matrices
V and U, respectively. This ensures that the optimal trading strategy formulation leverages the

directions that capture the maximum variance, without implying dimension reduction. Instead, we

10



utilize the leading singular vectors for their high explanatory power, capturing the most significant
patterns in the data.
3.2 Maximizing Sharpe Ratio

Propositions 4 and 5 provide the solution and the estimation for the strategy to maximize

squared Sharpe ratio. Appendix C provides the proof and detailed derivations.

Proposition 4. Assume that ® is given. Based on (7), define
Cop = By' As. (16)
The optimal A is the principal eigenvector Amax of the eigenvalue problem
Co A= XA (17)

Similarly, assume A is given. Based on Equation (8), define Cn = B ' Ap. The optimal value for ® is

the largest eigenvector @y, of the following eigenvalue problem:
Cpr® = . (18)
The optimal solutions for A and ® are obtained by iteratively applying these two equations until con-

vergence. We further rescale each solution to have unit norm.

In this way, we utilize both alternative expressions for the Sharpe ratio in Proposition 1 to
iteratively estimate the optimal parameters A and ®. However, the eigenvalue problems in (17)
and (18) require computing the inverse of large matrices, which is challenging in high-dimensional

settings. To address this, we propose the following proposition to iteratively estimate A and W.

Proposition 5. Consider a set of managed portfolios x o of dimension T' x M:
Yo = II'®. (19)

The problem in (17) is essentially an asset-allocation exercise: it seeks to maximize the squared Sharpe ratio

11



by investing in x¢ composed of M assets. This is equivalent to estimating A as the mean-variance efficient
portfolio weights.

Following Britten-Jones (1999), the estimate of A is obtained from the following regression:

1= xoA+nu, (20)

where 1 is a T-vector of ones and T denotes the sample size. To handle high-dimensional settings, we adopt
ridge regression (Kelly and Xiu, 2023; Shen and Xiu, 2024; Didisheim et al., 2024). The estimator for A is
then given by:

A = (pxo + M) "I, (1)

where ) is a Ridge-type parameter that shrinks the regression coefficients towards zero. !

Similarly, we define a set of managed portfolios x 5 of dimension T x N?:

xa = IIA. (22)

The problem in (18) is another asset allocation exercise: it seeks to maximize the squared Sharpe ratio by

investing in x A. The estimator for ® is

d = (¥ xa + My2) " INA L. (23)

We emphasize three key aspects of Sharpe-ratio maximization. First, the preceding propo-
sitions recast the problem as a managed-portfolio exercise, yielding the optimal weights (A*, ®*)
for the tangency portfolio—or equivalently the stochastic discount factor—given the model pa-
rameters. Second, we impose a common ridge penalty A when estimating both A and ®, which
enforces uniform shrinkage across all components. This shared penalty simplifies exposition, pro-
motes replication, and helps guard against overfitting in finite samples.

Third, the generalized-eigenvalue result provides a population-level characterization of the
Sharpe-ratio maximizer, but in practice we replace the unknown moment matrices with their sam-

ple analogues and the same ridge penalty. Framing estimation as a single ridge-penalized regres-

"Following Didisheim et al. (2024); Cong et al. (2025), we choose a minimal value A = 10~* in empirical analysis. The
additional tests in Appendix D show that the OOS Sharpe ratio is robust to an array of values for A.

12



sion—rather than performing an explicit generalized eigen-decomposition—allows us to recover
the optimal SDF direction directly, enhances numerical stability by shrinking weights on weak or
collinear signals, and avoids the computational burden of eigen-solvers. The estimated weight vec-
tor produced by this approach coincides exactly with the theoretical maximizer in finite samples.

Our method for estimating the Sharpe ratio-maximizing strategy relates to a recent literature
that applies transformer architectures to asset pricing, leveraging multi-headed attention mecha-
nisms to extract and aggregate predictive signals across assets. Cong et al. (2022) introduce Al-
phaPortfolio, a deep reinforcement learning framework for portfolio optimization that incorporates
cross-asset attention networks (CAAN) to model interdependencies among securities. The AIPM
framework of Kelly et al. (2024) embeds transformer architectures into the stochastic discount fac-
tor (SDF) model, demonstrating that nonlinear information sharing across assets can significantly
enhance empirical performance.

While these approaches offer substantial modeling flexibility, our framework contributes a
complementary, linear formulation that emphasizes transparency and interpretability. Specifically,
we represent cross-asset spillovers through a connection matrix ¥, where each element V¥; ; quan-
tifies the predictive influence of asset i’s signals on asset j’s returns. Although related to the linear
component of AIPM, our approach differs in that AIPM models the attention matrix as a function of
asset-level signals, requiring the estimation of parameters on the order of M?, where M is the num-
ber of characteristics. In such settings, the effects of signal relevance and inter-asset connections are
embedded jointly in the signal space.

Our framework disentangles these two dimensions: signal relevance is captured by the vector
A, while cross-asset connections are modeled separately via ¥. The resulting parameter complexity
is only of order M and N?, respectively. This structure promotes computational efficiency, facili-
tates starightforward replication, and provides an economically interpretable lens through which

to understand both the source of predictive power and the pattern of return spillovers across assets.

4 Data

Our dataset combines monthly stock returns from the Center for Research in Security Prices

(CRSP), accounting variables from Compustat, and analyst coverage and earnings forecasts from

13



the Institutional Brokers” Estimate System (IBES). We assume that quarterly and annual financial
statements from Compustat become publicly available four months after the end of the correspond-
ing fiscal quarter. The full sample spans January 1963 to December 2023. Out-of-sample evaluation
begins in February 1973, with estimation windows based on rolling samples of the most recent 120

monthly observations.

4.1 Predictive Characteristics

We employ 138 firm-level signals across 13 characteristic themes: Accruals, Debt Issuance,
Investment, Leverage, Low Risk, Momentum, Profit Growth, Profitability, Quality, Seasonality, Size,

Short-Term Reversal, and Value. These signals originate from Jensen et al. (2023).2

4.2 Spread Portfolios

For each of the 138 signals, we sort stocks into terciles each month and compute high-minus-
low factor returns. To form factor-level signals, we aggregate stock-level signals into correspond-
ing factor portfolios. Returns and signals are value-weighted by market equity, with individual
market-equity weights winsorized at the 80th percentile of NYSE capitalization, following the data

providers’ recommendations.

4.3 Bi-Variate Sorting on Size and Other Characteristics

We also construct bi-variate sorted portfolios to serve as alternative investment universe. First,
stocks are sorted into two size groups (big vs. small) based on market equity. Independently, each
signal sorts stocks into three groups (high, medium, low). Cross-classifying these sorts produces
six portfolios; we retain only the high and low portfolios for each size group, resulting in four
portfolios per signal. As with the spread portfolios, returns and signals are capped-value-weighted

by winsorized market equity. We omit the bi-variate portfolios for the characteristic ami_126d due

2We use the “Global Stock Returns and Characteristics” dataset under “Contributed Data Forms” on WRDS: ht t ps :
//wrds—-www.wharton.upenn.edu/pages/get—-data/contributed-data-forms/global-factor-data/.
Table IA.II of Jensen et al. (2023) details the signal definitions and references. Of the original 153 signals, we exclude
15 that begin after 1963 to satisfy the sample-coverage requirements of Kelly et al. (2023). We apply standard filters to
retain only observations with: (i) excntry = “USA”, (ii) CRSP shrcd € {10, 11}, (iii) CRSP exched € {1, 2, 3}, and (iv)
non-missing monthly excess return (ret_exc) and next-month excess return (ret_exc_leadlm). Each characteristic is
standardized to have a mean of zero and a standard deviation of one.
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to missing returns in 2023. Moreover, since size already plays a role in the sorting procedure, we
consider a total of 136 x 4 = 544 portfolios.

Thus, we consider two investment universes: one constructed from univariate sorts compris-
ing 138 spread portfolios, and the other from bivariate sorts comprising 544 portfolios. Each port-

folio is associated with a time series of returns and 138 signal observations.

5 Results

5.1 An Illustrative Toy Example

To build intuition for the proposed framework, we construct a low-dimensional toy dataset
comprising five firm characteristics—market equity (ME), book-to-market ratio (BM), operating
profits to lagged book equity (OP), asset growth (INV), and 12-month momentum (MOM)—and
nine portfolios formed by a 3 x 3 sort on ME and BM (ranging from ME1xBM1 to ME3xBM3).

This simplified setup allows us to explicitly report the estimated low-dimensional parameters
A and ¥, as well as the weight vector w. It also enables a comparison of key performance metrics
for: (i) strategies subject to unit-norm constraints without an explicit zero-cost requirement; and (ii)
zero-cost strategies with total leverage constrained to two.

We implement expected return and Sharpe ratio maximizing strategies, as formulated in the
methodological section. These strategies, which target different objectives, yield notable differ-
ences in parameter estimates and performance outcomes. Table 1 summarize the monthly average
returns, monthly standard deviations, and annualized Sharpe ratios for each strategy over the out-
of-sample period from February 1973 to December 2023.

The first two rows of the table consider the case in which the zero-cost assumption is not
imposed. The results show that the strategy maximizing expected return (MR Cross) delivers a high
average monthly return of 1.96%, but with substantial volatility (standard deviation of 21.89%),
yielding a Sharpe ratio of just 0.31.

The Sharpe ratio maximizing strategy (MS Cross) attains a mean return of 0.77% and a much
lower volatility (1.92%), yielding a Sharpe ratio of 1.38. Consequently, a mean—variance investor

would find the Sharpe-ratio-maximizing strategy considerably more attractive, whereas an investor
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solely targeting expected returns would prefer the expected-return-maximizing strategy. Thus far,
the out-of-sample performance aligns closely with the ex ante investment objectives.

Next, we consider a strategy that maximizes the Sharpe ratio using self-prediction to isolate
the incremental contribution of cross-predictive relations relative to self-predictive relations. The
key distinction between these two strategies lies in the structure of the connection matrix ¥. Under
cross-prediction, W is a full 9 x9 matrix, capturing all pairwise interactions among the characteristics
and returns of assets. In contrast, under self-prediction, ¥ is restricted to its diagonal terms.

The second and third rows of Table 1 report the performance of the Sharpe-ratio-maximizing
strategies under cross-prediction and self-prediction, respectively. The cross-prediction strategy
(MS Cross) delivers a Sharpe ratio of 1.38 with a mean return of 0.77%, whereas the self-prediction
variant (MS Self) achieves a lower Sharpe ratio of 1.02 and the lowest mean return of 0.43% . This
gap in both risk-adjusted and absolute returns illustrates the incremental benefit of incorporating
cross-predictive relationships beyond self-prediction alone, underscoring the pivotal role of cross-
predictive dynamics in enhancing portfolio performance.

To provide further economic perspective on the value of accounting for cross-stock predictabil-
ity, we compute the certainty equivalent return of the investment strategies. The certainty equiva-
lent is defined as CE = p— o2, where pand o are the expected return and volatility of the strategy,
respectively, and the risk aversion parameter  is set to 2. Accounting for cross-predictability, the
certainty equivalent rate of return is approximately 8.80% per year—3.76% higher than that of self-
predictability—indicating economically significant gains.

We next maximize expected return and Sharpe ratio under the zero-cost and leverage-two
constraints. The fourth and fifth rows of Table 1 report these constrained strategies, confirming that
imposing the zero-cost restriction reduces expected returns for both objectives. Nevertheless, even
with zero cost and fixed leverage, the Sharpe-ratio-maximizing strategy outperforms the expected-
return—-maximizing strategy, delivering a higher mean return (0.54% vs. 0.49%) and a substantially
higher Sharpe ratio (1.26 vs. 0.53).

To provide additional insight into cross-prediction and self-prediction strategies, Table 2 re-
ports the estimated values of A, ¥, and w for each approach without imposing the zero-cost con-

straint. The estimation window spans 120 months, from December 2003 to November 2023, cover-
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ing our final out-of-sample period. Panel A presents the Sharpe-ratio-maximizing cross-prediction
strategy; Panel B presents the Sharpe-ratio-maximizing self-prediction strategy; and Panel C reports
the differences in the portfolio weights w between the two.

In Table 2, Panel A shows that the estimated A coefficient for book-to-market equity (BM) is
—0.08, whereas the coefficients for the other four characteristics are all positive, with the smallest
value at 0.23. This suggests that the Sharpe-ratio-maximizing strategy with cross-prediction is well
balanced across the five characteristics. The full 9 x 9 matrix ¥ exhibits substantial values both on
and off the diagonal: the average absolute value of its diagonal entries is 0.036, compared to an
average absolute off-diagonal entry of 0.081, indicating that cross-predictive relationships play an
even more substantial role in defining the trading strategy.

Panel B of Table 2 shows that under self-prediction the estimated A coefficients exhibit greater
dispersion—asset growth (INV) even turns negative—while ¥ is constrained to its diagonal (aver-
age absolute value of 0.25, all off-diagonals zero). This contrast underscores the structural impact
of omitting cross-predictive terms.

Panel C reports how the optimal weights w shift between cross- and self-prediction: under
cross-prediction, long exposures to ME1 BM3 and ME3 BM1 increase, and shorts in ME1 BM1, ME2 BM1,
and ME3BM2 deepen. For example, the ME2 BM1 position is —0.26 under cross-prediction—
driven by off-diagonal ¥ entries of —0.14 and —0.15—whereas it is substantially smaller under
self-prediction.

As noted earlier, the optimal trading strategy that accounts for cross-predictability delivers a
3.76% higher certainty equivalent return, suggesting that the estimated A and ¥, which determine
the portfolio weights w, differ to an economically significant degree when cross-predictability is
incorporated, relative to the benchmark case of self-predictability.

In summary, the results in Tables 1 and 2 confirm that incorporating cross-predictive relation-
ships is valuable for constructing robust investment strategies, even in a low-dimensional illustra-

tive setting.
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Table 1: Performance of Strategies of a Toy Example

This table reports the monthly average return, monthly standard deviation, and annualized Sharpe ratio for five strategies
in a low-dimensional toy example involving five characteristics and nine assets. The strategies are:

1. Unconstrained expected-return maximization with cross-prediction;

2. Unconstrained Sharpe-ratio maximization with cross-prediction;

3. Unconstrained Sharpe-ratio maximization with self-prediction;

4. Zero-cost, leverage-two expected-return maximization with cross-prediction;
5

. Zero-cost, leverage-two Sharpe-ratio maximization with cross-prediction.

Mean Std Sharpe Ratio Cost
MR Cross 1.96 21.89 0.31 Not Zero Cost
MS Cross 0.77 1.92 1.38 Not Zero Cost
MS Self 0.43 1.45 1.02 Not Zero Cost
MR Cross ZC 0.49 3.22 0.53 Zero Cost
MS Cross ZC 0.54 1.47 1.26 Zero Cost
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Table 2: Estimates for A and ¥ of a Toy Example

This tables reports the estimated values for A\, ¥, and w of the maximizing Sharpe ratio strategies with cross-prediction
in Panel A and self-prediction in Panel B. The A vector has five elements corresponding to five characteristics: ME, BM,
OP, INV, and MOM. There are nine assets for investment: the three-by-three sorted portfolio on ME and BM. Specifically,
they are ME1 BM1, ME1 BM2, ME1 BM3, ME2 BM1, ME2 BM2, ME2 BM3, ME3 BM1, ME3 BM2, ME3 BM3. The V¥ is a
nine-by-nine matrix, where the element i,j corresponds to the strength of the predictive relationship of the asset i’s signals
to asset j’s returns. For cross-prediction in Panel A, the ¥ has 81 values to estimate, while for self-prediction in Panel B,
the ¥ is only active in 9 values in the diagonal. In addition, the following two rows of panels A and B report the absolute
average of the diagonal and off-diagonal terms of ¥. Finally, Panel C shows the change of w from cross- to self-prediction
strategies.

Panel A: Cross-Prediction

A ME BM or INV MOM
0.23 -0.08 0.34 0.65 0.64
\J 0.01 0.16 -0.20 0.02 -0.05 -0.22 -0.16 0.00 -0.14
-0.02 -0.03 -0.02 0.08 0.07 0.11 0.04 0.16 0.15
0.32 0.17 -0.01 0.08 0.02 0.16 -0.23 0.03 0.03
-0.17 0.10 0.03 0.14 0.06 -0.19 0.30 -0.05 -0.14
-0.08 -0.08 0.10 0.01 0.00 0.00 0.14 0.04 0.03
-0.10 -0.16 -0.08 -0.14 -0.10 0.02 -0.14 0.03 0.07
0.22 -0.01 0.09 -0.15 -0.01 0.04 0.07 -0.19 -0.04
-0.02 -0.04 0.09 -0.05 0.05 0.09 0.05 -0.02 0.08
-0.15 -0.12 -0.01 0.01 -0.04 -0.01 -0.08 -0.01 -0.03
Absolute Average of Diagonal Terms ¥ 0.036
Absolute Average of Off-Diagonal Terms ¥ 0.081
w -0.17 -0.26 0.31 -0.24 0.01 -0.03 0.51 -0.30 -0.05

Panel B: Self-Prediction

A ME BM opP INV MOM
0.37 -0.27 0.48 -0.17 0.73
v 0.21 0 0 0 0 0 0 0 0
0 0.71 0 0 0 0 0 0 0
0 0 -0.16 0 0 0 0 0 0
0 0 0 0.18 0 0 0 0 0
0 0 0 0 0.32 0 0 0 0
0 0 0 0 0 -0.04 0 0 0
0 0 0 0 0 0 0.53 0 0
0 0 0 0 0 0 0 -0.12 0
0 0 0 0 0 0 0 0 0.01
Absolute Average of Diagonal Terms ¥ 0.25
Absolute Average of Off-Diagonal Terms ¥ 0
w -0.04 -0.20 0.13 0.02 0.01 0.02 0.44 -0.07 0.00

Panel C: Change of Weights from Cross- to Self-Prediction

ID ME1BM1 ME1BM2 ME1BM3 ME2BM1 ME2BM2 ME2BM3 ME3BM1 ME3BM2 ME3BM3
Aw -0.13 -0.06 0.18 -0.26 0.00 -0.05 0.06 -0.23 -0.05
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Table 3: Performance of Cross-Predictive Strategies

This table reports the monthly average return, monthly standard deviation, and annualized Sharpe ratio of cross-
predictive strategies. The strategies are zero-cost and leverage two. MR and MS are strategies to maximize expected
return and Sharpe ratio, respectively. Panels A and C are for investing in 138 spread portfolios, and Panels B and D are
for 544 bi-variate sorted portfolios. In Panels A and B, we report the results of the whole out-of-sample period from
February 1973 to December 2023 and the high and low sentiment periods split by the sentiment median value over the
sample periods from February 1973 to December 2023. In Panels C and D, we report for January 1990 to December 2023,
and the high and low VIX periods split by the VIX median value over the sample periods from 1990 to 2023.

1973:02-2023:12 SENT High SENT Low
m o SR I o SR n o SR

Panel A: Spread Portfolios

MR 042 323 045 073 379 0.67 011 253 0.15
MS 018 028 219 017 028 215 018 028 222

Panel B: BiSort Portfolios

MR 045 3.02 052 048 335 049 042 266 0.54
MS 018 017 3.62 021 0.18 3.96 0.16 0.17 3.32

1990:01-2023:12 VIX High VIX Low
I o SR I o SR I o SR

Panel C: Spread Portfolios

MR 033 383 030 059 497 041 0.07 214 012
MS 015 029 179 0.16 035 1.63 013 021 219

Panel D: BiSort Portfolios

MR 039 320 042 057 3.87 051 020 233 0.30
MS 017 019 3.17 020 021 325 015 0.16 3.23
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5.2 Zero-Cost Linear Strategies

Table 3 reports the performance of linear cross-predictive strategies implemented as zero-cost,
leverage-two portfolios, comparable to common factor and anomaly implementations. MR and MS
denote the strategies that maximize expected return and the Sharpe ratio, respectively. In Panel A,
we consider an investment universe with 138 spread portfolios detailed in the data section. Over
the full sample period, MR achieves a monthly average return of 0.42% with an annualized Sharpe
ratio of 0.45, whereas MS records a lower monthly average return of 0.18% but a substantially higher
annualized Sharpe ratio of 2.19.

We further analyze performance during evolving market states by splitting the out-of-sample
period at the median of the investor sentiment index (Baker and Wurgler, 2006).> During high-sentiment
regimes, MR delivers an average monthly return of 0.73%, while in low-sentiment regimes its re-
turn falls to 0.11%. The MS strategy exhibits robust Sharpe ratios across both regimes: 2.15 in
high-sentiment periods and 2.22 in low-sentiment periods.

In Panel B, we evaluate investments in 544 bi-variate sorted portfolios as detailed in the data
section. Over the full out-of-sample period (January 1973-December 2023), MR delivers a monthly
average return of 0.45% and an annualized Sharpe ratio of 0.52, whereas MS achieves an excep-
tionally high annualized Sharpe ratio of 3.62. In sub-period analyses, MR’s average return in-
creases during high-sentiment regimes, while MS maintains Sharpe ratios above 3 in both high-
and low-sentiment periods.

In Panels C and D, we split the period January 1990-December 2023 at the median of the VIX
index.* In Panel C (spread portfolios), MR’s return is 0.59% during high-VIX regimes and 0.07%
during low-VIX regimes (0.33% full sample), while MS records Sharpe ratios of 1.63 and 2.19 in
high- and low-VIX regimes (1.79 full sample).

In Panel D (bi-variate sorted portfolios), MR attains a monthly average return of 0.39% and
an annualized Sharpe ratio of 0.42, while MS achieves a Sharpe ratio of 3.17. MR’s return remains

higher in high-VIX regimes, and MS sustains Sharpe ratios above 3.23 in both high- and low-VIX

*The sentiment data spans July 1965 to December 2023 and is obtained from the variable ‘SENT” on Jeffrey Wurgler’s

website: https://pages.stern.nyu.edu/~jwurgler/data/SENTIMENT.x1sx.
“The VIX data spans 1990 to 2023 and is obtained from the CBOE: http://www.cboe.com/products/
vix—index-volatility/vix-options—and-futures/vix—-index/vix-historical-data/.
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regimes.

In unreported analyses, we derive the maximum Sharpe ratio strategy under an economi-
cally motivated restriction: we constrain the ¥ matrix such that characteristics of large-cap stocks
can predict returns of small-cap stocks, but not the reverse. While this restriction leads to only
a marginal improvement in the out-of-sample Sharpe ratio, it is possible that alternative econom-
ically grounded constraints on ¥ could yield greater benefits. We leave a more comprehensive
exploration of such structures to future research.

In summary, MR strategies deliver high expected returns during high-sentiment and high-VIX
regimes, but considerably lower expected returns otherwise. In contrast, MS strategies consistently

achieve superior Sharpe ratios across all market states.

5.2.1 Comparing with Principal Portfolios (PP)

We compare the principal-portfolio-based trading strategies of Kelly et al. (2023) with our own
over the out-of-sample period from 1973 to 2019, as in their study. The results are reported in
Table 4.

Panel A, row 1 (PP-ME), reports the performance of the first principal portfolio on the market-
equity signal: a 3.27% monthly expected return, a 0.51 annualized Sharpe ratio, and a sum of ab-
solute equity positions equal to 23.22. Rows 2 and 3 present the first principal portfolios for the
book-to-market and momentum signals, which achieve Sharpe ratios of 0.60 and 0.48, respectively,
with similarly high leverage. Averaging the first principal portfolios across all 138 signals yields
the PPEW strategy, which delivers a 2.83% monthly expected return and a 0.56 annualized Sharpe
ratio. Notably, the leverage of PPEW is only 1.35, reflecting substantial diversification benefits by
equal weighted average across predictors.

Our maximum-expected-return strategy achieves an 11.55% monthly expected return and a
0.51 annualized Sharpe ratio, with leverage of 45.94. Overall, the maximum-expected-return strat-
egy slightly underperforms the Principal Portfolios, albeit remains reasonably close to them.

By contrast, the MS strategy harnesses multiple predictors to diversify exposures and optimize
risk-adjusted returns, achieving an annualized Sharpe ratio of 2.37 with a leverage factor of 33.46.

While the PP approach targets expected return subject to a volatility constraint, our strategy is de-
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rived directly from Sharpe ratio maximization. As a result, it places greater emphasis on balancing
return and risk, leading to improved performance on risk-adjusted metrics in our empirical setting.

To enhance implementability, we impose zero net-cost and leverage-two constraints on both
strategies. Panel B of Table 4 reports the resulting performance. Under these constraints, the
maximum-expected-return strategy (Row 1) achieves a 0.46% monthly expected return and an an-
nualized Sharpe ratio of 0.51, while the maximum-Sharpe-ratio strategy (Row 2) attains a 0.19%
monthly expected return and an annualized Sharpe ratio of 2.36. In both cases, the portfolios main-
tain zero net cost and a constant leverage of two in every period.

Overall, the maximum-Sharpe-ratio strategy remains highly competitive—delivering superior
risk-adjusted performance relative to a range of recent approaches, including Principal Portfolios.

Accordingly, we focus our subsequent analyses to the constrained max-SR strategy.

Table 4: A First Comparison on the Performance of PP, MR, and MS

This table reports each strategy’s monthly average return (%), monthly standard deviation (%), annualized Sharpe ratio,
time-series average net exposure to basic assets, and time-series average gross exposure to basic assets. PP-ME is the
pure-play (PP) strategy using the market-equity signal; PP-BM uses book-to-market; PP-MOM uses momentum. PP-EW
is an equal-weighted combination of the three PP strategies. MR is our maximum-expected-return strategy, and MS is
our maximum-Sharpe-ratio strategy. Panel A places no leverage or cost constraints on the strategies. Panel B imposes
two constraints—a zero-cost requirement and a leverage restriction—on all strategies. Data span January 1963 through
December 2019 (from PP’s replication package on the Journal of Finance website), with the out-of-sample period running
from February 1973 to December 2019.

Strategy =~ Avg% Std% SR Sum ASum

Panel A: Linear Strategies

PP-ME 327 2232 051 2321 2322
PP-BM 464 2694 060 1262 14.45
PP-MOM 365 2641 048 2394 2534
PPEW 2.83 1752 056 1.03 1.35

MR 11.55 7652 052 819 45.94
MS 3.13 456 237 1.06 33.46

Panel B: Linear Strategies with Zero Cost

MR 0.46 310 051 0.00 2.00
MS 0.19 027 236 0.00 2.00
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5.2.2 Cross-Prediction SDF versus Self-Prediction SDF

The existing literature on SDF estimation has predominantly focused on self-predictive frame-
works, where each asset’s signals are used solely to forecast its own returns. Kozak et al. (2020) con-
struct a robust SDF formed from a small number of principal components of characteristics-based
factors. Kelly et al. (2019) propose Instrumented PCA with the belief that the factor loadings on SDF
are determined by assets characteristics, overcoming the limitations of static loading in PCA. Let-
tau and Pelger (2020) find that the SDF estimated on Risk-Premium PCA is more highly correlated
with the true SDF than those estimated on PCA. Luo et al. (2025) estimate the SDF with observable
characteristics-based factors with L1l-penalized SDF regression; whereas, Didisheim et al. (2024)
apply the L2-penalized SDF regression on observable and Random-Fourier-Feature generated fac-
tors. All of these papers have been working on high-dimensional characteristics-based portfolios to
estimate the SDF, where the belief of self-prediction are embedded the portfolios.

By contrast, our framework utilizes managed portfolios inherently reflecting the belief of cross-
prediction: 7, (6), xo (19), and xa (22). Whether cross-predictive strategies—where signals from
one asset help predict the returns of others—can systematically outperform self-predictive ones in
high-dimensional settings remains an open question.

To investigate this, we construct the self-predictive strategy by restricting the matrix V¥ to its
diagonal, thereby eliminating all cross-asset interactions. Conceptually, this restriction renders self-
prediction a special case of the economic constraints introduced in Section 2.3, in which each asset’s
signals are permitted to forecast only its own returns.

Panel A of Table 5 reports the empirical performance of the Sharpe-ratio-maximizing strategies
on the 138 spread portfolios. The self-predictive strategy achieves a Sharpe ratio of 1.80, while
the cross-predictive counterparts attain Sharpe ratios of 2.19, both with and without zero-cost and
leverage-two constraints. This 0.39 differential underscores the incremental value of incorporating
cross-asset predictive signals.

Panel B reports results for the 544 bi-variate sorted portfolios. The self-predictive strategy
achieves a Sharpe ratio of 2.51, while the cross-predictive variants reach 3.62 and 3.55 under con-
strained and unconstrained implementations, respectively. This gap of more than 1.00 in Sharpe

ratio highlights the significant contribution of off-diagonal elements in ¥ to improved portfolio
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performance.
Overall, the evidence confirms that cross-predictive strategies materially enhance the estima-
tion and performance of stochastic discount factors—particularly in richer portfolio universes and

longer samples.

Table 5: Cross- vs Self-Prediction

This table reports the monthly average returns (%), monthly standard deviation(%), and annualized Sharpe ratio, time-
series average of the sum of positions on basic assets, and time-series average of the absolute sum of positions on basic
assets. The objective of the strategies is to maximize the Sharpe ratio. Notably, the cross-prediction strategies can be
solved with and without the zero-cost constraint; however, the self-prediction strategy does not have an analytic solution
once adding the zero-cost constraint, see Section 2.3 for details. Panel A invests on spread portfolios and Panel B is for
bi-variate sorted portfolios. The out-of-sample period is February 1973 to December 2023.

m o SR Sum ASum

Panel A: Spread Portfolios
MS Self 072 138 180 064 3.80

MS Cross 298 470 219 1.04 33.70
MS CrossZC 018 028 219 0.00 2.00

Panel B: BiSort Portfolios

MS Self 1.09 1.50 251 0.18 4.04

MS Cross 1095 10.67 355 140 90.23
MS Cross ZC 018 017 3.62 0.00 2.00

5.2.3 Factor Spanning Tests

We conduct a series of factor-spanning tests to assess whether established asset pricing fac-
tors fully explain the expected returns of the maximum-Sharpe-ratio (MS) strategy. Table 6 reports
monthly alphas, factor loadings, and associated ¢-statistics. Panel A (MS Spread) presents results for
the spread portfolios, while Panel B (MS BiSort) reports findings for the bivariate sorted portfolios.

We first evaluate the Fama and French (2015) five-factor model (FF5). The MS Spread portfo-
lio exhibits a modest loading on SMB (8 = 0.01, ¢t = 2.07) but insignificant exposures to the other

four factors, while delivering a highly significant monthly alpha of 0.18% (¢t = 15.13). This sug-
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gests that the strategy’s returns are largely orthogonal to the FF5 factors. Also, we augment the
FF5 model with short-term reversal (REV), momentum (UMD), and liquidity (LIQ) factors (Pastor
and Stambaugh, 2003). In this expanded specification, MS Spread shows significant loadings on
REV and UMD but not on LIQ, while its alpha remains economically and statistically significant at
0.16% (t = 13.96). These findings indicate that reversal and momentum effects partially explain the
strategy’s performance, with little role for liquidity risk.

Next, we then examine the Hou et al. (2015) four-factor model, which incorporates investment
(R_IA) and profitability (R_ROE) factors alongside market and size. MS Spread displays negligi-
ble loadings on R_IA and R_ROE, while maintaining a highly significant alpha. The Stambaugh
and Yuan (2017) mispricing factors—managerial ownership (MGMT) and performance (PERF)—
also fail to subsume the strategy’s returns: MS Spread shows minimal exposures to both factors,
with an alpha of 0.17% (¢t = 13.06). Then, we assess the Daniel et al. (2020) model, which includes
post-earnings announcement drift (PEAD) and financing (FIN) factors. While MS Spread loads
significantly on PEAD, its alpha remains robust at 0.17% (¢t = 13.42), and it shows no meaning-
ful exposure to FIN. Finally, in a comprehensive regression incorporating all fourteen factors, MS
Spread maintains an alpha of 0.16% (¢ = 11.62), with statistically significant but economically small
loadings on SMB, UMD, REV, LIQ, FIN, and R_IA. These results collectively demonstrate that the
MS strategy’s expected returns cannot be fully explained by existing factor models.

Panel B corroborates these findings. The MS BiSort portfolio displays statistically significant
but economically modest loadings on RMW, CMA, REV, and PERF. Notably, it maintains a monthly
alpha of 0.17% (¢t = 20.45) even after controlling for all fourteen factors, further supporting the
strategy’s robustness to established factor models.

In summary, across all specifications—including the Fama-French five-factor model with REV,
UMD, and LIQ augmentations, as well as the Hou—Xue-Zhang, Stambaugh—Yuan, and Daniel-Hirshleifer-Sun
frameworks, and even the comprehensive fourteen-factor regression—the MS Spread and MS BiSort
portfolios exhibit persistently large and highly significant alphas with only moderate loadings on
existing factors. This suggests that conventional models may miss the cross-stock return predictabil-
ity captured by our strategy. Below, we further analyze the pricing content of the maximum Sharpe

ratio portfolio.
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Table 6: Alpha and Factor Loadings

This table reports the alphas, factor loadings, and their ¢-values (in parentheses) obtained from the factor-spanning tests
of regressing the strategy returns on other asset pricing factors. We have scaled the original strategy and factor returns
by 100 for percentage compatibility, aiding coefficient comparability. This table focus on the maximizing Sharpe ratio
strategy with zero-cost and leverage two. Panel A (MS Spread) displays the results for investing in spread portfolios,
while Panel B (MS BiSort) shows for bi-variate sorted portfolios. The factors include FF5 factor, momentum factor (UMD),
short-term reversal factor (REV), liquidity factor (LIQ) from Pastor and Stambaugh (2003), short-horizon inattention
factor (PEAD) and long-horizon financing factor (FIN) from Daniel et al. (2020), investment factor (R_IA) and return
on equity factor (R_ROE) from Hou et al. (2015), management factor (MGMT) and performance factor (PERF) from
Stambaugh and Yuan (2017). PEAD and FIN are available before December 2018. MGMT and PEREF are available before
December 2016. All other factors are available during the whole sample period. One, two, and three asterisks indicate
significance at the 10%, 5%, and 1% levels, respectively.

Alpha  Market SMB HML RMW CMA UMD REV LIQ PEAD FIN RIA R_ROE MGMT PERF
Panel A: MS Spread

0.18**  -0.00 0.01**  -0.00  -0.00 0.01

(15.13) (-147)  (2.07)  (-0.59) (-0.89) (0.68)

0.16**  -0.00 0.01* 0.00 -0.01 0.00 0.02**  0.01** -0.00

(13.96) (-0.99) (1.85)  (0.57) (-1.18) (0.20) (5.77) (3.36) (-1.36)

0.17**  -0.00 0.02*** 0.00

(13.42)  (-0.00) (3.14)  (0.78)

0.18***  -0.00* 0.01*** -0.00  0.00

(14.72)  (-1.65)  (2.60) (-0.51)  (0.59)

0.17#**  0.00 0.01*** 0.01* 0.01***

(13.06) (0.78) (3.18) (1.86) (4.05)

0.16**  0.00 0.01* -0.00 -0.01 0.02 0.01*  0.01** -0.00* 0.01 0.01*  -0.03* -0.01 0.01 0.01

(11.62)  (1.09) 1.77)  (-056) (-0.73) (1.17) (248) (3.62) (-2.09) (1.19) (1.98) (-1.82) (-1.62)  (0.58) (1.60)
Panel B: MS BiSort

0.18**  -0.00 0.00 0.00 0.02***  -0.00

(24.44) (-042)  (1.08) (1.19) (496) (-0.13)

0.17#*  -0.00 0.00 0.01**  0.02*** -0.00 0.01***  0.01** -0.00

(23.33) (-0.17)  (0.78)  (2.11) (487) (-047) (540) (4.01) (-1.50)

0.18** 0.00 0.01**  0.01**

(22.70)  (1.45) (2.02)  (4.86)

0.17**  -0.00 0.00 0.01* 0.07%***

(23.40) (-020)  (1.04) (175)  (4.26)

0.18**  0.00**  0.00 0.01**  0.01**

(23.12) (212)  (0.78) (390)  (5.43)

0.17**  0.00 0.00 0.00 0.02***  -0.02**  0.00 0.01***  -0.00 0.01* 0.00 0.02*  -0.01 0.01* 0.01**

(20.45) (1.35) (127)  (041) (272) (2.07) (132) (522) (-1.04) (1.92) (0.23) (1.77) (-1l.64)  (1.90) (2.44)
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5.2.4 Evolution of Sharpe Ratios over the Sample Period

To assess the persistence and evolution of risk-adjusted returns over time, Figure 1 Panel A
shows the five-year trailing Sharpe ratios of our two MS strategies alongside those of the market
and momentum factors. By smoothing over a half-decade window, we can observe how the trading
strategies respond to changing market conditions.

Both MS strategies deliver eye-catching Sharpe ratios in the 1990s—MS BiSort climbs as high
as 4-7 before 2000, and MS Spread approaches 3—reflecting their ability to capture persistent value-
enhancing opportunities. After 2000, however, it is natural to see some attenuation: wider adoption
of anomaly tradings, increased market liquidity, and a lower-volatility regime tend to compress
excess returns over time. Accordingly, by the end of 2023, MS BiSort’s trailing Sharpe has moderated
to about 1.5 and MS Spread to roughly 1.

To make more clear comparison, Figure 1 Panel B shows the Sharpe ratio of each strategy
relative to that of MS BiSort. In early sample before 2000, the Sharpe ratio of MS Spread is approx-
imately 60% that of MS BiSort, and market and momentum factors have below 20% Shape ratio
relative to MS BiSort. In the most recent sample, the Sharpe ratios of MS Spread, MKT-RF, and
UMD are 71%, 44%, and 4% that of MS BiSort.

For context, both the market factor’s rolling Sharpe ratio and that of the momentum factor
remain well below our strategies over the entire forty-year span. Although the performance gap
narrows in the post-2000 era, both MS strategies continue to deliver robust risk-adjusted returns
relative to these broad benchmarks.

Table 7 reports the (annualized) Sharpe ratios of the cross-predictive investment strategies,
Fama-French five factors, and momentum factor for three sample periods: the whole OOS period
from 1973:02 to 2023:12, before 2000:01, and after 2000:01. Although, the Sharpe ratios of our strate-
gies attenuate after 2000, they remain competitive compared to the benchmark factors in three sam-

ple periods.
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Figure 1: Sharpe Ratio of Strategies

The figure depicts five-year trailing (annualized) Sharpe ratios for the cross-predictive investment strategies. Panel A
shows the Sharpe ratio, while Panel B shows the Sharpe ratio of each strategy divided by that of “MS BiSort.” “MS
Spread” is the strategy to maximize Sharpe ratio investing in the spread portfolios.”MS BiSort” is the strategy to maximize
Sharpe ratio investing in the bi-variate sorted portfolios. The out-of-sample period is from February 1973 to December
2023 in monthly frequency, and the first five-year Sharpe ratio is obtained for January 1983. For comparison, the market
factor (MKT-RF) and momentum factor (UMD) are included.
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Table 7: Comparing Sharpe Ratios with Prevailing Factors

The table reports the (annualized) Sharpe ratios of the cross-predictive investment strategies, Fama-French five factors,
and momentum factor. Three sample periods are 1973:02 to 2023:12, 1973:02 to 1999:12, and 2000:01 to 2023:12.

MS Spread MS BiSort MKT-RF SMB HML RMW CMA UMD

1973-2023 2.19 3.62 0.45 018  0.33 0.45 0.50 0.45
1973-1999 3.23 5.46 0.48 015 048 0.36 0.58 0.96
2000-2023 1.33 242 0.41 020 020 0.54 0.43 0.09

5.3 Signal Importance

To understand the economic underpinnings of our Sharpe-maximizing strategy, we examine
the estimated values of A, which assign weights to firm-level predictive signals. These weights
reflect the relative contribution of each signal to the stochastic discount factor (SDF). We focus on the
absolute value of these weights averaged over time to assess long-term signal importance. Table 8
presents the ten most influential signals, ranked by their time-series average of absolute |A| values,
where Panel A is for spread portfolios and Panel B is for bi-variate sorted portfolios.

Panel A indicates that the most important signals are concentrated in the investment and value
categories, investing in spread portfolios. For instance, the top signal—liquidity of book assets (Ortiz-
Molina and Phillips, 2014)—receives an average importance of 0.141, while dividend yield (Litzen-
berger and Ramaswamy, 1979), the leading signal in the value theme, ranks seventh overall with
an importance of 0.124. These findings suggest that the strategy places greater emphasis on firm
fundamentals linked to capital structure, financing constraints, and valuation, rather than technical
or return-based indicators.

As for Panel B, profitability dominates the top ten signals, followed by size, low leverage, and
low risk themes. For instance, return on equity (Haugen and Baker, 1996), operating profitability-to-
lagged book equity (Fama and French, 2015), and profit margin (Soliman, 2008) are top three signals,
all belonging to profitability. Besides, price per share (Miller and Scholes, 1982) and Amihud illiquidity
(Amihud, 2002) emerge from the size theme, recalling stronger size effects in the test assets sorted

on size and other signals.
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Table 8: Top Ten Signals by A

This table reports the top ten most important signals, Panel A for spread portfolios and Panel B for bi-variate sorted
portfolios. The columns are abbreviation, theme, time-series average of absolute A, full name, and original publication
of the signals. There are 13 themes following Jensen et al. (2023).

Abbreviation Theme A Full Name Publication

Panel A: Spread Portfolio
2 alig_at Investment 0.141 Liquidity of book assets Ortiz-Molina and Phillips (2014)
44  emp_grl Investment 0.129  Hiring rate Belo et al. (2014)
116  sale_gr3 Investment 0.128  Sales growth (3 years) Lakonishok et al. (1994)
9 be_grla Investment 0.127  Change in common equity Richardson et al. (2005)
24 col_grla Investment 0.127  Change in current ope. lia. Richardson et al. (2005)
115 sale_grl Investment 0.126  Sales growth (1 year) Lakonishok et al. (1994)
34  divl2m_me Value 0.124 Dividend yield Litzenberger and Ramaswamy (1979)
7 at_me Value 0.122  Assets-to-market Eugene and French (1992)
45 eq_dur Value 0.121  Equity duration Dechow et al. (2004)
6 at_grl Investment 0.121  Asset growth Cooper et al. (2008)

Panel B: BiSort Portfolio
71  ni_be Profitability 0.142  Return on equity Haugen and Baker (1996)
86  ope_bell Profitability 0.137  Ope. profits-to-lagged be Fama and French (2015)
42 ebit_sale Profitability 0.137  Profit margin Soliman (2008)
90  prc Size 0.136  Price per share Miller and Scholes (1982)
77  o_score Profitability 0.136  Ohlson O-score Dichev (1998)
85  ope_be Profitability 0.135  Operating profits-to-be Fama and French (2015)
16 bidaskhl_21d Low Leverage 0.132 The high-low bid-ask spread Corwin and Schultz (2012)
41 ebit_bev Profitability 0.131  Return on net operating assets ~ Soliman (2008)
58 ivol_capm_252d  Low Risk 0.127  Idio. vol. to CAPM (21 days) Ali et al. (2003)
4 ami_126d Size 0.127  Amihud Measure Amihud (2002)
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Figure 2 presents the importance measures for all 138 signals, organized into 13 thematic cat-
egories (as defined in the Data section). Sub-figures (a) and (b) display theme-level importance for
spread portfolios and bivariate-sorted portfolios, respectively.” The heatmap visualization employs
color intensity to indicate importance levels—with red (blue) representing high (low) importance—
allowing clear identification of which signals consistently influence portfolio construction.

In sub-figure A for spread portfolios, investment- and value-related signals dominate the red
spectrum, reinforcing the role of tangible firm fundamentals. In contrast, momentum, profit growth,
debt issuance, seasonality, and short-term reversal appear consistently in the blue range, indicating
minimal weight in the Sharpe-maximizing SDF.

Turning to sub-figure B for bivariate-sorted portfolios, the profitability theme dominates the
heatmap, particularly following a pronounced regime shift in the late 1980s. The size theme exhibits
persistent importance throughout the sample period, reflecting the strong cross-sectional dispersion
in firm size within our test assets. In contrast, accruals, profit growth, seasonality, and short-term
reversal show consistently negligible predictive power over the entire sample.

Our analysis reveals that while the dominant predictive role of investment, value, profitability,
and size themes remains stable over time, certain signals—particularly accruals and quality—exhibit
heightened importance during high-volatility or low-sentiment periods. This time variation sug-
gests dynamic shifts in return predictability patterns, which our framework successfully captures
through its adaptive structure.

In summary, our signal importance analysis demonstrates that the cross-predictive SDF is pri-
marily driven by stable, economically grounded predictors, with negligible dependence on transient
or noisy effects. These findings not only underscore the robustness and economic interpretability
of our framework but also open new avenues for investigating the fundamental drivers of cross-

sectional return predictability.

*We provide the time-varying signal-level importance measures in Figure E.1 of the Appendix.
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Figure 2: Signal Importance

This figure depicts the heatmaps of signal importance A for each rolling-window estimation. Sub-figures A and B are

for spread portfolios and bi-variate sorted portfolios, respectively. For interpretation, we focus on the absolute value of

elements in A. We calculate the theme-level importance as the average of all signal-level importance within each theme.
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5.4 Networks in the Cross Section

To uncover the economic structure embedded in the cross-predictive matrix ¥, we interpret
VU as the adjacency matrix of a directed network across IV assets. This representation enables us
to move beyond aggregate portfolio-level effects and examine how predictive information flows
through the cross-section—identifying assets that function as net transmitters or receivers of signals
and assessing the alignment of these linkages with economic groupings such as firm size.

Following the connectedness methodology of Diebold and Yilmaz (2014), we compute four
summary statistics for each asset: outgoing connectedness (FROM), incoming connectedness (TO), net
connectedness (NET), and overall network intensity (TOTAL). These measures help pinpoint dominant
sources of predictability and inform the imposition of economically motivated sparsity structures
on ¥ to improve interpretability and out-of-sample performance.

Let ¥; ; denote the predictive influence of asset i on asset j. We define the network metrics as

follows:
N
FROM; = ) [¥, ], (24)
j=1
J#i
N
TO; =) [Wi4l, (25)
=1
i#j
NET}, = TO, — FROMy, (26)
1 N
TOTAL = >l (27)
i,j=1
o

Here, FROM; measures the total strength of predictive signals sent from asset i to others, cap-
turing how much 7 contributes to forecasting the returns of other assets. TO; measures the total
strength of predictive signals received by asset j from all other assets, reflecting how much j is
influenced by the rest of the network. NET}, is the difference between incoming and outgoing
connectedness, indicating whether asset k is a net transmitter (< 0) or net receiver (> 0) of pre-
dictive information. TOTAL aggregates the overall off-diagonal magnitude of ¥ across all asset

pairs, summarizing the average intensity of cross-asset predictive linkages in the network. The use
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of absolute values follows Diebold and Yilmaz (2014) and ensures all measures are non-negative,
thereby capturing signal strength regardless of sign.

We compute these metrics monthly for two asset universes—138 spread portfolios and 544 bi-
variate sorted portfolios—over T' = 611 months. To investigate the firm-level characteristics driving

variation in connectedness, we estimate monthly cross-sectional regressions:

Connectedness; ; = o + ﬁ'Chari,t + €its (28)

where Connectedness; ; is one of FROM;, TO;, or NET;, and Char; ; is a vector of observable char-
acteristics. We report time-series averages of the estimated coefficients along with Newey—-West
(Newey and West, 1987) t-statistics using a Bartlett kernel and lag length I = 4(7/100)%/° ~ 6.

Table 9 reports the results of monthly cross-sectional regressions of three network connected-
ness measures—FROM, TO, and NET—on firm characteristics for two groups of test assets: spread
portfolios (Panel A) and bi-variate sorted portfolios (Panel B). The results reveal economically intu-
itive patterns linking a stock’s network role to size, valuation, profitability, investment, momentum,
and several trading frictions.

In Panel A for spread portfolios, the FROM regressions, measuring how much a stock helps
predict others, we observe that smaller stocks (low ME), high book-to-market (BM), high profitabil-
ity (OP), and high momentum (MOM) stocks tend to transmit stronger signals to others. These
firms—small, value, profitable, and past winners—have greater forecasting influence, possibly be-
cause they aggregate market-wide information or drive co-movements. Additionally, stocks with
low illiquidity (ILL) and low turnover (TRN) exhibit higher FROM, suggesting that liquidity in-
crease a stock’s impact to the network. Volatility (VLT), by contrast, enters positively, implying
that more volatile stocks spill predictive attention. Notably, the coefficient on size (ME) becomes
insignificant, once controlling five trading frictions, which means that the size effect on FROM is a
manifestation of trading frictions but not size itself.

The TO regressions, which capture how strongly a stock is predicted by others, show the op-
posite patterns on many characteristics. Stocks with high ME, high BM, low OP, low INV, high
MOM, high ILL, high VLT, and high BETA receive more predictive inputs from others. This sug-

gests that firms that are large, volatile, illiquid, and priced as value stocks appear more susceptible
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to being forecasted using cross-sectional information. Interestingly, high-MOM stocks both receive
and transmit signals, indicating they may act as informational amplifiers within the network.

The NET regressions, defined as TO — FROM, consolidate these effects to identify whether a
stock is a net receiver or transmitter of predictive information. Stocks that are large (high ME), low-
BM, low-OP, low-INV, low-MOM, high-ILL, and high-TRN tend to be net receivers, while small,
value, profitable, non-investing, and momentum-driven stocks are net transmitters. These direc-
tional patterns highlight a persistent asymmetry: small, liquid, value, strong profitability, and con-
servative investment firms disseminate predictive signals, while larger and illiquid firms absorb
them. The NET regressions also reveal that turnover (TRN) consistently distinguishes transmit-
ters from receivers, suggesting that actively traded stocks play a key role in receiving predictive
information.

In Panel B for bi-variate sorted portfolio, these patterns shift dramatically. For ease of in-
terpretation, we focus on the NET regressions. We find that small, high-BM, high-OP, high-INV,
and high-MOM firms are net receivers in the network, while big, growth, weak-profitable, active-
investing, and low-momentum stocks are net transmitters. After controlling five trading frictions in
the regressions, the coefficient on size become significantly positive, while other four coefficients are
still positive. As for trading frictions, stocks with low volume, high turnover, and low market-beta
tend to receive spillovers from others than transmitting signals to others.

Together, two sets of test assets demonstrate significant correlations between network connect-
edness and asset characteristics, shedding light on that the determinants of cross-asset spillover
effects. The estimated ¥ matrix embeds an economically interpretable hierarchy of signal flows,
shaped by firm fundamentals and market frictions. This structure supports imposing sparsity or
blockwise restrictions to enhance interpretability and control overfitting—especially by limiting sig-
nal flows that contradict observed economic asymmetries. Nevertheless, the correlation between
connectedness and asset characteristics depends on the choice of test assets. That is, different test
assets reflect different patterns in asset pricing, see Feng et al. (2020); Avramov et al. (2025). In this
specific exercise, we confirm the prominent status of size as an asset characteristic in building sorted
portfolios as test assets (Fama and French, 1993).

Table 9 connects to several literature. For bi-variate portfolios (Panel B), we initially corrobo-
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rate Lo and MacKinlay (1990), finding big stocks lead small stocks (coefficient -0.07, row 1) - a result
robust to controlling for BM, OP, INV, and MOM (row 2). However, controlling for trading fric-
tions reverses the size coefficient, suggesting big stocks become net receivers, warranting further
investigation of size’s role in lead-lag effects. Contrary to Chordia and Swaminathan (2000), we
find low-turnover stocks transmit signal to high-turnover stocks after controlling for size.” It holds
for both spread and bi-variate sorts. The divergence from prior papers reflects discretion in test
assets and sample periods. Moreover, the two papers focus exclusively on weekly return spillovers,
whereas we incorporate multiple firm-level monthly signals, including past returns. Collectively,
we demonstrate that cross-asset spillovers are fundamentally linked to asset characteristics.

Figure 3 depicts the TOTAL connectedness index—the average intensity of the off-diagonal
elements in W—for both the 138 spread portfolios (dashed line) and the 544 bi-sort portfolios (solid
line) over the 1973-2023 period. Four key findings emerge. First, the time-series of TOTAL con-
nectedness on the spread portfolios varies markedly through time: it troughs in the mid-1980s and
again after 2020, but peaks around the early 1990s and during the post financial crises, 2010s. Sec-
ond, the indices for bi-variate sorted portfolios share the trough in mid-1980s and peak in early
1990s, however, slight fluctuations after 2000. Overall, the average level of TOTAL of spread port-
folios is almost equal to that of bi-variate sorted portfolios before 2000, but become higher after
2000. Third, despite these episodic surges, the time series reverts to a long-run mean near 0.73,
suggesting a stable baseline level of cross-asset information transmission.

Moreover, in the more granular bivariate-sorted universe, we find that the average absolute
of diagonal elements of ¥ is 1.34 x 1073, while it is 1.32 x 1072 for the off-diagonal elements—
virtually identical in magnitude. This result confirms that both self- and cross-predictive channels
are economically significant. Taken together, Figure 3 demonstrates that cross-asset spillover effects
intensify during turbulent periods but persist as a pervasive market feature. These findings under-
score the importance of modeling the full ¥ matrix—rather than restricting attention to its diagonal

elements—for constructing Sharpe ratio-maximizing portfolios.

SFor comparability, we replicate results for 1973-1987 (matching Lo and MacKinlay (1990)’s sample end) and find
consistent size coefficient signs.

"While Chordia and Swaminathan (2000) uses "Trading Volume" in their title, they actually employ daily turnover as
their volume proxy.
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Table 9: Understanding Connectedness

This table reports the time-series average and t-statistics of cross-sectional regressions estimates for each month that
regress a connectedness measure on asset characteristics. The assets are 138 spread portfolios. For ease of interpretation,
the coefficients are reported with values multiplied by 100. There are three connectedness measures: FROM, TO, and
NET. The characteristics of interest are size (“market_equity”), book-to-market equity (“be_me”), operating profits-to-
lagged book equity (“ope_bell”), asset growth (“at_grl”), price momentum t-12 to t-1 (“ret_12_1"), Amihud illiquid-
ity(“ami_126d”), volume(“dolvol_126d”), volatility(“rvol_21d"), turnover(“turnover_126d”), CAPM beta (“beta_60m”),
with abbreviations ME, BM, INV, OP, MOM, ILL, VLM, VLT, TRN, and BETA. There is an intercept in the regression, but
the estimates are omitted in the table. The sample period is from February 1973 to December 2023.

ME BM OP INV MOM ILL VLM VLT TRN  BETA

Panel A: Spread Portfolio
-0.10
(-5.92)
-0.20 0.64 0.29 0.02 0.60

FROM  586)  (17.93)  (595) (117)  (26.45)
-0.21 0.75 0.47 -0.01 0.80 -1.09 -0.70 0.47 -0.38 0.06
(-1.03)  (2648) (11.13)  (-042) (28.89) (247) (-1.66) (8.49) (-4.08) (1.51)
0.08
(2.83)

TO 0.18 0.13 -0.20 -0.14 0.22
(G.64)  (688)  (797) (-10.13)  (7.78)
2.44 0.35 -0.00 -0.17 0.28 1.28 -0.71 0.35 0.11 0.13
(10.13)  (14.60)  (-0.04) (-12.28) (8.57)  (4.02) (-1.70) (11.98) (1.30) (3.54)
0.17
(4.46)

NET 0.38 -0.51 -0.48 -0.16 -0.39
(7.16)  (-17.23)  (-959)  (9.02) (-17.21)
2.65 -0.40 -0.47 -0.16 -0.53 2.37 -0.02 -0.12 0.49 0.07
(721)  (-13.64) (-832)  (-6.84) (-1549) (4.76) (-0.03) (-1.80) (3.37)  (1.29)

Panel B: BiSort Portfolio

0.01
(11.05)
0.01 -0.26 -0.09 -0.16 -0.16

FROM' " 031)  (2681) (11.76) (2639) (-25.21)
-0.29 -0.24 -0.08 -0.15 -0.13 0.24 0.66 0.05 -0.25 0.07
(-8.76) (-2291)  (9.64) (-28.06) (-1639) (2.23) (5.75) (4.03) (-9.28) (4.01)
-0.07
(-27.65)

TO -0.04 0.05 -0.05 0.04 0.01
(-13.16)  (5.70)  (-10.73)  (7.94)  (0.96)
0.24 0.07 -0.04 0.02 0.02 0.19 -0.2 0.04 0.23 -0.04
(10.87) (6.86) (-6.66) (3.70) (1.42) (3.83) (-3.64) (3200 (11.22) (-4.79)
-0.07
(-28.5)

NET -0.05 0.31 0.03 0.20 0.17
(875)  (35.6) (411) (2624) (16.59)
0.53 0.31 0.04 0.17 0.15 -0.05 -0.85 -0.02 0.48 -0.11

(11.94) (31.55)  (452)  (21.29) (1229) (-0.40) (-6.88) (-1.04) (12.75) (-5.56)

38



Figure 3: Total Connectedness

This figure depicts the time-series plot of total connectedness of ¥ matrix over OOS period form February 1973 to Decem-
ber 2023. The blue dash line is for 138 spread portfolios, and the orange solid line is for 544 bi-variate sorted portfolios.

The shadow areas indicate for NBER recession periods.
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To analyze directional spillover effects in the bivariate-sorted portfolios more precisely, we
decompose the ¥ matrix into four blocks (A, B, C, and D) according to firm size. Figure 4 presents
the resulting predictive information flows across these partitions.

Figure 5 presents the time series of absolute average values for each of the four blocks in W.
The results reveal consistently stronger predictive relations in Block A (Small — Small) and Block C
(Big — Small) compared to Block B (Small — Big) and Block D (Big — Big), particularly during the
last two decades. The time-series averages measure 1.47 and 1.51 for Blocks A and C, respectively,
versus 1.15 and 1.18 for Blocks B and D. Notably, the divergence between the A/C and B/D blocks
has increased substantially in recent years.

These findings confirm an asymmetric predictive structure, which aligns with the NET regres-

sion coefficient of —0.07 reported in Panel B of Table 9. This result is consistent with the evidence
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in Lo and MacKinlay (1990), showing that large stocks tend to lead small stocks, but not vice versa.
The persistent and stable nature of these patterns over time supports the economic rationale for im-
posing restrictions on W, particularly by excluding small-to-large predictive links. Furthermore, the
long-run regularity of these asymmetries suggests that dynamic sparsity structures—which adapt
to time-varying network block strengths while maintaining economically motivated constraints—
could offer significant modeling value.

The overall connectedness analysis reveals that the connection matrix ¥ encodes economically
meaningful structure. For bi-variate sorted portfolios on size and other signals, big stocks act as
net transmitters of predictive signals; controlling more signals, we find that low trading volume,
high turnover ratio, and low-beta stocks are net transmitters. Meanwhile, value, profitable, non-
investing, and high-momentum assets are more likely to be net receivers. The strength of cross-
predictive relations is comparable to that of self-predictive effects. The overall network intensity
fluctuates over time, but remains around a stable level. Decomposing ¥ by firm size shows that
predictive flows from large to small firms dominate those in the reverse direction.

Figure 4: Partition of ¥ in Size.

This figure decomposes the ¥ matrix to four blocks based on firm size. They are:
* A:Small (Stock Signals) — Small (Stock Returns),
* B:Small — Big,
e C:Big — Small,
¢ D: Big — Big.

Small Return  Big Return

Small Signal A B

Big Signal C D
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Figure 5: Absolute Average of Four Blocks in W: BiSort Portfolios

This figure shows the time-series plot of the absolute average of elements in four blocks of ¥. The basic assets are the
bi-variate sorted portfolios, where fouce blocks A, B, C, and D represent the strength of cross-predictive relations for
(1) small stock signals predict small stock returns, (2) small stock signals predict big stock returns, (3) big stock signals
predict small stock returns, and (4) big stock signals predict big stock returns. The sample period is form February 1973
to December 2023. The shadow areas indicate for NBER recession periods.
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6 Conclusion

This paper develops a structured framework for constructing Sharpe ratio-maximizing invest-
ment strategies using multiple firm-level signals and accounting for informational linkages across
assets. By jointly estimating signal relevance and a matrix capturing inter-asset predictive relation-
ships, our approach yields closed-form portfolio weights derived from a generalized eigenvalue
decomposition. In high-dimensional settings, estimation is implemented through Ridge-SDF re-
gressions, which offer a stable and interpretable managed-portfolio representation of the decision
variables. The resulting stochastic discount factor consistently delivers high out-of-sample Sharpe
ratios across a range of asset universes and market conditions, outperforming both self-predictive
models and expected return maximization. Economically, the strategy is primarily driven by funda-
mental characteristics related to investment, valuation, and profitability. In addition, the estimated
connection matrix reveals that large and low-turnover stocks tend to act as net transmitters of pre-
dictive signals, while the overall strength of inter-asset linkages remains persistently high over time.

Our findings open several promising avenues for future research. First, the framework may be
extended to other asset classes where interdependencies among securities are economically plau-
sible, such as corporate bonds, sovereign credit, or international equities. For instance, in the cor-
porate bond market, issuer fundamentals or equity-side information may help forecast bond re-
turns through industry or ownership connections. Second, imposing economically motivated re-
strictions on the connection matrix—based on supply chain ties, analyst coverage, or institutional
co-holdings—could further enhance model interpretability and performance. Finally, applying the
framework in a macro-finance context, where predictive relationships span countries or sectors,
may yield new insights into the structure of global asset pricing. Together, these avenues offer a
foundation for exploring the economic and informational architecture underlying return dynamics

across financial markets.
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Appendices

A Proof of Proposition 1

Expected Return We first express 7, the realized return on the trading strategy. Recognize that
ms = NSUry = SN W SN =tr AN WL, | = NTI,®, where ¥/ is a 1 x N vector which is
the i-th row of ¥, S/, is a 1 x M vector, which is the i-th row of S;, tr stands for the trace operator,
and Il is an N? x M matrix that vertically stacks the N x M matrices I1y; = 755/, fori = 1,2,--- | N.

Then, on the basis of realized return, the expected value is given by
BE(r,) = NTI'® = &'TIA. (A.1)
Variance Let X be the covariance matrix of vec(II,). We express 7, in terms of vec(II):
s = NP = N'vec(IT,®). (A.2)

Using the property of vectorization:

vec(ABC) = (C' @ A)vec(B) (A.3)
we get:
vec(IlL®) = (' @ Iy )vec(IL)) (A4)
Therefore:
s = N(®' @ Ip)vec(IT)) (A.5)

The variance of 7, is:

Var(7r5) = A/((I)/ X IM)Eq)((I) X IM)A,

— A'BoA, (A.6)

where By = ((I), X IM)Eq)(q) ® IM).



We consider an alternative expression of Var(ms). Let ¥ be the covariance matrix of vec(Il;).

We express 7, in terms of vec(IL,):
s = O'TI,A = ®'vec(IL;A). (A.7)
Again using the property of vectorization, we get:
vec(IIsA) = (A @ Iy2)vec(Ily). (A.8)
Therefore:
7y = (N @ In2)vec(Ily) (A.9)
The variance of r; is:

Var(m,) = @(A ® Iy2)Sa(A® Iy2)®,

= 3'Bp9, (A.10)

where By = (A @ In2)XA (A ® Iy2).

Sharpe Ratio With the expected return and variance, we express the Sharpe ratio square as:

_ NAgA

2
SR = N BgA’

(A.11)

where Ag = I'PP'TL, By = (' @ Iyy) X (P ® I)y), and Xg is the covariance matrix of vec(IL}).
Alternatively, we express the Sharpe ratio squared as:

DA

2 J—
SR = ' ByD’

(A.12)

where Ay = TTANTI, By = (AN @ In2) XA (A ® In2), and X, is the covariance matrix of vec(Il).
These alternative expressions of SR? assist in finding the solution to maximize the Sharpe ratio,

with details in Appendix E.



B Proof of Expected Return Reduction due to Zero-Cost Constraint

Consider the matrix IT formed by vertically stacking /N matrices II;, each of dimension N x M,
and let IT be the matrix obtained after pre-multiplying each II; by the matrix ©, where © = Iy —
+unty. Here, © is a projection matrix that projects vectors onto the space orthogonal to the vector
¢ of ones.

Properties of O:

* O is symmetric and idempotent, i.e., © = © and ©' = O, confirming that it is a projection

matrix.

¢ The eigenvalues of O are 0 along the direction of ¢y and 1 along all directions orthogonal to

LN.
Impact on Singular Values:

1. The matrix © modifies II; by removing its component in the direction of ¢. This operation

reduces the variance in II; that is aligned with ¢y .

2. Given the singular value decomposition of IT = UXV”, the transformation II = (OI1;) can be
viewed through the lens of modified singular vectors. Since O acts as an identity on the space
orthogonal to ¢ and zeroes out components along ¢y, it does not increase the magnitude of

any singular vector components.

3. The singular values \;(II) of the transformed matrix I correspond to the norms of the vectors
©U;, where U; are the left singular vectors of II. Since © is a projection (and thus a norm-

reducing operation except where it acts as the identity), we have:

|OU:|| < [|Ui]

4. Therefore, the singular values of IT must satisfy:

Xi(IT) < A;(I0)



for each 7, because the projection does not increase vector norms and reduces them for vectors

with non-zero components in the direction of ¢.

To be more precise, the highest singular value of the transformed matrix does not change
due to the preservation of the highest singular value by ©. However, the transformation induced
by © results in a reduction of singular values in the transformed matrix II in the other singular
values, leading to a decrease in variance explained by certain components. Specifically, at least
one singular value of IT is strongly diminished compared to the corresponding singular value of the
original matrix II. This reduction underscores the effectiveness of the transformation in diminishing
the influence of certain components in II and highlights its role in variance reduction. Hence, both

expected return and risk of the trading strategy are lower in the presence of the zero-cost restriction.

C Proof and Derivations for Propositions 4 and 5

This section focuses on maximizing the squared Sharpe ratio of a linear strategy. The results
extend naturally to the Sharpe ratio maximization of a nonlinear strategy with an augmented signal
space.

Maximizing the squared Sharpe ratio constitutes a generalized Rayleigh quotient problem, which
can be solved via an eigenvalue problem. However, in empirical settings, the solution to this eigenvalue
problem often becomes ill-conditioned in high-dimensional settings.

To address this issue, we employ Ridge-SDF regressions to estimate the decision variables,
providing an intuitive managed-portfolio interpretation. Finally, we present an iterative algorithm

to estimate A and ¢ until convergence. The details are as follows.

Define the squared Sharpe ratio as a function of A. According to Proposition 1, the squared

Sharpe ratio takes the form:
 NAsA

2
SR = N BgA’

(C.13)

where Agp = W PP'IL, By = (P’ ® Iny)Xe (P @ I)y), and Xg is the covariance matrix of vec(IT,).



Maximizing the squared Sharpe ratio with respect to A. From (A.11), the optimization problem

is formulated as:

N ApA
max NBgh' (C.14)
This is equivalent to the constrained optimization problem:
max NAsA st. AN BgA = k. (C.15)
Given the norm constraint on A, we set x = 1 without loss of generality.
Applying the method of Lagrange multipliers, we define the Lagrangian function:
L(A,N) = N AgA — M(A'BgpA — 1). (C.16)
Taking derivatives with respect to A yields the generalized eigenvalue problem:
Ao\ = A\BgA. (C17)
Multiplying both sides by B! gives:
BylAgA = MA. (C.18)
Defining Cy = By ' Ap, we obtain the standard eigenvalue problem:
CoA = AA. (C.19)

Solving (C.19) provides the eigenvector corresponding to the largest eigenvalue, Amax. Normalizing

for the norm constraint, we set:
Amax

A= —. C.20
[y 20
Since the solution for A depends on ®, we define the function:
!
A = arg max Ao (C.21)

A ANBpA (®).



Estimating high-dimensional A using ridge regression. In high-dimensional settings where M
is large relative to the number of observations 7', the solution in (C.21) often fails in out-of-sample
tests.

To address this, consider a set of managed portfolios x4 of dimension 7" x M:

Yo = IT'D. (C.22)

The optimization in (C.21) is an asset allocation problem in which the goal is to determine the
investment weights A for the managed portfolios x¢ to maximize the squared Sharpe ratio. This is
equivalent to estimating A as the mean-variance efficient portfolio weights.

Following Britten-Jones (1999), we estimate A using the regression:

1= yoA +u, (C.23)

where 1 is a T-vector of ones.
To improve out-of-sample performance, we adopt ridge regression, as in Shen and Xiu (2024);
Didisheim et al. (2024):

A= (pxa + M) N1, (C.24)

where A is a shrinkage parameter. The solution in (C.24) coincides with (C.21) when A = 0. While

(C.24) may underperform in-sample, it improves robustness for out-of-sample applications.

Define the squared Sharpe ratio as a function of . Alternatively, we express the squared Sharpe

ratio as:
B O'AND

2
SE = ' Bpd’

(C.25)

where Ay = TAA'TY, By = (N @ In2)XA (A ® ITy2), and X, is the covariance matrix of vec(IT;).

Maximizing the squared Sharpe ratio with respect to ®. Referring to Eq. (A.12), we formulate
the optimization problem as:

o ' AND
— arg max =
R I

B(A). (C.26)



Solving (C.26) follows the same procedure as (C.21).

Estimating high-dimensional ¢ using ridge regression. Analogous to (C.24), we define managed
portfolios x of dimension 7' x N?2:

xa = A, (C.27)
Applying ridge regression, we estimate ¢ as:

A

& = (X, xa + My2) " IXAL. (C.28)
Algorithm and Iteration. To solve the whole problem, we do iterations until convergence. In each
iteration, we have four steps:

1. Givenll, X4, A, update the values of Ax, By, Ch,

2. Solve Eq.(C.28) to get the updated @,

3. GivenII, ¢, ®, update the values of Ay, By, Co,

4. Solve Eq.(C.24) to get the updated A.

A full description of the algorithm is in Algorithm 1.



Algorithm 1 Maximize Sharpe Ratio

1: procedure MAXSR( A, )
2: Input Asset returns r; and signals S;.
3: outcome Investment decision variables A, ®.
Calculate I, X¢, X5 > These variables are Constant.
Initialize index of iteration k = 0. > We use k in notation AtF} @ik},
Initialize A{0}, > E.g., the solution in Max Expected Return strategy.
while Termination Conditions not Activated do

Update A, By, Cp with AtF)

Update ®{¥+1} by solving Eq.(23).

O PN G

(I){k+1} — ‘P(A{k})

10: Update Ag, By, Cy with &k}
11: Update A{k+1} by solving Eq.(21).

A{k-i—l} _ A((I){lc-‘rl})

12: k=k+1.

13: end while

14: return AUF} ik}
15: end procedure




D Robustness of ) the Ridge Shrinkage Parameter

Table D.1 reports the performance of Sharpe-maximizing strategy under an array of values for

A, the single hyperparameter in ridge SDF regression. Recall that the default setting in the paper is

A = 10~%. For other values around the default, the OOS Sharpe ratios are stable. For instance, in

Panel A: Spread Portfolio, all the Sharpe ratios are above 2.0; in Panel B: BiSort Portfolios, all the

Sharpe ratios are above 3.5.

Table D.1: Robustness of the A shrinkage in Ridge SDF Regression

This table reports the properties of the Sharpe-maximizing strategies with respect to the shrinkage parameter A
in ridge regressions (21) and (23). The first column shows the value of the shrinkage parameter, including
1072,1073,107*,107°,107°, where 10~* is the default setting in main results. The remaining columns report the prop-
erties include monthly average returns (%), monthly standard deviation(%), and annualized Sharpe ratio, time-series
average of the sum of positions on basic assets, and time-series average of the absolute sum of positions on basic assets.

Shrinkage Avg%

Std% SR Sum

ASum

Panel A: Spread Portfolios

1072 0.375
1073 0.246
107 0.175
10~° 0.155
10—¢ 0.151
Panel B:
1072 0.353
1073 0.226
1074 0.183
10~° 0.175
1076 0.173

0.560 2320 0.00
0352 2422 0.00
0278 2191 0.00
0.262 2.050 0.00
0.259 2.019 0.00

BiSort Portfolios

0.331 3.700 0.00
0209 3.751 0.00
0.175 3.622 0.00
0.168 3.593 0.00
0.167 3.593 0.00

2.00
2.00
2.00
2.00
2.00

2.00
2.00
2.00
2.00
2.00




E Signal-Level Importance

Figure E.1: Signal Importance

This figure complements the theme-level signal importance in Figure 2 by providing the 138 signal-level importance
in full detail. These signals of the same theme are grouped in the vertical axis, where the 13 themes follow Jensen et al.
(2023). For interpretation, we focus on the absolute value of elements in A. Sub-figures a and b report for spread portfolios
and bi-variate sorted portfolios, respectively.
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