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Improving Hedge Fund Return Prediction: Dealing
with Missing Data via Deep Learning

Abstract

We study the critical issue of handling missing entries in hedge fund data. We intro-
duce a deep learning approach, the BRITS, for recovering data for fund returns and 23
fund predictors. We compare its performance with popular imputation methods, such
as the cross-sectional mean and singular value thresholding. BRITS’ ability to capture
information from past and future values in time series and the whole cross-section of
observations yields the highest imputation fidelity in our simulations. The recovered
information improves predictions of nonlinear and linear methods. At the same time, it
helps to select top-performing funds that earn significant out-of-sample annual alphas
of 13.4% net of all costs.

JEL classifications: G12, G14, G23.
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1. Introduction

A common problem in financial datasets, especially those for hedge funds, is the presence
of missing values. Missing values present challenges for a number of topics in asset pricing,
including model estimation and out-of-sample return forecasting. Thus, effective imputation
of missing data has the potential to substantially improve empirical asset pricing, including
out-of-sample asset return prediction and investment decisions. Despite its importance, the
issue of missing values in financial datasets has only recently started to receive significant
attention in the finance literature (e.g., Giglio, Liao, and Xiu 2021; Freyberger et al. 2025;
Bryzgalova et al. 2025; Beckmeyer and Wiedemann 2023; Chen and McCoy 2024).

We examine the imputation of missing values in hedge fund datasets, a critical issue
arising from the voluntary nature of hedge fund disclosures. Missing data can distort empir-
ical analyses, affecting return prediction, fund selection, and broader asset pricing research.
We assess imputation methods for hedge fund returns and characteristics, evaluating their
accuracy and impact on out-of-sample forecasting. Hedge funds’ flexibility and limited regu-
lation often lead to incomplete reporting, complicating performance evaluation. Their diverse
strategies and proprietary approaches further obscure true managerial skill, making fund se-
lection challenging. Addressing missing data is essential for improving predictive accuracy
and empirical asset pricing.

To deal with missing data in hedge fund datasets, we employ a deep learning model that
considers both time-series and cross-sectional properties to impute missing values for hedge
fund returns and a large set of fund characteristics. Specifically, we use the bidirectional
recurrent imputation network for time series (BRITS, Cao et al. 2018) method that applies
to general settings for missing data. A number of properties of BRITS make it attractive for
filling in missing values for hedge fund datasets. First, when training the BRITS network,
information from both the past and future values of a variable is used to impute missing

values. This bidirectional flow provides a richer information set that is especially useful in



sparse datasets with relatively large numbers of missing values and helps the model achieve
the same quality of imputation at the beginning as well as the end of a variable’s time
series. Second, the BRITS network uses information from the entire cross-section of avail-
able observations for a variable, which aligns with the dependency of financial variables on
common factors such as business-cycle fluctuations. Third, BRITS attaches less weight to
observations in the distant past when imputing missing values by using a temporal decay
factor. This seems reasonable, as observations from the recent past are likely to have more
of an effect on a variable’s current value than those from the more distant past. Fourth,
BRITS is a type of recurrent neural network that can effectively model data characterized
by nonlinear dynamics without making strict assumptions about the data. Such a feature is
in advance of previous methods used for recovering missing hedge fund returns in the liter-
ature, which require strong assumptions and low-rankness of the data (e.g., singular value
decomposition) (Giglio, Liao, and Xiu 2021). Overall, the properties of BRITS make it well
suited for imputing missing values for financial data, including hedge fund data.

We consider data for 3,800 hedge funds from January 1994 to December 2021. Our dataset
consists of a time series for hedge fund returns, along with 23 hedge fund characteristics that
are potentially relevant for predicting future hedge fund returns. Among the characteristics
that we consider are past returns, return autocorrelations, higher return moments, and
measures of fund manager skill. After making standard adjustments to the hedge fund
return data and accounting for the availability of hedge fund characteristic data, the in-
sample period is January 1998 to December 2012, while January 2013 to December 2021
serves as the out-of-sample period for evaluating hedge fund return forecasts and use them
to select out-performing funds based on the fund characteristics and their interactions with
a set of economic variables.

We first conduct an experiment over the in-sample period to investigate the accuracy
of BRITS for imputing missing values for hedge fund returns and characteristics relative

to a set of benchmark methods. For benchmarks, we consider the cross-sectional mean



(e.g., Haugen and Baker 1996; Green, Hand, and Zhang 2017; Light, Maslov, and Rytchkov
2017; Chen and McCoy 2024), the time-series mean, and the singular value thresholding
algorithm for matrix completion (e.g., Cai, Candes, and Shen 2010; Giglio, Liao, and Xiu
2021). In the experiment, we randomly drop 10% and 20% of hedge fund returns and
their corresponding predictors and fill in the actual missing values and the artificial missing
values using an imputation method. For the artificial missing values, we use the filled-in
and actual values to compute the root mean squared error (RMSE), thereby providing a
measure of the accuracy of the imputation method. The BRITS method is compared with
benchmark methods, including the time-series mean, cross-sectional mean, and Singular
Value Thresholding (SVT), a matrix completion technique. We find that the BRITS method
produces a lower RMSE than the benchmarks for the artificial missing values, so BRITS
imputes missing values for hedge fund variables with greater fidelity.

Next, we assess the performance of BRITS in an out-of-sample forecasting context, where
we forecast hedge fund returns using a large set of predictors comprised of the 23 fund char-
acteristics and their interactions with four economic variables (for a total of 115 predictors).
We generate a sequence of monthly hedge fund return forecasts for all available funds in
a given month using a rolling window of 15 years (180 months). Specifically, to generate
return forecasts for month ¢ + 1, we first consider available data for hedge fund returns and
characteristics for month ¢t — 179 to month ¢t. We apply the BRITS method to fill in missing
values for the return and characteristic data. We then use the complete set of available and
filled-in observations for the returns and characteristics (as well as the economic variables,
which do not have missing values) for month ¢ — 179 to month ¢ to train a prediction model
that generates a set of return forecasts for month ¢ + 1. We do this sequentially to generate
hedge fund return forecasts for January 2013 to December 2021.

We employ three neural network architectures for the prediction models, including deep

neural networks.! Out-of-sample hedge fund return forecasts based on filling in missing

'We also use linear penalized regressions, such as the seminal least absolute shrinkage and selection
operator Tibshirani (LASSO, 1996) as well as two of its variants: adaptive LASSO Zou (2006), and sparse



values (for both hedge fund returns and characteristics) with BRITS are substantially more
accurate in terms of RMSE than return forecasts that rely on filling in missing values via the
cross-sectional mean (i.e., XMean) and the forecasts generated without using an imputation
method. In the context of forecasting hedge fund returns with a large set of predictors
and machine learning methods, BRITS provides an effective strategy for dealing with the
plethora of missing values in hedge fund datasets.

We first assess the prediction of hedge fund realized returns using a deep neural net-
work, comparing BRITS-imputed data with other imputation methods, as well as a no-
imputation benchmark. The results show that BRITS significantly improves forecasting
accuracy, with the neural network ensemble model (NN ensemble) yielding an out-of-sample
R? of 2.16%, significantly outperforming other imputation methods and the no-imputation
approach, which has an out-of-sample R? of only 0.16%. In line with the no-imputation
method, which performs poorly, the ensemble using XMean also yields negative or insignifi-
cant R? values.

Next, we evaluate the performance of long-only hedge fund portfolios formed based on
these forecasts. The top-decile portfolios of funds, constructed using BRITS-imputed data,
deliver the highest realized returns, with an annualized mean return of 23.20%, significantly
outperforming other methods. BRITS-imputed portfolios also show the highest alphas, with
the Fung-Hsieh alpha at 10.47% and the Chen et al. (2024) alpha at 13.41% both statistically
significant. These portfolios also report the highest risk-adjusted performance, including a
Sharpe ratio of 1.30 and an upside potential ratio of 0.82. In contrast, the no-imputation
portfolios show a much lower annualized mean return of 11.58%, with a Fung-Hsieh alpha
of 5.12% and a Sharpe ratio of 0.78. These findings highlight BRITS’ strong informational
advantage in both forecasting and portfolio management, particularly for long-only strategies

where the top-decile portfolio shows superior performance.

group LASSO Simon et al. (2013). The relevant findings are at least qualitatively consistent with those of
neural networks, and they are presented in the Internet Appendix.



We further analyze the performance of hedge fund portfolios across prediction-weighted
deciles to assess the informational advantage of the imputation methods. Tables 5, and 6
present the annualized mean returns and alphas for each decile portfolio and the top-minus-
bottom spread. BRITS demonstrates the highest performance, with a significant annualized
return spread of 25.43%, followed by SVT at 21.99%. In contrast, XMean and non-imputed
portfolios show lower and statistically insignificant spreads. The alpha results support these
findings, with BRITS generating the highest statistically significant alphas—16.97% Fung
and Hsieh (2004) and 18.75% Chen et al. (2024).

We also examine the persistence of hedge fund portfolio performance over three years and
find that the mean returns do not follow a monotonic decline but exhibit cyclical behavior,
especially for the BRITS and SVT imputation methods. Initially, returns drop for about
eight months, but BRITS-imputed portfolios recover, reaching a significant 11.83% return at
36 months. This is particularly relevant as hedge funds typically have a three-month lock-up
period for new investors. SVT-imputed portfolios also show a similar trend, with a 7.75%
return at 36 months. Non-imputed and XMean portfolios display a counter-cyclical pattern,
while BRITS portfolios generate the highest returns over the three-year period.

Finally, we examine the importance of fund predictors and the interactions of those
predictors with macroeconomic variables to predict fund returns via Shapley Additive ex-
Planations (SHAP). We focus on the predictions generated using BRITS recovered data,
as the superior imputation method. We find that the deep neural network predictions rely
heavily on the interactions of fund-specific predictors with macroeconomic variables, specifi-
cally the interactions of second-order auto-correlations, total volatility, and cumulative fund
returns with the Economic policy uncertainty (EPU) and the VIX indices.

In sum, we make two primary contributions to the literature. First, we show that BRITS
is an efficacious deep-learning tool for dealing with missing values in hedge fund datasets.
Because missing values is a pervasive problem in hedge fund datasets, this makes BRITS

a valuable resource for empirical research on hedge funds. The effectiveness of BRITS in



filling in missing values lies in its ability to glean information along both the time and
cross-sectional dimensions and to accommodate nonlinear dynamics. BRITS also does not
require strong data assumptions, so it provides a flexible approach for filling in missing
values in financial datasets. Second, we provide the most comprehensive analysis to date on
out-of-sample hedge fund return predictability. Our analysis incorporates a large number
of hedge fund return predictors, including numerous hedge fund characteristics and their
interactions with a set of economic variables, as well as a broad array of machine learning
models.? When we impute missing values for hedge fund datasets via BRITS, we find that
the combination of a large number of predictors and machine learning methods generates
significant improvements in out-of-sample hedge fund return predictability.

The rest of the paper is organized as follows. Section 2 describes the data. Section 2
describes the data. Section 3 outlines the BRITS network for imputing missing values.
Section 4 offer a simulation study that discusses the imputation accuracy. Section 5 discusses

the prediction models. Section 6 reports the empirical results. Section 7 concludes.

2. Data

We use hedge fund data from the Lipper Trading Advisor Selection System (TASS) database
for January 1994 to December 2021. Following the standard procedure in the hedge fund
literature, we apply a set of filters to the data before using it for our analysis (e.g., Fung
and Hsieh 2000; Aragon 2007; Bali, Brown, and Caglayan 2012; Bali et al. 2021; Chen,
Han, and Pan 2021; Wu et al. 2021). We follow Chen, Han, and Pan (2021) and consider
only US-oriented hedge funds (to avoid fund duplicates in different currencies) as well as
funds that report net-of-fee returns. In terms of the filters, we preclude survivorship bias by
including both live and defunct funds. To account for backfill bias, we delete each fund’s

first twelve months of returns. In addition, to remove multi-period sampling bias, we require

2Existing studies that investigate out-of-sample hedge fund return predictability include Avramov et al.
(2011) and Avramov, Barras, and Kosowski (2013) and Wu et al. (2021).



each fund to have at least 30 return observations.® Finally, we discard funds with assets
under management below $5 million, so we focus on large funds that are more relevant to
investors and that are less likely to manipulate reporting to TASS. After applying the filters,

we have 3,800 hedge funds for our analysis.

Table 1. Hedge fund return predictors

The table provides the hedge fund characteristics and economic variables that are used to predict
hedge fund returns.

(1)

(2)

Variable Abbreviation
Panel A: Previous returns

1l-month return Ret_1mo
3-month cumulative return CRet_3mo
6-month cumulative return CRet_6mo
9-month cumulative return CRet_9mo
12-month cumulative return CRet_12mo
36-month cumulative return CRet_36mo
Panel B: Previous return autocorrelations

Lag 1 autocorrelation for returns over last 12 months AC_Lagl
Lag 2 autocorrelation for returns over last 12 months AC_Lag2
Lag 3 autocorrelation for returns over last 12 months AC_Lag3
Panel C: Return moments

Volatility over last 36 months Vol
Idiosyncratic volatility over last 36 months IdioVol
Systematic volatility over last 36 months SysVol
Coskewness over last 36 months CoSkew
Idiosyncratic skewness over last 36 months IdioSkew
Skewness over last 36 months Skew
Kurtosis over last 36 months Kurt

With respect to hedge fund return predictors, we consider a collection of 23 characteristics
that are plausible fund return predictors and/or have been found to predict fund returns
(e.g., Titman and Tiu 2011; Bali, Brown, and Caglayan 2012, 2019; Heuson, Hutchinson, and

Kumar 2020; Wu et al. 2021). We group the hedge fund characteristics into four categories, as

3For robustness purposes, we follow Giglio, Liao, and Xiu (2021) and require each fund to have at least
60 return observations across the full sample period for the imputation experiment in Section 4.



indicated in Panels A through D of Table 1. The first category consists of lagged cumulative
returns ranging from one to 36 months, which are designed to capture short-, medium-, and
long-term momentum effects. The second category is comprised of the first- through third-
order autocorrelations in hedge fund returns over the last twelve months. These provide
additional measures for capturing persistence in hedge fund returns. The next category is
comprised of various return moments, including measures of volatility, coskewness, skewness,
and kurtosis. Characteristics that provide proxies for managerial skill make up the fourth
category. This category includes alphas based on different multifactor models for hedge fund
returns, the R? statistic in the context of the well-known Fung and Hsieh (2004) seven-factor

model, assets under management, and the maximum return of the last twelve months.

Table 1 (continued)

(1) (2)

Variable Abbreviation
Panel D: Managerial skill

Alpha over last 12 months for Fung and Hsieh (2004) 7-factor model AlphaFH7_12mo
Alpha over last 36 months for Fung and Hsieh (2004) 7-factor model AlphaFH7_36mo
Alpha over last 24 months for Bali et al. (2021) 9-factor model AlphaBBCC9_24mo
Alpha over last 36 months for Chen, Han, and Pan (2021) 11-factor model AlphaCHP11_36mo
R? over last 12 months for Fung and Hsieh (2004) 7-factor model Rsq

Assets under management AUM

Maximum return over the last 12 months MaxRet

Panel E: Economic variables

Equity market uncertainty index EMU
Economic policy uncertainty index EPU
TED spread TED
VIX VIX

In addition, we consider four economic variables (see Panel E of Table 1, which we interact
with the fund characteristics. This allows predictive relations between the characteristics and
future hedge fund returns to vary with economic conditions. The four economic variables are
the equity market uncertainty index (Economic Policy Uncertainty website), the economic

policy uncertainty index Baker, Bloom, and Davis (2016), the TED spread, and the CBOE
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volatility index (VIX). After allowing the hedge fund characteristics to interact with the

economic variables, we have a total of 23 + 4 x 23 = 115 predictors.

3. BRITS Methodology

Our work expands on Cao et al. (2018) by utilizing the BRITS architecture, a specialized
bidirectional LSTM for multivariate time series imputation, applied to hedge fund datasets.
BRITS processes data in both forward (positive time) and backward (negative time) di-
rections, allowing for more accurate imputation by jointly training these layers. This bidi-
rectional processing helps capture patterns from past and future data, limiting the bias
exploding issue while considering the delay of the error calculation of estimated missing en-
tries based on observed values. At the same time, BRITS considers the correlation of the
observed entries in the cross-section and also provides cross-sectional imputations, which is
particularly valuable for hedge funds and financial datasets in general. The time-series and
cross-sectional estimations are combined to generate the final imputation output. Unlike
other methods limited to past data or linear assumptions, BRITS can fully recover missing
values with high fidelity according to the recurrent dynamics. The following sections explain
the data setup, forward and backward layers, hyperparameter optimization, and performance

evaluation through simulations, forecasting, and a trading application.

3.1. Initial setup

We denote a dataset of multivariate time series of hedge fund returns and predictors as

{4, Tty 21y ) = X

These time series are observed at regularly-spaced intervals {t1,ts,...,ty}, and for each
observation it holds that x; € RP (i.e., the t-th observation z; consists of D elements
{z}, 22, ..., 2P}). In our hedge fund dataset, it is often the case that some z;’s have missing

values for some or all of the D elements. Table X below provides a representation of our data
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setting, illustrating the data’s irregular missing value patterns. We illustrate an arbitrary

form of missingness that is present in both our hedge fund returns and predictors datasets:

Date Hedge Fund, Hedge Fund, Hedge Fund; Hedge Fund, Hedge Fund;
Month 1 | observed value observed value observed value observed value observed value
Month 2 | Missing value X7 | Missing value X? | Missing value X7 | observed value observed value
X — Month 3 | Missing value X7 | Missing value X7 | Missing value X7 | Missing value X? | observed value
B Month 4 | Missing value X7 | observed value | Missing value X7 | Missing value X? | observed value
Month 5 | Missing value X7 | observed value observed value | Missing value X7 | observed value

Month 6 | observed value | Missing value X7 | observed value | Missing value X7 | Missing value X7

L Month 7 | Missing value X7 | observed value | Missing value X7 | observed value | Missing value X?

For each month ¢, we denote the observed values and the missing values for the multi-
variate time series matrix X. Missing entries can appear randomly.

The multivariate time series X is incomplete, and a masking matrix m, (M) is used to
represent the missing components. In some cases, consecutive z;’s ( € RP ) can be partially
or fully missing for consecutive timesteps. Given that past time-series observations have
a decaying influence on future observations, we aim to capture this feature by creating a
specific matrix that tracks how long a value has been missing. Specifically, a tracking matrix
d:(A) is used to capture the gap from the last non-missing observation to the current timestep
t.

Equations (1) and (2) below provide the calculation of the masking and tracking matrices

for every timestep t:

0, if 2¢ is missing,
d _
my =

1, if z¢ is not missing.
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(

1+62,, ift>1and mé, =0,
5 = 1, ift>1and md , =1, (2)

0, ift=1.

\

We show a practical application given the matrix X. In the first column of the masking
matrix (M), we observe that only the first and the sixth months have a value of 1, while the
rest of the months have a value of zero. The sequence of ones and zeros follows the presence

of missing values in X, and, evidently, in the first column, we only have observed values for

Month 1 and Month 6.

Date | Hedge Fund, | Hedge Fund, | Hedge Fund; | Hedge Fund, | Hedge Fund;
Month 1 1 1 1 1 1
Month 2 0 0 0 1 1
M — Month 3 0 0 0 0 1
Month 4 0 1 1 0 1
Month 5 0 1 1 0 1
Month 6 1 0 1 0 0
L Month 7 0 1 0 1 0 ]

The frequent presence of missing values for the first hedge fund (i.e., the first column)
of matrix X is also depicted in the tracking matrix (A). For instance, by inspecting the
first column and Month 6 of the tracking matrix, we see the value of five. Given the current
timestep t (i.e., Month 6), the last observation took place in Month 1, and therefore d; is

calculated as 96 =6 — 1 = 5.

12



Date | Hedge Fund; | Hedge Fund, | Hedge Fund; | Hedge Fund, | Hedge Fund;
Month 1 0 0 0 0 0
Month 2 1 1 1 1 1
A — Month 3 2 2 2 1 1
Month 4 3 3 3 2 1
Month 5 4 1 1 3 1
Month 6 5 1 1 4 1
i Month 7 1 2 1 b) 2 |

We impute the hedge fund returns and each predictor matrices separately by forming
24 corresponding cross-sectional matrices, upon which we apply the BRITS methodology.
Also, the masking and tracking matrices are calculated separately for the returns and each
predictor. The aforementioned setup is essential for training our deep learning architecture,

which we describe in the following section.

3.2. BRITS Algorithm

This section provides an overview of the BRITS (Bidirectional Recurrent Imputation for
Time Series) algorithm. This technique employs a recurrent neural network (RNN) architec-
ture, which utilizes both forward and backward imputation and a cross-sectional imputation
to accurately estimate the missing values. By utilizing historical and future data points,
the dual-directional approach improves the imputation process in various ways. First, it
improves the slow convergence of the training due to the error estimation delay until an
observed entry appears. Second, it reduces the effect of sequential prediction mistakes made
early and transferred to the model as inputs (i.e., bias exploding issue). Third, the recovered
returns and fund predictor values are treated as a learnable parameter, and not a constant,
at each timestep. Hence the recovered values are validated by future observations. The
cross-sectional improves the imputation process by considering the correlation of a fund’s
returns with the rest of the funds in the cross-section. Such a feature captures the overall

market effect on top of a fund’s time-series dynamics.
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Consider the dataset of hedge fund returns and predictors represented as X = {xy,, Tty . . ., Tty }
where at each time step t, certain values may be missing. The mask matrix m; is used to
track missing values, where m; = 0 indicates a missing value and m,; = 1 denotes an observed
value.

The BRITS algorithm consists of three main components:

1. Forward Imputation: In this step, missing values are imputed using the information
from the previous time step. At each timestep ¢, the hidden state h;_; from the
previous timestep, combined with the current observation x;, is used to predict the

missing values:

(@)forw = Wihi—1 + by

where W, is the weight matrix and b, is the bias term. The hidden state h;_; (i.e.,
recurrent component) is updated using a gated mechanism similar to Long Short Term
Memory (LSTM) cells, which allows the model to capture temporal dependencies and

impute missing data effectively.*

2. Backward Imputation: This step involves processing the data in reverse order,
starting from the last timestep and moving backward. The backward imputation uses

information from future timesteps to improve the accuracy of the imputed values:

(i,t>back — tht+1 + bx

where h;; is the hidden state from the subsequent timestep, and W, and b, are shared

parameters with the forward imputation.

4A LSTM network is used as the applied recurrent network avoiding the gradient vanishing issue observed
in a plain RNN.
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3. Cross-sectional Imputation: The final step involves processing a fund’s data based

on the other funds’ entries cross-sectionally:

(it)CT‘OSS — chg _"_ bc

where x§ are either the observed cross-sectional return values at a timestep ¢ or their

time-series recovered values when those are missing.

The final imputed value £¢°™ is obtained by combining the time-series (i.e., forward

and backward looking) and the cross-sectional imputations results. This dual imputation
strategy enhances the model’s ability to accurately predict missing values by considering

past and future was well as cross-sectional data:

:i,tCombo — 51& . (i,t)cross + (1 . Bt) . i't

where 2; = ((2;)7°" +(2,)%2*) /2, and f3; is the optimal weighting between the time-series
and the cross-sectionally based estimation (0 < 3, < 1).

Including cross-sectional information requires the adjustment of the hidden layer h; to
the £6°m since the hidden layer is involved in the time-series imputation. Additionally, to
account for the duration of missing values, a temporal decay factor 7; is introduced. This
factor controls the influence of past observations on the imputation at timestep ¢, depending

—max(0,Ws0:4b7) - \where §, represents the gap

on how long the value has been missing, ~ = e
since the last non-missing observation, and W, and b, are parameters learned during training.
The temporal decay factor, v; is involved in both the backward and forward estimations and
the estimation of f;, and as a result, the optimal weighting can be adjusted when a value
has been missing for several timesteps and, therefore, its influence diminishes. For instance,
suppose a fund’s return has been missing for several months, and we need to impute its
value at time ¢ in which cross-sectional values are observed. Then, at this point, the BRITS

adjusts f; by assigning a larger weight towards the cross-sectional estimation (i.e., (Z)§°%)
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and a smaller weight to the time-series estimation (i.e., #; ) given that the fund’s return has
been missing for a long period.”
Finally, a reconstruction loss function is used, which focuses on minimizing the error for

the imputed values while excluding the observed values:

licm“l = (my, Le(xe, T0)) + (my, Le(ze, (20)%)) 4+ (my, Le (24, (fi"t)combo»

where L, is the estimation error.
Essentially, the lf mal - accumulates the model’s error from three different error sources
(i.e., forward, backward and cross-sectional imputation) so that the weight matrices can be
updated effectively and reach their optimal values.® The BRITS model is then updated by
minimizing the accumulated error. Following Cao et al. (2018), we use the mean absolute
error (MAE) as our estimation error. The BRITS tuning and hyperparameters are presented

in the Internet Appendix A.

4. Imputation Accuracy

We examine the performance of the BRITS methodology by estimating the imputation error
via a simulation study in which we randomly drop a percentage of observed fund values
and impute them along with the original missing entries. We track the location of the
artificially dropped values via indicative masking, which is essential for measuring imputation
performance. We follow the recent literature on financial data imputation (Bryzgalova et al.
2025) and adapt the root-mean-square error (RMSE) formula to calculate the imputation
error for the simulation study. A lower error reveals higher imputation performance and,
therefore, higher imputation fidelity. We develop two simulation experiments for our in-

sample dataset (i.e., January 1998 to December 2012). In the first one, we randomly drop

SFor further details of the algorithm please see Cao et al. (2018).

6Separate estimations are performed for backward and forward components (i.e.,
(myg, Lo (¢, (&) 7°7)) and 1J°™" = (my, Le(x, (2:)7™))) before generating the time-series imputations, ;.
To ensure that the forward and backward imputations are consistent, a consistency loss function is employed,
penalizing discrepancies between the forward and backward imputations (i.e., 1§ = || ()7 — (&;)P2°*||).

l{o’rw
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10% of hedge fund returns and the 23 fund-specific predictors’ datasets, and we fill in their
missing entries along with those that are initially missing. We repeat the same process in
the second experiment, but we randomly remove 20% of the original entries this time.

We also compare the performance of BRITS in imputing hedge fund missing entries
against famous counterparts used by the financial literature. For that purpose, we employ
as benchmarks the time series mean and the cross-sectional mean (Haugen and Baker 1996;
Green, Hand, and Zhang 2017; Light, Maslov, and Rytchkov 2017; Beckmeyer and Wiede-
mann 2023; Bryzgalova et al. 2025) and the singular value thresholding (SVT) for nuclear
norm minimization (Giglio, Liao, and Xiu 2021), which belongs to a class of algorithms
known as the matrix completion methods, which are particularly used to fill in missing
values in the data (Cai, Candes, and Shen 2010).”

Table 2 presents the 10% and 20% simulation study results, respectively, for the hedge
fund returns and the universe of our predictors. Panel A reports results for a 10% data
reduction, while Panel B shows results for a 20% reduction. We report the mean RMSE
criterion. For the predictor’s case, we provide aggregate metrics, such as average RMSE
and the standard deviation of the RMSE across all predictors. A lower standard deviation
indicates consistent imputation performance across all predictors. We provide the exact
imputation performance for each predictor separately in Appendix B.

Tables 2 shows that BRITS generates superior imputation performance than the bench-
mark methods for hedge fund returns and fund-specific predictors. Concerning the returns
imputation, BRITS yields the smallest RMSE, 3.448 for the 10% simulation and 3.586 for
the 20% simulation, respectively, than all benchmark imputation methods. BRITS also
yields the lowest standard deviation of imputation error compared to the benchmark mod-
els, as shown in the same tables. The second performing model is the cross-sectional mean.

Such a finding aligns with the recent evidence of Chen and McCoy (2024), who find that

"Giglio, Liao, and Xiu (2021) study differs from our study as they use a singular value decomposition
method to impute missing values of the residuals of hedge fund returns obtained by factor models for
identifying funds with significant alphas via false discovery rate control.
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Table 2. Imputation Fidelity

The table presents the results of an imputation simulation in which we artificially drop a portion
of the observed values for hedge fund returns and each of the 23 fund-specific predictors. Panel
A reports results for a 10% data reduction, while Panel B shows results for a 20% reduction. We
evaluate imputation accuracy using the root mean square error (RMSE), reporting the RMSE for
hedge fund returns, as well as the average RMSE and standard deviation (Std) of the error across
all predictors.

Panel A: 10% Simulation

Imp. Method Fund Returns Fund Predictors
Average error  Std of error
TSMEAN 4.503 6.894 9.365
XMEAN 4.038 6.885 8.955
SVT 4.065 6.514 9.155
BRITS 3.448 4.114 5.308
Panel B: 20% Simulation
Imp. Method Fund Returns Fund Predictors
Average error  Std of error
TSMEAN 4.560 9.422 19.181
XMEAN 4.121 9.492 19.031
SVT 4.190 9.246 19.221
BRITS 3.586 6.882 17.617

cross-sectional mean is still one of the most robust methods for recovering missing entries in
financial datasets, even standard ML methods. Our findings show that an ML method that
considers both time-series and cross-sectional characteristics for recovering missing entries,
such as BRITS, has higher imputation fidelity than the cross-sectional mean and more pow-
erful matrix completion methods, such as the SVT. Concerning the predictors’ imputation,
the results align with those of hedge fund returns, highlighting that BRITS yields the small-
est average RMSE value at the 4.114 level for the 10% simulation case and the 6.882 level
for the 20% simulation case. Once again, BRITS generates the lowest standard deviation of
imputation error. This time, the SVT method reports the second-best imputation perfor-
mance. The above results reveal that BRITS is a robust method for recovering missing data

for returns and predictor variables.
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5. Prediction Model

We consider a feedforward neural network as our prediction model for the hedge fund realized
returns. Most recent studies highlight the superior performance of deep neural networks in
predicting both equities” and fund’ returns compared to other linear and nonlinear methods
(Gu, Kelly, and Xiu 2020; Wu et al. 2021; Kaniel et al. 2023). Contrary to other ma-
chine learning approaches, neural networks have the advantage of providing valid confidence
intervals, similar to regression analysis (Kaniel et al. 2023).

A generic model for predicting the one-month-ahead excess return for hedge funds can

be described as follows:

Titr1 = f(Zi; M) + i1, (1)

where r;; represents the excess return for hedge fund ¢ during the month ¢, x;; =
[144y .-, Tie) 1S a vector of k predictor variables, and f(x;;;m) denotes the conditional
expectation function (or prediction function), which depends on a parameter vector 1. The
error term, €;,41, is assumed to be mean-zero and serially uncorrelated. This framework
is based on a pooled model, where the prediction function and parameter values are iden-
tical across all hedge funds. Pooling reduces the number of parameters to estimate, as it
eliminates the need for fund-specific parameter estimates. This is beneficial for improving
out-of-sample performance due to the bias-variance trade-off, especially for hedge funds with
limited historical data. Similar pooled approaches have been used in the context of asset
return prediction, as seen in studies like Freyberger, Neuhierl, and Weber (2020), Gu, Kelly,
and Xiu (2020), and Filippou et al. (2023).

The corresponding forecast for excess return is given by:

~

fz‘,t+1 = f(il?z',t; ﬁ)7 (2)
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where f (-;m) is the fitted prediction function based on data up to month ¢, thus avoiding

any look-ahead bias.

5.1. Deep Neural Network

A neural network consists of multiple layers of interconnected neurons. The first layer
corresponds to the input data (predictors), followed by one or more hidden layers, and
the final layer outputs the prediction.

Each hidden layer [ consists of P, neurons, where the mth neuron in layer [ computes a

nonlinear transformation of the inputs from the previous layer:

Py
By = g(wfi’,o + ZwiM””) form=1,....P, I=1...L 3)
j=1

(@

m,

where hgo) = ;. represents the input features, w,, ; are the weights, and g(+) is a nonlinear
activation function, typically the ReLU or leaky ReLLU (Maas et al. 2017). The final output

is a weighted sum of the last hidden layer:

P,
L ) 2

J
J=1

The network is trained by adjusting the weights using a stochastic gradient descent (SGD)
algorithm, with the goal of minimizing the training loss. We use the Adam optimizer Kingma
and Ba (2017) for training, and hyperparameters such as the number of neurons per layer,
dropout rates, and learning rates are tuned using walk-forward cross-validation. As a ro-
bustness check, we implement a family of penalized regressions (i.e. LASSO, sparse group
LASSO, and adaptive LASSO) as alternative linear approaches. The corresponding findings
are similar to those of the neural network prediction, revealing the importance of BRITS for
prediction and portfolio construction purposes. We report an in-depth comparison to the

Internet Appendix E.

20



6. Empirical Analysis

After establishing BRITS’ accuracy for recovering fund returns and characteristics, we ex-
amine whether the main futures of BRITS (i.e., time-series and cross-sectional components)
in recovering missing data entries provide informational advantages in hedge fund return
predictability and portfolio investment performance out-of-sample. First, we assess the pre-
diction of hedge fund realized returns with the deep neural network, using information re-
covered from BRITS and the benchmark imputation methods, as well as the naive approach
of not applying any imputation method (i.e., adopting the original dataset with missing val-
ues). Second, we assess the performance of long-only hedge fund realized portfolios formed

based on the neural network forecasts and for each imputation method.

6.1. Forecasting Performance

As highlighted in Gu, Kelly, and Xiu (2020), using historical averages to predict future
excess stock returns often performs substantially worse than a simple zero-return forecast.
The high level of noise in historical mean returns creates an artificially low standard for
what constitutes effective forecasting. To circumvent this issue, we use a zero forecast as the
benchmark for our out-of-sample R? statistic.

We can compare the out-of-sample MSE for a forecast value of zero to that of a compet-
ing forecast via the out-of-sample R? statistic Fama and French (1989) and Campbell and
Thompson (2008):

2
T—tin ~C
) Z?:1 ZS:lt <Ti:tirx+3 - Ti,zinffte>
RAII,OS =1- Zn ZT*tin 2 ’ (5>
=1

s=1 7“i,tin+s

where ﬂc Pt generically denotes a competing forecast, and ti, (T) is the end of the initial

in-sample period (total sample). Equation (5) is the proportional reduction in out-of-sample

MSE for the competing forecast vis-a-vis the benchmark forecast across all of the hedge
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funds. We use the Diebold and Mariano (1995) and West (1996) (DMW) statistic to test
whether the competing forecast delivers a statistically significant reduction in MSE relative
to the benchmark. We compute the DMW statistic via the t-statistic corresponding to the

intercept a in the following pooled regression:

2
rit— (riyt—fgfmpetﬂ =a+ey fori=1,....nt=tin+1,...,7T. (6)

. J/
-~

dit

where d;; is the day-t loss differential (i.e., the difference between the squared errors for
the benchmark and competing forecasts). We test Hp: a < 0 (R o9 < 0) against Hy:
a >0 (Riyog > 0). When computing the DMW statistic using Equation (6), we account

for cross-sectional dependency by clustering the standard error by month and hedge funds.
6.1.1. Out-of-sample Results

Table 3 presents the out-of-sample R? g statistics for monthly return forecasts. Out-of-
sample predictions begin on January 1, 2013, and continue until the end of the sample
period. The results indicate that the no-imputation method (Nolmp), which excludes ob-
servations with missing values, performs poorly. In contrast, as shown in the third column,
using BRITS as an imputation method for both returns and predictors yields highly pos-
itive and always statistically significant out-of-sample R? statistics across different neural
network specifications. Notably, the ensemble model, which integrates all specifications,
achieves the second highest out-of-sample R? statistics of 2.16, which is statistically signifi-
cant. The highest R? statistic (i.e., 2.28) is that of the ensemble using SVT as an imputation
method. However, the statistic is not always statistically significant across different neural
network models. Interestingly, the predictions with the cross-sectional mean (XMean) as
an imputation generate the second lowest R? statistics, which are also not statistically sig-
nificant. Such a finding contrasts with the recent findings Chen and McCoy (2024), who

report the cross-sectional mean’s comparable imputation performance with deep learning
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specifications on equity returns. The last column examines a variant of the third column
(NoImpRetBRITS) where BRITS is applied only to impute missing predictor values, dur-
ing the in-sample period. This approach results in equivalent out-of-sample neural network
ensemble performance with BRITs and SVT. However, the R?s are not always statistically
significant across the neural network variations, suggesting that imputing both predictors
and returns is crucial for maximizing predictive accuracy.

Overall, the results in Table 3 indicate that the unique properties of the BRITS imputa-
tion method facilitate the effective extraction of information from a broad range of predictors,

significantly enhancing the accuracy of monthly hedge fund return predictions.

Table 3. Out-of-sample R? statistics

The table reports out-of-sample R? statistics in percent for monthly excess return forecasts that are
based on different NN specifications. Specifically, we show results for a NN with three layers (NN3),
NN with four layers (NN4), NN with five layers (NN5) and the ensemble across all the specifications.
The number of out-of-sample observations is given in the second column. The “Nolmp” column
reports out-of-sample R? statistics for an estimation that is based on no imputation. The “BRITS”
column reports results when both returns and predictors are imputed using BRITS. The “SVT”
column shows results for an estimation that is based on imputed series using SVT. The “XMean”
column displays out-of-sample R? statistics for imputed variables based on the cross-sectional mean
and the “NolmpRetBRITS” column reports results using imputed predictors based on BRITS and
non-imputed returns. The out-of-sample R? statistic measures the proportional reduction in out-
of-sample mean squared error (MSE) for the competing forecast in the column heading vis-a-vis
the zero benchmark forecast; based on the Diebold and Mariano (1995) and West (1996) test, *,
**and *** indicate that the reduction in out-of-sample MSE is significant at the 10%, 5%, and 1%
level, respectively.

N Nolmp BRITS SVT XMean NolmpRetBRITS

NN3 137505  0.16 1.58"* 1.68*  -0.09 1.26

NN4 137505  0.01 1.59** 1.43 0.05 2.04*
NN5 137505  0.19 245" 2.776™  0.58 2.68"*
NN ensemble 137505  0.16  2.16™* 2.28"*  0.29 2.25"

6.2. Out-of-sample Portfolio Performance

We assess the economic significance of the imputed hedge fund datasets in predicting ”skilled”
hedge funds. For each data imputation method, at the end of each month, we sort hedge

funds in the cross-section into deciles based on the neural network forecasts generated pre-
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viously. Then, we form prediction-weighted decile portfolios on funds’ realized returns,
following Kaniel et al. (2023). Prediction-weighted decile portfolios have the advantage of
exploiting the heterogeneity in the prediction and assigning a higher relative weight to pre-
dictions that deviate more from the center of the decile.® The relevant results of the equally

weighted decile portfolios, leading to similar conclusions, are presented in Appendix D.
6.2.1. Performance of Top-Decile Portfolio

Hedge fund investors are mainly interested only in the top-decile portfolio, which includes
the top-performing hedge funds, due to investors’ inability to short hedge funds in contrast
with other assets (e.g., stocks). Hence, we evaluate the realized performance of investing all
capital available by the end of each month in the top decile portfolio of funds, equivalent to
holding long positions on the ”skilled” funds.

Table 4 presents the out-of-sample realized performance of the top-decile portfolio of
funds. We focus on presenting the performance of the portfolio constructed based on the
forecasts of the averaging ensemble of neural networks for easy comparison. In particular, we
present the annualized mean return, the annualized alphas of the Fung and Hsieh (2004) (FH)
seven-factor and the Chen et al. (2024) (CLTZ) nine-factor models for hedge fund returns
along with their corresponding Newey-West ¢-statistics with three lags. We also report a
battery of risk and risk-adjusted performance measures, such as the maximum drawdown
(MaxxDD), the annualized Sharpe ratio (SR), the upside potential ratio (UPR) and the
corresponding information ratios of the FH and CLTZ alphas, respectively.

The top-decile portfolios using BRITS for recovering hedge fund returns and predictors or
predictor data only yield the highest performance among the imputation and non-imputation
methods. The corresponding top-decile portfolios generate the highest and statistically sig-

nificant mean returns and alphas. The same portfolios also report the highest ratios. The

8The prediction-based weighting is determined by shifted and scaled weights. We subtract the smallest
model fund prediction from each fund in the top-decile portfolio to ensure that the portfolio is long-only.
We subtract the largest model fund prediction from each fund in the bottom-decile portfolio to ensure that
the portfolio is short-only. We then standardize the normalized predictions to sum up to one. Please refer
to the relevant footnote of Kaniel et al. (2023) for the detailed computation steps.
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Table 4. Prediction-weighted Top-Decile Portfolio Performance

The table reports the out-of-sample performance of the prediction-weighted top-decile portfolio of
hedge funds based on the NN predictions across all imputation approaches. Specifically, we show the
performance of the top-decile portfolio of realized fund returns based on the predictions of Neural
nets ensemble estimations. Each machine learning model is estimated on the imputed dataset of
the ”BRITS” and each benchmark imputation method along with the non-imputed dataset. We
report the annualized mean return, the Fung and Hsieh (2004) (FH) and the Chen et al. (2024)
(CLTZ) factor model annualized alphas, the maximum drawdown (MaxxDD) the Sharpe ratio,
the upside-potential ratio (UPR) and the corresponding information ratios based on the Fung and
Hsieh (2004) (FH IR) and the Chen et al. (2024) (CLTZ IR) factor model alphas. We use Newey
and West (1987) standard errors with three lags to measure the statistical significance of mean

returns and alphas. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Mean (%) FH alpha (%) CLTZ alpha (%) MaxxDD SR UPR FHIR CLTZ IR

Nonlmp 11.58™ 5.12 10.07* 25.01 0.78 0.68 0.32 0.64
BRITS 23.20%* 10.47* 13.41™ 21.81 1.30  0.82 0.60 0.73
XMEAN 4.26 0.58 3.49 49.62 0.32  0.53 0.04 0.24
SVT 20.80"** 8.32 10.73* 22.31 1.22 0.83 0.50 0.64
NonlmpRetBRITS 24.22% 13.80™ 14.59** 22.19 1.32 0.89 0.79 0.88

second-best imputation method for fund portfolio construction is the SVT. However, apply-
ing no imputation on fund datasets yields almost half lower portfolio performance, with a
barely significant Chen et al. (2024) alpha, while the corresponding portfolios built based
on the XMean imputation method generate the worst performance with insignificant mean

returns and alphas.
6.2.2. Performance of Decile Portfolios

We further assess the informational advantage of the examined imputation methods on
hedged fund sorting ability by reporting the portfolio realized performance across all prediction-
weighted deciles. We anticipate a more sound monotonic increase and a statistically signif-
icant difference in the realized performance between the top (D10) and bottom (D1) decile
portfolios for imputation methods with more significant informational advantage. Table 5
and Table 6 report the annualized mean returns and the annualized Fung and Hsieh (2004)
and Chen et al. (2024) alphas for each decile portfolio and the top-bottom portfolio across
imputation methods, respectively.

Our results again justify the informational superiority of BRITS in providing information

for successfully differentiating high from low-performing hedge funds both by recovering
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Table 5. Prediction-weighted Decile Portfolio Returns

The table provides the out-of-sample returns of the prediction-weighted decile portfolios, and top-

minus-bottom spread portfolio of hedge funds based on NN predictions across all imputation ap-

proaches. Specifically, we show the performance of the portfolios of realized fund returns based on

NN’s predictions. NN is estimated on the imputed dataset of the "BRITS” and each benchmark

imputation method along with the non-imputed dataset. We report the annualized mean returns

of the decile portfolios. We use Newey and West (1987) standard errors with three lags to measure
* okx

the statistical significance of mean returns and alphas. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Nolmp 8.75™  4.30™ 435" 4.87 482" 542" 6.07" 6.917 8.05"*  11.58* 2.83
BRITS -2.23 334 4.017  3.65  4.66™ 547" 6.48* 8597 9.62** 23.20"* 2543
XMean 5.17  4.11* 5.60"™*  5.16™ 5.75** 6.11™* 6.29"  6.06™ 9.27" 4.26 -0.91
SVT -1.19  3.70"  4.36"™ 4.52"* 5.00"* 5.24™* 557 854" 9.45% 20.80"* = 21.99"**

NoImpRetBRITS 1.24 291 438  3.29% 5.23™* 538" 6.65"" 8.46™* 940" 24.22* 2298

returns’ and/or predictors’ missing entries. The difference between the top and bottom
decile portfolios is the largest among the other methods. For instance, this is 25.43% for
the former and 22.98% for the latter, both statistically significant at 1%. Consistent with
our previous findings, those differences are followed by those reported for SVT (i.e., 21.99%)
which are also statistically significant at 1%. For the aforementioned imputation methods,
there is a clear monotonic increase in the returns of the decile portfolios. On the contrary,
the portfolios constructed with XMean imputation or no imputation the spread portfolio
returns are the lowest and not statistically significant. Regarding the FH and CLTZ alphas,
the overall picture is similar. We find in Table 6 that only the long-short decile portfolio of
BRITS, NolmpRetBRITS, and the SVT imputation methods report statistically significant
alphas, with those of BRITS being the highest. The spread portfolios of the neural network
predictions based on the BRITS imputation method generated a Fung and Hsieh (2004) and
a Chen et al. (2024) alpha of 19.97% and 18.75% respectively.

Figure 1 presents the out-of-sample cumulative returns of the prediction-weighted decile
portfolios constructed from neural network forecasts using information from BRITS and
benchmarks imputed datasets. Again, the two BRITS imputation approaches and the SVT
provide more information on hedge fund sorting and predictability, resulting in a larger

spread in the prediction-weighted portfolios across the whole out-of-sample period. An in-
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Table 6. Prediction-weighted Decile Portfolio Alphas

The table presents out-of-sample annualized alphas from the Fung and Hsieh (2004) (FH) factor
model (Panel A) for prediction-weighted decile portfolios and the top-minus-bottom spread portfolio
of hedge funds based on NN predictions across all imputation approaches. Panel B reports alphas
from the Chen et al. (2024) (CLTZ) factor model. Specifically, we evaluate the performance of
realized fund return portfolios derived from NN’s predictions. NN is estimated on the imputed
datasets from "BRITS” and each benchmark imputation method, as well as the non-imputed
dataset. We report the FH (CLTZ) factor model annualized alphas for each decile and the spread
portfolio. Statistical significance is assessed using Newey and West (1987) standard errors with

ko okk

three lags. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A: Fung and Hsieh (2004) Alphas
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Di10-D1

Nolmp 242 -0.69 -0.55 0.09 -0.02 0.87 0.99 1.29 2.45 5.12 2.70
BRITS -6.50 -0.81 047 0.19 0.31 0.61 0.52 1.92 1.78 1047 16.97
XMean -1.70 -1.74 045 -0.08 0.38  0.39 1.10 0.73  4.64* 0.58 2.28
SvVT -7.38* -0.65 090 0.91 0.51 0.67 045 2317 2.16 8.32  15.70™

NolmpRetBRITS -5.36** -1.33  0.10 -0.36 099 035 1.18 238 271 13.80™  19.16™
Panel B: Chen et al. (2024) Alphas
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Nolmp 4.24 -0.61 0.14 0.64 0.64 1.67° 206" 3.20™ 4.07" 10.08* 5.84
BRITS -5.14 -0.35 097 0.27 1.13  1.98* 1.46  3.32*  3.62* 13.61™  18.75"*
XMean -0.69 -0.88 1.49 0.88 1.53  1.91* 230" 232" 5.35"™ 3.49 4.18
SVT -5.17 -0.23 1.63* 097 1.72* 1.72* 1.36  3.70  4.00* 10.73™  15.90"*

NoImpRetBRITS -2.85 -0.53 0.71 0.01 1.93™ 1.62 1.61 3.48™* 3.94"* 14.59" 17.44%

vestor who has used BRITS imputed information to invest in the best 10% of funds using
a neural network as a forecaster would have earned a cumulative abnormal return of 207%
and 216% with BRITS and NolmpRetBRITS, respectively. The same investor would have
avoided the worst 10% of funds yielding a corresponding -19% and 11% cumulative return,
respectively. SVT also performs well in identifying mainly top-performing funds, leading
to a cumulative return of 185% for the top-decile portfolio. In contrast, the cumulative re-
turn of the bottom-decile portfolio is -11%. The NonImp and XMean approaches report the
smallest spreads of the best and worst funds. The cumulative returns of their corresponding

top-decile portfolios are 103% and 38%, respectively.
6.2.3. Performance Persistence

We now evaluate the performance persistence of the hedge fund portfolios constructed under

the BRITS and benchmark data imputation schemes over three years. We follow Kaniel
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Figure 1. Prediction-weighted Decile Portfolio Cumulative Returns

The figure presents the out-of-sample cumulative realized returns of the NN prediction-weighted
decile portfolios for each imputation approach.
et al. (2023) and hold the hedge fund top-decile portfolios formed with the neural network
predictions for up to three years in an overlapping structure. For example, we hold the
top-decile fund portfolios constructed monthly based on the one-month ahead prediction for
months ranging from 1 to 36 months with overlapping returns. We calculate the annualized
mean returns and the Chen et al. (2024) (CLTZ) factor model annualized alphas of the
portfolios” overlapping returns along with their corresponding t-statistics with Newey and
West (1987) standard errors.” Figure 2 presents the relevant performance persistence for
each fund portfolio formed under the different imputation methods.

Interestingly, mean returns do not monotonically decrease over time but reveal cyclical
phases. This pattern is more apparent for portfolios constructed on predictions generated by

the BRITS and SVT imputed datasets. There is a monotonic decrease for up to around eight

9We focus only the Chen et al. (2024) alphas due to lack of space. The relevant figures for the Fung and
Hsieh (2004) alphas are similar and available upon request
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Figure 2. Prediction-weighted Top Decile Portfolio Performance Persistence

The figure presents the out-of-sample performance persistence of the NN prediction-weighted decile
portfolios for each imputation approach. Every month, we sort funds into deciles based on the one-
month NN predictions, and we hold the top-decile portfolio for up to 36 months with overlapping
returns. We then calculate the annualized mean return, the CLTZ alpha and their corresponding
Newey and West (1987) t-statistics.

months, but the corresponding t-statistics report significant returns for up to five months
for the BRITS imputed dataset. Interestingly, the mean returns recover and become again
significant at around nine months, while they again at around 14 months and increase after
30 months, leading to a remarkable 11.83% at 36 months. Such a finding is important for
hedge fund prediction as most hedge funds impose, on average, a three-month lock-up period
on first-time investors Liang (2001). The only imputation method closely following BRITS
is the SVT, but again its top-decile portfolio generates a mean return of 7.75% per annum
at 36 months. The performance persistence of portfolios constructed on predictions of non-
imputed and XMean imputed data is counter-cyclical of BRITS. Yet, BRITS imputed fund

portfolios generate the highest mean return after three years compared to all benchmarks.
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The relevant alpha persistence results are similar to the mean returns, with BRITS yielding
the highest alpha, but with statistical significance decreasing more quickly. Again, the
BRITS fund prediction portfolio’s annualized Chen et al. (2024) alpha and its corresponding
t-statistic are 10% and 2.07, respectively, after three years. Except for XMean, no other
imputation method provides information that yields a statistically significant alpha (i.e.,

5.61% and 2.17, respectively).

6.3. Predictor Importance

This section investigates the importance of fund-specific predictors and the interactions of
those predictors with the macroeconomic variables in the prediction of hedge fund returns.
We focus on the predictions generated from the neural network using information from
the fund data recovered with BRITS because of its superiority in both return prediction
and selection of top-performing funds against the benchmarks, as presented in the previous
sections.'’. 'We use the Shapley Additive exPlanations (SHAP) methodology of Lundberg
and Lee (2017) to calculate the SHAP values of hedge fund return predictions. The SHAP
method is based on a cooperative game theory framework, which aggregates the SHAP
values across all predictors to measure the contribution of each predictor to the forecasting
exercise. The method considers the fluctuations in the forecasting model output (i.e., the
prediction) with and without including a specific predictor while retaining the rest of the
predictors. The predictions from the two models are then compared, and the prediction
difference is calculated. The SHAP values are estimated as the weighted average of all
possible differences for each predictor Lundberg and Lee (2017).

Figure 3 provides the SHAP values for the ten most important fund predictors and the im-
portant interactions of predictors with macroeconomic variables (i.e., the ten highest SHAP
values) for predicting hedge fund returns. Our findings focus on the prediction results of

the neural network ensemble. In particular, we calculate the SHAP values for each neural

10The relevant predictor importance findings for the remaining imputation methods are available upon
request

30



network specification separately and then compute the average SHAP values for each pre-
dictor across the three corresponding values of each neural network model.'! We estimate
each predictor’s and each interaction’s SHAP values as the average of the absolute SHAP
value across all out-of-sample observations. We evaluate the predictors’ importance on the
last out-of-sample window covering January 2021 to November 2021. Figure 3 reports the

relevant importance ranking.

Top 10 Features: Average SHAP Value Across Neural Network Models

Auto_Lag2-EPU interaction

TotVol-VIX interaction

SysVol

Past_Ret

Auto_Lag2-EMU interaction

CumRet3

CumRet3-EPU interaction

CumRet9-VIX interaction

Rsquared-VIX interaction

CumRet3-VIX interaction

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Average SHAP Value

Figure 3. Predictor Importance - Top 10 Variables

The figure displays the SHAP values of the fund-specific predictors and their interactions with the
macroeconomic variables out-of-sample under the neural network ensemble forecasting. under the
BRITS imputation method. The SHAP values are separately generated for the predictors of each
neural network, and then the average SHAP values across each neural network model are calculated
for each predictor. The presented SHAP values correspond to the forecasting exercise with BRITS
imputed values.

the forecasting models per neu for the neural network ensemble.

each neural network specification separately and then compute the average SHAP values for each
predictor across the three corresponding values of each neural network model

We observe from Figure 3 that the interactions of fund-specific predictors with macroeco-

nomic variables dominate the standalone fund-specific predictors regarding their importance

HThe exact model structure affecting the output is essential in calculating the SHAP values.
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in predicting hedge fund returns. There are only a few cases in which fund-specific predictors
are among the most important (e.g., SysVol, CRet_3mo, Ret_1mo). For example, the most
important predictive variable is the interaction of the autocorrelation of the second lag with
the Economic policy uncertainty index (EPU), followed by the interaction of total volatility
with the VIX index. The fund’s systematic volatility SysVol is the third most important
predictor, justifying its significance in predicting hedge fund returns as found by Bali, Brown,
and Caglayan (2012). The remaining of importance ranking is filled mainly with predictor
interactions of cumulative returns (i.e., CRet_3mo, CRet_9mo) and the fund’s R-squared Rsq
with the Economic policy uncertainty and the VIX indices. The above findings reveal the
importance of predictor interactions in the prediction task, especially when using robust
machine learning methodologies, such as a deep neural network, to capture nonlinearities
in the dataset. We can also conclude that the most important fund-specific predictors (no
interactions) of hedge fund returns (i.e., SysVol, Ret_1mo, CRet_3mo) belong in the families
of previous returns, previous return autocorrelations and return moments, but no one from

the family of predictors measuring managerial skill.

7. Conclusion

We address the common issue of missing values in hedge fund datasets, a problem that poses
challenges for empirical asset pricing and out-of-sample return forecasting. We show that
the Bidirectional Recurrent Imputation Network for Time Series (BRITS) is an effective
tool for imputing missing hedge fund returns and characteristics. BRITS outperforms tra-
ditional imputation methods, such as cross-sectional mean imputation and Singular Value
Thresholding (SVT), by using both time-series and cross-sectional information to provide
more accurate imputations, especially in the presence of missing data across different time
periods. This dual approach enhances the imputation quality and is particularly useful in

hedge fund datasets that typically exhibit sparse data.
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Our results demonstrate that BRITS leads to significant improvements in the accuracy
of hedge fund return forecasts. Specifically, we find that out-of-sample forecasts based on
BRITS-imputed data exhibit substantially lower RMSE and higher out-of-sample R? values
compared to other methods. Furthermore, portfolios constructed using BRITS-imputed
data generate superior returns and risk-adjusted performance, including higher alphas and
Sharpe ratios, compared to those based on other imputation techniques. These findings
underline BRITS’ ability to improve both the predictive accuracy of asset returns and the
performance of hedge fund portfolios, particularly when using a large set of predictors and
machine learning models.

Overall, this paper makes two key contributions to the literature. First, it establishes
BRITS as a powerful tool for imputing missing values in hedge fund datasets, improving
both model estimation and out-of-sample forecasting. Second, it provides a comprehen-
sive analysis of hedge fund return predictability, incorporating a wide range of hedge fund
characteristics and economic variables, as well as advanced machine learning methods. The
findings underscore the importance of addressing missing data in financial research and offer
a robust framework for improving financial forecasting and portfolio management. By lever-
aging BRITS, we contribute to a more accurate and reliable understanding of hedge fund

returns and their drivers.
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A. BRITS Tuning Parameters

Similar to most neural network architectures, the weights of BRITS are optimized by the
gradient descent iterative algorithm. In the BRITS methodology, the loss function, which is
based on the MAE criterion, is minimized by the optimization process. At each step of the
optimization, we evaluate the gradients and then update the BRITS weights in the oppo-
site direction of the gradient (Gu, Kelly, and Xiu 2020; Beckmeyer and Wiedemann 2023)).
The practical implementation of BRITS requires hyperparameter optimization. The process
involves deciding the highest-performing neural network specification for all candidate ar-
chitectures. In our study, we examine 16 candidate architectures exploring different values
for the number of hidden neurons, epochs, early stopping patience, and learning rates. We

display the hyperparameter search space in Table A1.

Table Al: BRITS Hyperparameters. This table presents the different hyperparameter values
for the candidate BRITS architectures. The optimized BRITS is the combination of parameters
that achieves the lowest imputation error for the hedge fund returns and predictors datasets.

Tuning Parameters Candidate Architectures
Number of hidden neurons 64, 128

Epochs 50, 200

Early stopping 5, 25

Learning rate 107¢, 1073

Batch size 12

Epochs Adam

For the number of hidden neurons, we explore two values in the power of two, as is
common in the relevant literature (see, (Cao et al. 2018; Kaniel et al. 2023). Hence we use
64 and 128 hidden neurons. For the number of epochs, we experimented with a smaller
number (i.e., 50 epochs) and a larger number (i.e., 200 epochs). In terms of early stopping,
we follow Gu, Kelly, and Xiu (2020), and we apply five epochs of patience, as well as an
even larger value of 25. As for the learning rate and optimizer, again, we follow Cao et al.
(2018) and Gu, Kelly, and Xiu (2020), and we apply learning rate values of 107 and 1073

and the Adam optimizer respectively. The batch size equals one year (i.e., 12 months). The



optimal architecture achieves the lowest imputation error, and it is the one we use for the

remainder of our study.

B. Additional Simulation Results

In this section, we present the imputation simulation results of hedge fund predictors datasets.
Tables A2 and A3 provide the BRITS and benchmark imputation methods’ RMSE for each
predictor separately and for the 10% and 20% simulations, respectively.

The above results reveal that our proposed model achieves the smallest imputation error
for most predictors, specifically for 17 out of the 23 predictors for the 10% simulation study
and 19 out of 23 for the 20% simulation study. SVT is the most accurate imputation method
for the remaining predictors, while BRITS always holds the second-best position. Additional
significant insights are derived from the above tables by comparing the imputation error’s
minimum and maximum values across all predictors. For example, the corresponding RMSE
for BRITS ranges from 0.010 to 18.978 for the 10% simulation study. Its range is much higher
than that of the second-best SVT (i.e., 0.015 — 29.889) for SVT. Those findings suggest that
BRITS has the most consistent imputing ability with smaller performance deviations than

all benchmarks.

C. Neural Network Tuning Parameters

Table A4 reports the tuning parameters for the neural network specifications. We follow
the relevant literature to set the tuning parameters (see, (Gu, Kelly, and Xiu 2020; Chen,
Pelger, and Zhu 2024; Kaniel et al. 2023)). We consider specifications with three variations
concerning the layers (i.e., three, four and five). The number of neurons in each layer is half
of those in each layer (e.g., 32, 16, 8 for a network with three layers). We also perform an
estimation averaging over five model re-estimations to obtain stable and robust estimations.
In such a way, we decrease the effect of a local suboptimal fit and it reduces the estimation

variance of the estimated model. We use the Gaussian Error Linear Unit (GELU) as the



Table A2. Predictors’ Imputation Fidelity - 10% Simulation

The table reports the imputation simulation results by artificially dropping 10% of observed values
for each of the 23 predictors examined in our research. For all predictors, we present RMSE crite-
rion. We also report the minimum (Min) and maximum (Max) RMSE values for each imputation
method across all predictors.

Predictor TSMEAN XMEAN SVT BRITS
Panel A: Previous returns

Ret_1mo 8.145 7.910 7.958  7.700
CRet_3mo 10.764 10.125  10.090  6.936
CRet_6mo 13.391 11.755  11.933 5.898
CRet_9mo 17.386 16.094  16.284  8.806
CRet_12mo 21.729 20.714  20.988  9.861
CRet_36mo 27.074 28.375  28.255 15.797
Panel B: Previous return autocorrelations

AC_Lagl 0.311 0.312 0.175 0.174
AC_Lag2 0.322 0.316 0.175 0.173
AC_Lag3 0.349 0.337 0.185 0.183
Panel C: Return moments

Vol 3.596 4.843 4.001 1.587
IdioVol 3.508 4.549 3.972 1.535
SysVol 0.496 0.866 0.065 0.152
CoSkew 0.037 0.041 0.015 0.011
IdioSkew 0.666 0.839 0.213  0.223
Skew 0.771 0.930 0.224  0.252
Kurt 2.405 2.942 1.512 1.711
Panel D: Managerial skill

AlphaFH7_12mo 3.970 3.969 3.736  3.311
AlphaFH7_36mo 1.106 1.352 1.030  0.263
AlphaBBCC9_24mo 1.181 1.257 0.677  0.262
AlphaCHP11_36mo 32.200 29.995  29.886 18.978
Rsq 0.127 0.196 0.032 0.110
AUM 0.976 1.615 0.346  7.102
MaxRet 8.063 8.991 8.072 3.607
Panel E: Min-Max Error of All Predictors

Min 0.037 0.042 0.015 0.010
Max 32.200 29.995  29.886 18.978

activation function, and we apply L1 (LASSO) and L2 (Ridge) regularisations to penalise

large weights in our neural networks and prevent overfitting. We set a weight of 1073 for



Table A3. Predictors’ Imputation Fidelity - 20% Simulation

The table reports the imputation simulation results by artificially dropping 20% of observed values
for each of the 23 predictors examined in our research. For all predictors, we present RMSE crite-
rion. We also report the minimum (Min) and maximum (Max) RMSE values for each imputation
method across all predictors.

Predictor TSMEAN XMEAN SVT BRITS
Panel A: Previous returns

Ret_1mo 6.567 6.270 6.349  6.027
CRet_3mo 9.760 8.934 9.181 5.964
CRet_6mo 14.315 13.056  13.610 7.042
CRet_9mo 20.835 20.107  20.703  8.887
CRet_12mo 20.404 19.020 19.857  9.186
CRet_36mo 30.008 32.009 32.414 15.465
Panel B: Previous return autocorrelations

AC_Lagl 0.312 0.313 0.181 0.181
AC_Lag2 0.323 0.316 0.184  0.183
AC_Lag3 0.349 0.337 0.194  0.194
Panel C: Return moments

Vol 3.072 4.134 3.289 1.582
IdioVol 2.974 3.845 3.91 1.443
SysVol 0.500 0.873 0.074  0.158
CoSkew 0.038 0.043 0.016  0.011
IdioSkew 0.0664 0.830 0.237  0.236
Skew 0.771 0.929 0.253  0.276
Kurt 2.372 2.937 1.788 1.687
Panel D: Managerial skill

AlphaFH7_12mo 3.880 3.870 3.663  3.433
AlphaFH7_36mo 0.972 1.157 0.804  0.279
AlphaBBCC9_24mo 1.319 1.387 0.924  0.325
AlphaCHP11_36mo 89.153 88.538  88.457 85.529
Rsq 0.127 0.197 0.033  0.110
AUM 0.986 1.619 0.448  7.032
MaxRet 6.966 7.605 6.810  3.142
Panel E: Min-Max Error of All Predictors

Min 0.038 0.043 0.016  0.011
Max 89.153 85.538  88.457 85.529

both regularisations. Using the Adam optimiser, we train the network for 100 epochs for

each combination of tuning parameters.



Table A4: Model Specifications for Neural Networks

Model Type \ Model Specification

Neural Network Models
Activation function: GELU
Batch size: 10*

Deep Neural Network Epochs: 100
(3 Hidden Layers) 3* Optimizer: Adam
Neurons: [32, 16, §] Early stopping: 5 epochs

Learning rate: 1073
L1, L2 regularization weight: 1073

Deep Neural Network

(4 Hidden Layers)
Neurons: [32, 16, 8, 4]
Deep Neural Network

(5 Hidden Layers)
Neurons: [32, 16, 8, 4, 2]

D. Out-of-sample Equally-Weighted Portfolio Performance

We present the empirical findings of portfolio performance and analysis for equally-weighted
portfolios formed with neural network predictions as those generated using different im-
putation method’s recovered datasets and the non-imputed dataset. Table A5 reports the
performance of the corresponding top-decile equally-weighted portfolios. Similar to the rele-
vant findings of the prediction-weighted portfolios the portfolios constructed with the BRITS
imputation methods yield the highest performance compared to the benchmark imputation
methods. Both mean returns and alphas are all statistically significant at 1% for most of the
cases. The BRITS portfolio generates a mean return of 15.26% and 4.48% and 7.48% Fung
and Hsieh (2004) and Chen et al. (2024), respectively. The BRITS portfolio in which only
predictors are imputed reports a similar performance. The SVT method follows in terms
of mean returns (i.e., 14.24% and statistically significant at 1%), while, interestingly, the
portfolio using non-imputed data follows with respect to Fung and Hsieh (2004) and Chen

et al. (2024) significant alphas (i.e., 3.74% and 6.16%, respectively).



Table A5. Equally-Weighted Top-Decile Portfolio Performance

The table reports the out-of-sample performance of the equally-weighted top-decile portfolio of
hedge funds based on the NN predictions across all imputation approaches. Specifically, we show
the performance of the top-decile portfolio of realised fund returns based on the predictions of neural
network ensemble estimations. Each machine learning model is estimated on the imputed dataset
of the ”BRITS” and each benchmark imputation method along with the non-imputed dataset. We
report the annualized mean return, the Fung and Hsieh (2004) (FH) and the Chen et al. (2024)
(CLTZ) factor model annualized alphas, the maximum drawdown (MaxxDD) the Sharpe ratio,
the upside-potential ratio (UPR) and the corresponding information ratios based on the Fung and
Hsieh (2004) (FH IR) and the Chen et al. (2024) (CLTZ IR) factor model alphas. We use Newey
and West (1987) standard errors with three lags to measure the statistical significance of mean

returns and alphas. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively

Mean (%) FH alpha CLTZ alpha MaxxDD SR UPR FHIR CLTZ IR

Nonlmp 10.96** 3.74* 6.16"~ 15.08 1.24  0.72 0.66 1.29
BRITS 15.26™* 4.48** 748" 20.42 1.26  0.76 0.65 1.19
XMEAN 8.27 3.09* 5.07" 7.27 1.25  0.69 0.71 1.29
SVT 14.42% 3.53 6.16" 18.26 1.21  0.76 0.52 1.00
NonImpRetBRITS 14.59** 5.28"* 7.76%* 17.79 1.34 0.76 0.80 1.39

Regarding the portfolio analysis, Tables A6, A7 and A8 present the corresponding results
for the decile portfolio mean returns, Fung and Hsieh (2004) and Chen et al. (2024) alphas,
respectively. Again, BRITS imputed data provides information for successfully differenti-
ating high from low-performing hedge funds against the benchmark imputation methods
and applying no imputation method. The BRITS long-short predictive portfolio generates
14.00% annualized mean return statistically significant at 1% followed by the corresponding
predictive portfolio of the SVT method. The Fung and Hsieh (2004) and Chen et al. (2024)
alphas of the long-short predictive portfolios reveal a similar picture. The Fung and Hsieh
(2004) and Chen et al. (2024) annualized alphas of the BRITS spread portfolios are 7.46 %
and 9.45% significant at 1%, respectively. The BRITS applied only to the predictors, and
the SVT imputation method spread portfolios yield the second and third-best alphas again
significant at 1%. On the other hand, the XMean and the non-imputation methods always
report the lowest long-short portfolio performance.

The out-of-sample cumulative returns of the equally weighted predictive portfolios con-
structed with the examined imputation methods and no imputation are presented in Figure

Al below. Our findings are similar to those reported in Figure 1 for prediction-weighted



Table A6. Equally-weighted Decile Portfolio Returns

The table provides the out-of-sample returns of the equally-weighted decile portfolios, and top-

minus-bottom spread portfolio of hedge funds based on NN predictions across all imputation ap-

proaches. Specifically, we show the performance of the portfolios of realised fund returns based on

NN’s predictions. NN is estimated on the imputed dataset of the "BRITS” and each benchmark

imputation method along with the non-imputed dataset. We report the annualized mean returns

of the decile portfolios. We use Newey and West (1987) standard errors with three lags to measure
* okx

the statistical significance of mean returns and alphas. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Nolmp 4.63* 4.12 486" 5.07  4.94* 530" 6.42™* 6.57 7.84™ 10.96"** 6.34"*
BRITS 1.26  3.29" 4.01™* 4.31™ 4.66™ 4.88" 6.24"* 8.26™* 8.52** 15.26"™*  14.00"**
SVT 1.50 3.49* 4.14™ 4.62" 4.82" 5.05"* 579" 777 9.10"* 14.43™ 12,93
XMean 4.07  4.29* 5587 536" 5.85™* 590 6.48"* 6.15" 8777 827 4.20"

NoImpRetBRITS 2.08 3.04* 4.34**  3.51" 5.29"* 5.25"* 598" 7.88** 8.76™* 14.59"**  12.51"**

Table A7. Equally-weighted Decile Portfolio Fung and Hsieh (2004) alphas

The table provides the out-of-sample Fung and Hsieh (2004) (FH) factor model annualized alphas of
the equally-weighted decile portfolios, and top-minus-bottom spread portfolio of hedge funds based
on NN predictions across all imputation approaches. Specifically, we show the performance of the
portfolios of realised fund returns based on NN’s predictions. NN is estimated on the imputed
dataset of the "BRITS” and each benchmark imputation method along with the non-imputed
dataset. We report the Fung and Hsieh (2004) (FH) factor model annualized alphas for each decile
and the spread portfolio. We use Newey and West (1987) standard errors with three lags to measure

the statistical significance of mean returns and alphas. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Nolmp -1.33  -0.83 0.04 0.19 0.02 059 143 097 1.88  3.72% 5.04*
BRITS -3.01*  -0.58 0.72 0.55 0.33 0.13 0.66 2.09* 134 445" 7.46%*
SVT -3.65™ -0.62 089 0.77 046 037 070 1.93* 2.30 3.593 7.19*
XMean -2.10 -1.09 026 0.01 046 025 1.21 071 3.89"* 3.10* 5.20™

NoImpRetBRITS -3.10* -1.07 0.36 -0.29 0.90 0.33 057 1.69 2.00 5.28* 8.39"*

portfolios. In both BRITS applications, the SVT imputation methods provide more infor-
mation on hedge fund sorting and the best and worst hedge fund predictability. An investor
who has employed BRITS for imputing hedge fund data to invest in the best 10% of funds
using a neural network as a forecaster would have earned a cumulative abnormal return of
136% and 130% with BRITS and NolmpRetBRITS, respectively. The same investor would
have avoided the worst 10% of funds, generating a corresponding 11% and 18% cumulative
return, respectively. The same investor would have realized 128% and 13% by investing in

the best and worst 10% of funds, respectively. On the other hand, they would have earned



Table A8. Equally-weighted Decile Portfolio Chen et al. (2024) alphas

The table provides the out-of-sample Chen et al. (2024) (CLTZ) factor model annualized alphas of
the equally-weighted decile portfolios, and top-minus-bottom spread portfolio of hedge funds based
on NN predictions across all imputation approaches. Specifically, we show the performance of the
portfolios of realised fund returns based on NN’s predictions. NN is estimated on the imputed
dataset of the "BRITS” and each benchmark imputation method along with the non-imputed
dataset. We report the Fung and Hsieh (2004) (FH) factor model annualized alphas for each decile
and the spread portfolio. We use Newey and West (1987) standard errors with three lags to measure

the statistical significance of mean returns and alphas. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Nolmp -1.48 -0.84 0.78 0.85 0.99 1.65° 2.68™ 280" 3.47* 6.61" 8.10"*
BRITS -1.97 -0.11 0.98 1.09* 1.04 1.30 1.58  3.23**  2.90™ 7.48"* 9.45**
SVT -2.04 -0.17 112 1.02 1.52** 1.25 1.66  3.18* 3.81* 6.16" 8.217
XMean -2.15 -0.52 1.57 075 1.60 1.79* 225" 228" 490" 5.07* 7.22%*

NolmpRetBRITS -1.41 -0.40 0.66 0.25 1.79" 1.26 1.30  3.01* 3.30* 7.76" 9.177*

only 73% and 97% by investing in the best funds with the XMean imputation method and

no imputation at all.
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Figure A1l. Equally-weighted Decile Portfolio Cumulative Returns

The figure presents the out-of-sample cumulative realized returns of the equally-weighted decile
portfolios or each imputation approach based on NN predictions.



Figure A2 reports the performance persistence of the top-decile equally-weighted fund
portfolio constructed on the deep neural network predictions using information from each
imputation method. Similar to the findings of Figure 2 mean returns and alphas do not
monotonically decrease over time but reveal cyclical phases. BRITS provides information
that the top-decile portfolio generates the highest mean return and alphas, both statistically
significant for at least the first three months, which is the average lock-up period on first-time
investors. At the same time the portfolio constructed using no imputation performs poorly.
Outstandinly, BRITS portfolios of funds generate the highest alphas after 36 months. Those

alphas are statistically significant at least at 5% level.
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Figure A2. Equally-weighted Top Decile Portfolio Performance Persistence

The figure presents the out-of-sample performance persistence of the NN equally-weighted decile
portfolios for each imputation approach. Every month, we sort funds into deciles based on the one-
month NN predictions, and we hold the top-decile portfolio for up to 36 months with overlapping
returns. We then calculate the annualized mean return, the CLTZ alpha and their corresponding
Newey and West (1987) t-statistics.



E. Additonal Empirical Results: LASSO-based Models

E.1. Linear-LASSO Models

E.1.1. LASSO model

We first consider a linear specification, where the model parameters are estimated using
LASSO (Least Absolute Shrinkage and Selection Operator) Tibshirani (1996). LASSO ap-
plies ¢y regularization, which both shrinks coefficient estimates and performs variable se-
lection by forcing some coefficients to be exactly zero. The forecast for hedge fund excess

returns using the LASSO model, omitting the intercept for simplicity, is expressed as:

P =, (7)
where 7 is the coefficient vector estimated via LASSO based on the data up to month t.
Ordinary least squares (OLS) focuses on minimizing residuals but can suffer from overfitting,
especially when predictors are highly correlated or when there is a low signal-to-noise ratio.
LASSO regularization addresses this by shrinking the coefficients and performing variable
selection.

The LASSO objective function is:

n t—1

) 1 ;N2
argmin —————— Tis+l — T; M) + Allmlls, (8)
n 2(t—1)n = s:l( <)

where A is the regularization parameter that controls the degree of shrinkage applied to the
coefficients, and ||n||; = Z?:l |n;| is the ¢; norm of the coefficient vector . When A\ = 0,
LASSO reduces to the standard OLS estimation. The optimal value of X is typically selected
using cross-validation. We use a validation dataset to decide on the optimal value of A and

following Gu, Kelly, and Xiu (2020) our search space is {107%,107'}.
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E.1.2. Group LASSO Model

Yuan and Lin (2006) suggest the following Group Lasso estimator:

K
i = argmm<||r —XTORRAAY \/dgne%)
00,0

¢=1
where, K is the number of categories the predictors are divided into, the term \/@ weights
each category according to its size and dg is the size of the £ category, 6° is a sub-vector of
coefficients from 6 with components that correspond to the covariates in ¢ category. We use
a validation dataset to decide on the optimal value of A\ and following Gu, Kelly, and Xiu
(2020) our search space is {107*,107!}. In Section 3 of our main paper, we mention that
our predictors can be divided into 3 major categories (i.e., past returns and autocorrelation,
second and higher moments, and skill of hedge fund managers). We also introduce a fourth
category by including macroeconomic factors and their interactions with the predictors (i.e.,
K =4). We use a validation dataset to decide on the optimal value of A and following Gu,

Kelly, and Xiu (2020) our search space is {1074, 1071},
E.1.3. Sparce Group LASSO Model

The Sparse Group Lasso model was introduced by Friedman et al. (2010) and combines the

Lasso and Group Lasso penalization under the following mathematical formulation:

D K
6= argmin(”r — XT0|3 + oz)\z 0] + (1 — a)/\z \/d_5||95||2)
0

d=1 =1

where, « is bounded in [0, 1] and controls the penalization between Lasso and Group Lasso.
We use a validation dataset to decide on the optimal value of A, and following (Gu et al.,
2020) our search space is {107%,107!}. Regarding the tunable parameter «, we explore the

following values: o € {0,0.25,0.5,0.75,1}.
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E.1.4. Adaptive LASSO Model

The Adaptive Lasso was introduced in Zou (2006). The authors suggest that the model
satisfies the so-called oracle properties and performs as well as if the true model was provided

in advance. The Adaptive Lasso estimator is the following:

D
0 = argmin | ||r — X702 + A w|60
” (H B Ay \I1>

d=1

where w = 1/|0|7 is a weight corresponding to € coefficient. We use partial square
regression (PLS) to determine w. This is because the large number of variables in our pool
of predictors can be correlated. To specify the desired amount of variability in X (i.e., the
matrix of predictors) explained to determine the number of used PLS components, we select
a number of PLS components that can explain 90% of the variability in our predictors’
matrix. For the A\ and v tunable parameters, we again use a validation dataset to decide on
the optimal combination given the defined search spaces. For A this is {107%,1071} and for
v is {0,8,1}. All the Lasso-based model specifications and tuning parameters are presented
in Table A9 below.

Table A9: Model Specifications for LASSO Methods

Model Type \ Model Specification
Penalized Regressions
Lasso Ae {1074 1071}

Ae{107%, 107}
a €10,0.25,0.5, 1]
Ae {1074 107}
v €40,8,1}

Sparse Group Lasso

Adaptive Lasso

E.2. Out-of-sample Portfolio Performance

We provide a selection of the most important empirical findings measuring the informa-
tional value of the BRITS method against the benchmarks while using the Linear-Lasso

models as our prediction method. We start with the performance report of the top-decile
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prediction-weighted portfolios constructed using LASSO ensemble predictions. Those have
been generated by training the LASSO methods on information provided by each imputation
specification and no imputation. We continue by presenting the cumulative returns of their
corresponding decile portfolios.

Table A10 reports the relevant results of the prediction-weighted portfolios of top-performing
funds as given by the LASSO predictions. Similar to the relevant results for the deep neural
networks predictions, BRITS informed portfolios generate the highest performance among
all the benchmark imputation methods and using no imputation. Interestingly, the second-
best imputation method this time is the XMean. The BRITS informed portfolio, based
on both fund returns’ and predictors’ recovered data, yields an annualized mean return of
25.11% and a Fung and Hsieh (2004) and a Chen et al. (2024) alpha of 14.32% and 18.15%,
all statistically significant at least at 5%. The same portfolio reports an outstanding Sharpe

ratio of 1.31.

Table A10. Prediction-Weighted Top-Decile Portfolio Performance of LASSO
Predictions

The table reports the out-of-sample performance of the prediction-weighted top-decile portfolio of
hedge funds based on the LASSO ensemble predictions across all imputation approaches. Specif-
ically, we show the performance of the top-decile portfolio of realised fund returns based on the
predictions of LASSO ensemble estimations. Each machine learning model is estimated on the
imputed dataset of the "BRITS” and each benchmark imputation method along with the non-
imputed dataset. We report the annualized mean return, the Fung and Hsieh (2004) (FH) and the
Chen et al. (2024) (CLTZ) factor model annualized alphas, the maximum drawdown (MaxxDD) the
Sharpe ratio, the upside-potential ratio (UPR) and the corresponding information ratios based on
the Fung and Hsieh (2004) (FH IR) and the Chen et al. (2024) (CLTZ IR) factor model alphas. We
use Newey and West (1987) standard errors with three lags to measure the statistical significance
of mean returns and alphas. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively

Mean (%) FH alpha CLTZ alpha MaxxDD SR UPR FHIR CLTZIR

NonImp 22.82%** 11.31* 15.48" 25.72 1.26 079  0.56 0.73
BRITS 25.11% 14.32** 18.15%** 23.02 1.31 0.88  0.68 0.88
XMEAN 23.98* 13.61* 19.75 23.85 1.29 082 0.62 0.89
SVT 22.32% 12.20** 16.69*** 20.06 1.22 074 0.1 0.70
NonImpRetBRITS =~ 26.94** 15.03** 18.92%** 25.02 1.27 091  0.68 0.87

Figure A3 presents the corresponding cumulative returns of the decile portfolios under

each imputation method and no imputation. BRITS and SVT can provide information
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that can construct long-short portfolios with the highest dispersion compared to the rest
of the imputation methods. Such a finding justifies the ability of BRITS to provide a
complete dataset used for predicting and accurately distinguishing between the best and
worst-performing funds. The BRITS method helps invest in the best-performing funds,
yielding a cumulative return of 224%, while avoiding the worst-performing funds providing
a return of 27%. The corresponding returns for the SVT and XMean methods are 199% and
45% and 214% and 41%, respectively. Finally, the top decile portfolio’s cumulative return is
203%, while the bottom decile’s is 84%.
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Figure A3. Prediction-weighted Decile Portfolio Cumulative Returns

The figure presents the out-of-sample cumulative realized returns of the equally-weighted decile
portfolios or each imputation approach based on LASSO predictions.
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