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I. Introduction

The analysis of the active fund industry is a central topic in financial economics. It determines

whether active funds create value from their unique investment skills, which, in turn, sheds light

on their role in the economy. As discussed by Pedersen (2018), the fund industry may improve

the allocation of resources by making asset prices more informative. This analysis also determines

whether investors extract some of the value created by funds and whether they reallocate capital

efficiently over time—an important experiment for understanding how agents make financial deci-

sions (e.g., Campbell and Ramadorai, 2025; Shiller, 2005). Finally, it determines whether the value

created by active funds is consistent with equilibrium models, thus contributing to the debate on

the optimal size of the financial sector (e.g., Cochrane, 2013; Greenwood and Scharfstein, 2013).

In this paper, we focus on the value created by hedge funds—an industry with more than $6

trillion under management (Barth et al., 2021). There are several dimensions along which this

industry is unique. First, hedge funds trade aggressively to exploit their information and provide

liquidity (e.g., Getmansky, Lee, and Lo, 2015; Pedersen, 2015). As a result of this trading activity,

they may extract substantial value from capital markets. Second, hedge fund managers are known

to follow complex strategies in specialized markets. The profile of these strategies in terms of

profitability and scalability is likely to depart substantially from traditional long-only strategies.

Third, hedge fund investors plausibly have sufficient bargaining power to extract value from funds

(e.g., Gârleanu and Pedersen, 2018; Glode and Green, 2011). Fourth, these investors are deemed

sophisticated as evidenced by the light regulation on hedge funds (Lhabitant, 2007). Under this

premise, we expect them to identify funds with high-value potential. Studying capital allocation

across hedge funds provides a natural test of rational models of active management.

We measure value creation using the value-added of Berk and van Binsbergen (2015). It is

defined for each fund as vai = E[αi,t−1wi,t−1], where αi,t−1 is the gross alpha relative to the

benchmark assets available to investors and wi,t−1 is the equity capital. Intuitively, vai mirrors the

concept of net present value (NPV)—a fund with a positive vai creates value for investors, just

like an investment project with a positive NPV. Deducting fees, we can then measure the net value

extracted by investors as vanet
i = E[αnet

i,t−1wi,t−1], where αnet
i,t−1 is the net alpha. In a world where

hedge funds face scalability constraints, vanet
i is poorly measured by the average net alpha E[αnet

i,t−1]

commonly used in previous studies on fund performance.
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The cornerstone of our approach is the specification of the fund value-added as vai = aiE[wi,t−1]−

biE[w2
i,t−1] with αi,t−1 = ai − biwi,t−1. This expression formalizes the intuition that the value cre-

ated by the fund ultimately depends on two drivers—its skill to identify profitable ideas (captured

by the first-dollar alpha ai) and its exposure to scalability constraints (captured by the scale coef-

ficient bi). While our parametrized vai is numerically equivalent to the non-parametric estimate

proposed by Berk and van Binsbergen (2015), it allows us to study the value-added along four

dimensions: (i) its drivers (skill versus scalability), (ii) its split with investors, (iii) its dynamics as

investors learn and reallocate capital over time, and (iv) its optimality under a rational equilibrium

model inspired by Berk and Green (2004).1

Armed with this specification, we develop a new approach for inferring the entire value-added

distribution across funds. Extending the analysis beyond the average allows us to capture the

suspected large heterogeneity in skill and scalability. Our approach tailored to hedge funds departs

from the one proposed by Barras, Gagliardini, and Scaillet (2022; BGS hereafter) for mutual funds.

First, we show how to control for the unobserved variation in leverage across funds via the fund-

specific coefficients ai and bi. Second, we account for the complexity of benchmarking hedge

funds as they follow alternative strategies that investors are unlikely to replicate (Agarwal, Green,

and Ren, 2018; Cochrane, 2013). We show theoretically that these non-replicable strategies not

only contribute to the value-added, but also produce cross-fund dependencies that substantially

increase estimation noise.

We measure value creation using monthly data on 2,971 hedge funds. We carefully aggregate

four databases and mitigate well-known biases (backfill, selectivity, and survivorship). The esti-

mation of the value-added distribution requires as main inputs the coefficients âi, b̂i, which are

obtained from a time-series regression of the gross return of each fund on its lagged capital and the

benchmark factor returns. In our baseline analysis, we benchmark hedge funds using five factors:

market, size, value, carry, and time-series (TS) momentum.2 The rationale for this choice is based

1To the best of our knowledge, none of these four dimensions are examined in the hedge fund literature. The
vast majority of papers focus exclusively on the average net alpha. A non-exhaustive list includes Avramov, Barras,
and Kosowski (2013), Buraschi, Kosowski, and Trojani (2014), Capocci and Hübner (2004), Chen, Cliff, and Zhao
(2017), Diez de los Rios and Garcia (2010), Kosowski, Naik, and Teo (2007)). More recently, Ling, Satchell, and
Yao (2023) use the methodology of Berk and van Binsbergen (2015) to examine other aspects of hedge fund value
creation, namely its persistence and its dependence on fee types (management versus performance fees).

2The market, size, and value factors are constructed by Cremers, Petajisto, and Zitzewitz (2012) using the SP500
and Russell indices. The carry and TS momentum factors are constructed by Koijen et al. (2018) and Moskowitz et
al. (2012) for four asset classes (equity, bond, commodity, and currency).
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on relevance and replicability—these factors capture popular strategies followed by hedge funds

(Ardia et al., 2024) and are relatively easy to replicate by investors (Jorion, 2021).

Our analysis over the period 1994–2020 reveals that hedge funds create substantial value. More

than 65% of them exhibit a positive value-added equal to $4.7 mio. per year on average. We

also confirm that the cross-sectional variation in value-added is substantial. Forming investment

categories partly absorbs this heterogeneity—on average, arbitrage funds create $8.5 mio. per

year (versus $3.7 mio. and $1.5 mio. for equity and macro funds). However, each category

features a subset of funds with stellar value-added. This result implies that value creation is fairly

concentrated. The top decile contributes to 40% of the industrywide value-added. It also shows

the limitations of the average as it hides the large fund heterogeneity and oversestimate the value

created by the typical (median) fund (only equal to $1.1 mio per year).

Examining the drivers of value creation sheds important light on the above results. We find that

most hedge funds create value because they have unique skills—more than 80% have a positive

first-dollar alpha equal to 12.2% per year on average (versus 3.2% for mutual funds). At the same

time, their ability to create value is hampered by strong scalability constraints. On average, the

gross alpha decreases by 2.0% per year for every $10 mio. of additional equity capital (versus

0.1% for mutual funds). As they exploit their greater scalability, a sizable fraction of mutual funds

deliver as much value as hedge funds. Our comparison therefore challenges the view that hedge

fund managers systematically come on top because they are more sophisticated and incentivized.

The analysis of skill and scale also explains the observed heterogeneity across funds. We

find that the most valuable follow strategies that moderately improve both skill and scalability.

These balanced strategies deliver the highest value because the skill and scale coefficients ai and

bi are strongly correlated—put simply, great ideas are difficult to scale up. The top funds also

create value by exploiting superior information, instead of offering strategies that investors cannot

replicate. Adding to the benchmark model more complex strategies that capture illiquidity, betting-

against-beta, and variance factors, we find that the value-added remains largely unchanged.

An important question is how the value-added is split with investors. Overall, they extract

modest benefits from their hedge fund investments—the average net value-added only equals $0.3

mio. per year. Here again, the average hides substantial heterogeneity. On the one hand, investors

extract some value for half the fund population, which reaches more than $10 mio. per year in
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the top decile of the distribution. On the other hand, they misallocate capital to the remaining

half as they end up paying excessive fees to investors. Zooming in on these value-destroying

funds, we find that 40% of them are unskilled and thus unable to deliver value at any size level.

The remaining 60% are skilled but suffer from overcapacity—investors endow them with capital

beyond the tipping point at which the net alpha αnet
i,t−1 turns negative.

The modest net value-added seems at odds with the large positive average net alpha E[αnet
i,t−1]

estimated in previous studies—a finding that we confirm in our sample. However, it is perfectly

possible for a fund to deliver both a positive E[αnet
i,t−1] and a negative vanet

i . The intuition is that

times of poor performance (when αnet
i,t−1 is negative) carry a large weight in the value-added calcu-

lation because they come with a large amount of capital wi,t−1. As a result, the average net alpha

is a poor measure of the actual value investors receive, given their changing capital allocation.

Next, we turn to the dynamics of value creation over the fund’s lifecycle. We examine whether

investors sharpen their capital allocation as they learn about hedge fund skill and scalability. To

this end, we split the fund’s observations into five subperiods and infer the value-added distribution

when funds are young (subperiod 1) and old (subperiod 5). If investors favor the most valuable

funds, we expect the value-added distribution to shift rightwards as funds age. Consistent with this

prediction, the value created in the top decile rises from $15.8 mio. to $19.9 mio. per year. At

the same time, the misallocation of capital does not disappear—the proportion of funds that charge

excessive fees stays above 20% across all five subperiods.

The investors’ reallocation process suggests a relatively complex learning mechanism. On the

one hand, investors are able to identify value-creating funds. On the other hand, they systematically

deploy too much capital midway through the fund’s lifecycle. This overcapacity, which largely

increases the proportion of value-destroying funds, is only partly corrected in the final subperiod.

Whereas hedge fund investors do not perfectly allocate capital, they perform substantially better

than mutual fund investors. Examining the net value-added across mutual funds, we find that

investors pay excessive fees equal to a staggering $7.6 mio per year on average. This value provides

a simple metric to gauge the impact of investor sophistication on financial outcomes.

Finally, we examine how consistent hedge fund value creation is with economic rationale. We

consider a simple extension of the rational model of Berk and Green (2004) in which funds with

heterogeneous skill and scalability maximize their fee revenues under the constraint that investors
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receive a minimum return compensation κ to cover due diligence and monitoring costs (Stein,

2009). Setting κ equal to 1% per year (based on Stulz (2007)), we find the model does a reasonable

job at explaining hedge fund value creation. In particular, the model captures the strong pairwise

correlation of 0.83 between the total and net value-added (0.91 in the model), and the low fraction

of value extracted by investors equal to 14% (15% in the model). Overall, these results suggest

that hedge fund investors only have limited bargaining power in the fee negotiation.

The model also sheds light on two important sources of suboptimality: (i) the choice of fees

by funds and (ii) the allocation decisions by investors. We find that the fees charged by hedge

funds are generally too low compared to the values implied by the model. This suboptimal fee

choice leads to a 26%-reduction in value-added relative to its optimal level. An additional 37%-

reduction comes from the misallocation of capital by investors (possibly because of learning). In

other words, capital misallocation is the prevalent source of suboptimality—it represents 60% of

the gap from optimality.

The remainder of the paper is as follows. Section II.C presents our framework for measuring

hedge fund value creation. Section III describes the methodology for inferring the value-added

distribution. Section IV presents the hedge fund dataset. Section V contains the empirical analysis,

and Section VI concludes. The appendix provides additional information on the methodology, the

data, and the empirical results.

II. Hedge Fund Value Creation

II.A. Definition of the Value-Added

We consider a population of n hedge funds over T periods, where we denote each fund by

the subscript i (i = 1, . . . , n) and each period by the subscript t (t = 1, . . . , T ). The variable

wi,t−1 denotes the lagged capital (in real terms) endowed by investors to the fund, ri,t denotes the

gross excess return of the fund, and rb,i,t denotes the excess return of the fund benchmark which

captures the best alternative investment available to investors. The benchmark return is given by

rb,i,t = β′
ifR,t, where fR,t is the excess return vector of the trading strategies that investors are able

to replicate themselves (R stands for replicable).3

3The use of constant betas is not restrictive because fR,t can include factor-timing strategies (managed portfolios)
based on public information. To elaborate, suppose that investors can replicate a hedge fund strategy that consists

5



To measure the value created by each fund, we use the value-added proposed by Berk and van

Binsbergen (2015) and defined as

vai = E[αi,t−1wi,t−1] , (1)

where the gross alpha αi,t−1 = E[ri,t − rb,i,t|It−1] is the expectation of the difference between

ri,t and rb,i,t conditional on the publicly available information set It−1 which includes the fund

capital wi,t−1. Because the value-added is a dollar value that depends on the entire (benchmark-

adjusted) fund payoff αi,t−1wi,t−1, the gross alpha alone is not sufficient to infer fund value—a

point forcefully made by Berk and van Binsbergen (2015). Intuitively, vai is equivalent to the

concept of net present value (NPV) applied to investment projects—a positive value-added signals

that the hedge fund creates value, just like a positive NPV signals that the project creates value.

Equation (1) measures value creation from the viewpoint of investors—it determines whether

the fund creates value relative to the best opportunity available to them (captured by rb,i,t). Building

on this insight, we can also define the value-added using the stochastic discount factor (SDF)

valuation framework (see Cochrane, 2005). We can write the value attached by investors to the

fund as vasdfi = RfE[mtri,twi,t−1], where Rf is one plus the riskfree rate (assumed constant

for simplicity) and the SDF mt captures the investors’ marginal utility of consumption. Noting

that E[mt] = R−1
f and E[mtrb,i,t] = 0 (by construction, mt prices the factors fR,t), we obtain

vasdfi = RfE
[
mt

(
(ri,t − rb,i,t)wi,t−1

)]
= E[(ri,t − rb,i,t)wi,t−1] + Rfcov[mt, (ri,t − rb,i,t)wi,t−1].

If mt depends linearly on investors’ wealth (driven by the factors fR,t), we have cov[mt, (ri,t −

rb,i,t)wi,t−1] = 0 (Chen and Knez, 1996; Ferson, 2013). As a result, the SDF value-added vasdfi is

identical to the traditional value-added vai: va
sdf
i = E[(ri,t−rb,i,t)wi,t−1] = E[αi,t−1wi,t−1] = vai.

II.B. Specification of the Value-Added

II.B.1. Main Assumptions

In this section, we present a simple specification that allows us to study the value-added along

four dimensions: (i) its magnitude and drivers (fund skill and scalability), (ii) its split with in-

vestors, (iii) its time-variation as funds get older, and (iv) its optimality measured through the lens

of changing the market beta after observing a public signal zt−1 that predicts the equity market return rm,t. We can
absorb the time-variation in betas by including the scaled factor zt−1rm,t in the vector fR,t (e.g., Cochrane, 2005).
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of a rational model a la Berk and Green (2004).

We assume that each fund has access to a fully collateralized active strategy whose average

(benchmark-adjusted) excess return is denoted by aasi .4 In addition, the fund must pay trading

costs to implement the active strategy equal to a fraction basi of the squared dollar amount invested

in the active strategy. This convex cost function captures the intuitive idea that the active strategy

cannot be scaled up without impacting its return.

We incorporate two salient features specific to the hedge fund industry. First, hedge funds can

use leverage to increase the amount invested in the active strategy such that the total fund size

qi,t−1 (in real terms) is the sum of capital wi,t−1 and debt di,t−1. Second, hedge funds face margin

constraints and thus cannot take too much debt relative to capital (Lhabitant, 2007; Pedersen, 2015;

Titman, 2010). We capture these features by expressing debt as a constant fraction of capital:

di,t−1 = Liwi,t−1, where Li determines the fund leverage ratio πi =
wi,t−1+di,t−1

wi,t−1
= 1 + Li.

II.B.2. Baseline Specification

Using the equality qi,t−1 = πiwi,t−1, we can write the total expected fund revenue as TRi,t =

aasi πiwi,t−1, and the total cost as TCi,t = basi π2
iw

2
i,t−1. Taking the difference between TRi,t and TCi,t

and dividing by wi,t−1, we specify the gross alpha as a linear function of capital:

αi,t−1 = ai − biwi,t−1 , (2)

where the coefficients ai = aasi πi and bi = basi π2
i absorb the impact of the leverage ratio πi. A

key benefit of this specification is that the gross alpha only depends on capital wi,t−1, but not debt

di,t−1—a variable typically not reported in hedge fund databases.5

Replacing αi,t−1 with ai− biwi,t−1 in Equation (1), we obtain the following specification of the

value-added:

vai = aiE[wi,t−1]− biE[w2
i,t−1] , (3)

4To illustrate, consider a fund that invests its capital in the riskfree asset and takes two self-financing long and short
positions in undervalued and overvalued securities. Denoting by ai,l and ai,s the average returns of these positions,
we obtain aasi = xi,lai,l + xi,sai,s, where the position weights xi,l and xi,s sum to one (fully collateralized).

5Some databases, such as TASS, provide cross-sectional data on the average fund leverage. Because data is self-
reported on a voluntary basis, the coverage is limited, and the calculation is not consistent across funds. Even worse,
time-series information on hedge fund leverage is quasi-inexistent. To our knowledge, only two papers have reliable
but proprietary access to such data. Ang, Gorovyy, and van Inwegen (2011) study leverage data obtained from one
fund-of-funds. Barth, Hammond, and Monin (2020) work with data from the SEC on large hedge fund advisors having
at least $1.5 billion under management.
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where vai depends on the two coefficients that drive the gross alpha. Both ai and bi are fund-

specific—a flexibility that departs from the standard panel specification which imposes constant

scalability across funds (bi = b). BGS show that this restriction is strongly rejected in the mu-

tual fund population, leading to biased estimators of the value-added across funds. Similarly, our

empirical results reveal that hedge fund value creation features substantial fund heterogeneity.

II.C. Analysis of the Value-Added

II.C.1. Magnitude and Drivers

The first benefit of Equation (3) is to measure the value-added and shed light on its main drivers.

Ultimately, the value created by hedge funds depends on their skill to identify profitable ideas and

their sensitivity to scalability constraints as they grow. Equation (3) formalizes the intuition by

expressing vai as a function of the fund skill and scalability (captured by ai and bi).

The skill coefficient ai is equal to the alpha on the first dollar of equity capital (when wi,t−1 =

0). As such, it measures the profitability of the fund’s ideas without the drag of real-world im-

plementation (Perold and Salomon, 1991). Hedge funds can use two sources of information to

generate a positive ai. They can exploit superior information to implement stock picking or factor

timing strategies. In addition, they can rely on public information to implement alternative strate-

gies that investors are unable to replicate.6 The scale coefficient bi is equal to the sensitivity of

the gross alpha to changes in fund capital. The magnitude of bi captures multiple facets of disec-

onomies of scale. As the fund deploys more capital, it is less likely to execute trades cheaply. It

may also require more staff, leading to the dissipation of talent and the rise of delegation costs.

There are several reasons why the skill and scale coefficients vary across funds. Some funds

may have a higher ai because they are run by extremely talented managers, while others may have a

higher bi because they focus on illiquid assets, trade more aggressively, or have a limited number of

ideas to exploit (van Binsbergen et al., 2024; Busse et al., 2021). In addition, Equation (2) reveals

that both ai and bi depend on leverage. One benefit of Equation (3) is that we can estimate ai and

bi without explicitly modeling why they vary across funds—a daunting task given the complexity

of hedge fund strategies and the scarcity of observable fund characteristics.

6This point is well summarized by Cochrane (2011): "I tried telling a hedge fund manager, ‘You don’t have alpha.
Your returns can be replicated with a value-growth, momentum, currency and term carry, and short-vol strategy.’ He
said, ‘Exotic beta is my alpha. I understand those systematic factors and know how to trade them. My clients don’t."
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In our baseline specification, the gross alpha is based on a constant leverage ratio πi—an as-

sumption largely consistent with the empirical evidence from proprietary hedge fund data.7 That

said, some hedge funds may find it optimal to adjust leverage over time—particularly in bad times

to protect the present value of their future fees (Buraschi, Kosowski, and Sritrakul, 2014; Lan,

Wang, and Yang, 2013). More generally, Equation (2) potentially omits other time-varying vari-

ables that drive the gross alpha such as non-linearities in fund capital or business cycle variables.

Even if we omit relevant variables, Equation (3) still provides a proper measure of the true

value-added E[αi,t−1wi,t−1]. To see this point, we suppose that the true alpha is given by αi,t−1 =

ai,t−1 − bi,t−1wi,t−1 = ai + a′i,zzi,t−1 − (bi + b′i,zzi,t−1)wi,t−1, where zi,t−1 is a demeaned vector of

variables that drive the dynamics of ai,t−1 and bi,t−1. We can always linearly project αi,t−1 on wi,t−1

to obtain αi,t−1 = proj(αi,t−1|wi,t−1)+ϵα,t−1, where proj(αi,t−1|wi,t−1) = ai−biwi,t−1. Given that

E[ϵα,t−1wi,t−1] = 0 by construction, we have vai = E[αi,t−1wi,t−1] = aiE[wi,t−1]− biE[w2
i,t−1].

II.C.2. Split With Investors

The second dimension of our analysis pertains to the value split with investors. There are

several reasons why hedge fund investors plausibly hold bargaining power in the fee negotiation.

They may require compensation for due diligence and monitoring costs (Stein, 2009). They may

also take advantage of soft information that is difficult for the fund to communicate to outsiders

(Hochberg, Ljungqvist, and Vissing-Jørgensen, 2014) or threaten the fund to expropriate its invest-

ment ideas (Glode and Green, 2011).

To examine this issue, we denote by feei,t the fee rate defined as the sum of management and

performance fees divided by capital. We then define the net value-added received by investors

as vanet
i = E[αnet

i,t−1wi,t−1], where the net alpha αnet
i,t−1 = E[rnet

i,t − rb,i,t|It−1] is the conditional

expectation of the difference between the fund net return rnet
i,t = ri,t − feei,t and rb,i,t. Similar

to the gross alpha αi,t in Equation (2), we can project the net alpha on the fund capital to obtain

αnet
i,t−1 = anet

i − bnet
i wi,t−1. Similar to Equation (3), we obtain an expression of the net value-added

that depends on the two coefficients anet
i and anet

i :

vanet
i = anet

i E[wi,t−1]− bnet
i E[w2

i,t−1]. (4)

7Ang, Gorovyy, and van Inwegen (2011) find that gross leverage is very persistent with an autocorrelation of 0.97.
Barth, Hammond, and Monin (2020) show that 89% of the variation in leverage is captured by fund fixed effects,
which implies that leverage is largely a cross-sectional attribute.
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To illustrate how fees affect the net skill and scale coefficients in Equation (4), we consider a

simple example of a pure alpha fund (i.e., no factor exposure). If this fund charges to investors

a fraction fi of capital (management fees) and a fraction pi of the alpha (performance fees), we

obtain anet
i = (1− pi)ai − fi and bnet

i = (1− pi)bi. We see that fees have more pronounced impact

of the first-dollar alpha anet
i (via the term fi) than the scale coefficient bnet

i .

II.C.3. Dynamics of the Fund’s Lifecycle

The third dimension of our analysis focuses on the dynamics of value creation. The standard

measure vai in Equation (3) determines the value created by the fund over its entire existence.

Therefore, it does not determine how the value-added varies over the fund’s lifecycle. This vari-

ation is potentially large because investors may need time to learn about the fund skill and scale

coefficients (Pástor and Stambaugh, 2012). As they update their views using fund return informa-

tion, they reallocate capital which, in turn, changes the value-added.8

To examine this issue, we extend Equation (3) to obtain a dynamic version of the value-added.

Following BGS, we split the observations on each fund into S subperiods of equal length. We then

measure the value-added vai(s) for each subperiod s (s = 1, ..., S) as

vai(s) = aiw̄i(s)− biw̄i,2(s) (5)

where w̄i(s) and w̄i,2(s) denote the realized averages of the fund capital and its squared value in

subperiod s. Using Equation (5), we can compare vai(1) and vai(S) to determine whether the

value created by the fund increases as it gets older. Using the same approach, we can extend

Equation (4) to examine the time-variation in the net value-added received by investors:

vanet
i (s) = anet

i w̄i(s)− bnet
i w̄i,2(s) . (6)

A notable advantage of Equations (5) and (6) is that the subperiod value-added depends on the skill

and scale coefficients estimated over the entire sample period. We can, therefore, analyze shorter

time intervals without increasing the noise of the estimated subperiod value-added.

8Investors’ learning also provides an identification mechanism to the econometrician by inducing variation in fund
capital over time. In the extreme case where investors perfectly know the fund skill and scalability ai and bi and are
not hit by liquidity shocks, the fund capital is constant and ai and bi cannot be identified from the data.
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II.C.4. Optimality

The final dimension of our analysis pertains to the optimality of the value-added. This norma-

tive analysis allows us to determine whether the actual value created by the hedge fund industry is

consistent with economic rationale. Similar to Berk and Green (2004), we assume that each fund

is endowed with specific levels of skill and scalability ai and bi and maximizes its total fee rev-

enue feeiwi, where feei denotes the fee rate. The novelty of the model is that investors can extract

value from the fund as they require a minimum (benchmark-adjusted) return κ per unit of capital

as a compensation for due diligence and monitoring costs (see, for instance, Stein, 2009). With

these assumptions, it is straightforward to show that the fund chooses constant leverage as in our

baseline specification in Equation (3).9

The fund chooses capital wi to maximize the value-added vai minus the amount that must be

given to investors κwi, which yields the following maximization problem: maxwi
aiwi−biw

2
i−κwi.

The optimal level of capital w∗
i = ai−κ

2bi
is obtained by setting the fee rate at fee∗i = ai−κ

2
.10 The

optimal value-added (total and net) is then given by

va∗i = αi(w
∗
i )w

∗
i =

a2i − κ2

4bi
, (7)

vanet∗
i = κw∗

i =
κ(ai − κ)

2bi
. (8)

If investors have no bargaining power (κ = 0), we obtain the same results as in Berk and van Bins-

bergen (2015). The optimal value-added simplifies to va∗i =
a
2
i

4bi
= (a

as
i )

2

4b
as
i

and can be interpreted as

the profit of a monopolist, measured as the markup price of its product (alpha) multiplied by the

total quantity sold (capital). As discussed in Section III, it is straightforward to estimate va∗i and

vanet∗
i and compare them to the actual value-added. Because of its tractability, the proposed model

provides a natural starting point to rationalize the actual value-added and size of the hedge fund

industry. That said, we acknowledge that our simple model does not incorporate key features in-

cluding multi-period contracting, agency frictions, and investors’ learning. The design of a general

9Fixing the total fund size at q̄i, we can write the total value-added as v̄ai(q̄i) = aasi q̄i − basi q̄2i . Whereas v̄ai(q̄i)
is independent of the equity-debt composition of q̄i, the extra cost of equity financing κwi rises with wi. For any size
level q̄i, it is therefore optimal to maximize leverage at πi.

10Similar to Glode and Green (2011), our simple model is silent on the types of fees that the fund should charge.
There is an infinite combination of management and performance fees that allows the fund to maximimize the expected
dollar revenue, as discussed by Goetzmann, Ingersoll, and Ross (2003).
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equilibrium model with all these features is a difficult and still-open question.

III. Approach for Estimating Hedge Fund Value Creation

III.A. Motivation for a Fund-Level Approach

In this section, we describe our novel econometric approach for estimating hedge fund value

creation. Specifically, we infer the entire value-added distribution across individual funds. This

flexibility is important because hedge funds follow a large number strategies with unique skill and

scale (captured by ai and bi). We therefore expect a large dispersion in value creation that cannot

be captured by a simple average. For instance, the average is uninformative about the proportions

of funds that create value or charge excessive fees to investors.

Our econometric approach builds on recent studies on estimation and inference in large cross-

sectional datasets (e.g., Ardia et al., 2024; Gagliardini, Ossola, and Scaillet, 2016). It is partic-

ularly appealing in our context for several reasons. Contrary to standard parametric or Bayesian

approaches (e.g., Harvey and Liu, 2018; Jones and Shanken, 2005), it does not require specifying

the shape of the true value-added distribution for which theory offers little guidance. Our approach

is also simple and fast even among thousands of hedge funds—intuitively, it boils down to comput-

ing an histogram. It, therefore, departs from sophisticated and computer-intensive Gibbs sampling

and expectation maximization methods. Last but not least, it comes with a full-fledged inferen-

tial theory. We derive the asymptotic properties of the estimated value-added distribution, which

allows us to conduct proper statistical inference guided by econometric theory.

III.B. Estimation of the Fund Value-Added

The main inputs for the estimation of the value-added of each fund are the skill and scale

coefficients ai and bi obtained from the following time-series regression:

ri,t = αi,t + rb,i,t + εi,t = ai − biwi,t−1 + β′
i,RfR,t + εi,t . (9)

We compute the least-square the coefficient vector in Equation (9) as γ̂i = (âi, b̂i, β̂
′
i,R)

′ =

(Q̂x,i)
−1 1

Ti

∑
t Ii,txi,tri,t, where Ii,t is an indicator variable equal to one if ri,t is observable, Ti =∑

t Ii,t, xi,t = (1,−wi,t−1, f
′
R,t)

′ is a (K + 2)-vector, and Q̂x,i =
1
Ti

∑
t Ii,txi,tx

′
i,t. Replacing the
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estimated skill and scale coefficients âi and b̂i in Equation (3), we compute the value-added as

v̂ai = âiw̄i − b̂iw̄i,2 , (10)

where w̄i =
1
Ti

∑
t Ii,twi,t−1, w̄i,2 = 1

Ti

∑
t Ii,tw

2
i,t−1. To measure the net value-added, we re-run

Equation (9) using the fund net return rnet
i,t . Replacing the estimated skill and scale coefficients ânet

i

and b̂net
i in Equation (4), we obtain

v̂anet
i = ânet

i w̄i − b̂net
i w̄i,2 . (11)

Finally, we plug âi, b̂i and ânet
i , b̂net

i in Equations (5) and (6) to compute the value-added over

subperiod s:

v̂ai(s) = âiw̄i(s)− b̂iw̄i,2(s) , (12)

v̂anet
i (s) = ânet

i w̄i(s)− b̂net
i w̄i,2(s) . (13)

III.C. Benchmarking and Non-Replicable Factors

Hedge funds follow a large number of complex alternative strategies. They invest in many

countries and asset classes and follow complex option and factor-timing strategies based on public

information (see, e.g., Avramov, Barras, and Kosowski, 2013; Ferson and Schadt, 1996; Karehnke

and de Roon, 2020). It is therefore highly unlikely that investors are sufficiently sophisticated to

replicate all of these mechanical strategies. To formalize this point, we write the excess return vec-

tor of all hedge fund strategies as ft = (f ′
R,t, f

′
NR,t)

′, where fR,t includes the replicable strategies

and fNR,t includes the strategies that investors cannot replicate (NR stands for non-replicable).

The non-replicable factors fNR,t are absorbed by the various elements of Equation (9). To

see this point, we write the fund return as a function of the full set of factors ft: ri,t = α∗
i,t +

β∗′
i,RfR,t + β∗′

i,NRfNR,t + ε∗i,t. We then regress fNR,t on fR,t to break the non-replicable factors into

three components: fNR,t = αNR + ΨNR,RfR,t + uNR,t, where αNR is the vector of factor alphas,

ΨNR,R is the matrix of slope coefficients, and uNR,t is the vector of errors.

The first component αNR is absorbed by the skill coefficient: ai = a∗i + β∗′
i,NRαNR. This

expression formalizes the intuition that hedge funds generate profitable ideas in two ways:(i) they
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can exploit private information signals (captured by a∗i ) and (ii) they can earn the premia of the

non-replicable strategies (captured by β∗′
i,NRαNR). The second component ΨNR,RfR,t is absorbed

by the replicable factors fR,t, which yields β′
i,RfR,t = (β∗′

i,R + β∗′
i,NRΨNR,R)fR,t. Its magnitude

depends on the ability of the replicable factors to span the non-replicable factors (captured by the

covariance matrix ΨNR,R). The third component uNR,t is absorbed by the fund error term:

εi,t = ε∗i,t + β∗′
i,NRuNR,t . (14)

Equation (14) reveals that the error terms εi,t (i = 1, ..., n) are strongly correlated across funds

because they all depend on the error term of the non-replicable factors uNR,t. As shown in Propo-

sition 1 below, this result implies that the cross-sectional value-added distribution is estimated with

substantial uncertainty. The intuition is straightforward—even if we have information about the

estimated value-added across a large number of hedge funds (n is large), this information is noisy

because it is primarily driven by the common component uNR,t.

III.D. Statistical Properties of the Value-Added Distribution

III.D.1. Estimation of the Distribution Characteristics

We now focus on the statistical properties of the cross-sectional distribution of the value-added

vai. To save space, we refer the reader to the appendix for the analysis of the other formulations

of the value-added (vanet
i , vai(s), va

net
i (s)) and the fund coefficients (ai, bi, a

net
i , bnet

i (s)), for which

the statistical properties remain unchanged. The basic idea behind our approach is to interpret

Equation (9) as a random coefficient model (e.g., Hsiao, 2003) in which ai, bi, and thus vai are

not fixed parameters, but random realizations from a continuum of funds. Under this sampling

scheme, we can invoke cross-sectional limits to infer the asymptotic properties of the value-added

distribution across funds (see Gagliardini, Ossola, and Scaillet, 2016, for details).

To estimate the value-added distribution, we account for the unbalanced nature of the hedge

fund sample. Following Gagliardini, Ossola, and Scaillet (2016), we introduce a formal selection

rule 1χ
i equal to one if the following conditions are met: 1χ

i = 1
{
τi,T ≤ χ1,T ,CNi ≤ χ2,T

}
, where

τi,T = T/Ti, CNi =

√
eigmax

(
Q̂k

x,i

)
/eigmin

(
Q̂k

x,i

)
is the condition number of Q̂k

x,i, and χ1,T ,

χ2,T denote the two threshold values. The first condition τi,T ≤ χ1,T excludes funds for which the

sample size is too small. The second condition CNi ≤ χ2,T excludes funds for which the time-
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series regression is subject to multicollinearity problems (e.g., Belsley, Kuh, and Welsch, 2004).

Both thresholds χ1,T and χ2,T increase with the sample size T—with more return observations,

we estimate the fund coefficients with greater accuracy, which allows for a less stringent selection

rule. Applying this selection rule, we work with a population size equal to nχ =
∑n

i=1 1
χ
i .

We summarize the shape of the value-added distribution using the following characteristics: (i)

the cross-sectional mean M , (ii) the proportion of funds with a value-added below a given value a,

denoted by P (a), and (iii) the quantile at a given percentile level u, denoted by Q(u) = (P )−1(u).

We estimate these characteristics using as only inputs the estimated vector (v̂a1, ..., v̂anχ
)′ obtained

from Equation (10). The estimated mean, proportion, and quantile are given by

M̂ =
1

nχ

∑
i

1χ
i v̂ai , (15)

P̂ (a) =
1

nχ

∑
i

1χ
i 1{v̂ai ≤ a} , (16)

Q̂(u) = (P̂ )−1(u) . (17)

III.D.2. Inference on the Distribution Characteristics

In the following proposition, we derive the asymptotic distributions of the estimated character-

istics M̂ , P̂ (a), and Q̂(u) as the numbers of funds n and observations T grow large (simultaneous

double asymptotics with n, T → ∞). To capture the large cross-sectional dimension of the hedge

fund population observed in the data, we require that n is larger than T .

Proposition 1. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
estimated characteristics of the cross-sectional distribution of the value-added vai:

√
T
(
M̂ −M

)
→d N(0, V [M ]) , (18)

√
T
(
P̂ (a)− P (a)

)
→d N(0, V [P (a)]) , (19)

√
T
(
Q̂(u)−Q(u)

)
→d N(0, V [Q(u)]) , (20)

where →d denotes convergence in distribution. The variance terms are given by

V [M ] = E
[
η′Ms

⊗ ζ ′iQ
−1
x,iBi

]
Ωk

ux(E
[
ηMs

⊗B′
iQ

−1
x,iζi

]
, (21)

V [P (a)] = E
[
η′P (a) ⊗ ζ ′iQ

−1
x,iBi

]
Ωk

ux(E
[
ηP (a) ⊗B′

iQ
−1
x,iζi

]
, (22)

V [Q(u)] = V [P (Q(u))]/ϕ(Q(u))2 , (23)

where ηM = β∗
i,NR, ζi = e1E[wi,t−1] + e2E[w2

i,t−1], e1 and e2 are (K + 2) vectors with zeros
everywhere except on the first and second positions, ⊗ denotes the Kronecker product, Qx,i =
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E[xi,tx
′
i,t], Bi is a (K + 2) × (K + 1) matrix whose first column is given by [1, E[wi,t−1], ..., 0]

′

and the j th column is a vector with zeros everywhere except in the j th + 1 position, Ωux =

lim
T→∞

V

[
1√
T

∑
t

uNR,t ⊗ xt

]
, xt = (1, f ′

R,t)
′ is a (K + 1)-vector, ηP (a) = E[β∗

i,NR|vai = a]ϕ(a),

β∗
i,NR and uNR,t denote the vectors of betas and residuals associated with the non-replicable fac-

tors fNR,t, and ϕva(a) is the value-added density evaluated at a.

Proof. See the appendix.

Proposition 1 reveals two key properties of the estimated distribution characteristics. First, they

converge toward their respective values. We can estimate them without any error-in-variable (EIV)

bias adjustment, even though we use as inputs noisy versions of the value-added (i.e., we use v̂ai

instead of vai). Second, the characteristics are estimated with substantial noise because the conver-

gence rate equals 1/
√
T . This result may be surprising because we compute these characteristics

by averaging across funds (not across time).

Both properties stem from the impact of the non-replicable hedge fund factors fNR,t. Building

on Equation (14), we see that the fund value-added v̂ai depends on the term ε̄i = ε̄∗i + β∗′
i,NRūNR,

where ε̄i, ε̄
∗
i , and ūNR denote the time-series averages of ε̂i,t, ε̂

∗
i,t, and ûNR,t. The error term ūNR

due to the non-replicable factors determines the properties of the estimated characteristics because

it has a pervasive impact on all funds. This common term only converges to zero at the rate equal

to 1/
√
T , which (i) slows down the convergence rate of the estimated characteristics to 1/

√
T , and

(ii) dwarfs the EIV bias, making any bias adjustment unnecessary.11

To apply Proposition 1 and conduct statistical inference, we need a consistent estimator of each

variance term V . This term depends on the error term uNR,t and betas β∗
i,NR associated with all

non-replicable factors, which are unknown to the econometrician. However, we can still derive a

consistent variance estimator based on the observed fund residuals of each model ε̂i,t = ri,t−x′
i,tγ̂i.

Denoting by Ĉ ∈ {M̂s, P̂ (a), Q̂(u)}, we compute the asymptotic variances of
√
T (Ĉ − C) as

V̂ [Ĉ] =
1

n2
χT

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâi,t(Ĉ)âj,t(Ĉ)′ , (24)

where the terms âi,t(Ĉ) are functions of Ĉ and defined in the appendix for brevity. The following

proposition shows that V̂ [Ĉ] is a consistent variance estimator as the numbers of funds n and

11As shown by BGS, the EIV bias is of order 1/T , which is smaller in magnitude than the variance term of order
1/
√
T in Proposition 1. Therefore, the bias term becomes negligible relative to the variance term as T → ∞.
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observations T grow large.

Proposition 2. As n, T → ∞ such that T/n → 0, we have

V̂ [Ĉ] →p V [Ĉ] , (25)

where →p denotes convergence in probability.

Proof. See the appendix.

III.D.3. Formal Comparisons With Mutual Funds

We can extend Proposition 1 to allow for comparison tests with mutual funds. Contrary to

hedge funds, mutual funds typically do not rely on many complex strategies to generate returns—

instead, they primarily load on market, size, and value factors. Building on this observation, BGS

make the assumption that mutual fund strategies are replicable (ft = fR,t). As the error term

ε̄i = ε̄∗i becomes weakly correlated across funds (i.e., the term ûNR,t vanishes), they show that the

characteristics of the value-added converge at a faster rate of 1/
√
n (instead of 1/

√
T ). Because of

the increased precision obtained with mutual funds, we can treat their value-added characteristics

as known in the comparison tests with hedge funds.

We compute the differences in distribution characteristics between the populations of hedge

funds and mutual funds as ∆M̂ = M̂ − M̂mf, ∆P̂ (a) = P̂ (a) − P̂mf(a), and ∆Q̂(u) = Q̂(u) −

Q̂mf(u), where M̂mf, P̂mf(a), and Q̂mf(u) denote the estimated mean, proportion, and quantile across

mutual funds. The next proposition derives the asymptotic distributions of ∆M̂ , ∆P̂ (a), and

∆Q̂(u) as the numbers of funds n and observations T grow large.

Proposition 3. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
differences between the estimated characteristics of the distributions of the value-added vai across
hedge funds and mutual funds:

√
T
(
∆M̂ −∆M

)
→d N(0, V [M ]) , (26)

√
T
(
∆P̂ (a)−∆P (a)

)
→d N(0, V [P (a)]) , (27)

√
T
(
∆M̂Q(u)−∆Q(u)

)
→d N(0, V [Q(u)]) , (28)

where →d denotes convergence in distribution, and the variance terms are given in Proposition 1.
Proof. See the appendix.

17



IV. Data Description

IV.A. Construction of the Hedge Fund Dataset

We conduct our empirical analysis between January 1994 and December 2020. We collect

monthly data on net-of-fee returns and capital, as well as cross-sectional data on investment objec-

tives, fees, and other characteristics from four databases (Barclayhedge, HFR, Morningstar, and

TASS). In our baseline analysis, we exclude funds-of-funds and multi-strategy funds and take sev-

eral steps to mitigate well-known sources of data biases. We reduce selection bias by combining

four standard databases. We control for survivorship bias by keeping track of dead funds. Finally,

we address backfill bias by removing the first 12 months of data for each fund. The appendix

provides more detail on the construction of the dataset.

A key input for measuring the value-added is the unreported gross return of each fund. We

manually compute the monthly gross return by estimating the monthly fees (management and per-

formance fees) and adding them to the reported monthly net return. Contrary to mutual funds,

inferring the time series of gross returns is not trivial because it requires a proper measurement

of the accrued performance fees and the frequency at which they are paid—a process called crys-

tallization. Because the crystallization frequency is generally not disclosed, we follow Jorion

and Schwarz (2014) and assume that performance fees are paid annually (see the appendix for

a detailed description of the computations). Another important input is the fund capital in real

terms. To obtain this variable, we follow Berk and van Binsbergen (2015) and express the reported

monthly fund capital in terms of January 1, 2000 dollars.

To account for the unbalanced nature of the hedge fund sample, we apply the fund selection

rule described in Section III. Taking the same thresholds as BGS for mutual funds, we set the

minimum number of return observations to 60 and the minimum condition number to 15. We also

remove micro funds whose capital is below $10 million for at least one third of the observations.

Finally, we mitigate the impact of outliers by removing 1% of the funds with bottom and top

values of âi, b̂i, and v̂ai. Applying these selection rules, we obtain 2,971 funds over the entire

period (nχ = 2,971).

While the original sample includes all dead funds, the above selection potentially introduces

survivorship bias. If value-destroying funds disappear early, the value-added distribution is biased

upwards. However, there are two offsetting effects. First, value-creating funds can disappear early
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after unexpectedly low realized returns—a phenomenon called reverse-survivorship bias (Linnain-

maa, 2013). Second, the best funds are more likely to stop reporting to databases because their

client base is sufficiently large. Therefore, the magnitude of the bias is a priori unclear. Our analy-

sis in the appendix reveals that our conclusions remain largely unchanged when using a minimum

number of observations of 36 and 84.

IV.B. Hedge Fund Benchmark Model

To estimate the value-added, we need to specify the investment opportunities available to in-

vestors. In our baseline analysis, we consider a simple extension of the three-factor model of

Cremers, Petajisto, and Zitzewitz (2013), which adds global carry and time-series (TS) momen-

tum to the standard market, size, and value factors. The carry and TS momentum strategies are

constructed by Koijen et al. (2018) and Moskowitz, Ooi, and Pedersen (2012) and invest in assets

with high carry and positive 12-month returns across four international asset classes (equity, bond,

currency, commodity).

The rationale for selecting these factors is twofold. First, they capture mechanical strategies

that hedge funds plausibly follow. As noted by Ardia et al. (2024), these factors are supported

by economic intuition and explain a sizable fraction of the average returns earned by hedge funds.

Second, it is reasonable to assume that hedge fund investors can take positions in these five factors.

The market, size, and value factors track the S&P500 and Russell indices and can be replicated us-

ing passive products. By construction, they assign zero alphas to S&P500 and Russell 2000—two

widely-used benchmark indices in the fund industry. The carry and TS momentum factors can also

be traded using liquid futures markets or alternative premia funds offered by an increasing number

of institutions (Jorion, 2021).12

The factor returns capture the gross-of-fee returns of the replicable factors. As a result, we

exclude from the value-added the replication services that hedge funds provide to investors (see

Berk and van Binsbergen, 2015). We exclude these services because they are also provided by

passive products (contrary to the active hedge fund strategies). In the appendix, we show that all

but one factor (value) deliver positive premia over the sample period. They also capture distinct

12Our benchmark choice geared towards factor replication departs from that of Ling, Satchell, and Yao (2023) in
their study of hedge fund value creation. For each fund, they form a benchmark portfolio that invests in six HFR-style
indices. Since each index includes 500 individual hedge funds, this benchmark portfolio is difficult to replicate.
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strategies—none of the pairwise correlations is above 0.5 (in absolute value).

IV.C. Summary Statistics

Table I reports summary statistics for an equal-weighted portfolio of all existing funds at the

start of each month. The entire fund population includes (i) 1,179 equity funds (long-short and

market neutral), which rely on discretionary or quantitative analysis to detect mispriced stocks,

(ii) 783 macro funds (global macro and managed futures), which take directional bets across asset

classes using broad economic and financial indicators, and (iii) 1,009 arbitrage funds (relative value

and event driven), which exploit various sources of mispricing primarily in the debt market. For

comparison purposes, we compute the same statistics for the sample of 2,247 U.S. equity mutual

funds constructed using the procedure proposed by BGS.

Panel A shows that the portfolio of all funds achieves an average gross return equal to 9.8%

per year. The average portfolio return drops to 6.6% per year after accounting for management

fees (1.4% per year) and performance fees (1.7% per year). Overall, the results are similar to those

reported by previous studies on gross and net hedge fund returns (e.g., Elaut, Frömmel, and Sjödin,

2015; Jorion and Schwarz, 2014). Hedge funds are significantly smaller than mutual funds—the

time-series average of the cross-sectional average (median) capital is equal to $196 mio. ($58

mio.), versus $906 mio. ($243 mio.) for mutual funds.

In Panel B, we report the estimated portfolio betas for the five factors (market, size, value,

carry, TS momentum). The betas of the aggregate hedge fund portfolio are all positive. This result

is consistent with the view that hedge funds take on market risk, favor small-cap and value stocks,

buy cheap assets with high carry, and follow trends to boost their average returns (e.g., Pedersen,

2015). Equity funds have the highest exposure to the equity market (0.47), whereas macro funds

load more aggressively on TS momentum (0.34) as they rely on past returns to exploit trends

caused by behavioral biases, frictions, or slow-moving capital. Examining the fit of the benchmark

model, we find that it only explains 42% of the average return of the portfolio and 68% of its

time-series variation (versus 95% and 99% for mutual funds). Put differently, hedge funds follow

strategies that are not captured by the five factors—a finding that emphasizes the relevance of our

methodology which explicitly controls for the non-replicable factors fNR,t.

Please insert Table I here
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V. Main Empirical Results

V.A. Magnitude and Drivers of Value Creation

V.A.1. The Value-Added across Funds

In this section, we focus on the drivers of value creation in the hedge fund industry. Apply-

ing the methodology in Section III, we begin by estimating the entire distribution of the value-

added vai defined in Equation (3). We compute the cross-sectional mean and median, the pro-

portions of funds with negative and positive value-added, and the quantiles at 10% and 90%.

To compute the standard deviation of the estimated characteristics, we replace T = 324 with

Tχ = 1
nχ

∑n
i=1 1

χ
i Ti = 125 to control for the increased estimation noise caused by the unbalanced

hedge fund panel.

Panel A of Table II provides robust evidence of hedge fund value creation. In the entire popula-

tion, 66.6% of the funds exhibit a positive value-added. The average is equal to $4.7 mio. per year

on average and is statistically highly significant. These results provide suggestive evidence that

hedge funds contribute to price informativeness through their investment activities. Performing

this role is socially valuable for the allocation of resources in the economy because it improves the

decisions made by capital providers, managers, employees, and regulators (e.g., Pedersen, 2018;

Bond, Edmans, and Goldstein, 2012).

In line with the large number of strategies followed by hedge funds, we observe a substantial

dispersion in value-added. Part of the observed heterogeneity is captured by investment categories.

We find that value creation is substantially larger among arbitrage funds as 80.3% of them create

value (versus 65.4% and 51.0% for equity and macro funds). That said, the within-group hetero-

geneity remains large—in all three categories, funds in the top decile produce a value-added more

than 3 times higher than the average. These results imply that the value created by the hedge fund

industry is fairly concentrated. A lower bound for the total value in the top decile is $54,963 mio.

(18,5· 2,971), which represents 39.4% of the total value created. They also imply that the average

provides limited informationabout hedge fund value creation. It fails to capture the large disper-

sion across funds and is not representative of the typical hedge fund as evidenced by the large gap

with the median ($4.7 mio. versus $1.1 mio. per year).

Please insert Table II here
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V.A.2. Skill and Scalability

We now focus on the drivers of value creation to understand why most funds create value and

why the heterogeneity among them is large. Hedge funds create value because they are able to gen-

erate profitable investment ideas. To verify this claim, we estimate the cross-sectional distribution

of the skill coefficient ai. Panel B of Table II confirms that 85.8% of them exhibit a positive alpha

on their first dollar of capital whose average equals 12.2% per year. At the same time, value cre-

ation is limited by capacity constraints. Panel C shows that a $10 mio. increase in capital decreases

the gross alpha by 2.0% per year on average, which is consistent with previous studies (e.g., Fung

et al., 2008). That said, our results go one step further by showing that the scale coefficient is not

only positive on average, but for more than 80% of the hedge funds. It therefore provides a strong

justification for equilibrium models of active management featuring diseconomies of scale (Berk

and Green, 2004; Pástor and Stambaugh, 2012)

The heterogeneity in value creation arises from the dispersion in skill and scalability. First,

we examine why investment categories produce different value. Panel B reveals the average first-

dollar alphas are remarkably similar. Therefore, the domination of arbitrage funds stems from their

lower scale coefficient—as shown in Panel C, it is equal to 1.2% per year on average (versus 2.5%

for equity funds and 2.2% for macro funds). This result seems at odds with the view that arbitrage

funds trade assets with limited liquidity (such as convertible bonds). However, asset liquidity is

not the only determinant of the scale coefficient. As mentioned, reduced levels of leverage and

turnover lower bi and may offset the positive impact of illiquidity. Consistent with this argument,

Barth, Hammond, and Monin (2020) show that arbitrage funds choose lower leverage than macro

funds.13 It is also plausible that these funds trade less frequently than high-frequency equity funds

and trend-following macro funds. Whereas we lack data to test this hypothesis, differences in

trading can have a large impact on bi—using transaction data on mutual funds, van Binsbergen

et al. (2024) find that turnover is the most important determinant of scalability.

Second, we examine why the top decile funds are so valuable. Table III shows these top funds

not generate the most profitable ideas. Instead, they follow unique strategies that balance skill

and scalability. A simple way to make this point is to sort âi and b̂i for each fund into deciles to

13In Figure 1 presented below, we show that once we adjust for leverage differences, the unlevered scale coefficient
becomes higher for arbitrage funds.
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create a scoring system from 1 to 10 (1=lowest, 10=highest). We find that the median skill and

scalability scores of the top funds in the population are equal to 8 and 3. In addition, only 14.6%

(0.0%) of them achieve the highest skill (scale) score of 10 (1). These balanced strategies produce

the highest value-added because of the trade-off between skill and scale—the pairwise correlation

between âi and b̂i is close to 0.6. This strong correlation arises for several reasons. First, hedge

funds favor volatile and illiquid assets. These assets are more risky and costly to trade (higher bi)

and thus exhibit higher levels of mispricing (higher ai). Second, hedge funds use leverage which

jointly increases ai and bi (as per Equation (2)).

The top funds are either skilled at exploiting unique information or offering non-replicable

strategies. To distinguish between these two sources of profitability, we control for three strate-

gies that investors cannot easily replicate: illiquidity, betting-against-beta (BAB), and variance.14

Adding these factor returns to the benchmark model, we re-compute the value created by hedge

funds. Panel B do not reveal major changes in the mean and median value-added. The highest aver-

age contribution of these strategies to value creation equals 23% for arbitrage funds (12.0/51.8) as

they load on variance risk (see Ardia et al., 2024). These results suggest that superior information

is the main skill driver among the top funds.

Please insert Table III here

V.A.3. The Impact of Leverage

A key insight from Table II is that hedge fund strategies are both highly profitable and highly

unscalable. A natural explanation for this result is leverage—as shown in Equation (2), both ai and

bi scale up with the leverage ratio. Given the lack of data on hedge fund leverage, we borrow from

Barth, Hammond, and Monin (2020), who report leverage statistics for their proprietary hedge fund

dataset. Using their estimates, we set the average leverage ratio π̂ equal to 2.1, 5.9, and 2.7 for

equity, macro, and arbitrage funds, and 3.3 for the entire population (see the appendix for details).

We then compute the average unlevered skill and scale coefficients as M̂ u
a = M̂a

π̂
and M̂ u

b = M̂b

π̂
2 ,

where M̂a =
1
nχ

∑
i 1

χ
i âi and M̂b =

1
nχ

∑
i 1

χ
i b̂i. Figure 1 shows that the leverage-adjusted average

14Ardia et al. (2024), Asness, Moskowitz, and Pedersen (2013), and Pedersen (2015) provide evidence that some
hedge funds follow these strategies. The illiquidity strategy of Pástor and Stambaugh (2003) captures marketwide
changes in market liquidity. The BAB strategy of Frazzini and Pedersen (2014) exploits the price distortions caused
by leverage-constrained investors on low- and high-beta stocks. The variance strategy tracks the realized variance of
the S&P 500.
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skill and scale coefficients equal 3.7% and 0.2% per year and only represent 30.3% and 9.1% of

the unadjusted coefficients reported in Table II (3.7/12.2 and 0.18/1.96). These results confirm that

leverage plays a central role in driving the magnitude of the skill and scale coefficients.

Please insert Figure 1 here

V.A.4. Comparison with Mutual Funds

A common view is that hedge fund managers deliver strong profitability because they are more

sophisticated and incentivized than their mutual fund peers. Consistent with this view, the appendix

shows that the first-dollar alpha of mutual funds is equal to 2.5% per year on average (versus 12.2%

for hedge funds). Another common argument is that hedge funds are more flexible as they take

both long and short positions. They can therefore scale more as they spread trades on multiple

ideas (Harvey et al., 2021). Instead, we find that the traditional long-only strategies followed by

mutual funds are substantially more scalable—a $10 mio. increase in capital leads to a mere 0.1%

decrease in annual alpha on average (versus 2.0% for hedge funds).

It is unclear whether hedge funds create more value because they follow strategies that are

highly profitable, but far less scalable. To examine this issue, we compare in Figure 2 the average

value created by hedge funds and mutual funds. We consider the entire population of mutual funds

as well as various groups sorted on stock size (small- and large-cap), turnover (low- and high

turnover), and distribution channel (direct- and broker-sold). In the entire population, we find that

hedge funds are able to create more value—the estimated difference equals $4 mio. per year and

is statistically significant.15 However, this superiority is primarily driven by arbitrage funds. The

other two categories—equity and macro funds—produce a comparable or even lower value-added

than several mutual fund groups (small-cap, low-turnover, and direct-sold funds). Overall, these

results reveal that the low scalability of hedge funds prevent them from systematically dominating

mutual funds.

Please insert Figure 2 here

15The value-added of mutual funds is positive but smaller in magnitude than the values reported by BGS and Berk
and van Binsbergen (2015) because we use a different benchmark model and a shorter period (1994-2020).
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V.B. Value Split with Investors

V.B.1. The Net Value-Added across Funds

We now examine how the value created by hedge funds is split with their investors. For each

fund, we estimate the net value-added vanet
i defined in Equation (4) and apply our methodology

to compute the mean and median, the proportions of funds with negative and positive coefficients,

and the quantiles at 10% and 90%. The results are reported in Panel A of Table IV.

Similar to Table II, we observe a large heterogeneity in net value-added. Some of this hetero-

geneity reflects the actual value created by hedge funds. The proportion of funds with positive net

value-added is equal to 50.5% of all funds and rises up to 65.1% in the most valuable category (ar-

bitrage funds). When positive, the extracted value is economically important—in the top decile, it

is higher than $10 mio. per year. The remaining heterogeneity is caused by capital misallocation—

we find that investors pay excessive fees to 49.5% of the funds in the population. Combining these

results, we find that investors do not extract large benefits from hedge funds—the average barely

reaches $0.3 mio. per year and is not statistically different from zero.

A common explanation for value destruction is the existence of unskilled funds—that is, funds

with a first dollar alpha too low relative to the fees (anet
i < 0). Because these funds destroy value

regardless of the size at which they operate, they can only survive by attracting investors with

high search costs (via marketing efforts). To quantify the importance of these funds, we estimate

the distribution of the net skill coefficient anet
i . Panel B shows that 19.0% of the funds have a

negative skill coefficient. This result implies that 38% of the value-destroying funds are unskilled

(19.0/49.6). The remaining funds (62%) are skilled, but grow too large. In the presence of hedge

fund fees, the fund capital quickly reaches the tipping point at which the net value-added turns

negative. As shown in Panel B, fees bring down the average first-dollar alpha anet
i to 9.0% per

year on average (versus 12.2% for ai). In addition, we find that performance fees do not cushion

the negative impact of scalability constraints—Panel C shows that the distribution of the net scale

coefficient bnet
i is largely similar to that of bi.

Please insert Table IV here
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V.B.2. Net Value-Added Versus Net Alpha

The sizable proportion of value-destroying funds in Table IV seems at odds with the strong per-

formance in previous studies.16 Consistent with these studies, we also find a positive performance—

the average net alpha αnet
i = E[αnet

i,t−1] = anet
i − bnet

i E[wi,t−1] is positive for 65% of the funds and

equal to 1.7% per year on average (see the appendix). A central insight for reconciling these results

is that times of poor performance (when αnet
i,t−1 is negative) carry a larger weight in the value-added

computation because they come with a large amount of invested capital wi,t−1.

To illustrate, we consider a two-period example in which investors invest (i) a small amount

of capital in the first period such that the net alpha is positive (αnet
i,1 = anet

i − bnet
i wi,1 > 0), and

(ii) a large amount of capital in the second period, resulting in a negative net alpha (αnet
i,2 = anet

i −

bnet
i wi,2 < 0). If the variation in capital over these two periods is sufficiently strong, we can

have a positive average net alpha (αnet
i = (αnet

i,1 + αnet
i,2)/2 > 0) and a negative net value-added

(vanet
i = (vanet

i,1 + vanet
i,2)/2 < 0).17 Put differently, the net alpha is a poor indicator of the actual

value extracted by hedge funds investors given their time-varying capital allocation decisions.

V.B.3. Comparison with Mutual Fund Investors

In Figure 3, we examine how much value mutual fund investors are able to extract. Similar to

BGS and Cooper, Halling, and Yang (2021), we find overwhelming evidence of excessive mutual

fund fees. In the population, the net value-added drops to -$7.6 mio. per year on average. In

addition, the average is consistently negative in all fund groups as it ranges between -$1.3 mio. for

small-cap funds and -$10.9 mio. for large-cap funds. These results point towards a severe capital

misallocation by mutual fund investors

The gap of $7.9 mio. per year relative to hedge funds is economically large and statistically

significant. It provides a simple metric to assess the impact of investor sophistication. Whereas

hedge funds primarily target institutions and high net-worth individuals, mutual funds primarily

target retail investors. These investors are more likely to be ignorant of underperformance (Gruber,

16A non-exhaustive list of hedge fund studies documenting positive average net alphas includes Ardia et al. (2024),
Avramov, Barras, and Kosowski (2013), Buraschi, Kosowski, and Sritrakul (2014), Capocci and Hübner (2004), Chen,
Cliff, and Zhao (2017), Diez de los Rios and Garcia (2010), and Kosowski, Naik, and Teo (2007).

17This result is an application of Jensen’s inequality. With scalability constraints (bi > 0), the net value-added
function vanet(wi,t−1) = (anet

i −bnet
i wi,t−1)wi,t−1 is concave in wi,t−1, which implies that vanet

i = E[vanet(wi,t−1)] =

αnet
i E[wi,t−1]− bnet

i V [wi,t−1] < vanet(E[wi,t−1]) = αnet
i E[wi,t−1].
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1996), constrained by high search costs (Roussanov, Ruan, and Wei, 2021), and willing to pay extra

fees for financial advice (Del Guercio and Reuter, 2014).

Please insert Figure 3 here

V.C. The Dynamics of Value Creation

V.C.1. The Value-Added over the Fund’s Lifecycle

Table IV provides evidence of capital misallocation. Half the funds manage too much capital,

resulting in a negative value-added net of fees. When investors pay excessive fees, they have strong

incentives to withdraw their capital and seek more profitable opportunities. As they adjust their

capital allocation, it changes the value created by hedge funds.

To examine this issue, we examine how the value-added evolves over the fund’s lifecycle.

Applying our methodology, we estimate the cross-sectional distribution of the subperiod value-

added vai(s) defined in Equation (5) (s = 1, ..., S) and measured using capital observations over

the sth partition of the fund’s entire sample. We consider a total of five subperiods (S = 5) to allow

for a gradual adjustment process as investors learn about the skill and scale coefficients using past

fund returns (Pástor and Stambaugh, 2012) and overcome frictions in moving capital in and out of

hedge funds (Joenväärä, Kosowski, and Tolonen, 2019).

Panel A of Table V reports the distribution characteristics of the value-added in each subperiod.

If investors use sharper skill and scale estimates, the allocation of capital becomes more efficient

and the value-added distribution shifts to the right. Consistent with this prediction, we find more

evidence of stellar value creation when funds enter the later stages of their lifecycle. The 90%-

quantile increases from $15 mio. to $19 mio. per year between the first and last subperiods.

However, there is no evidence that investors eliminate value-destroying funds—their proportion

actually slightly increases from 22.1% to 28.1% as we reach the last subperiod. These patterns

are remarkably similar across equity, macro, and arbitrage funds shown in Panels B to D. In each

category, we observe an increase in the right tail accompanied by a persistently thick left tail.

Please insert Table V here

Next, we measure the value received by investors over the five subperiods using the net sub-

period value-added vanet
i (s) defined in Equation (6). Table VI shows that investors consistently

27



extract value from a minority of the fund population—the 90% quantile ranges between $10.0

mio. and $12.4 mio. per year across the five subperiods. At the same time, they let an increasing

proportion of funds grow too large and charge excessive fees. As this proportion reaches 46.2% in

subperiod 4, the average net value-added turns negative (-$1.1 mio. per year). This excess capital

is the main culprit for the modest value created by the hedge fund industry over the entire period

($0.3 mio. per year in Table II).

Please insert Table VI here

V.C.2. Investors’ Capital Reallocation

We now examine how investors reallocate capital over the five subperiods. For each fund,

we measure the ratio ∆w̄i(s) = w̄i(s)/w̄i, where w̄i(s), w̄i denote the average levels of capital

invested in subperiod s and over the full period. We then compute the cross-sectional average of

∆w̄i(s) for the entire population and each investment category (equity, macro, arbitrage) across

the five subperiods (we obtain similar results with the median in the appendix).

Figure 4 shows that the capital allocated to hedge funds over their lifecycle can decomposed

into three phases. During the initial phase (subperiod 1), the invested capital is relatively low—on

average, it only represents 80% of the fund capital over the full period. During the intermediary

phase (subperiods 2 to 4), we observe a strong capacity build up as capital overshoots its full-period

level (on average, ∆w̄i(s) equals 1.1 in subperiod 4). This phase corresponds to an increased cross-

sectional dispersion in value-added as the top (bottom) decile creates (destroys) more value (see

Table V). During the final phase (subperiod 5), investors reduce capital as the average ratio falls

down close to one.

Overall, the evidence in Figure 4 suggests a relatively complex reallocation process. On the

one hand, investors are slow to punish funds that charge excessive fees. If a fund initially delivers a

negative net value-added, we estimate a probability of 54% that it keeps doing so in the last subpe-

riod. In addition, investors lose money on average in subperiod 4 as they endow funds with excess

capital—possibly because they overreact to positive performance in earlier subperiods.18 On the

other hand, investors seem able to rationally distinguish between funds that create and destroy

18This interpretation is consistent with the study by Baquero and Verbeek (2022), who show that hedge fund in-
vestors overreact to past winning streaks—a behavioral bias referred to as the hot-hand fallacy (Rabin, 2002).
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value. First, the progressive increase in value creation among the top funds provides evidence that

a portion of investors’ capital is efficently allocated. Second, the reduction in capital in the last

subperiod is a rational response to the disappointing net value-added in the previous subperiod.

Please insert Figure 4 here

V.D. Value Optimality and Equilibrium Considerations

V.D.1. Estimation of the Model

Our results so far reveals that the majority of hedge funds create value. At the same time, we

find evidence that investors pay excessive fees as they let funds grow too large. These contrasting

findings beg the question of the overall efficiency of the hedge fund industry. In this section, we

examine how consistent the actual value-added is with economic rationale. We estimate the optimal

value-added va∗i of each fund using the model presented in Section II.C in which (i) funds with

heterogeneous skill and scale coefficients maximize their fee revenues and (ii) investors require a

minimum compensation κ per unit of capital to cover due-diligence and monitoring costs.19

If the fund chooses the fee rate optimally at fee∗i = ai−κ
2

, it produces the highest value-added

va∗i = aiw
∗
i − bi(w

∗
i )

2 = a
2
i−κ

2

4bi
under the constraint that investors break even and receive vanet,∗

i =

aiw
∗
i − bi(w

∗
i )

2 − fee∗iw
∗
i = κw∗

i = κ(ai−κ)
2bi

, where the optimal capital is given by w∗
i = ai−κ

2bi
.

The empirical counterparts of these optimal quantities are given by ˆfee
∗
i = âi−κ

2
, v̂a∗i = â

2
i−κ

2

4b̂i
,

and v̂anet,∗
i = κ(âi−κ)

2b̂i
. We can then compare these optimal values with the actual ones given by

ˆfeei =
1
Ti

∑
t Ii,tfeei,t, v̂ai and v̂anet

i (the full-period estimates).

Our normative analysis requires a value for the compensation κ. Contrary to ai and bi, which

can be inferred from the data, κ is not directly observable. In our baseline analysis, we follow

Stulz (2007) and set κ equal to 1% per year.20 Another requirement is that va∗i is positive. To

incorporate this condition, we focus on the top 25% of funds with the highest estimated optimal

values v̂a∗i =
â
2
i−κ

2

4b̂i
. Finally, we impose that âi is above ˆfeei + κ such that investors find it rational

19Our analysis measures optimality from a private viewpoint and is silent on the social optimality of active man-
agement. On the one hand, hedge funds perform the socially valuable function of making prices more informative.On
the other hand, hedge funds may be engaged in rent-seeking and socially wasteful activities at the expense of other
investors in the market (Greenwood and Scharfstein, 2013; Tobin, 1984). Measuring the social value of active man-
agement therefore requires that one determines the relative importance of these two effects (e.g., Kurlat, 2019).

20Stulz (2007) writes that a frequently heard price tag for hedge fund due-diligence costs is $50,000. If we take a
five-year investment period as in Khorana, Servaes, and Tufano (2009) and a $1 mio. investment, we obtain κ = 1%.
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to invest a positive amount in the fund. This selection rule yields a total of 537 funds (in the

appendix, we find similar results with alternative filters).

V.D.2. Comparison of Actual and Optimal Values

Table VII summarizes the results for the entire sample and three groups sorted on the actual

fee rate (low, medium, high). For the fee comparison, we measure the difference between the

cross-sectional means of the actual and optimal fees, denoted by M̂fee and M̂fee∗ (both in level and

in percentage of M̂fee∗). To address the concern that the average is not representative of the typical

fund, we also examine the differences between the cross-sectional medians, denoted by Q̂fee(0.5)

and Q̂fee∗(0.5) (both in level and in percentage of Q̂fee∗(0.5)). We compute the same statistics for

the value-added (total and net).21

Panel A shows that actual and optimal fees are aligned. Low-fee funds have a lower skill coef-

ficient and thus lower optimal fees relative to high-fee funds. These differences are economically

large—12.4% and 6.2% per year for the average skill coefficient and optimal fees. However, the

model is unable to quantitatively match the observed fees. For the vast majority of funds (502 out

of 53), actual fees are lower than the optimal values (3.5% versus 9.3% per year on average).

In Panel B, we examine the value-added. The model rationalizes the value-added as an optimal

trade-off between the fund skill and scalability. This simple mechanism does a reasonable job at

explaining hedge fund value creation. The ratio of actual to optimal value-added equals 37% with

the mean and rises up to 46% with the median. If the model holds, we expect a convergence of

the value-added towards optimality as funds age. Examining the last subperiod value-added v̂ai(5)

(instead of v̂ai), we find that the median ratio does increase from 46% to 52%. However, this

difference is small and reflects the slow change in the value-added across the five subperiods (see

Tables V and VI). In Panel C, we focus on the value extracted by investors. Overall, the model

does a better job at fitting the net value-added. For instance, the difference between the medians

of v̂anet
i and v̂anet,∗

i is equal to 3.6 mio. per year, which represents 10.0% of the median optimal

value-added.

Please insert Table VII here

21To facilitate the interpretation of the percentage difference, we use the common denominator M̂∗
va (mean) or

Q̂∗
va(0.5) (median) for both the value-added and the net value-added.
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In the traditional Berk and Green (2004) model, funds do not share the value created with

investors. As a result, the net value-added is null and uncorrelated with the total value-added.

This prediction is at odds with the data—we find that the pairwise correlation between v̂ai and

v̂anet
i reaches 0.83. To capture this correlation, it is therefore necessary to allow investors some

bargaining power. Our proposed model incorporates this feature via the parameter κ and delivers

a strong correlation of 0.91 between v̂a∗i and v̂anet,∗
i .

Finally, the model can match the fraction of the total value extracted by hedge fund investors.

Using the average values of v̂anet
i on v̂ai, we find that investors extract 14% of the total value

created. Whereas the model makes different predictions for the levels of total and net value-added,

their ratio remains remarkably similar at 15%. Overall, the combined findings from the data and

the model suggest that hedge fund investors have limited bargaining power in the fee negociation.

V.D.3. Sources of Suboptimality

We now examine the reasons why the actual value-added departs from its optimal level. Under

the model, there are two sources of suboptimality: (i) the choice of fees by funds and (ii) the capital

allocation by investors. We illustrate the impact of suboptimal fees on equilibrium outcomes in

Figure 5. In Panel A, we suppose that the fund sets fees too low (feei < fee∗i ). In this case,

the equilibrium capital we
i at which investors break even (vanet,e

i = aiw
e
i − bi(w

e
i )

2 − feei =

κwe
i ) is higher than its optimal value w∗

i . As a result, the equilibrium value-added is lower than

optimal (vaei = aiw
e
i − bi(w

e
i )

2 < va∗i ), while the equilibrium net value-added is higher than

optimal (vanet,e
i > vanet,∗

i ).22 In Panel B, the fund sets fees too high (feei > fee∗i ). As a result, the

equilibrium capital is too low (we
i < w∗

i ) and both vaei and vanet,e
i are lower than optimal.

Please insert Figure 5 here

The second source of suboptimality—capital misallocation—arises from the gap between the

actual capital w̄i and its equilibrium value we
i (under the chosen fee rate feesi). While this gap

should vanish over time as investors learn and reallocate capital, it can have sizable short-term

effects on value creation. Figure 6 illustrates these effects in the common situation where fees

are set too low (such that we
i > w∗

i ). In Panel A, we focus on overcapacity which occurs when

22In theory, it is possible that vaei rises above va∗i if we
i corresponds to the value that maximizes the unconstrained

value-added, that is, maxwi
vai =

a
2
i

4bi
> va∗i = (ai−κ)

2

4bi
. Empirically, none of the funds satisfy this condition.
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the actual capital is above equilibrium (w̄i > we
i ). As a result, both the value-added and the

net value-added are below their equilibrium values (vai = aiw̄i − bi(w̄i)
2 < vaei and vanet

i =

aiw̄i−bi(w̄i)
2−feeiw̄i < vanet,e

i ). In Panel B, we have undercapacity as capital is below equilibrium

(w̄i < we
i ). In this case, the effect on the value-added is uncertain and depends on the magnitude

of the gap between w̄i and we
i (in this example, both vai and vanet

i are higher).

Please insert Figure 6 here

To examine the relative importance of these two sources of suboptimality, we split the differ-

ence between the actual and optimal value-added in two parts:

v̂ai − v̂a∗i = (v̂aei − v̂a∗i ) + (v̂ai − v̂aei ), (29)

v̂anet
i − v̂anet,∗

i = (v̂anet,e
i − v̂anet,∗

i ) + (v̂anet
i − v̂anet,e

i ), (30)

where the estimates of the equilbrium value-added are computed as v̂aei = âiŵ
e
i − b̂i(ŵ

e
i )

2 and

v̂anet,e
i = âiŵ

e
i − b̂i(ŵ

e
i )

2 − ˆfeeiŵ
e
i and the equilbrium capital is given by ŵe

i = âi− ˆfeei−κ

b̂i
. The

first term on the righthand side of each equation captures the impact of suboptimal fees on value

creation (without any capital misallocation). The second term captures the impact of capital mis-

allocation on value added (without suboptimal fees).

Our analysis in Table VIII reveals that capital misallocation the prevalent source of subopti-

mality. In Panel A, the average equilibrium value-added (under the chosen fees) represents 84%

of the average optimal value. Therefore, suboptimal fees lead to a 26%-reduction in value cre-

ation. Panel B reveals that investors’ capital decisions lead to an additional 37%-reduction in value

creation. Combining both results, we conclude that capital misallocation represents around 60%

(37/53) of the gap between the actual and optimal value-added.

Turning to the analysis of the equilibrium net value-added in Panel A, we find that it is above

the optimal level ($10.6 mio versus $7.7 mio. per year). This result is consistent with Figure 6

showing that low fees leads to a higher capital base which, in turn, raises the dollar compensation

required by investors. Interestingly, the impact of capital misallocation goes in the other direction

and leads to a reduction in the actual net value-added on average ($7.5 mio. versus $10.6 mio. per

year). This result is entirely driven by excess capacity (i.e., w̄i > we
i )—the appendix shows that

the gap between v̂anet
i and v̂anet,e

i among bloated funds reaches -$31.0 mio. per year on average.
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Please insert Table VIII here

VI. Conclusion

In this paper, we conduct an in-depth analysis of value creation in the hedge fund industry.

Hedge funds are considered as the most active investors and could therefore extract substantial

value from capital makets. They follow complex alternative strategies whose profile in terms of

profitability and scalability may depart substantially from the long-only strategies followed by

mutual funds. Our analysis also considers the unique features of hedge fund investors. They

plausibly have more bargaining power in the fee negociation and higher levels of sophistication

than their mutual fund peers. Under this premise, we expect them to extract value from their fund

investments and allocate capital more efficiently over time.

We develop a new econometric approach to infer the entire distribution of the value-added. This

approach captures the large heterogeneity across hedge funds, while controling for the complexities

of hedge fund industry in terms of leverage and benchmarking. The cornerstone of our approach

is the specification of the fund value-added as vai = aiE[wi,t−1] − biE[w2
i,t−1]. This specification

captures the idea that value creation depends on skill (captured by ai) and scalability (captured by

bi). Ultimately, it provides a unified framework to study the drivers, split, dynamics, and optimality

of hedge fund value-added.

Our empirical analysis brings several insights. First, most hedge funds create value by exploit-

ing their unique investment skills. Their levered strategies are highly profitable but remain unscal-

able. As a result, hedge funds do not systematically create more value than mutual funds. Second,

we find that investors extract little value from hedge funds on average—a result that contrasts with

the large net alphas documented in previous studies. This result hides a large heterogeneity as

investors extract positive value from one half of the population, while paying excessive fees to the

other half. Third, hedge fund investors are able to identify funds with high value potential over

time. However, they also tend to deploy too much capital through the fund’s lifecycle. The process

of capital reallocation across funds suggests a learning process that is impactful but noisy. Finally,

we find that a rational model of active management does a good job at explaining fees and value

creation in the hedge fund industry. Consistent with the data, this model also concludes that hedge

fund investors have limited power in the fee negociation.
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TABLE I. Descriptive Statistics
Panel A provides summary statistics for an equal-weighted portfolio of all existing hedge funds at the start
of each month in the entire population and three investment categories: (i) equity funds (long-short, market
neutral), (ii) macro funds (global macro, managed futures), and (iii) arbitrage funds (relative value, event
driven). We report the mean and standard deviation of the portfolio gross and net returns (over the riskfree
rate), the mean of the portfolio management and performance fees, and the time-series average of the cross-
sectional mean (median) of capital across funds. The number in parentheses denotes the total number of
funds in each category over the sample period. The return and fee statistics are reported in percentage per
year and capital is expressed in $ mio. in terms of January 1, 2000 dollars. Panel B summarizes the results
of the time-series regression of the gross return of the equal-weighted portfolio on the returns of the five
factors included in the benchmark model. It reports the estimated portfolio beta on the market, size, value,
carry, and time-series (TS) momentum factors. It also reports the relative contribution of the five factors to
the average gross return of the portfolio and the adjusted R2 of the regression. The statistics are computed
using monthly data between January 1994 and December 2020.

Panel A: Return & Capital Statistics
Gross Returns (% p.a.) Net Returns (% p.a.) Fees (% p.a.) Capital ($ mio.)

Mean Std Dev. Mean Std Dev. MF PF Mean Median

All Funds 9.84 6.06 6.67 5.59 1.43 1.73 196 58

Equity 11.13 9.07 7.90 8.41 1.27 1.97 155 45
Long/Short 11.71 10.03 8.40 9.30 1.27 2.05 148 44
Market Neutral 6.72 3.30 4.09 2.99 1.29 8.41 208 64

Macro 8.82 7.88 5.62 6.91 1.68 1.50 250 59
Global Macro 9.73 7.83 6.22 6.94 1.70 1.78 287 72
Managed Futures 8.19 8.33 5.20 7.27 1.66 1.31 218 51

Arbitrage 9.15 5.53 6.09 5.18 1.39 1.67 204 79
Event Driven 9.57 6.65 6.33 6.15 1.45 1.80 186 76
Relative Value 8.79 5.00 5.87 4.75 1.34 1.58 214 81

Mutual Funds 8.97 15.58 7.75 15.58 1.22 906 243
Panel B: Benchmark Model

Factor Exposures Model Fit

Market Size Value Carry TS Mom. RC R2

All Funds 0.29 0.17 0.02 0.08 0.10 0.43 0.68

Equity 0.47 0.31 -0.04 0.08 0.05 0.47 0.84
Long/Short 0.52 0.35 -0.05 0.09 0.05 0.48 0.84
Market Neutral 0.11 0.01 -0.01 0.03 0.06 0.26 0.26

Macro 0.08 0.03 0.10 0.04 0.34 0.52 0.29
Global Macro 0.14 0.07 0.08 0.02 0.30 0.47 0.26
Managed Futures 0.03 0.01 0.11 0.05 0.37 0.56 0.32

Arbitrage 0.24 0.13 0.04 0.15 -0.01 0.32 0.60
Event Driven 0.31 0.19 0.05 0.10 -0.01 0.33 0.65
Relative Value 0.19 0.09 0.03 0.20 -0.02 0.32 0.48

Mutual Funds 0.95 0.38 -0.06 0.04 -0.00 0.94 0.99
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TABLE II. The Value-Added and Its Drivers
Panel A contains summary statistics for the cross-sectional distribution of the value-added for all funds
in the population and the three investment categories (equity, macro, and arbitrage funds). It reports the
mean and median, the proportions of funds with a negative and positive value-added, and the quantiles at
10% and 90%. The value-added (capital) is expressed in $mio. per year (in $mio.) in terms of January 1,
2000 dollars. Panel B contains summary statistics for the cross-sectional distribution of the skill coefficient
measured as the first-dollar alpha. This cofficient is expressed in percentage per year. Panel C contains
summary statistics for the cross-sectional distribution of the scale coefficient measured as the change in the
gross alpha for a $10 mio. increase in capital. This coefficient is expressed in percentage per year. Figures
in parentheses denote the standard deviation of each estimator.

Panel A: Cross-Sectional Distribution of Value-Added
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

All Funds 4.73 1.12 33.36 66.64 -4.77 18.51

Equity 3.69 0.89 34.61 65.39 -3.58 12.30
Macro 1.47 0.06 49.04 50.96 -10.51 14.16
Arbitrage 8.48 3.18 19.72 80.28 -2.08 26.56

Panel B: Cross-Sectional Distribution of Skill
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 12.23 10.21 14.17 85.83 -1.95 28.86

Equity 12.89 10.55 13.66 86.34 -1.85 30.36
Macro 11.19 8.60 19.28 80.72 -4.16 27.73
Arbitrage 12.28 10.58 10.80 89.20 -0.42 27.32

Panel C: Cross-Sectional Distribution of Scalability
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 1.96 0.47 18.55 81.45 -0.32 6.23

Equity 2.45 0.77 18.91 81.09 -0.31 8.03
Macro 2.17 0.51 15.96 84.04 -0.29 6.43
Arbitrage 1.22 0.29 20.12 79.88 -0.33 4.23
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TABLE III. The Analysis of the Most Valuable Funds
This table provides summary statistics for the top decile of funds sorted on the estimated value-added. Panel
A reports the cross-sectional mean (median) of the value-added, the skill coefficient, the scale coefficient,
and the average fund capital for the top funds and the entire population. The value-added is expressed in
$mio. per year in terms of January 1, 2000 dollars. The skill coefficient is measured as the first-dollar
alpha and is expressed in percentage per year. The scale coefficient is measured as the change in the gross
alpha for a $10 mio. increase in capital and is expressed in percentage per year. Figures in parentheses
denote the mean (median) rank of the coefficients of the top funds (1=low, 10=high). Panel B reports the
cross-sectional mean (median) of the value-added after controling for three additional strategies (illiquidity,
betting-against-beta (BAB), and variance). It also reports the difference with the mean (median) value-added
in the baseline case.

Panel A: Value-Added and Its Drivers
Value-Added ($ mio. p.a.) AUM ($ mio.) Skill (% p.a.) Scale (% p.a.)

Top All Top All Top All Top All

Cross-Sectional Average
All Funds 40.84 4.73 637 191 17.56 (7) 12.23 0.15 (7) 1.96

Equity 31.80 3.69 515 146 16.05 (6) 12.89 0.13 (7) 2.45
Macro 35.68 1.47 695 229 17.17 (7) 11.19 0.24 (7) 2.17
Arbitrage 51.85 8.48 689 213 19.83 (7) 12.28 0.16 (7) 1.22

Cross-Sectional Median
All Funds 31.05 1.12 489 73 14.68 (7) 10.21 0.09 (8) 0.47

Equity 24.29 0.89 339 56 11.88 (6) 10.55 0.07 (8) 0.77
Macro 26.14 0.06 529 75 14.21 (7) 8.60 0.07 (8) 0.51
Arbitrage 40.03 3.18 615 105 15.58 (7) 10.58 0.10 (8) 0.29

Panel B: Impact of Non-Replicable Strategies
Value-Added Difference With Base Case

Liquidity BAB Variance All Liquidity BAB Variance All

Cross-Sectional Average
All Funds 40.86 37.40 33.62 33.99 -0.02 3.43 7.22 6.85

Equity 32.00 28.07 26.22 25.74 -0.20 3.73 5.58 6.06
Macro 35.82 34.67 34.17 35.28 -0.14 1.01 1.51 0.40
Arbitrage 51.44 46.65 39.86 39.56 0.42 5.20 11.99 12.29

Cross-Sectional Median
All Funds 32.52 29.22 27.16 26.36 -1.47 1.83 3.89 4.69

Equity 25.15 22.33 20.21 19.95 -0.86 1.96 4.08 4.34
Macro 27.56 25.73 28.26 25.20 -1.42 0.40 -2.12 0.94
Arbitrage 41.19 38.63 29.78 30.97 -1.15 1.40 10.25 9.07
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TABLE IV. The Net Value-Added and Its Drivers
Panel A contains summary statistics for the cross-sectional distribution of the net value-added for all funds
in the population and the three investment categories (equity, macro, and arbitrage funds). It reports the
mean and median, the proportions of funds with a negative and positive value-added, and the quantiles at
10% and 90%. The net value-added is expressed in $mio. per year in terms of January 1, 2000 dollars.
Panel B contains summary statistics for the cross-sectional distribution of the net skill coefficient measured
as the net first-dollar alpha. This cofficient is expressed in percentage per year. Panel C contains summary
statistics for the cross-sectional distribution of the net scale coefficient measured as the change in the net
alpha for a $10 mio. increase in capital. This coefficient is expressed in percentage per year. Figures in
parentheses denote the standard deviation of each estimator.

Panel A: Cross-Sectional Distribution of Net Value-Added
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

All Funds 0.32 0.03 49.55 50.45 -8.40 10.06

Equity 0.12 -0.07 51.91 48.09 -6.38 5.93
Macro -3.05 -0.72 64.88 35.12 -15.82 6.67
Arbitrage 3.16 0.93 34.89 65.11 -4.75 15.01

Panel B: Cross-Sectional Distribution of Skill
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 8.96 7.18 19.02 80.98 -3.73 23.38

Equity 9.60 7.86 18.83 81.17 -3.54 24.98
Macro 7.90 6.08 24.78 75.22 -6.00 22.42
Arbitrage 9.02 7.50 14.77 85.23 -1.73 21.83

Panel C: Cross-Sectional Distribution of Scalability
Proportions (%) Quantiles (% p.a.)

Mean (% p.a.) Median (% p.a.) Negative Positive 10% 90%

All Funds 1.79 0.44 18.01 81.99 -0.27 5.67

Equity 2.26 0.69 17.64 82.36 -0.26 7.49
Macro 1.93 0.47 15.58 84.42 -0.24 5.82
Arbitrage 1.13 0.25 20.32 79.68 -0.30 3.91
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TABLE V. The Value-Added Over the Fund’s Lifecycle
Panel A contains summary statistics for the cross-sectional distribution of the value-added across the five
subperiods of the fund’s lifecycle (measured by splitting the fund observations into five equal subperiods).
It reports the mean and median, the proportions of funds with a negative and positive value-added, and
the quantiles at 10% and 90%. The subperiod value-added is expressed in $mio. per year in terms of
January 1, 2000 dollars. Panels B to D report the same summary statistics for the three investment categories
(equity, macro, and arbitrage funds). Figures in parentheses denote the estimated standard deviation of each
estimator.

Panel A: All Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 3.90 1.60 22.11 77.89 -3.08 15.79
Subperiod 2 5.48 1.72 26.52 73.48 -4.81 20.92
Subperiod 3 5.38 1.50 30.16 69.84 -5.10 21.74
Subperiod 4 3.94 1.12 33.19 66.81 -6.48 20.47
Subperiod 5 4.99 1.15 28.14 71.86 -3.42 19.90

Panel B: Equity Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 2.52 1.45 22.31 77.69 -2.92 12.03
Subperiod 2 4.29 1.48 28.50 71.50 -4.09 14.21
Subperiod 3 4.88 1.30 30.28 69.72 -3.36 13.72
Subperiod 4 3.38 0.82 35.37 64.63 -4.77 12.57
Subperiod 5 3.41 0.95 28.92 71.08 -2.48 12.93

Panel C: Macro Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 2.11 0.78 31.55 68.45 -7.08 13.44
Subperiod 2 2.36 0.61 37.55 62.45 -10.77 17.14
Subperiod 3 0.98 0.34 43.81 56.19 -12.85 18.46
Subperiod 4 -0.97 0.12 46.87 53.13 -14.59 15.07
Subperiod 5 2.85 0.41 39.59 60.41 -7.74 18.43

Panel D: Arbitrage Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 6.89 2.75 14.57 85.43 -1.13 22.19
Subperiod 2 9.30 3.59 15.66 84.34 -1.55 29.60
Subperiod 3 9.37 3.19 19.43 80.57 -3.37 31.98
Subperiod 4 8.41 2.83 20.02 79.98 -2.97 29.59
Subperiod 5 8.48 2.70 18.33 81.67 -1.99 28.95
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TABLE VI. The Net Value-Added Over the Fund’s Lifecycle
Panel A contains summary statistics for the cross-sectional distribution of the net value-added across the five
subperiods of the fund’s lifecycle (measured by splitting the fund observations into five equal subperiods).
It reports the mean and median, the proportions of funds with a negative and positive value-added, and
the quantiles at 10% and 90%. The subperiod net value-added is expressed in $mio. per year in terms of
January 1, 2000 dollars. Panels B to D report the same summary statistics for the three investment categories
(equity, macro, and arbitrage funds). Figures in parentheses denote the estimated standard deviation of each
estimator.

Panel A: All Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 0.87 0.76 31.00 69.00 -5.51 9.99
Subperiod 2 0.93 0.62 38.30 61.70 -9.27 12.35
Subperiod 3 0.34 0.35 43.66 56.34 -9.35 12.13
Subperiod 4 -1.09 0.14 46.18 53.82 -10.14 11.14
Subperiod 5 0.52 0.34 40.66 59.34 -6.29 11.43

Panel B: Equity Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 -0.25 0.63 32.65 67.35 -5.20 6.77
Subperiod 2 0.42 0.48 40.63 59.37 -7.49 8.55
Subperiod 3 0.89 0.22 45.97 54.03 -7.13 7.62
Subperiod 4 -0.45 0.03 48.52 51.48 -8.26 6.47
Subperiod 5 0.01 0.22 42.41 57.59 -4.48 6.12

Panel C: Macro Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 -0.55 0.25 40.49 59.51 -9.76 8.75
Subperiod 2 -2.00 -0.01 50.45 49.55 -15.96 9.03
Subperiod 3 -4.43 -0.36 56.58 43.42 -18.37 10.08
Subperiod 4 -6.44 -0.47 59.64 40.36 -19.26 7.66
Subperiod 5 -1.89 -0.04 52.11 47.89 -12.62 10.22

Panel D: Arbitrage Funds
Proportions (%) Quantiles ($ mio. p.a.)

Mean ($ mio. p.a.) Median ($ mio. p.a) Negative Positive 10% 90%

Subperiod 1 3.29 1.43 21.70 78.30 -3.24 14.72
Subperiod 2 3.80 1.53 26.16 73.84 -5.38 18.47
Subperiod 3 3.39 1.29 30.92 69.08 -6.90 17.54
Subperiod 4 2.31 0.94 33.00 67.00 -7.11 16.57
Subperiod 5 2.99 1.14 29.73 70.27 -4.91 16.91
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TABLE VII. Comparison of Actual and Optimal Values
Panel A reports the cross-sectional mean (median) of the actual fees and optimal fees, as well as their
difference (in level and in proportion of the mean (median) optimal fees) for the entire sample of funds and
three groups sorted on actual fees (low, medium, high). It also reports the cross-sectional mean (median) of
management fees, performance fees, and the skill coefficient measured as the first-dollar alpha. The fees and
the skill coefficient are expressed in percentage per year. Panel B reports the cross-sectional mean (median)
of the actual value-added over the full period and the optimal value-added, as well as their difference (in
level and in proportion of the mean (median) optimal value-added). It also reports the same statistics for
the value-added over the last subperiod. Panel C reports the cross-sectional mean (median) of the net actual
value-added over the full period and the optimal net value-added, as well as their difference (in level and in
proportion of the mean (median) optimal value-added). It also reports the same statistics for the net value-
added over the last subperiod. The value-added is expressed in $ mio. per year in terms of January 1, 2000
dollars.

Panel A: Fees
Comparison Additional Info

Actual Optimal Diff. Diff.(%) MF PF Skill

Cross-Sectional Average
All Funds 3.49 9.32 -5.82 0.63 1.49 2.00 19.64

Low Fee 2.03 6.47 -4.44 0.69 1.16 0.87 13.95
Medium Fee 3.51 8.40 -4.89 0.58 1.55 1.96 17.81
High Fee 4.94 13.07 -8.13 0.62 1.75 3.18 27.14

Cross-Sectional Median
All Funds 3.53 7.92 -4.39 0.55 1.50 1.93 16.84

Low Fee 2.32 5.35 -3.03 0.57 1.13 0.87 11.70
Medium Fee 3.53 6.93 -3.40 0.49 1.50 1.92 14.86
High Fee 4.55 11.55 -7.00 0.61 2.01 2.97 24.10

Panel B: Value-Added
Comparison Full Period Comparison Last Period

Actual Optimal Diff. Diff.(%) Actual Optimal Diff. Diff.(%)

Cross-Sectional Average
All Funds 21.40 56.86 -35.46 0.62 20.32 56.86 -36.54 0.64

Low Fee 16.70 60.65 -43.95 0.72 16.71 60.65 -43.94 0.72
Medium Fee 21.16 50.59 -29.43 0.58 22.87 50.59 -27.72 0.55
High Fee 26.34 59.31 -32.97 0.56 21.40 59.31 -37.91 0.64

Cross-Sectional Median
All Funds 16.61 36.32 -19.70 0.54 18.79 36.32 -17.52 0.48

Low Fee 14.48 32.59 -18.11 0.56 17.91 32.59 -14.68 0.45
Medium Fee 17.65 36.97 -19.32 0.52 19.12 36.97 -17.85 0.48
High Fee 18.54 39.55 -21.01 0.53 19.21 39.55 -20.34 0.51

Panel C: Net Value-Added
Comparison Full Period Comparison Last Period

Actual Optimal Diff. Diff.(%) Actual Optimal Diff. Diff.(%)

Cross-Sectional Average
All Funds 7.46 7.67 -0.20 0.00 4.99 7.67 -2.68 0.05

Low Fee Group 3.23 10.71 -7.47 0.12 2.29 10.71 -8.42 0.14
Medium Fee Groups 6.83 7.03 -0.20 0.00 8.28 7.03 1.26 0.02
High Fee Group 12.32 5.26 7.06 0.12 4.42 5.26 -0.84 0.01

Cross-Sectional Median
All Funds 7.97 4.40 3.57 0.10 10.63 4.40 6.23 0.17

Low Fee 6.52 5.69 0.83 0.03 10.76 5.69 5.07 0.16
Medium Fee 7.90 4.49 3.41 0.09 10.81 4.49 6.32 0.17
High Fee 10.09 3.15 6.95 0.18 10.10 3.15 6.95 0.18
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TABLE VIII. Departure From Optimality

Panel A: Impact of Suboptimal Fees
Value-Added Net Value-Added

N Equilibrium Optimal Diff. Diff.(%) Equilibrium Optimal Diff. Diff.(%)

Cross-Sectional Average
All Funds 536 42.23 56.86 -14.63 0.26 10.61 7.67 2.94 0.05

Low Fee 179 45.26 60.65 -15.39 0.25 15.88 10.71 5.17 0.09
Medium Fee 178 39.18 50.59 -11.41 0.23 8.73 7.03 1.70 0.03
High Fee 179 42.24 59.31 -17.07 0.29 7.22 5.26 1.96 0.03

Cross-Sectional Median
All Funds 536 26.69 36.32 -9.62 0.26 6.35 4.40 1.95 0.05

Low Fee 179 24.58 32.59 -8.01 0.25 8.08 5.69 2.39 0.07
Medium Fee 178 27.60 36.97 -9.37 0.25 6.27 4.49 1.77 0.05
High Fee 179 26.54 39.55 -13.01 0.33 4.80 3.15 1.65 0.04

Panel B: Impact of Capital Misallocation
Value-Added Net Value-Added

N Actual Equilibrium Diff. Diff.(%) Actual Equilibrium Diff. Diff.(%)

Cross-Sectional Average
All Funds 536 21.40 42.23 -20.83 0.37 7.46 10.61 -3.15 0.06

Low Fee 179 16.70 45.26 -28.56 0.47 3.23 15.88 -12.64 0.21
Medium Fee 178 21.16 39.18 -18.02 0.36 6.83 8.73 -1.90 0.04
High Fee 179 26.34 42.24 -15.90 0.27 12.32 7.22 5.11 0.09

Cross-Sectional Median
All Funds 536 16.61 26.69 -10.08 0.28 7.97 6.35 1.62 0.04

Low Fee 179 14.48 24.58 -10.09 0.31 6.52 8.08 -1.56 0.05
Medium Fee 178 17.65 27.60 -9.95 0.27 7.90 6.27 1.64 0.04
High Fee 179 18.54 26.54 -8.00 0.20 10.09 4.80 5.30 0.13
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Figure 1. Impact of Leverage on the Skill and Scale Coefficients
Panel A reports the average skill coefficient and its unlevered version for all funds in the population and
the three investment categories (equity, macro, and arbitrage funds). The skill coefficient is measured as
the first-dollar alpha and is expressed in percentage per year. Panel B reports the average scale coefficient
and its unlevered version, The scale coefficient is measured as the change in the gross alpha for a $10 mio.
increase in capital and is expressed in percentage per year.
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Figure 2. Comparison of the Value-Added With Mutual Funds
This figure compares the average value-added for hedge funds and mutual funds. The leftmost bars show
the average values for all hedge funds in the population and the three investment categories (equity, macro,
and arbitrage funds). The rightmost bars show the average values for all mutual funds in the population and
the six fund groups (small/large cap, low-/high-turnover, direct-/broker sold). The value-added is expressed
in $ mio. per year in terms of January 1, 2000 dollars.
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Figure 3. Comparison of the Net Value-Added With Mutual Funds
This figure compares the average net value-added for hedge funds and mutual funds. The leftmost bars show
the average values for all hedge funds in the population and the three investment categories (equity, macro,
and arbitrage funds). The rightmost bars show the average values for all mutual funds in the population
and the six fund groups (small/large cap, low-/high-turnover, direct-/broker sold). The net value-added is
expressed in $ mio. per year in terms of January 1, 2000 dollars.
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Figure 4. Variation in Capital Over the Fund’s Lifecycle
This figure plots the cross-sectional mean of the ratio of the average fund capital during each subperiod of
its lifecycle (measured by splitting the fund observations into five equal subperiods) on the average fund
capital over the entire period. We conduct this analysis for the entire population and the three investment
categories (equity, macro, and arbitrage funds). The capital is expressed in $ mio. in terms of January 1,
2000 dollars.
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Figure 5. Impact of Subtimal Fees
This figure illustrates how the choice of fees by the fund affects the equilibrium value-added. Panel A plots
the case where fees are too low relative to their optimal value. As a result, the equilibrium capital is above
its optimal level, and the equilibrium (net) value-added is below (above) its optimal level. Panel B plots the
case where fees are too high relative to their optiomal value. As a result, the equilibrium capital is below its
optimal level, the equilibrium (net) value-added is below (below) its optimal level.

Panel A Low Fees

Panel B High Fees
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Figure 6. Impact of Capital Misallocation
This figure illustrates how the capital allocation by investors can imply a short-run departure of the value-
added from its optimal value. Panel A plots the case where the actual capital is temporarily below its
equilibrium level. As a result, the net value-added is above its optimal level, while the impact on the value-
added is uncertain. Panel B plots the case where the actual capital is temporarily above its equilibrium level.
As a result, the (net) value-added is below (below) its optimal level.

Panel A Capital Undercapacity

Panel B Capital Overcapacity
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