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Abstract

This paper combines a portfolio construction problem with demand esti-
mation techniques to estimate US institutional investors’ demand for green
stocks. Our innovative model allows for heterogeneous investor portfolios
due to varying emphasis on non-financial characteristics as well as different
returns beliefs. A novel estimation approach employs a mixed logit demand
specification providing realistic substitution patterns across assets. Results
show that US institutional investors on average favor green stocks, a prefer-
ence that varies with time and investor size. A counterfactual policy banning
pension funds from green investing, results in capital gains for brown stocks
and losses for green stocks.
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1 Introduction

The last decade has seen a steady rise in sustainable investments, with global funds in-
vested in sustainable funds reaching USD 2.7 trillion in the first quarter of 2023 (Morn-
ingstar (2023a)). This has been accompanied by growing interest in sustainable invest-
ment from asset managers, with 85% of them already implementing or planning to im-
plement sustainable investing (Morgan Stanley (2022)), and a growing supply of sustain-
able funds available to investors (see for example Morningstar (2023b)). Equity markets
will play a fundamental role in the transition to an environmentally sustainable econ-
omy by providing incentives for listed firms to adopt cleaner technologies and practices.
Understanding the investor demand for green stocks and its consequences for equity
prices is a key part of understanding the incentives of listed firms to align their business
strategies with an environmentally sustainable economy.

This paper presents a framework to study the demand for green stocks of US insti-
tutional investors. The key idea in this framework is to combine a traditional portfolio
construction problem with demand estimation techniques to elicit the investors’ revealed
preferences over different stocks that are consistent with their portfolio holdings.

A major empirical challenge to study the demand for green stocks is that investors
vary greatly in the portfolios they construct. One largely studied reason to explain the
differences in portfolio holdings is that investors construct different portfolios because
they have different beliefs over future asset returns. Another less studied reason for
portfolio heterogeneity is that, even if investors have common beliefs, they can assign
varying importance to the characteristics of the portfolios they construct. That is, they
can exhibit taste heterogeneity over portfolio characteristics. For example, investors can
tilt their portfolios toward environmentally sustainable, or green assets, for motives un-
related to future returns.

The demand for assets framework presented in this paper can accommodate both
belief and taste heterogeneity, as motives for differences in portfolio holdings. Belief
heterogeneity over future returns is codified via investor-specific conditional expecta-
tions, while taste heterogeneity allows investors to care about portfolio characteristics
beyond those directly related to an expected return-versus-risk trade off. We apply this
framework to estimate the demand for stocks of US institutional investors as explained
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by environmental scores and return-related stock characteristics. Moreover, using the
estimated demand, we conduct a counterfactual exercise to study the effects on equity
prices and aggregate holdings of a ban on green investing for pension funds, a policy
discussed in the US Senate (Morgan (2023)).

This project innovates on the recent influential work by Koijen and Yogo (2019)
(KY2019) that shows that an asset demand approach combined with a market clear-
ing condition implies a valid asset pricing model. KY2019 rekindled a classic literature
on modeling asset demand and advocates for applying industrial organization (IO) tools
to asset pricing models. However, the microfoundations for asset demand presented in
KY2019 are based exclusively on belief heterogeneity over future returns, not allowing
for taste heterogeneity to influence investors’ demand, and the substitution patterns be-
tween assets are restricted by the demand specification they used.

The methodological contributions of this paper are twofold. First, the microfoun-
dations of the asset demand framework presented in this project also allow for taste
heterogeneity in the portfolio construction problem in addition to belief heterogeneity.
Allowing for taste heterogeneity in portfolio characteristics opens the door to studying
investor behaviors that do not fit within into the traditional expected returns-versus-risk
paradigm. Examples of such behaviors include: (i) investment strategies based on Envi-
ronmental, Social, and corporate Governance (ESG) performance metrics of the compa-
nies, which take into account stock characteristics unrelated to returns. (ii) “Sin” stock
dis-investing, where investors reduce their investments or completely avoid stocks that
belong to so-called sin industries, like alcohol, tobacco, gambling, adult entertainment,
or weapon manufacturing, based on ethical considerations alone. (iii) The deletion of
a stock from a stock index can mechanically change the demand for the stock if, for
example, there are hedge funds or mutual funds designed to track the index, even if the
fundamentals of the company remain unchanged.

The second contribution of this paper is to present and estimate a mixed-logit de-
mand specification for the demand for stocks.1 In this specification, heterogeneity is
captured by investor-specific coefficients that are modeled as functions of investor de-
mographics (see Berry et al. (1995) for the seminal application of this framework, Berry

1The mixed logit demand is also referred to as random coefficients demand in the IO literature.
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and Haile (2021), Gandhi and Nevo (2021), and Conlon and Gortmaker (2020) for mod-
ern practices on demand estimation for differentiated products). KY2019 derive a logit
demand system for assets where price elasticities are proportional to portfolio shares.
To see why this is a restrictive feature, imagine that the stocks for two companies have
the same portfolio weights (market shares in this context), but these companies belong
to different industries, for example technology and energy. These companies are likely
to have very different fundamentals; however, under a logit demand system, portfolio
holdings of another technology stock would react identically to a price change from both
stocks. The richer investor-level heterogeneity captured by mixed logit demand delivers
flexible substitution patterns between assets, improving on the restrictive price elastici-
ties of a logit demand specification.

We apply the mixed logit demand specification to study the demand for stocks of US
institutional investors. We use data on their holdings of US stocks along with data on
stock characteristics. To construct stock characteristics, we combine price and accounting
data with information on the environmental performance of listed companies in the form
of environmental scores (E-scores) from the MSCI rating agency. This application quan-
tifies the extent to which institutional investors value the green metrics of the stocks they
select for their portfolio while also controlling for returns-related characteristics. While
it is not possible to distinguish whether each characteristic is included in the demand
due to belief or taste heterogeneity using only holdings data, survey evidence supports
the interpretation of environmental aspects as a taste characteristic.2

The estimates rely on quarterly data of the stock holdings of US institutional investors
and the corresponding stock characteristics from 2001-Q1 to 2019-Q4, with estimation be-
ing conducted in two-year windows. The first finding is that the revealed taste for green
stocks fluctuates over time. Throughout the estimation sample, we find a positive taste
for green stocks as measured by a positive semi-elasticity for E-scores that is increasing
in the second half of the sample. Moreover, in the period after the Great Recession (2007-
Q4 to 2009-Q2) there is an increase in the range of values for the coefficient on E-scores,
showing an increase in the heterogeneity in the sensitivity to green characteristics across

2Giglio, Maggiori, Stroebel, Tan, Utkus and Xu (2023) examine a survey of retail investors on the
motives for Enviromental Social and Governance (ESG) investing and find that generally investors expect
ESG investments to underperform the market and that only 7% of investors in ESG assets were motivated
by return expectations.
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investors. This suggests that after periods of economic downturn, some investors may
care relatively more about the return-related characteristics of the stocks and relatively
less about the environmental-friendliness of the companies underlying the stocks.

We also find that the coefficient corresponding to E-scores for a particular investor
is a function of the investor’s assets under management. In the last ten years of the
sample, institutions with more assets under management have on average a higher taste
for green stocks. As a benchmark, we repeated the estimation exercise under a logit
demand specification where all investors share the same sensitivity to the green metrics.
Such estimates exhibit much less time-series variation.

In a counterfactual exercise, we use the estimated demand system to study the effects
of a ban on green investing for pension funds on equity prices and aggregate holdings.
On March 1st 2023, the US Senate passed a bill to prevent pension fund managers from
basing investment decisions on factors like climate change (Morgan (2023)). President
Biden vetoed the bill days later (Thomas (2023)), but various US State Legislatures have
approved similar initiatives.3 In the counterfactual exercise this policy is implemented
by making the demand for stocks of pension funds perfectly inelastic to the environmen-
tal performance of the stocks, that is, investors are forced to consider only return-related
characteristics when constructing their portfolios.

Using the data and estimates for 2019-Q1, we find that stock with low E-scores,
commonly referred as brown stocks, will benefit the most with higher counterfactual
prices. A portfolio containing the bottom quintile of green stocks is estimated to have an
associated average price increase of 1.1% under the counterfactual. In contrast, the top
quintile portfolio has an average price decrease of 1.6%. Results for the counterfactual
exercise using a logit demand specification exhibit much smaller price changes due to
the restrictive substitution patterns of logit demand.

Related literature. As mentioned above, this project is most closely related to Koijen
and Yogo (2019). In that paper, the authors also propose a demand system approach to
asset pricing and estimate a model that jointly explains asset prices and quantities. This

3The US House of Representatives later tried to override President Biden’s veto but failed to secure the
necessary votes for that measure (Foran and Wilson (2023)).
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project extends the framework from KY2019 in three ways. First, our model can accom-
modate taste heterogeneity allowing investors to consider stock characteristics beyond
those related to returns when forming their portfolios. Second, a demand system with
a mixed logit demand specification provides flexible substitution patterns between as-
sets, improving on the restrictive elasticities of the logit demand model used in KY2019.
Third, KY2019 define the market as pools of investors, while this paper employs a more
natural market definition: the US stock market in a given quarter. Estimation at the
market level facilitates dealing with the endogeneity of prices and allows us to consider
a wider range of classical instrumental variables based on demand shifters suggested by
the IO literature.

More broadly, this paper contributes to the literature that models asset demand from
investors. Classic works include Brainard and Tobin (1968), Rosen (1974), and Lucas
(1978). This literature has recently received renewed attention with the use of new stock
holdings data and strategies to tackle endogeneity problems. Recent examples include
KY2019 and Koijen and Yogo (2020). Koijen and Yogo (2020) builds on the tools pre-
sented in KY2019 to study a demand system for financial assets that includes currencies,
bonds, and stocks across several countries. Jiang, Richmond and Zhang (2020) use a de-
mand approach to portfolio construction to study global imbalances in net foreign assets
across countries. Another example of a demand system approach is in Han, Roussanov
and Ruan (2021), where the authors use KY2019’s demand approach to quantify the
impact of underperforming mutual funds on the overpricing of high-beta stocks. This
project contributes to these recent papers by studying more than return characteristics
as determinants of investors’ demand curves, the use of a mixed logit demand specifica-
tion, and the use of modern instrumental variables suggested by the IO literature.

We contribute to a recent but growing literature that studies how the environmental
performance of stocks matters for equity holdings and prices. Theoretical approaches
include Pástor, Stambaugh and Taylor (2021), where the authors develop a model where
there are non-pecuniary benefits from investing in green assets. In their model the
non-pecuniary benefits boost demand for green assets, which in turn pushes up their
prices and leads to lower expected returns. We contribute by showing how to combine
heterogeneous non-pecuniary benefits into the micro-foundations of the asset demand
framework in KY2019.
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This paper also contributes to the literature that employs asset demand frameworks
to empirically examine how ESG characteristics matter for investment decisions. Baker,
Egan and Sarkar (2022) use a revealed preference argument to interpret the fees for ESG
funds as evidence that investors are willing, on average, to pay 20 basis points more per
annum to invest in a fund with an ESG mandate as compared to an otherwise identical
mutual fund without an ESG mandate. Pastor, Stambaugh and Taylor (2023) employ an
asset demand approach to study the degree investors tilt their portfolios between green
and brown stocks; they find that on aggregate institutional investors have become in-
creasingly green, exhibiting a positive green tilt, while non-institutional investors have
become browner, exhibiting a negative green tilt. These findings are consistent with our
empirical result of a positive and increasing preference for green stocks in recent years
by institutional investors.

Finally, this paper expands the studies that conduct counterfactual exercises related
to green investment strategies. Koijen, Richmond and Yogo (2023) use a demand sys-
tem with stock characteristics related to environmental performance to study the impact
of climate-related induced shifts on equity prices. They study a counterfactual exercise
where there is an increased sensitivity for green stocks and find that it implies capital
gains for passive investment institutions and capital losses for active investment institu-
tions. Zhang et al. (2024) find that counterfactual scenarios lead to significant different
stocks returns according to their ESG characteristics; they consider how stock returns
would change if there is increased demand for ESG characteristics by investors, if there
are shifts in assets under management from institutions with low demand for ESG char-
acteristics to those with high demand, and if there are changes in the ESG characteristics
of the stocks themselves. We contribute to this body of work by studying the effects of a
ban on green investing on pension funds while employing the methodological contribu-
tions mentioned above.

The rest of this paper is organized as follows: section 2 presents the investor portfolio
problem and how a demand for assets with a tractable logit functional form can be
obtained from its solution. Section 3 presents how mixed logit demand can be estimated
in the context of demand for stocks. Section 4 presents the empirical application that
estimates the demand for green stocks from the institutional investors in the US. Section
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5 shows the counterfactual exercise that studies the effects of a ban on green investing
for pension funds. Finally, section 6 concludes and discusses future avenues of work.

2 Asset Demand with Taste Heterogeneity

In this section we show how a demand for assets with an empirically tractable logit
functional form can be obtained from the solution of an traditional portfolio problem.
In this set up we allow for investor belief and taste heterogeneity; we discuss how it re-
lates to traditional portfolio problems in the asset pricing literature as well as recent key
contributions that model asset demand. The exposition is divided in four subsections.
The first one presents the investor portfolio problem and the second one its solution.
Importantly, the third subsection presents the assumptions needed to obtain the empiri-
cally tractable demand for assets; and the fourth subsection presents the market clearing
condition that pin downs equilibrium prices.

2.1 Investor Portfolio Problem

In this subsection we present the portfolio construction problem that investors solve. The
key assumption is that investors differ in their beliefs about future returns and assign
varying importance to non-financial characteristics of the portfolios they construct.

To facilitate exposition for the remainder of the paper we consider the assets available
to investors to be stocks, but the framework in this section applies to asset classes other
than stocks, and of course to combinations of assets from different classes. Let t = 1, ..., T
denote the stock market in given period. In our application the market definition cor-
responds to the US stock market at a quarter t. In each of these markets there are It

investors indexed by i = 1, ..., It, and each investor i has to allocate Ait dollars of assets
under management (AUM) in market t among Jt available stocks and an outside option.
Stocks are treated as differentiated investment products that are demanded by investors.
Let j = 1, ..., Jt index one of the Jt available stocks and j = 0 denote the outside option.4

In our context the outside option denotes the possibility that investors allocate a fraction
of their AUM into none of the stocks in Jt.

4When there is no possibility of confusion, we use Jt to denote the set of inside goods and the cardinality
of the set itself, that is Jt = {1, 2, ..., |Jt|}.
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Let Rt+1 denote a Jt-vector of gross returns between t and t + 1 for the stocks avail-
able in period t; similarly R0

t+1, a scalar, denotes the gross return of the outside asset. For

each stock j the gross return between t and t + 1 is computed as Rt+1,j =
Vt+1,j

Pt,j
, where

Pt,j is the price per share of stock j in t and Vt+1,j is the payoff per share of j in t + 1.5

Each investor solves a two-period problem between the current period (t) and the
next period (t + 1) where they construct a portfolio by choosing portfolio weights wit (a
Jt-vector), such that

max
wit

Eit[log(Ai,t+1)] + a′iC
′
twit (1)

s.t. Ai,t+1 = Ait

[
R0

t+1 + w′
it[Rt+1 − R0

t+11]
]

(2)

wit ≥ 0; 1′wit < 1 (3)

In this problem investors value portfolios according to the characteristics they offer.
The first portfolio characteristic that investors value is tomorrow’s terminal wealth Ai,t+1

associated with portfolio wit.6 The second term in the objective function in (1) refers to
other portfolio characteristics valued by investors and summarized by the portfolio pro-
file based on stock characteristics contained in Ct. The part of utility that comes from
tomorrow’s dollar value for the portfolio enters through a log utility, while the current
value for investor i of other portfolio characteristics enters with linear weights ai, an
investor-specific KC-vector. The values of ai capture investor preferences over the char-
acteristics included in Ct. The log specification in the utility for tomorrow’s portfolio
wealth follows KY2019 and a long tradition that dates back to Samuelson (1969).7 If
the entries of ai are set to zero, taste heterogeneity is irrelevant and we are in a context
where only pecuniary factors matter for portfolio construction.

The matrix Ct denotes a JT ×KC matrix where row j contains a KC-vector cjt of charac-
teristics for stock j that are relevant for the profile of portfolio wit beyond future wealth.

5In many contexts Vt+1,j is divided as sum of the price per stock of stock j in t + 1, Pt+1,j plus the
dividends per stock in t + 1, Dt+1,j; however, in our setting investors only care about the overall future
payoff Vt+1,j, and not whether is was generated by capital gains or dividends.

6This is equivalent to a set up where investors derive utility from next’s period consumption while
assuming they consume all their wealth in the next period; that is Ci,t+1 = Ai,t+1 where Ci,t+1 stands for
the consumption of investor i in period t + 1.

7In a multi period setup, assuming Log utility collapses the portfolio problem into a two-period prob-
lem, as in our setup.
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Eit[·] denotes the conditional expectation for investor i at time t, that is Eit[·] ≡ E[·|Iit],
where Iit denotes the information set of investor i at time t. In this model it is assumed
that investors do not learn from the actions of others investors; an assumption com-
monly referred in the literature as investors agree to disagree. The first constraint in (2),
where 1 denotes a Jt-vector of ones, denotes the evolution of the portfolio’s wealth by
choosing portfolio wit; while the constraints in (3) impose that all wealth is invested in
either stocks or the outside option, as well as short-sale restrictions.8

Including stock characteristics into the value of selecting a portfolio wit may be rele-
vant to empirically capture investment decisions that do not entirely fit into an expected
return-versus-risk investment paradigm. Examples of this type of investment behavior
include: (i) green stock investing where investor value the enviromental performance of
the stocks they include in their portfolios, (ii) more generally in investment strategies
based on environmental, social, and corporate governance (ESG) metrics of the compa-
nies that not only take into account returns and wealth accumulation when selecting
stocks to invest. (iii) “Sin” stock dis-investing, where investor avoid including stocks
that belong to a so-called “sin” industry like tobacco, alcohol, gambling, adult entertain-
ment or guns; despite the returns these stocks may offer. (iv) Another example is the
addition or deletion of a stock into an stock index (e.g. S&P 500, Russell 1000 or The
Dow Jones Industrial Average). The change in the index composition can mechanically
induce demand for the stock in question, for example by mutual funds or hedge fund
strategies designed to track the index, this despite that the stock fundamentals may re-
main unchanged. This modeling choice generalizes the setup in KY2019, where next’s
period portfolio wealth, Ai,t+1, is the only relevant characteristic to construct a portfolio.

Notice that the problem in (1) accommodate two sources of heterogeneity. First,
it captures belief heterogeneity over future returns, which is codified via differential
information on the expectations operator, Eit[·]. Under homogenous beliefs it would be
the case that Eit[·] = Et[·] for all i. And second, it captures taste heterogeneity over stock
characteristics via the weights ai, if all investors value portfolio characteristics equally
then ai = a for all i. Together, the objective function in (1) accommodates these two
channels for heterogeneity.

8For a paper that relaxes short sale constraints see Tian (2022).
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2.2 Optimal Portfolio Weights

This subsection presents the solution to the portfolio construction problem. The approx-
imate solution for positive portfolio weights has a traditional form that depends on the
first two moments of expected returns but also takes into account investor preferences
over non-financial characteristics.

In order to provide the solution to the investor’s problem we introduce some no-
tation. Denote by rx

t+1 the vector of excess log returns, rx
t+1 = log(Rt+1)− log(R0

t+1)1.
Moreover, let Σ̃it, a Jt × Jt matrix, denote the variance-covariance matrix

Σ̃it = Eit

[(
rx

t+1 − Eit[rx
t+1]

) (
rx

t+1 − Eit[rx
t+1]

)′] ,

and let µ̃it, a Jt-vector of conditional expectations adjusted by variance:

µ̃it = Eit[rx
t+1] +

σ̃2
it
2

,

where σ̃2
it is a vector of the diagonal elements of Σ̃it. Furthermore, without loss of

generality, partition the asset space between the J1
t assets with positive weights on the

investor’s problem, that is those assets for which short sale constraints are not binding
so we can rewrite Σ̃it and µ̃it as

µ̃it =

(
µit

µ
(2)
it

)
, Σ̃it =

(
Σit Σ(1,2)

it

Σ(2,1)
it Σ(2,2)

it

)

where µit is a J1
t -vector and Σit a J1

t × J1
t matrix, both corresponding to the assets with

positive weights. The following proposition parallels Lemma 1 in the KY2019 framework
in characterizing the solution for the optimal portfolio but accounts for the extra term
that allows for taste heterogeneity.

Proposition 1. The solution to the investor problem in (1)-(3), w∗
it, is characterized by the Euler

equation

Eit

[(
Ait+1

Ait

)−1

Rt+1

]
= 1 −

(
I − 1w∗′

it

)
(Λit − λit1 + Ctai) (4)

where Λit and λit are Lagrange multipliers on (2) and (3) respectively. Moreover, the positive
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optimal portfolio weights can be approximated (over a short period horizon) as

w∗
it ≈ Σ−1

it (µit − λit1 + Ctai) . (5)

The proof for Proposition 1 is shown in Appendix A. The Euler equation in (4) gen-
eralizes the set up in KY2019, since the case with no taste heterogeneity, ai = 0 for
all i, results in the Euler equation presented in KY2019’s model.9 Furthermore, as in
KY2019, if investors do not face short-sale constraints (Λit = 0 and λit = 0) and have
homogeneous beliefs (Eit[·] = Et[·] for all i), then the Euler equation becomes

Et

[(
Ait+1

Ait

)−1

Rt+1

]
= 1,

which is a classic moment condition commonly tested in the literature on consumption-
based asset pricing. The message in the second part of proposition 1, is that investor
i’s demand for stocks, given by portfolio weights w∗

it, is determined by three compo-
nents: uncertainty around next period returns (Σit), expected returns (via µit) and taste
sensitivity (Ctai). All else equal, if investor i has more uncertainty around next pe-
riod returns for some assets then the portfolio weights on those assets will be relative
smaller. Similarly, keeping Σit fixed, stock holdings are increasing on expected returns.
More generally, in our setup stock holdings vary according to the additional value stocks
contribute the investors’ utility derived from portfolio characteristics. If a stock j con-
tribute positively to a portfolio characteristics k valued positively by investor i, that is
(ai,kcjt,k) ≥ 0, then increasing such characteristic for stock j will imply an increase the in
the optimal holdings of j for investor i.

2.3 An empirically tractable demand for stocks

Despite the fact that equation (5) provides a clear intuition of the determinants of the
optimal positive portfolio weights, it is not very tractable empirically.10 This subsection
presents the set of assumptions that are needed to derive a form of equation (5) that uses
characteristics of the stocks in a logit form to provide an empirical tractable function for
the portfolio weights.

9Lemma 1 in Koijen and Yogo (2019), page 1481.
10It requires obtaining the first two investor-specific conditional moments over excess log returns; which

is composed of a large cross section of stock returns.
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To compute the conditional moments that determine portfolio weights in equation
(5), namely Σit and µit; we need to be explicit about how next period’s excess log re-
turns are modeled and how information varies across investors. Recall that by definition
Rt+1,j = Vt+1,j/Pt,j, where Vt+1,j stands for next’s period payoff for stocks j and Pt,j is the
equilibrium price per share. Similarly, Rt+1,0 = V0

t+1/P0; and without loss of generality
we normalize the price of the outside good to one, P0 = 1. If we take logs we obtain that
the vector of excess log returns is given by

rx
t+1 = log(Vt+1)− log(V0

t+1)1 − log(Pt)

= vt+1 − v0
t+11 − pt

:= vx
t+1 − pt

Given that the excess payoff in t + 1 is unknown at period t, we assume investors
have a prior in period t about its value such that Vt+1 and V0

t+1 follow a lognormal
distribution:

Assumption 1. Distribution of next period’s payoff
The Jt-vector of next period’s payoff, Vt+1, follows the lognormal distribution

Vt+1 ∼ lognormal(µvt, Σvt),

where µvt is a Jt-vector and Σvt a Jt × Jt matrix. Moreover, the outside option next period’s payoff
also follows a lognormal distribution

V0
t+1 ∼ lognormal(µ0

vt, Σ0
vt),

where µ0
vt and Σ0

vt are scalars. The values of µvt, µ0
vt, Σvt, Σ0

vt are common knowledge to investors
at time t.

Since next period’s payoffs are bounded from below by zero, the log normality as-
sumptions is an appropriate modeling choice and it is a traditional assumption in asset
pricing. Assumption 1 implies that the excess log returns can be written as

rx
t+1 = µvt − µ0

vt1 − pt + ev (6)
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where

ev ∼ N(0, Σxt)

Σxt = Et[(rx
t+1 − µxt)(rx

t+1 − µxt)
′]

µxt = µvt − µ0
vt1 − pt,

and the (j, k)-entry of Σx is given by:

Σxt,jk = Σvt,jk + Σ0
vt − cov(Vt+1,j, V0

t+1)− cov(Vt+1,k, V0
t+1).

Notice that the value of excess log returns depends on the vector of prices, pt, which
need to be pinned down in equilibrium. We also assume that equilibrium prices are ob-
served by all investors. Then conditional on public information, excess log returns can be
viewed as having a distribution inherited from the distribution assumed for next period
excess payoffs.11 In this case rx

t+1 ∼ N(µxt, Σxt), with both µxt and Σxt endogenously
determined in the model as they depend on pt, which is determined in equilibrium. The
next assumption states a factorization for the matrix Σxt.

Assumption 2. Factorization for the matrix Σxt

The matrix Σxt admits the representation

Σxt = ΓxtΓ′
xt + σ2

e I. (7)

where Γxt is a Jt-vector of factor loadings and σ2
e is common variance across stocks.

This assumption is consistent with a factor structure for the vector of log excess
returns where rx

t+1 admits the following single factor representation:

rx
t+1 = µxt + ΓxtFt+1 + et+1,

the single factor Ft+1 is distributed as N(0, 1) and et+1 ∼ N(0, σ2
e I), with et+1 indepen-

dent of Ft+1.12

11Unfortunately, the setup in KY2019 is not explicit about to what extent returns are endogenous or
exogenous to their setup, we believe that being explicit about this and modeling how information is
different across investors contribute to the clarity of the microfoundations of asset demand.

12Alternatively, the factorization in Assumption 2 can be obtained by assuming a factor structure on the
variance matrix of future payoffs Σvt. In this case notice that σ2

e = Σ0
vt.
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In order to compute moments that depend on the information set of each investor, we
model how information varies across investors. We adapt a traditional setup from the
asymmetric information literature in asset pricing (see for example Grossman (1976)).

Assumption 3. Information Technology
Each investor i receives a signal about next period’s excess log returns, rx

t+1, denoted by sit, a
Jt-vector given by

sit = rx
t+1 + εit (8)

where εit ∼ N(0, σ2
ε,i I) and it is independent of rx

t+1. The scalar σ2
ε,i is privately known by

investor i.

In this set up, each investor knows sit and σ2
ε,i but does not know the value of εit that

produced sit. This means that investors cannot back out the value of rx
t+1 directly from

their private information and have to update their expectations over rx
t+1 by conditioning

on the information set Iit = {sit, σ2
ε,i, µxt, Σxt}. Assumption 3 states that information is

not only different across investors because they receive different signals sit, but also in
the precision of these signals around the true realization of rx

t+1. Investors with a rela-
tive low σ2

ε,i will observe a realization of sit in a smaller neighborhood of rx
t+1, making

sit a more precise signal of rx
t+1. This heterogeneity in signal precision is motivated by

the possibility that some investors have better information or better capacity to process
information, that allows them to produce more precise forecasts about future returns.

Next notice that sit|(rx
t+1, σ2

ε,i) ∼ N(rx
t+1, σ2

ε,i I) and rx
t+1 ∼ N(µxt, Σxt) so using Bayes

theorem we can compute the distribution of rx
t+1|Iit. The posterior distribution is given

by

rx
t+1|Iit ∼ N(µr|si

, Σr|si
) (9)

with Σr|si
=
[
(σ2

ε,i)
−1 I + Σ−1

xt

]−1
(10)

µr|si
= Σr|si

[
(σ2

ε,i)
−1sit + Σ−1

xt µxt

]
. (11)

Details on the derivation of the posterior moments are shown in appendix A. The
next proposition shows that under assumptions 1 and 2 we can obtain a convenient
decomposition of the investor-specific conditional matrix Σit.

Proposition 2. Under assumptions 1 to 3, the investor-specific conditional matrix Σit can be
written as Σit = ΓitΓ′

it + ιit I where the Jt-vector Γit and the scalar ιit are both investor-specific.
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Proof of Proposition 2 is shown in appendix A. Notably, this result is an assumption
in KY2019’s model.13 In our set up we are able to obtain the investor-specific decompo-
sition of Σit by relaying on weaker assumptions. The next assumption relates the first
two moment of the vector of excess log returns with individual stock characteristics.

Assumption 4. Return-related Stock Characteristics
Each entry of the Jt-vectors µxt and Γxt can be expressed as a polynomial of order M over a

Kx-vector of return-related stock characteristics xjt, including price pjt; that is

µxt,j = y′jtΦµ + ϕµ (12)

Γxt,j = y′jtΦΓ + ϕΓ (13)

where Φµ and ΦΓ are matrices of coefficients, ϕΓ and ϕµ scalars and yjt is Ky-vector with dimen-
sion Ky = ∑M

m=1 Km
x and

yjt =


xjt

xjt ⊗ xjt

xjt ⊗ xjt ⊗ xjt
...

 ,

and ⊗ stands for the Kronecker product.

The motivation for the previous assumption is twofold. First, modeling the mean
and covariance matrices of asset returns as functions of assets characteristics is more
empirically tractable than estimating the mean and covariance matrices of asset returns
directly from past observations (see for example Brandt et al. (2009)).14 Second, KY2019
show the empirical the relevance of characteristics-based demand (their appendix B),
by showing that expected returns and factor loadings are well captured by a few as-
set characteristics, and that this approach better estimates the mean-variance portfolio
compared to a benchmark that uses sample estimates of the first two moments of returns.

Notice that with Assumption 4 we now deal with two sets of asset characteristics. The
first set is represented in the vector xjt of stock characteristics, including prices pjt, that

13The first part of Assumption 1 in Koijen and Yogo (2019), p. 1483.
14Since the mean and covariance matrices of asset returns are hard to estimate and very likely time-

varying, this literature moved from estimation using historical samples of returns to using functions that
map assets characteristics to their returns, and hence the first two moments of returns. One rationale for
this approach is that asset characteristics are more stably related to expected returns than company names
in a large cross section.
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are relevant for the conditional expected returns (µx) and factor loadings (Γx), we called
them return-related characteristics. The second set are contained in cjt, that denotes the
stock characteristics that are relevant to produce a portfolio profile valued by investors,
we called them taste characteristics. Empirically, this suggest to include observable stock
characteristics known to be relevant for the cross section of return into xjt and those
relevant for investment decisions but not directly related to stock returns into cjt.

The following proposition uses all previous assumptions and results to characterize
optimal portfolio weights as polynomials on asset characteristics with investor specific
coefficients, and then obtain the empirically tractable logit form that relates portfolio
holdings with stock characteristics.

Proposition 3. Under Assumptions 1 to 4:

(i) The j-th entry of the vectors Γit and µit can be written as a polynomial function on xjt with
investor-specific coefficients.

(ii) The optimal portfolio weights for each asset j with positive weight, wit,j can be written as
polynomial function on asset characteristics (xjt, cjt) with investor specific coefficients:

wit,j = ỹ′jtΦw,i + ϕw,i, (14)

where Φw,i is vector of coefficients, ϕw,i is a scalar, and ỹjt is a Kỹ-vector with Kỹ =

∑2M
m=1(KX + Kc)m, and

ỹjt =


x̃jt

x̃jt ⊗ x̃jt

x̃jt ⊗ x̃jt ⊗ x̃jt
...

 ,

and x̃jt = (x′jt c′jt)
′ a (KX + KC)-vector.

(iii) Moreover if the polynomial order M goes to infinity, M → ∞, then a restriction of parame-
ters implies that the optimal portfolio weights for investor i can be written as:

wit,j =
exp

(
x′jtbit + c′jtγit + ξ jt

)
1 + ∑Jt

j=1 exp
(

x′jtbit + c′jtγit + ξ jt

) , (15)
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and the portfolio weight for the outside option is given by

wit,0 =
1

1 + ∑Jt
j=1 exp

(
x′jtbit + c′jtγit + ξ jt

) , (16)

where bit and γit are investor-specific coefficients on observed returns-related characteristics
xjt, that include price pjt, and taste characteristics cjt. The term ξ jt represents an index of
unobserved (by the econometrician) return-related characteristics.

It is possible that there are asset characteristics unobserved by the econometrician
but relevant for investor’s portfolios. Without loss of generality we can assume those
unobserved characteristics are summarized in an index ξ jt and that this index is a char-
acteristic included in xjt as in part (iii) of proposition 3. In the previous proposition the
coefficient on the unobserved characteristic ξ jt is normalized to 1 and the portfolio value
of the outside option is normalized to 1. Part (i) of this proposition is an assumption in
KY2019’s framework, as in proposition 2, we are able to obtain this result by relaying on
weaker assumptions. Proof of proposition 3 is presented in Appendix A.15

This proposition tell us that the optimal weight on asset j for investor i in market t is
directly explained by the characteristics of asset j, investor-specific coefficients (bit, γit),
and the value that investor i assigs to j relative to all the other assets available in Jt.

2.4 Market Clearing Condition

The portfolio weights in equations (15) and (16) represent the asset demand curves for
investors taking stock characteristics, including price, as given. In this subsection we
pair the demand system with a supply side to obtain a market clearing conditions that
pin downs equilibrium prices. The key assumption is that the number of shares out-
standing is fixed in the short run. The empirical application in this paper works with
stock market data at a quarterly frequency, so we consider this assumption reasonable.

Let Sjt denote the number of shares outstanding for stock j in market t; in the short
run this is assumed to be a fixed number which can be interpreted as an inelastic supply
of the stock. If we multiply Sjt by Pjt, the price per share of j in t, we obtain the market

15Once part (i) is proved, the proof of parts (ii) and (iii) proceed similarly as in proposition 1 of KY2019.
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equity for stock j, denote by MEjt.

Since each stock of j should be held by an investor in the market, then the following
market clearing should hold:

MEjt =
I

∑
i=1

Aitwit,j. (17)

This market clearing condition says that all the money invested by investors in stock j,
should equal the market equity of the stock. This condition is a re-statement in dollar
value, instead of quantities, that prices in equilibrium are such that in the aggregate,
supply equals demand:

Sjt =
∑I

i=1 Aitwit,j

Pjt
.

Notice that the right hand side of (17) depends on prices, since pjt enters demand
via de the return-related characteristic xjt. As noted in KY2019, the market clearing
condition implies a fixed point equation in pjt. Let pt be the Jt-vector of log prices for
the stocks in market t and define f : RJt → RJt as:

f (pt) = log

(
I

∑
i=1

Aitwit,j(pt)

)
− log(Sjt), (18)

so using equation 18 we can solve for the equilibrium prices, by looking for p∗t such that
p∗t = f (p∗t ). KY2019 state the conditions for an unique fixed point to exist and present
an algorithm for the determining such fixed point.

3 Demand Specification and Estimation

3.1 Demand Specification

Using data on portfolio holdings, {wit,j} and stock characteristics {xjt, cjt} the goal is to
estimate the asset demand coefficients defined in (15). This project uses a mixed logit
demand specification (Berry et al. (1995)), also known as a random coefficients demand
specification. In the mixed logit demand the investor-specific coefficients in bit and γit
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follow the structure:

bit = b0 + Πbdit + Σ1/2
b vb,it (19)

γit = γ0 + Πγdit + Σ1/2
γ vγ,it, (20)

where b0,k is a component of bit,k, common to all investors; dit denotes an L-vector
of observable investor demographics that are relevant to characterize bit,k, along with
the corresponding coefficients in Πb, a KX × L matrix. The term vb,it is a KX-vector of
investor-specific taste shocks that are scaled by common variance covariance coefficients,
Σb. The vb,it can also be interpreted as unobservable (by the econometrician) investor de-
mographics relevant for bit. Analogous interpretations apply to γ0, Πγ, Σγ and vγ,it.

If we restrict to zero the matrices Πb, Πγ, Σb and Σγ, we have that bit = b0 and γit = γ0

for all i. This is the highly studied logit demand. In this specification all investors have
the same coefficients and is the one used during estimation in KY2019.16 Logit demand
is highly tractable but delivers restrictive substitution patterns. This is because in Logit
demand price elasticities are determined by market shares. Leading authors in the de-
mand estimation literature call this “a bug not a feature” (Berry and Haile (2021), pg. 19).
The limitations imply that for small portfolio weights, own-price elasticities are approxi-
mately proportional to the coefficient corresponding to price. Moreover, two stocks with
similar portfolio weights would react identically to the price change of any other stock.17

Imagine two stocks that have the same portfolio weights, but the companies belong to
different sectors, for example technology and energy. Is easy to imagine these stocks
would respond to different fundamentals, yet under a logit demand system, portfolio
holdings of another technology stock would react identically to a price change from
both stocks.

The restrictive substitution patterns of logit demand are a manifestation of the Inde-
pendence of Irrelevant Alternatives (IIA) assumption (see, e.g. Arrow (1951), Ray (1973),

16In KY2019, a logit demand is estimated investor by investor, so they obtain a set of estimated coeffi-
cients by investor. However, at the investor level the substitution patters between stocks are those of logit
demand.

17Berry and Haile (2021) develop their argument further: “These restrictions do not come from eco-
nomics but from assumptions chosen for simplicity or analytical convenience. Models must, of course,
abstract from reality, and finite samples require appropriate parsimony. But good modeling and approx-
imation methods should aim to avoid strong a priori restrictions on the very quantities of interest unless
those restrictions can be defended as natural economic assumptions.” (pg. 19).
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McFadden (1974)), that states that the relative likelihood of choosing between two op-
tions will not change on whether a third alternative is present. Because of IIA, logit
demand will fail to capture substitution patterns between close substitutes, a feature
that has been widely studied in the industrial organization literature. Extensions of logit
demand like the nested logit demand (Cardell (1997)) and the mixed logit demand relax
the IIA assumption. In nested logit the product choice is sequential, first individuals
choose a product nest, and then they choose a product within the nest. Models of this
type can be easily accommodated in a mixed logit demand by including the nest-defining
characteristics as one of the characteristics in the demand specification.

Price Elasticities. Let Qit,j =
Aitwit,j

Pt,j
denote the number of shares of stock j held by

investor i in market t. The elasticity of stock j holdings when the price of stock k changes,
denoted by ηit,jk is given by:

ηit,jk =
∂Qit,j

∂Pt,k

Pt,k

Qit,j
=

∂ log(Qit,j)

∂ log(Pt,k)

=
∂ log(wit,j)

∂ log(Pt,j)
− 1{j = k} := eit,jk − 1{j = k}.

The term eit,jk is also an elasticity but with respect to portfolio weights and hence de-
pends on the demand specification. As mentioned above log prices, pjt is one of the
stock characteristics included in xjt. Without loss of generality, let k = 1 denote index for
the coefficient corresponding to log prices, bit,1. Following this notation, the term eit,jk

under logit demand (bit,1 = b0,1 for all i) is given by:

eLogit
it,jk =

∂ log(wit,j)

∂ log(Pt,k)
= b0,1(1{j = k} − wit,k).

The corresponding term for mixed logit demand (ML), eML
it,jk, is given by

eML
it,jk =

∂ log(wit,j)

∂ log(Pt,k)
=

(
b0,1 +

L

∑
ℓ=1

π1,ℓdℓit + σt,1vi,1

)
(1{j = k} − wit,k).

The term eML
it,jk represents the price elasticity given the idiosyncratic preferences of in-

vestors as capture by the price coefficient bit,1. However, this expression is not feasible
to compute given that the taste shocks, vi,1, are not observed. To compute the price
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elasticity conditional on observable data is necessary to integrate over the distribution
of the taste shocks. If Fv denotes the distribution of vit we can numerically integrate out
its role on portfolio holdings using Fv and computing eML

it,jk using EFV

[
wit,j

]
:

eML
it,jk =

∂ log
(
EFV [wit,j]

)
∂ log(Pt,k)

=
∂EFV [wit,j]

∂Pt,k

Pt,k

EFV [wit,j]

=
1

EFV [wit,j]

∫ [(
b0,1 +

L

∑
ℓ=1

π1,ℓdℓit + σt,1vi,1

)
w̃it,j(vi)(1{j = k} − w̃it,k(vi))

]
dF(vi).

Comparing the terms eLogit
it,jk and eML

it,jk shows, as mentioned at the beginning of this section,
that a logit demand specification is limited in the substitutions patterns it can accommo-
date when stock prices change. Mixed logit demand, on the other hand, by employing a
richer structure on the parameters, can deliver more flexible substitution patterns.

3.2 Estimation

The relevant equations for estimation are the mapping between asset characteristics and
asset holdings, namely equation (15), paired with the random coefficients specifications
that relate investor-specific coefficients with their demographics in (19) and (20). For
convenience we present again these equations:

wit,j =
exp

(
x′jtbit + c′jtγit + ξ jt

)
1 + ∑Jt

j=1 exp
(

x′jtbit + c′jtγit + ξ jt

)
bit = b0 + Πbdit + Σ1/2

b vb,it

γit = γ0 + Πγdit + Σ1/2
γ vγ,it.

The data is composed of asset holdings, investor demographics and assets under
management {wit, dit, Ait}i=1,...,It , as well as asset characteristics {xjt, cjt}j=1...,Jt . The pa-
rameters to estimate are the components that form the coefficients corresponding to
return and taste characteristics; namely {b0, Πb,, Σb} for the return characteristics xjt and
{γ0, Πγ, Σγ} for the taste characteristics cjt.

For exposition convenience of the estimation steps, let’s rewrite observed asset char-
acteristics into the K = (KX + KC) vector Xjt = (x′jt, c′jt)

′, and accordingly define the
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coefficients vector βit = (b′it, γ′
it)

′ such that

βit = β0 + Πdit + Σ1/2vit (21)

where β0 = (b′0, γ′
0)

′; Π is a K × L matrix with the demographics coefficients (Πb, Πγ);
vit = (vb,it, vγ,it)

′ is a K-vector, and Σ1/2 is a K × K matrix composed of (Σ1/2
b , Σ1/2

γ ).
With this notation the parameters to estimate can be denoted as θ := (β0, Π, Σ). In the
IO literature on demand estimation θ1 = β0 is commonly referred as "linear parameters"
and θ2 := (Π, Σ) as "non-linear parameters", due to the way these parameter enter the
estimation procedure.

With this notation we can write the exponents in the expression for wit,j as

x′jtbit + c′jtγit + ξ jt = X′
jt [β0 + Πdit + Σvit] + ξ jt

= X′
jtβ0 + ξ jt︸ ︷︷ ︸

:=δjt

+ X′
jt [Πdit + Σvit]︸ ︷︷ ︸

:=hijt(θ2,vit)

= δjt + hijt(θ2, vit).

The term δjt is referred as the "mean utility" for option j in market t, as it is a com-
mon component for all investors; while the term hijt(θ2, vit) captures investor-specific
heterogeneity. With this notation we can write wit,j as

wit,j =
exp

(
δjt + hijt(θ2, vit)

)
1 + ∑Jt

j=1 exp
(
δjt + hijt(θ2, vit)

) . (22)

The next step is to obtain aggregate market shares for each stock. In this project we
perform estimation at the market level. This is motivated because market-level estima-
tion facilitates dealing with the endogeneity of prices, as discussed below, so we can use
instrumental variables for prices based on demand shifters that have been suggested in
the IO literature. This choice is also consistent with the market definition presented in
the microfoundations, namely we consider the US stock market in a given quarter.

The key idea is to construct aggregate market shares from the market clearing con-
dition (17). Let ME0t denote the aggregate investment in the outside option: ME0t =

∑It
i=1 Aitwi0t; and denote by MEt denote the aggregate value of the market in t: MEt =
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∑Jt
j=0 MEjt. By the market clearing condition it has to be the case that the aggregate value

of the market is equal to the aggregate assets under management across investors, so we
have that MEt = ∑It

i=1 Ait := At. If we divide the market clearing condition (17) by MEt

(or At equivalently) we obtain that

MEjt =
It

∑
i=1

Aitwit,j

⇒ sjt :=
(

MEjt

MEt

)
=

It

∑
i=1

(
Ait

At

)
wit,j. (23)

This equation tell us that in the aggregate we will compare the observed stock market
shares of a “market value portfolio” (sjt) with the model implied shares of a “wealth-

adjusted aggregate portfolio”
(

∑It
i=1

(
Ait
At

)
wit,j

)
. To compute the right hand side of (23),

the model-implied shares, one challenge is that the investor-specific taste shocks vit are
not observed by the econometrician. To deal with this problem it is common practice
to assume a prior distribution on these latent variables. If Fv denotes the distribution of
vit we can numerically integrate out its role on portfolio holdings using Fv. The model-
implied shares, denoted by s̃jt, are

s̃jt :=
It

∑
i=1

(
Ait

At

) ∫ exp
(
δjt + hijt(θ2, dit, vit)

)
1 + ∑Jt

j=1 exp
(
δjt + hijt(θ2, dit, vit)

)dFv(vit). (24)

It is standard practice in the IO literature to assume Fv to be a multivariate normal with
zero mean and variance-covariance matrix Sv, that is vit ∼ N(0, Sv); then the integral in
(24) can be numerically approximated for example by monte carlo simulation or using
Gauss-Hermite quadrature procedures. The s̃jt(·) functions in equation (24) define a
demand system that can be written as:

s̃(δt, θ2; dt, Xt, Jt) = (s̃1(δt, θ2; dt, Xt, Jt), ..., s̃Jt(δt, θ2; dt, Xt, Jt)) . (25)

The aggregation across investors in (24) with wealth-based weights (Ait/At) makes this
demand system different from the standard mixed logit demand system (for example
the canonical BLP demand system of Berry et al. (1995)). Nevertheless, we prove in the
following proposition that this system is invertible in the sense that given (θ2; dt, Xt) there
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is an unique vector δ such that for all j:

s̃jt(δ, θ2; dt, Xt, Jt) = sjt.

Proposition 4. Demand Inversion
The demand system in (25) is invertible such that given (θ2; dt, Xt, Jt) and nonzero market shares
sjt with ∑j=1 sjt < 1, there exists an unique vector δ such that s̃jt(δ, θ2; dt, Xt, Jt) = sjt, for all j.

The proof is included in Appendix A and it follows by verifying the conditions of the
Berry’s inversion theorem (Berry (1994)). Such vector δ can be found as the fixed point
of the following contraction mapping. Fix (θ2; dt, Xt, Jt) and let f : RJ → RJ be given by

f (δ) = δ + log(st)− log(s̃t(δ, θ2; dt, Xt, Jt)), (26)

notice that if δ∗ is such that f (δ∗) = δ∗ then log(st) = log(s̃t(δ∗, θ2; Xt, Jt)), that is, δ∗ is
such that model-implied shares are equal to the observed shares given a set of values for
(θ2; dt, Xt, Jt).

The fact that the demand system is invertible allow us to operationalize an estimation
strategy where we interpret the term ξ jt as an structural error term. This strategy for
estimation is predicated on the assumption that unobserved stock characteristics should
be conditionally mean zero with respect to a vector zjt of observable stock characteristics,

E[ξ jt|zjt] = 0, (27)

this condition implies that unobservable stock characteristics in zjt should not be cor-
related with unobserved characteristics ξ jt. In the context of asset demand, as KY2019
mention, this moment condition is motivated by the literature of asset pricing in endow-
ment economics (Lucas (1978)) that assumes that shares outstanding and asset charac-
teristics other than price are exogenous.

The fact that the demand system (23) is invertible, allow us to exploit moment (27) for
estimation. Given θ2 we can “invert the demand” to find δ̂t(θ2) such that model-implied
shares s̃t(δ̂t, θ2) match the observed shares, st. With δ̂t(θ2) we can construct ξ jt(θ) given
by ξ jt(θ) = δ̂jt(θ2) − X′

jtθ1 and then we can select θ = (θ1, θ2) that minimizes a GMM
objective function based on (27). Formally, in the GMM strategy for estimation of the
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demand system in (25) we look for θ̂GMM in market t that solves:

min
θ

g (ξt(θ))
′ Wtg (ξt(θ)) (28)

s.t. g (ξt(θ)) =
1
Jt

Jt

∑
j=1

zjtξ(θ)jt (29)

ξ(θ)jt = δjt(θ2t)− X′
jtθ1 (30)

log(sjt) = log
(
s̃jt(δt, θ2; dt, Xt, Jt)

)
(31)

s̃jt(δt, θ2; dt, Xt, Jt) =
It

∑
i=1

(
Ait

At

) ∫ exp
(
δjt + hijt(θ2, dit, vit)

)
1 + ∑Jt

j=1 exp
(
δjt + hijt(θ2, dit, vit)

)dFv(vit) (32)

where Wt is a KZ ×KZ weight matrix. Using the first order conditions of the GMM prob-
lem is possible to show that the parameter search can be simplified to be just over the
non-linear parameters θ2 (see Berry et al. (1995) and Nevo (2000) for useful derivations).
To see why, it suffices to notice that the first order conditions with respect to θ1 requires

0 =
∂

∂θ1

(
g (ξ(θt))

′ Wtg (ξ(θt))
)
⇔ 0 = − 2

J2
t
[δt(θ2)− Xtβ0t]

′ZtWtZ′
tXt (33)

⇔ θ1 = [X′
tZtWtZ′

tXt]
−1[XtZtWtZ′

t]δt(θ2),

so given a value of θ2, there is a corresponding value for θ1 according to the GMM ob-
jective function. If the estimation is carried out using data from multiple market periods
while considering the parameters θ as common across such periods, the GMM strategy
would compute (30) to (32) each period t, and then stack the moment analogs (29) for
each market before computing the objective function in (28). Algorithm 1 sketches the
steps necessary to implement the GMM estimation of the mixed logit demand.

Price Endogeneity and Instrumental Variables. Since the unobserved stock character-
istics ξ jt are part of investors demand they will also be a determinant of equilibrium
prices. This means that prices and functions of prices will be correlated with ξ jt and
cannot be included in zjt, the vector of exogenous asset characteristics for estimation. To
solve for the endogeneity of prices with respect to ξ jt we need instrumental variables
(IVs) correlated with prices but exogenous with respect to ξ jt.

We consider instrumental variables in the style of Gandhi and Houde (2019). For
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Algorithm 1: Mixed Logit Demand Estimation
Input: Stock characteristics {Xjt = (x′jt, c′jt)

′}, aggregate stock holdings {sjt} and
instrumental variables {Zjt} for j = 1, ..., Jt; assets under managament and
demographics {Ait, dit} for i = 1, ..., It for a given market t.

Output: A set of estimated parameters θ̂ = (θ̂1, θ̂2) with θ̂1 = β̂0 and θ̂2 = (Π̂, Σ̂).
Initialize: Pick initial values for θ

(0)
1 and θ

(0)
2 = (Π(0), Σ(0)).

During step r ≥ 1 of the optimization routine, do:
i. Compute an initial value for δ

(r,0)
t . If r = 1 the initial value can be δ

(r,0)
t = X′

jtθ
(0)
1 .

ii. Given the current value for θ
(r)
2 , invert the demand system using the contraction

mapping in (26). To do this, iterate until convergence an update for δt where the
h-th update is given by:

δ
(h)
t

(
θ
(r)
2

)
= δ

(h−1)
t + log(st)− log

(
s̃t

(
δ
(h−1)
t , θ

(r)
2 ; Xt, Jt

))
Use δ

(r,0)
t for the first update. The resulting vector will be a function of θ

(r)
2 and

aggregate stock holdings st, denoted by δ
(r)
t .

iii. Update the value of the linear parameters using (33)

θ
(r)
1 = [X′

tZtWtZ′
tXt]

−1[XtZtWtZ′
t]δ

(r)
t .

iv. Use δ
(r)
t and θ

(r)
1 to compute the GMM error term:

ξ
(r)
t = δ

(r)
t − X′

tθ
(r)
1 ,

and the GMM moment function, notice that g is a function of the parameters in
step r:

g
(

θ(r)
)
=

1
Jt

Z′
tξ

(r)
t .

v. Evaluate the GMM objective function at θ(r). If the objective function has converged
report θ̂GMM = θ(r). If no convergence has been achieved update θ

(r)
2 according to

the optimization algorithm used (e.g. a Newton-Rapson update). Label this update
as θ

(r+1)
2 .

vi. Repeat steps i. to v. until convergence of the GMM objective function.
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each stock j denote with Jt(j) the set of stocks that belong to j’s industry. Next, for each
exogenous dimension k in Xjt, we compute a metric of j’s isolation along dimension k
with respect to other stocks in Jt(j):

XGH
jt,k = ∑

j̃∈Jt(j)

(Xjt,k − X j̃t,k)
2. (34)

Then the vector of instrumental variables zjt used for estimation will be composed
of the exogenous characteristics in Xjt plus the Gandhi-Houde IVs (GH-IVs) constructed
from such exogenous characteristics. If the dimensions considered to be exogenous with
respect ξ jt are in fact exogenous, then the GH-IVs would be uncorrelated with ξ jt by
construction, since they rely on the values of an exogenous characteristic for j and the
corresponding values for other stocks in j’s industry.

The case for relevance is more interesting. In our setup stocks are considered as
differentiated investment products, and therefore they compete on the characteristics
they offer to investors. Those stocks with more attractive characteristics to investors
will have a relatively higher demand, all else equal. Then, metrics of j’s isolation with
respect to other stocks in Jt(j) along an exogenous characteristic would capture stock j’s
ability to compete on such characteristic against alternative stocks in j’s industry. If the
alternatives of stock j in its industry offer more (less) of a characteristic positively value
by investors relative to j, then there will be more (less) demand for alternatives of stock
j, less (more) for stock j itself and that will decrease (increase) the price of stock j. Hence,
metrics of stock j’s isolation with respect to other stocks in Jt(j) will be correlated with
the price of stock j. In short, GH-IVs serve as relevant instruments for the price of a
stock j because they proxy for demand shifts that occur when investors compare stock j
with alternative stocks along an exogenous characteristic k.

Logit demand estimation. When the non-linear parameters θ2 are restricted to zero,
θ2 = (Π, Σ) = (0, 0), we are in the case of logit demand. In this case the demand system
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given by s̃jt in (24) becomes:

s̃jt =
It

∑
i=1

(
Ait

At

) ∫ exp
(
δjt + hijt(0, dit, vit)

)
1 + ∑Jt

j=1 exp
(
δjt + hijt(0, dit, vit)

)dFv(vit).

=
exp

(
δjt
)

1 + ∑Jt
j=1 exp

(
δjt
) It

∑
i=1

(
Ait

At

)

=
exp

(
δjt
)

1 + ∑Jt
j=1 exp

(
δjt
) ,

in the second line we used the fact that when θ2 = 0 then hijt ≡ 0, and in the third line
we use the fact that wealth weights should sum up to one. In the case of logit demand
we can perform the demand inversion analytically, since s̃0t = 1/(1 + ∑Jt

j=1 exp
(
δjt
)
)

then:

log
(
s̃jt/s̃0t

)
= δjt = X′

jtβ0 + ξ jt,

the first equation tell us that if we set the value of δjt to log
(
sjt/s0t

)
then observed shares

will match the (logit) model-implied shares. The second equation which is the definition
of δjt tell us how to construct ξ jt to use it in a GMM estimation strategy base on moment
(27). Specifically, logit estimates will be obtained by linear IV-GMM based on (27) and
using the Gandhi-Houde IVs described above.

4 Demand for Green Stocks

In this section we start by presenting the detailed mixed logit specification we’ll use for
estimation. Then we present the data sources and finally we present the demand esti-
mation results.

Following the notation of equation (15), we estimate a demand specification given by

wit,j =
exp

(
x′jtb0 + cjtγit + ξ jt

)
1 + ∑Jt

j=1 exp
(

x′jtb0 + cjtγit + ξ jt

) , (35)
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where the vector of return-related characteristics is given by

xjt = (1, mktBetajt, latjt, lbmejt, profitabilityjt, investmentjt),

and the six elements of xjt correspond to: (i) an intercept, (ii) market beta (mktBetajt),
(iii) log total assets (latjt), (iv) log book-to-market equity (lbmejt), (v) profitability of the
stock (profitabilityjt), measured as operating profits to book equity, and (vi) a metric
of investment for the company underlying the stock (investmentjt), measured as annual
log growth of total assets. These return characteristics are motivated by the Fama-French
five-factor model (Fama and French (2015)) that offer sensible dimensions to characterize
the cross section of returns.18

The vector of taste characteristics cjt is composed of the environmental scores of
company j in t, cjt = (Escorejt). Moreover, the coefficients corresponding to the return-
related characteristics are treated as homogeneous across investors.19 The coefficient
for environmental scores is modeled as heterogeneous across investors following the
structure:

γit = γ0 + κdit + σvit, (36)

where the parameters (γ0, κ, σ) are common across investors but each investor has a
different sensitivities to the environmenal scores of the stocks because they differ in
their observed demographics dit, as well as in their unobserved demographics, or taste
shocks, vit. In this demand specification we use the investor’s assets under management
as observed demographics, dit = log(AUM)it; and we assume unobserved demographics
follow an standard normal distribution independent and identically distributed across
investors. This distributional assumption is common practice in the demand estimation
literature and facilitates the numerical approximation of the integral in the definition
of model shares, s̃jt in (24). During estimation we approximate such integral using a
Gauss-Hermite quadrature approximation of order 20.20

18There is a growing literature in the asset pricing questioning whether the Fama-French five-factor
characteristics are sufficient to explain the cross section of returns (e.g. Han et al. (2021)). However,
considering alternative returns characteristics other than those in the Fama-French five-factor is left for
future research.

19Allowing for heterogeneity on return-related characteristics is left for future research.
20This guarantees the integral is exact for polynomial functions of degree up to 49.
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4.1 Data

There are two main component of the data for our application: stock characteristics and
portfolio holdings. Data on portfolio holdings comes from the Thomson Reuters In-
stitutional Holdings Database that contains data on institutional investors that file the
Form 13F from the Securities and Exchange Commission (SEC). Investment institutions
that manage more than $100 million are required to disclose stock holdings in the Form
13F. These institutions can be banks, insurance companies, mutual, hedge, and pension
funds, as well as other 13F institutions like foundations, nonfinancial corporations, and
endowments.

Price and stock characteristics data for this project comes from the Compustat and
Center for Research in Security Prices (CRSP) datasets which we combine to obtain fun-
damentals for publicly traded companies in the US stock market. Data for stock prices,
dividends, returns and shares outstanding can be obtained from the CRSP Monthly
Stock Database. Accounting data from the Compustat North America Fundamentals
Annual and Quaterly Databases are combined with CRSP data to construct asset char-
acteristics.

We focus on data for common stocks (with share codes 10, 11, 12, 18) that trade in the
New York Stock Exchange, the American Stock Exchange and Nasdaq (exchange code 1,
2, 3 respectively); those stocks with missing data on returns or prices are filter out. Data
from the CRSP database are merge with Compustat database records most recent of at
least 6 months, and no more of 18 months prior to trading date. This is to guarantee that
accounting data were public on the trading date.21

Data on environmental performance of listed companies comes from the MSCI rat-
ing agency.22 MSCI is a pioneer rating agency in the construction of scores that evaluate
the Environmental, Social, and Governance (ESG) performance of the firms they rate.23

21This follows the merging of databases as in KY2019.
22There is a growing number of data providers of ESG scores and a growing literature studying to what

extend scores from different vendors are consistent in their evaluations (e.g. Billio et al. (2021)). Using data
from other vendors would not alter the methodology here presented, but comparing how results would
change when using different ESG scores is left for future research.

23Moreover, as mentioned in Pástor et al. (2022), MSCI has been voted “Best firm for SRI research” in
the The Extel and SRI Connect Independent Research in Responsible Investment (IRRI) Survey each year
from 2015 to 2019 (see https://www.msci.com/zh/esg-ratings).
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This dataset contains firm-level annual ESG scores from 1991 to 2019.24 We decide to
work with MSCI ratings because of their long available sample, its broad coverage of
publicly listed firms and the possibility to observed granular indicators that precede the
construction of overall scores. In this dataset we observe series of individual perfor-
mance indicators used to construct scores for each of the three pillars: E, S and G, as
well as the combined ESG final score. For most vendors of ESG scores, the final score
is the result of translating raw data into a numerical score using proprietary algorithms.
Such methodology may change over time, complicating comparability of the scores over
time. We opt to use the MSCI granular data to construct scores directly from the raw
observed indicators to ensure comparability over time and ensure rated firms have the
same treatment cross-sectionally.25

We focus on MSCI variables from the “Environmental pillar score”, where firms are
evaluated in several indicators that capture either positive or negative environmental
performance. Positive indicators include appropriate waste management, product car-
bon footprint, and energy efficiency, while negative indicators include regulatory com-
pliance, toxic emissions and waste, water stress, among others. See Appendix B for a
full list of indicators.26 Using these indicator variables on environmental performance
we construct an E-score that compares firm cross-sectionally each year according to their
environmental performance.

Figure 1 presents the evolution of the number of stocks and institutional investors
from 2000-Q1 to 2020-Q4. Panel (b) shows that 13F institutions have grown in impor-
tance over the sample period. Towards the end of the sample institutional investor col-
lectively managed around 70% of the US stock market from around 53% at the beginning
of the sample. See Appendix B for the distribution of institutional investors according
to their type over the sample period.

Moreover in each market, we construct a residual investor labeled as the household
sector. The stock holdings of the household sector are defined as difference between

24Prior to 2010 these series were know as KLD scores. Following MSCI’s acquisition of RiskMetrics in
2010, KLD scores were retooled into the MSCI KDL STATS series.

25In particular, the MSCI ESG KLD STATS series experienced several changes in coverage, indicators,
and methodology several times after the year 2000. These changes make E, S and G pillar scores, as well
as the aggregate ESG score hard to interpret consistently across vintages.

26The threshold for satisfying an indicator are determined by MSCI and are not disclosed with the data.

31



Figure 1: Institutional Stock Holdings
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(b) Market held by institutional investors

Notes: Panel (a) shows the evolution on the number of institutional investors on a quarterly frequency
from 2000-Q1 to 2020-Q4. Panel (b) shows the how much of the U.S. stock market is held by institutional
investors from 2000-Q1 to 2020-Q1. We compute market shares according to number of shares and by
market equity. By number of shares corresponds to the percentage of shares outstanding that is held
by institutional investors across all stocks. Market shares according to market equity corresponds to the
dollar value of stocks held by institutional investor as a percentage of the total market equity across all
stocks.
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shares outstanding and the sum of shares held by 13F institutions. The introduction of
the household sector is necessary for the market clearing to hold. The outside option,
j = 0, will be set to include be stocks that are foreign (code 12), real estate investment
trusts (code 18) or have missing characteristics or returns.

Data Construction. The construction of the return-related characteristics in the vector
xjt follows KY2019. It includes five characteristics: market beta, log total assets, log
book-to-market equity, a metric of firm’s profitability and a metric of firm’s investment.
Market beta for each stock j is compute on a 60-month rolling window where we the
market return and the risk-free rate from the 3-month Treasury bill was obtained from
Kenneth French’s website.27 Log book-to-market equity is computed as difference be-
tween log book equity and log market equity. We compute market equity by summing
the log price per share at the end of the quarter with the log of shares outstanding ex-
pressed in millions. To compute the profitability metric we follow Fama and French
(2015) and compute the ratio of operating profits to book equity. Operating profits are
computed as total revenue (revt) minus the sum of cost of goods sold (cogs), selling,
general and admin expenses (xsga), and interest and related expense-total (xint), or
pro f it = (revt − cogs − xsga − xint). The investment metric is the 1-year log growth of
total assets. Table B1 in Appendix B shows summary statistics for the return characteris-
tics in xjt grouped by sample’s year. To reduce the impact of outliers on some variables,
profitability, market beta and investment are windsorized at the 2.5th and 97.5th per-
centile. This windsorizing is done in a quarterly fashion.

The environmental scores are constructed following the treatment of Engle et al.
(2020) and Hong and Kostovetsky (2012). For each firm in the MSCI dataset we count
the number of positive indicators and subtract from it the number of negative indicators,
we can this difference raw E-scores. Then, after merging the raw score into the dataset of
stock holdings and asset characteristics for each quarter, we rank the raw E-scores cross-
sectionally and standardize to range in the interval between -1/2 and 1/2; this are the
E-scores used for estimation. In this standardization the median raw score is mapped
to zero, 1/2 corresponds to the stock with the highest environmental performance, that
is, the greenest stock, and -1/2 corresponds with the lowest environmental performance,
the brownest stock. The data on each firm on the MSCI dataset is updated at least once

27http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 2: First Stage F-stat of the instrumental variables
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Notes: First stage F-statistic on instrumental variables for log Book to Market Equity. We present the
F-statistic of regressing log book to market equity on the Gandhi-Houde IVs, as well as BLP-type IVs.
Regressions are run over 2-year estimation windows ranging from 2000-Q1 to 2019-Q4. The dashed line
corresponds to the Stock and Yogo (2005) critical value (18.37) for 1 endogenous regressor, 5 instrumental
variables and 0.05 bias of two stage least squares relative to OLS.

a year, but not all firm scores get update at the same in a given year. To ensure E-scores
are public on the trading date, we merge stock holdings and return characteristics in
period t with the E-scores from the calendar year prior to t.28

For estimation, the return-related characteristics other that do not depend on price
directly are assumed to exogenous (with respect to ξ jt), that is the market beta, log to-
tal assets, profitability and investment. The E-score is also considered as exogenous. On
these five characteristics we construct the Gandhi-Houde IVs described above, according
to (34). Figure 2 shows the results of a first stage F-test for the null of weak instruments
across the sample period. The figure also shows the F-statistics when using “BLP”-type
instruments, another common choice of instrumental variables in the IO literature.29 In
all of the estimation windows the F-statistic of the GH-IVs is above the appropriate criti-
cal value to reject the null of weak instruments at 5 percent significance level. Moreover,

28For example, in 2018-Q1 and 2018-Q4 we use E-scores from 2017, whereas in 2019-Q1 we use E-scores
from 2018.

29The BLP instruments for the price of stock j are constructed as the sum of the exogenous characteristics
of other stocks in j’s industry.
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relatively to BLP-IVs, the null of weak IVs is rejected more easily using GH-IVs.

4.2 Estimates

Recall that in estimation the goal is to used data on stock characteristics {Xjt = (x′jt, c′jt)
′},

aggregate stock holdings {sjt}, instrumental variables {Zjt}, and assets under managa-
ment and demographics {Ait, dit} to estimate the parameters in θ, composed of linear
parameters θ1 = (b0, γ0) and non-linear parameters θ2 = (κ, σ).

We use twenty years of quarterly data of stocks holdings and characteristics from
2000-Q1 to 2019-Q4. We perform estimation in two-year windows, so for every estima-
tion window we obtain a set of parameter estimates θ̂ = (θ̂1, θ̂2) that use data from eight
quarters.30 Moreover during estimation we stardardize the variables log total assets,
profitability, investment and E-scores to have mean zero and standard deviation one at
each quarterly cross section of stocks. This way if we multiply the estimated coefficients
by 100, we can be interpret them as approximately the semi-elasticity of a one-standard-
deviation change in the corresponding stock characteristic.

Figure 3 shows the effective coefficient on E-scores, γ̂it = γ̂0 + κ̂log(AUM)it + σ̂vit,
over 2-year estimation windows, and according to estimation based on logit demand or
random coefficients demand (RC). The plot uses the mean value, in each window, of
log assets under management and shows the 95% confidence interval, of how the co-
efficient on E-scores varies across investors based on the assumption that unobserved
demographics, vit, are normally distributed.31

From Figure 3 we can see that the sensitivity to E-scores varies over time but it is
consistently positive throughout the estimation sample. This is true for both logit and
mixed logit estimation. After the Great Recession (2007-Q4 to 2009-Q2) period there
is an increase in the range of values for the coefficient on E-scores, due to larger esti-

30The first estimation window uses data from 2000-Q1 to a 2001-Q4, and the last estimation window
uses data from 2018-Q1 to 2019-Q4.

31Appendix C includes additional figures where we show the effective coefficient on E-scores with
alternative choices to the mean of log AUM in each estimation window. Figure C1 shows the effective
coefficient also using the 25th and 75th percentile of log AUM in each estimation window. Figure C2
shows the effective coefficient on E-scores using the mean of log AUM in each quarter from 2000-Q1 to
2019-Q4. Both figures exhibit essentially the same features as Figure 3.
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mated values for σ̂. This suggests an increase in the heterogeneity in the sensitivity to
green characteristics across investors after this period. One possible explanation is that
after periods of economic downturn, some investors may be more interested in stocks
with higher returns and relatively less interested in the environmental-friendliness of
the companies underlying the stocks.

The range of values for the effective coefficient on E-scores after the Great Reces-
sion suggests that for some investors the sensitivity is consistent with a preference for
brown stocks. For such investors, if there is a determinant of returns not captured by
the return-related characteristics of the Fama-French five factor model which is higher
for brown stocks, an appetite for returns could explain the preference for brown stocks
in this period.32

From 2005 until the end of the sample, the mixed logit estimates on the coefficient
for E-scores is increasing. For example, in the estimation window 2018-2019, the esti-
mated semi-elasticity on the holdings of a stock after a 1 standard deviation increase in
its E-score would result in a 73% increase in its holdings, compared with a 48% increase
in the 2008-2009 estimation window.33

Figure 3 also shows the coefficient corresponding to E-scores if we perform estima-
tion under a logit demand specification. In the logit case, there is no heterogeneity in
the coefficient and all investors share the same sensitivity to the score, γ̂it ≡ γ̂

logit
0 for all

i. It is clear from the figure that the logit estimates exhibit much less variation and they
don’t increase in the second part of the sample.

Another takeaway from estimation is that the sensitivity to E-scores depends on the

32As presented in Pástor et al. (2021), brown stocks can have positive CAPM alphas and higher expected
returns than green stocks because they are more exposed to climate risk. Similarly, Bolton and Kacperczyk
(2021) find evidence for a carbon premium, in which companies with higher carbon emissions earned
higher returns; they also provide evidence that such carbon premium cannot be explained entirely by
traditional risk factors. Moreover, In a related study for mutual funds, Das et al. (2018) found that in the
three year period after the Great Recession socially responsible mutual funds exhibited a negative and
significant alpha with respect to the Fama-French five factor model. Moreover, they found that funds with
lower ESG scores outperformed the fund with high ESG scores during this period.

33For example, the semi-elasticity of 73% implies that if a stock represents 1% of a portfolio, the increase
of 1 standard deviation in the E-score would increase the holdings of that stock until it represents 1.73%
of the portfolio.
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Figure 3: Estimated coefficients for E-scores
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Notes: This plot shows the effective coefficient corresponding to E-scores: γ̂it = γ̂0 + κ̂log(AUM)it + σ̂vit.
The estimates (γ̂0, κ̂, σ̂) are obtained over 2-year estimation windows ranging from 2000-Q1 to 2019-Q4,
and according to estimation based on logit demand or mixed logit demand. The case of logit demand
corresponds to γ̂it = γ̂

logit
0 . Multiplying this effect by 100 approximates the semi-elasticity of portfolio

weights with respect to a one-standard-deviation change in E-scores. The plot uses the mean value,
in each window, of log assets under management, and shows the 95% confidence interval of how the
coefficient on E-scores varies across investors based on the assumption that unobserved demographics,
vit, are normally distributed. Recession periods of the US economy are shown as shaded gray regions.

investor’s assets under management. An alternative version of Figure 3 is presented in
Appendix C. It shows the effective coefficient on E-scores plotted not only at the mean
value but also at the 25th and 75th percentile of log assets under management in each
estimation window. The main trends and features of the E-scores discussed above do not
change by plotting the coefficient under various values of log assets under management;
of course in a given estimation window the effective coefficient γit varies with the log
assets under management of investor i according to the coefficient κ̂. The average across
estimation windows in the period 2010-2019 for κ̂ is positive, so larger investors will are
more sensitive to E-scores and will have higher demand for green stocks keeping other
coefficients and stock characteristics fixed. This is consistent with Koijen et al. (2023)
that find that large investors have a higher demand for stocks with higher environmen-
tal scores.34 This is also consistent with the finding in Pastor et al. (2023) that larger

34The value of the average across estimation windows is 0.303. The magnitude of this average is not
directly comparable with the one reported in Koijen et al. (2023) due to the type of data and demand
specification they use.

37



Figure 4: Estimated coefficient for return-related characteristics
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Notes: This plot shows the estimated coefficients corresponding to the return-related characteristics over
2-year estimation windows ranging from 2000-Q1 to 2019-Q4. Shaded regions represent 95% confidence
intervals. Recession periods of the US economy are shown as vertical shaded gray regions.
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Table 1: Example Estimated Price Elasticities

Elasticities (%)

Price Change Portfolio Weight (%) Logit Mixed Logit

Apple 2.83 -0.5686 -0.5809

Alphabet 1.02 -0.0045 -0.0023

Exxon Mobile 1.02 -0.0045 -0.0013

Notes: Estimated elasticities of the aggregate holdings Apple with respect to the price change of selected
stock prices. Data and estimates for 2019-Q2 under logit and mixed logit estimation.

investors tend to tilt their portfolio towards green stocks relative to smaller investors.

In estimation we also consider return-related characteristics in the demand for stocks.
Figure 4 shows the coefficients corresponding to the return characteristics. For most
periods, these characteristics have corresponding coefficients with the same sign. Char-
acteristics like market beta have negative coefficients, which is consistent with the inter-
pretation that market beta captures a basic dimension of risk and that risk is disliked
by investors. An estimated negative coefficient for book-to-market equity suggests a
preference for growth stocks. In periods of low interest rates, like following the Great
Recession, growth stocks may be preferred by investors to value stocks and have larger
equity valuations. The sensitivity to profitability and investment peak in periods where
we also observe low sensitivity to market beta. This could correspond to a change in in-
vestor preferences valuing forward-looking aspects of the firms, such as profitability and
investment, relatively more, and valuing backward-looking aspects of the firms, such as
market beta, relatively less. Notably the 2008-2009 estimation window that includes the
Great Recession period is where we observe the largest confidence intervals around most
of the estimates. General uncertainty about stock market performance could be reflected
in the relatively large standard errors for that period.

We also report an example of the estimated price elasticities. Table 1 shows the esti-
mated price elasticties of the holdings of Apple according to the market value portfolio
with respect to the price change of selected stocks. This example was chosen because in
2019-Q2, the market value portfolio has similar weights for Alphabet and Exxon Mobile,
approximately 1.02%. As discussed in section 3, under logit demand, the cross price
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elasticities are proportional to portfolio weights; hence under a logit demand system,
portfolio holdings of another technology stock would react identically to a price change
from both stocks. This is precisely what the estimates for logit show; a 1% increase in
the price of either Alphabet or Exxon Mobile lead to the same reduction in the holdings
of Apple stock (-0.57%), despite Apple and Alphabet belong to the same industry while
Apple and Exxon Mobile belong to different industries. On the other hand, the mixed
logit estimates are flexible enough to show a larger degree of complementarity between
Apple and Alphabet, than between Apple and Exxon Mobile.

5 Ban of Green Investing for Pension Funds

In this section we use the estimated demand for green stocks to study the effects of a ban
of green investing for pension funds on aggregate holdings and equity prices. This coun-
terfactual policy exercise is motivated by policy initiatives discussed in the US Senate at
the beginning of 2023. On March 1st 2023, the US Senate passed a bill to prevent pension
fund managers from basing investment decisions on factors like climate change (Morgan
(2023)). The bill was eventually vetoed by President Biden 19 days later (Thomas (2023))
but many similar initiates have been approved in various US States legislatures.

To implement a ban on green investing for pension funds, we first identify the in-
stitutional investors that are pension funds and counterfactually make their demand for
stocks perfectly inelastic to E-scores. To identify pension funds we use the classification
of institutional investors from KY2019. This classification groups institutional investors
into 6 categories: banks, insurance companies, mutual funds, pension funds, investment
advisors (including hedge funds) and other institutions like foundations, nonfinancial
corporations, and endowments. Once the pension funds have been identified, we define
the following counterfactual demand curves for a stock j:

w̃it,j =


exp(δ̂jt−γ̂0cjt)

1+∑
Jt
j=1 exp(δ̂jt−γ̂0cjt)

if i is a pension fund

exp(δ̂jt+hijt(θ̂2,di,vi))
1+∑

Jt
j=1 exp(δ̂jt+hijt(θ̂2,di,vi))

otherwise.

In these counterfactual demand curves pension funds are inelastic to E-scores, since in
their counterfactual demand the non linear parameters are set to zero and the component
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corresponding to E-scores in δ̂jt is offset to zero. In this case pension funds adjust their
demand curves as if they no longer value the portfolio profile from the environmental
performance of the stocks they select. As a consequence of the demand change, prices
observed in the data would not clear the market and we need to find counterfactual
prices that clear the market. We rely on a market clearing condition (17) to find the new
counterfactual prices. Recall that the market clearing conditions states that

MEjt =
I

∑
i=1

Aitwit,j,

and this condition can be expressed as a fixed point in the log vector of prices. Using
the counterfactual demand curves, w̃it, we solve for a vector of log prices pc such that

pc = f (pc) := log

(
I

∑
i=1

Aitw̃it(pc)

)
− log(St), (37)

KY2019 show that a sufficient (but no necessary) condition for this fixed point to exist is
that the coefficient accompanying prices has an absolute value less than one. We run the
counterfactual exercise with data from the 2019-Q1 period; in this period the coefficient
corresponding to prices, which is the coefficient on log book-to-market equity, is −0.443
and therefore it satisfies the sufficient condition for a fixed point to exist.

In computing counterfactual prices that satisfy the market clearing condition we as-
sume the following. First, the number of shares outstanding of each stock is assumed to
be fixed, so we have an inelastic supply of the stocks and price changes are determined
by demand shifts. Second, the assets under management for each investor Ai is also
assumed to remain constant during the counterfactual. That is each investor still decides
how to allocate Ait dollars into the available stock given that prices change to counterfac-
tual prices and in the case of pension funds they are now inelastic to the E-scores. Third,
is it assumed that the coefficients associated to return-related characteristics are fixed as
well as the coefficient on E-scores for institutional investors other than pension funds.
Fourth, the estimated unobserved stock characteristics, ξ̂ jt is also assumed be remain
constant during the counterfactual. It can be argued that for the last two assumptions
a Lucas (1976) critique applies to the extent that coefficients on return characteristics
and unobserved stock characteristics change with the policy. This critique apply to most
counterfactual exercises in the asset demand literature and exploring ways to circumvent
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the critique is left for future research.

Figure 5 shows the results of the counterfactual exercise using data and estimates for
2019-Q1. The portfolios in the figure were constructed by sorting stocks by their E-score,
and grouping them according to quintiles. Portfolio 1 contains the 20% of stocks with
lowest E-scores, the most brown stocks, while Portfolio 5 contains the 20% of stocks
with highest E-scores, the most green stocks. The left panel shows aggregate portfolio
weights for each portfolio, that is the sum of the market shares for the stocks contained
in each portfolio. We show the aggregate portfolio weights in three cases: first, those
observed in the data. Second, under the counterfactual policy using the logit demand
specification and estimates; and finally, under the counterfactual policy using the mixed
logit demand specification and estimates. Results show that the aggregate holdings in
the data are very similar to the counterfactual holdings. This is specially true for the
logit demand case, however, compared to the counterfactual holdings under the mixed
logit demand we see larger differences. Portfolio 5, which is composed of the stocks
with the highest E-scores, shows a reduction in aggregate holdings under the policy,
whereas Portfolios 1, 2, and 3 increase their aggregate holdings. This means that the
relative importance of the stocks in Portfolio 5 diminished while the relative importance
of the stocks of portfolios 1, 2 and 3 increased. This suggests that with the policy the
aggregate investment share on green stocks was reduced in favor of brown stocks.

The right panel of Figure 5 shows the value-weighted average price change for the
stocks in each portfolio. These price changes compare the prices observed in the data in
2019-Q1 with the counterfactual prices using both the mixed logit demand specification
as well as the logit demand specification. Results show that the changes under a logit
demand are much smaller than in the mixed logit demand case, this is due to the restric-
tive elasticities of logit demand where, as mentioned before, own-price elasticities are
proportional to market shares. The results for mixed logit demand show that Portolio
5 experienced the most negative change, with an average counterfactual price change
of -1.6%, while Portfolio 1 exhibited the biggest positive change with an average coun-
terfactual change of 1.1%.35 These result have to keep a consistency with the changes
in aggregate shares, the price of green stocks will decrease under the new counterfac-
tual prices that clear the market, because there is less demand for green stocks, but the

35The corresponding changes for logit demand are -0.2% for Portfolio 5 and 0.2% for Portfolio 1.
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Figure 5: Counterfactual holdings and price changes of E-score-based portfolios
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Notes: This figure shows the effect of a ban of green investing for pension funds on aggregate holdings and
equity prices in a counterfactual exercise using data and estimates for 2019-Q1. The portfolios in the figure
were constructed by sorting stocks by their E-score, and grouping them according to quintiles. Portfolio 1
contains the 20% of stocks with lowest E-scores, while Portfolio 5 contains the 20% of stocks with highest
E-scores. The left panel shows the sum of the market shares for the stocks contained in each portfolio.
It shows the aggregate portfolio weights observed in the data, under the counterfactual policy using
estimates from a mixed logit demand specification and using estimates of a logit demand specification.
The right panel shows the value-weighted average price change for each portfolio comparing the prices
observed in the data with the counterfactual prices under mixed logit demand and under logit demand.

decrease will happen up to a point where the reduction in price no longer encourages
more demand of the green stocks and the market clears. From the right panel of Figure
5, as with aggregate shares, the prices of green stocks decrease the most while the price
of brown stocks increased with the policy.

The magnitude of the price changes in Figure 5 are commensurate to price changes
observed in the data. For example, in the quarter following the data use for the coun-
terfactual, the value-weighted price change of the stocks in Portfolio 1 between 2019-Q1
and 2019-Q2 was 1.1%; a table version of Figure 5 showing the price change over this
period for all portfolios is included in Appendix C. Similarly, as studied in Rudebusch
et al. (2023), policy announcements that substantially affect green and brown stocks can
trigger price changes on stock indices of brown and green stocks ranging from -2% to
11% in a manner of days, as in the case of the Inflation Reduction Act approved in 2022.
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6 Conclusions

This paper combines a traditional portfolio construction problem with demand estima-
tion techniques to estimate the demand for green stocks of US institutional investors. In
the framework presented, both belief and taste heterogeneity play a role. In addition to
investor heterogeneity through differential beliefs about future returns, our framework
allows for investors to care about the characteristics of the portfolio they are forming
beyond those characteristics related directly to an expected return-versus-risk trade off.
We use this framework to measure the preference for green stocks while considering
return-related stock characteristics.

For estimation this paper uses a mixed logit demand specification in contrast with
the logit demand specification more commonly used in the recent asset demand liter-
ature. In a logit demand specification, price elasticities are proportional to portfolio
shares which restricts the substitution patterns between assets. In a mixed logit demand
specification, investor heterogeneity is captured by investor-specific coefficients that are
modeled as functions of investor demographics. This richer investor-level heterogene-
ity delivers more flexible substitution patterns between assets, and it is the modern
workhorse model of demand estimation in the IO literature. By doing estimation at the
market-level we can not only implement the mixed logit demand specification, but it
facilitates dealing with the endogeniety of prices. Specifically, this allows us to consider
instrumental variables for prices based on demand shifters that have been studied in the
IO literature, such as BLP-type instruments or Gandhi-Houde price instruments, which
have not been used in the asset demand literature.

The empirical exercise uses quarterly data on the stock holdings of institutional in-
vestors in the US. We pair this holdings data with return-related characteristics inspired
by the Fama-French five factor model and data on the environmental performance of
the listed companies in the form of E-scores. We find that the revealed taste for green
stocks fluctuates over time. For both logit and mixed logit demand estimation, we find
a positive taste for green stocks throughout the estimation sample. However, for mixed
logit estimation the semi-elasticity for E-scores increases in the second part of the sam-
ple. Moreover, in the period after the Great Recession (2007-Q4 to 2009-Q2) there is an
increase in the range of values for the coefficient on E-scores, showing an increase in the
heterogeneity in the sensitivity to green characteristics across investors.
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In a counterfactual exercise, we use the estimated demand system for stocks to study
the effects on equity prices and aggregate holdings of a ban on green investing for
pension funds. Using the data and estimates for 2019-Q1, we find that brown stocks will
benefit the most in terms of counterfactual pricing. A portfolio with the bottom quintile
of green stocks is estimated to have an associated average price change of 1.1% under
the counterfactual, while the top quintile portfolio has an average price change of -1.6%.

Future work. Three avenues of work are left for future research. The first one deals
with nontraditional stock characteristics. There is a great amount of textual information
about listed companies that can be informative to investors. It is possible to extract “top-
ics of risk” by applying a topic model to the text of regulatory risk fillings from listed
companies (see, e.g. Lopez-Lira (2023)) and using the corresponding topic loadings as
a stock characteristic in the demand curves of investors. This would help enrich the
demand model with nontraditional but sensible characteristics related to risk. Related
work includes Lopez-Lira and Roussanov (2023) that explores whether traditional com-
mon factors are enough to explain the cross section of returns.

A second avenue of future research lies at the intersection of asset pricing and corpo-
rate finance. As discussed in Brunnermeier et al. (2021) asset demand curves are flexible
enough to include firm characteristics such as leverage, innovation, investment, and pay-
out policies as relevant features signaling growth expectations and risks associated with
future cash flows. Adding a model of firm corporate policies would complement asset
demand systems with models of corporate decision making.

Third, dynamic considerations are at the very frontier of the asset demand estima-
tion literature. Time-conditional statements in asset pricing are paramount and explicitly
modeling the time dimension in the demand for stocks would be an important contribu-
tion to the literature. Over time portfolio optimization in one period is directly related
to the stocks held in the previous period, calling for inventory considerations when mod-
eling asset demand curves over time. Modeling asset demand dynamically also requires
understanding how asset characteristics evolve over time, how investor funds flow in
and out of the stock market, and how investor beliefs update over time. All these issues
make dynamic asset demand challenging yet exciting for future research.
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Appendices

A Proofs and Mathematical Derivations

A.1 Proof of Proposition 1

Proof. The following proof follows the main steps of Lemma 1 proof’s in KY2019 with the
adaptation for the more general objective function. The function inside the conditional
expectation in (1) takes the form

Fi(Ai,t+1, Cit, wit) = log(Ai,t+1) + a′iC
′
twit

we can replace the first term with

log(Ai,t+1) = log(Ait) + log
(

Ai,t+1

Ait

)
= log(Ait) + log

(
R0

t+1 + w′
it(Rt+1 − R0

t+11)
)

by using the budget constraint (2). Then the Lagrangian for the problem is given by

L(wit, Λit, λit) = log(Ait) + Eit

[
log
(

R0
t+1 + w′

it(Rt+1 − R0
t+11)

)]
+ a′iC

′
twit + Λ′

itwit + λit(1 − 1′wit),

the first order condition with respect to wit given by

Eit

[(
R0

t+1 + wit(Rt+1 − R0
t+11)

)−1 (
Rt+1 − R0

t+11
)′]

+ Λ′
it − λit1′ + a′iC

′
t = 0

⇒ Eit

[(
Ai,t+1

Ait

)−1 (
Rt+1 − R0

t+11
)]

= − (Λit − λit1 + Ctai) . (A1)

Multiplying this equation by −1w′
it yields:

−Eit

[(
Ai,t+1

Ait

)−1

1w′
it

(
Rt+1 − R0

t+11
)]

= 1w′
it (Λit − λit1 + Ctai)

⇒ −Eit

[(
Ai,t+1

Ait

)−1 (Ai,t+1

Ait
− R0

t+1

)
1

]
= 1w′

it (Λit − λit1 + Ctai)
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using the intertemporal budget constraint. Summing the last expression with (A1) re-
sults in Euler equation in Proposition 1:

Eit

[(
Ait+1

Ait

)−1

Rt+1

]
= 1 − (I − 1w′

it) (Λit − λit1 + Ctai) .

Next, using the intertemporal budget constraint we can write the objective function
of the investor problem as:

log(Ait) + Eit

[
log
(

R0
t+1 + w′

it(Rt+1 − R0
t+11)

)]
+ a′iC

′
twit.

Let Rp
t+1 denote the gross return of the portfolio with weights wit, then

Rp
t+1 = R0

t+1 + w′
it(Rt+1 − R0

t+11),

and the log excess return of the portfolio weith respect to the outside option gross return
is given by

rp
t+1 − r0

t+1 = log

(
Rp

t+1

R0
t+1

)
= log

(
1 + w′

it

(
exp(rt+1 − r0

t+11)− 1
))

.

Now consider the function g(x) : RJ → R given by g(x) = log(1 + w′(exp(x) − 1)),
where the exp(·) applies entry-by-entry, and w is a J-vector constant, then a second
order Taylor approximation of g around x0 = 0 ∈ RJ is given by

g(x) ≈ w′
(

x +
1
2

x ⊙ x
)
− 1

2
w′ (xx′

)
w,

where ⊙ stands for entry-by-entry multiplication. Applying this approximation to the
expression for rp

t+1 − r0
t+1 yields

rp
t+1 − r0

t+1 ≈ w′
it

(
(rt+1 − r0

t+1) +
1
2
(rt+1 − r0

t+1)⊙ (rt+1 − r0
t+1)

)
− 1

2
w′

it(rt+1 − r0
t+1)(rt+1 − r0

t+1)
′wit.

Next we apply the expectations operator Eit[·] and the second term in the objective
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function can be approximated by

Eit

[
log
(

R0
t+1 + w′

it(Rt+1 − R0
t+11)

)]
≈ r0

t+1 + w′
it

(
Eit[rt+1 − r0

t+1] +
σ̃2

it
2

)
−

w′
itΣ̃itwit

2

= r0
t+1 + w′

itµ̃it −
w′

itΣ̃itwit

2
,

this approximation replaces Eit[(rt+1 − r0
t+1)(rt+1 − r0

t+1)
′] with Σ̃it and Eit[(rt+1 − r0

t+1)⊙
(rt+1 − r0

t+1)] with σ̃2
it, and follows from the one presented in Campbell and Viceira (2002)

(Eq. 2.23). With this approximation the first order condition for becomes

µ̃it − Σ̃itwit + Λit − λit1 + Ctai = 0

⇒ wit = Σ̃−1
it (µ̃it + Λit − λit1 + Ctai) ,

Partition the asset space between those with non-binding short sale constraint and those
binding we write Λ′

it = [0′ Λ(2)′

it ] and (Ctait) = [(Ctai)
′
1 (Ctai)

′
2]
′, then using the parti-

tions for Σ̃it and µ̃it we have that

wit =

(
w(1)

it
0

)
=

(
Σit Σ(1,2)

it

Σ(2,1)
it Σ(2,2)

it

)−1((
µit

µ
(2)
it

)
+

(
0

Λ(2)
it

)
− λit1 +

(
(Ctai)1

(Ctai)2

))
.

The inverse of Σ̃it is given by

Σ̃−1
it =


(

Σit − Σ(1,2)
it Σ(2,2)−1

it Σ(2,1)
it

)−1
−Σ−1

it Σ(1,2)
it

(
Σ(2,2)

it − Σ(1,2)
it Σ−1

it Σ(2,1)
it

)−1

−Σ(2,2)−1
it Σ(2,1)

it

(
Σit − Σ(1,2)

it Σ(2,2)−1
it Σ(2,1)

it

)−1 (
Σ(2,2)

it − Σ(1,2)
it Σ−1

it Σ(2,1)
it

)−1

 ,

then wit becomes

(
w(1)

it
0

)
=


(

Σit − Σ(1,2)
it Σ(2,2)−1

it Σ(2,1)
it

)−1
(µit − λit1 + (Ctai)1)− Σ−1

it Σ(1,2)
it

(
Σ(2,2)

it − Σ(1,2)
it Σ−1

it Σ(2,1)
it

)−1 (
µ
(2)
it + Λ(2)

it − λit1 + (Ctai)2

)
−Σ(2,2)−1

it Σ(2,1)
it

(
Σit − Σ(1,2)

it Σ(2,2)−1
it Σ(2,1)

it

)−1
(µit − λit1 + (Ctai)1) +

(
Σ(2,2)

it − Σ(1,2)
it Σ−1

it Σ(2,1)
it

)−1 (
µ
(2)
it + Λ(2)

it − λit1 + (Ctai)2

)
 .

We can multiply the second block by Σ−1
it Σ(1,2)

it and sum both blocks to obtain

w(1)
it =

(
I − Σ−1

it Σ(1,2)
it Σ(2,2)−1

it Σ(2,1)
it

) (
Σit − Σ(1,2)

it Σ(2,2)−1
it Σ(2,1)

it

)−1
(µit − λit1 + (Ctai)1)

= Σ−1
it (µit − λit1 + (Ctai)1).
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So following the notation, for the optimal positive weights on the investor’s problem can
be approximated by

wit ≈ Σ−1
it (µit − λit1 + (Ctai)1) .

To pin down the value of λit, notice that when constraint (3) is binding then

1′wit = 1′Σ−1
it (µit − λit1 + Ctai) = 1,

then

λit =
max{1′Σ−1

it (µit + Ctai)− 1, 0}
1′Σ−1

it 1
.

A.2 Derivation of investor-specific posterior moments

Proof. We have that

sit|(rx
t+1, σ2

ε,i) ∼ N(rx
t+1, σ2

ε,i I)

rx
t+1 ∼ N(µxt, Σxt).

The pdfs of these distributions are given by:

p(sit|rx
t+1, σ2

ε,i) = (2π)−Jt/2det(σ2
ε,i I)

−1/2 exp
[
−1

2
(sit − rx

t+1)
′(σ2

ε,i I)
−1(sit − rx

t+1)

]
p(rx

t+1) = (2π)−Jt/2det(Σxt)
−1/2 exp

[
−1

2
(rx

t+1 − µxt)
′Σ−1

xt (r
x
t+1 − µxt)

]
.
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By Bayes theorem p(rx
t+1|sit, σ2

ε,i) ∝ p(sit|rx
t+1, σ2

ε,i)p(rx
t+1) and

log(p(rx
t+1|sit, σ2

ε,i)) =− 1
2
(sit − rx

t+1)
′(σ2

ε,i I)
−1(sit − rx

t+1)

− 1
2
(rx

t+1 − µxt)
′Σ−1

xt (r
x
t+1 − µxt) + cons

=− 1
2
(rx

t+1)
′(σ2

ε,i I)
−1(rx

t+1) + (rx
t+1)

′(σ2
ε,i I)

−1(sit)

− 1
2
(rx

t+1)
′Σ−1

xt (r
x
t+1)−

1
2
(rx

t+1)
′Σ−1

xt (µxt) + cons

=− 1
2
(rx

t+1)
′[(σ2

ε,i I)
−1 + Σ−1

xt ](r
x
t+1) + (rx

t+1)
′[(σ2

ε,i I)
−1sit + Σ−1

xt µxt] + cons

=− 1
2

(
rx

t+1 − [(σ2
ε,i I)

−1 + Σ−1
xt ]

−1[(σ2
ε,i I)

−1sit + Σ−1
xt µxt]

)′
· [(σ2

ε,i I)
−1 + Σ−1

xt ]
−1
(

rx
t+1 − [(σ2

ε,i I)
−1 + Σ−1

xt ]
−1[(σ2

ε,i I)
−1sit + Σ−1

xt µxt]
)
+ cons.

This is the pdf of a multivariate normal distribution with variance Σr|si
and mean µr|si

given by

Σr|si
= [(σ2

ε,i)
−1 I + Σ−1

xt ]
−1

µr|si
= Σr|si

[(σ2
ε,i)

−1sit + Σ−1
xt µxt].

A.3 Proof of Proposition 2

Proof. Recall that from the derivation of posterior moments in (10) we have that

Σit = Σr|si
= ((σ2

ε,i)
−1 I + Σ−1

xt )
−1,

and from assumption 2 the term Σxt is given by Σxt = (ΓxtΓ′
xt + σ2

e I). We can use the
Woodbury matrix identity to obtain the inverse of Σxt:

Σ−1
xt = [ΓxtΓ′

xt + σ2
e I]−1

=
1
σ2

e

(
I − ΓxtΓ′

xt
σ2

e + Γ′
xtΓxt

)
,
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and substituting into the expression for Σit yields

Σ−1
it =

(
1

σ2
ε,i

+
1
σ2

e

)
I − 1

σ2
e (σ

2
e + Γ′

xtΓxt)
ΓxtΓ′

xt

=

(
σ2

e + σ2
ε,i

σ2
ε,iσ

2
e

)
I − 1

σ2
e (σ

2
e + Γ′

xtΓxt)
ΓxtΓ′

xt

=
1

σ2
e (σ

2
e + Γ′

xtΓxt)

[
(σ2

e + σ2
ε,i)(σ

2
e + Γ′

xtΓxt)

σ2
ε,i

I − ΓxtΓ′
xt

]
,

now let’s define δit = (σ2
ε,i)

−1(σ2
e + σ2

ε,i)(σ
2
e + Γ′

xtΓxt) then

Σ−1
it =

1
σ2

e (σ
2
e + Γ′

xtΓxt)
[δi I − ΓxtΓ′

xt]

and using the Woodbury matrix identity again we have:

Σit = σ2
e (σ

2
e + Γ′

xtΓxt)[δit I − ΓxtΓ′
xt]

−1

= σ2
e (σ

2
e + Γ′

xtΓxt)
1
δit

[
I +

ΓxtΓ′
xt

δit − Γ′
xtΓxt

]
=

σ2
ε,iσ

2
e

σ2
e + σ2

ε,i
I +

σ2
e (σ

2
e + Γ′

xtΓxt)

δit(δit − Γ′
xtΓxt)

ΓxtΓ′
xt

:= ιit I + ΓitΓ′
it

with

ιit :=
σ2

ε,iσ
2
e

σ2
e + σ2

ε,i

Γit :=
[

σ2
e (σ

2
e + Γ′

xtΓxt)

δit(δit − Γ′
xtΓxt)

]1/2

Γxt

=

[
σ4

ε,i

(σ2
ε,i + σ2

e )(σ
2
ε,i + σ2

e + Γ′
xtΓxt)

]1/2

Γxt
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A.4 Proof of Proposition 3

Proof. Part (i)

We start by showing that Γit can be written as a polynomial function on xjt with
investor-specific coefficients. From the proof of proposition 2 we have that the j-th entry
of Γit is given by:

Γit,j = kitΓxt,j := y′jtΦΓ,i + ϕΓ,i,

where the second equality uses assumption (4), and

ΦΓ,i = kitΦΓ

ϕΓ,i = kitϕΓ

kit = σ2
ε,i(σ

2
ε,i + σ2

e )
−1/2(σ2

ε,i + σ2
e + Γ′

xtΓxt)
−1/2.

The next step is to show the same can be shown for µit,j. Recall that µit is the term
entering the approximation of optimal weights in equation (5) and it is given by

µit = Eit[rx
t+1] +

σ2
it
2

= µr|si
+

1
2

diag(Σit);

and the term µr|si
is given by

µr|si
= Σr|si

[
(σ2

ε,i)
−1sit + Σ−1

xt µxt

]
.

Next we show that we can write µr|si
as a function of µxt, Γxt and Γit. Notice that using

assumption 2 and the Woodbury matrix identity, the term Σ−1
xt µxt can be written as

Σ−1
xt µxt = [σ2

e I + ΓxtΓ′
xt]

−1µxt

=
1
σ2

e

[
I − ΓxtΓ′

xt
σ2

e + Γ′
xtΓxt

]
µxt,

also recall that by proposition 2, Σr|si
= Σit = ΓitΓ′

it + ιit I, so if we substitute these terms
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into the expression for µr|si
we have:

µr|si
= Σr|si

[
(σ2

ε,i)
−1sit + Σ−1

xt µxt

]
= [ιit I + ΓitΓ′

it]

[(
1

σ2
ε,1

)
sit +

1
σ2

e

[
I − ΓxtΓ′

xt
σ2

e + Γ′
xtΓxt

]
µxt

]
= κ1isit + κ2iµxt + κ3iΓxt + κ4iΓit

with scalars

κ1i =

(
ιit
σ2

ε,i

)

κ2i =

(
ιit
σ2

e

)
κ3i = −

(
ιit
σ2

e

)(
Γ′

xtµxt

σ2
e + Γ′

xtΓxt

)
κ4i =

[(
Γ′

itsit

σ2
ε,i

)
+

(
Γ′

itµxt

σ2
e

)
−

(Γ′
xtµxt)(Γ′

itΓxt)

σ2
e (σ

2
e + Γ′

xtΓxt)

]
,

with the previous we have that for asset j

µr|si,j = κ1isit,j + κ2iµxt,j + κ3iΓxt,j + κ4iΓit,j

= κ1isit,j + κ2i(y′jtΦµ + ϕµ) + κ3i(y′jtΦΓ + ϕΓ) + κ4i(y′jtΦΓ,i + ϕΓ,i)

= y′jt
[
κ2iΦµ + κ3iΦΓ + κ4iΦΓ,i

]
+
[
κ1iϕµ + κ2iϕΓ + κ3iϕΓ,i

]
.

Recall that σ2
it = diag(Σit), so σ2

it,j = Γ2
it,j + ιit. Since Γit,j is a polynomial of degree M is

clear that σ2
it,j is a polynomial of degree 2M on xjt. To accommodate this we can define

ȳjt so it includes the degree combinations of yjt ⊗ yjt, that is define

ȳjt =


xjt

xjt ⊗ xjt

xjt ⊗ xjt ⊗ xjt
...


with ȳjt having dimension Kȳ = ∑2M

m=1 Km
x . Then we define Φȳ so (y′jtΦΓ,i)

2 = ȳ′jtΦȳ.
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With this notation we can write

σ2
it,j = Γ2

it,j + ιit = (y′jtΦΓ,i + ϕΓ,i)
2 + ιit

= (y′jtΦΓ,i)
2 + y′jt[2ϕΓ,iΦΓ,i] + [ϕ2

Γ,i + ιit]

= ȳ′jtΦȳ + y′jt[2ϕΓ,iΦΓ,i] + [ϕ2
Γ,i + ιit].

Notice that the term µr|si,j can be written as a polynomial on ȳjt; just pad with zeros
the coefficients corresponding to powers of the elements in xjt present ȳjt but not in yjt.
Then it is possible to write

µit,j = µr|si,j +
1
2

σ2
it,j

:= ȳjtΦµ,i + ϕµ,i,

where the Φµ,i exact configuration of padded zeros depends on the dimensions of xjt

and the degree M. Finally, ϕµ,i is given by

ϕµ,i = κ1isit,j + κ2iϕµ + κ3iϕΓ + κ3iϕΓ,i +
1
2

ϕ2
Γ,i +

1
2

ιit.

Part (ii). Recall that the positive optimal portfolio weights are given by

wit ≈ Σ−1
it (µit − λit1 + Ctai) ,

using the expression for Σit we have

wit ≈ [ιit + ΓitΓ′
it]

−1(µit − λit1 + Ctai)

=
1
ιit

[
I −

ΓitΓ′
it

ιit + Γ′
itΓit

]
(µit − λit1 + Ctai)

=

(
1
ιit

)
µit −

(
λit

ιit

)
1 + Ct

(
ai

ιit

)
+ κitΓit

with

κit = −
Γ′

it(µit − λit1 + Ctai)

ιit + Γ′
itΓit

Now define x̃jt = [x′jt c′jt]
′ a Kx̃ = (Kx + Kc)-vector and define the Kỹ vector ỹjt with
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Kỹ = ∑2M
m=1(Kx + Kc)m and

ỹjt =


x̃jt

x̃jt ⊗ x̃jt

x̃jt ⊗ x̃jt ⊗ x̃jt
...

 .

We proceed by showing that each term in wit,j can be written as polynomial in ỹjt. First

c′jt

(
ai

ιit

)
= ỹ′jt


0(

1
ιit

)
ai

0
...

 := ỹ′jtΦC,i,

next (
1
ιit

)
µit,j =

(
1
ιit

)(
ȳ′jtΦµ,i + ϕµ,i

)
= ȳ′jt

(
1
ιit

Φµ,i

)
+

ϕµ,i

ιit

:= ỹjtΦ̃µ,i +
ϕµ,i

ιit

where Φ̃µ,i has zeros whenever a term with cjt appears in ỹjt. Finally,

κitΓit,j = κit(y′jtΦΓ,i + ϕΓ,i)

= y′jt(κitΦΓ,i) + κitϕΓ,i

= ỹ′jtΦ̃Γ,i + κitϕΓ,i,

where once again Φ̃Γ,i has zeros whenever there is a term in ỹjt with cjt or has a power
of xjt not present in yjt. Collecting terms we have that

wit,j ≈ ỹ′jtΦw,it + ϕw,it
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with

Φw,it = Φ̃µ,i + ΦC,i + Φ̃Γ,i

ϕw,it =
ϕµ,i

ιit
+ κitϕΓ,i −

λit

ιit
.

Part (iii). Restricting the parameters so ϕw,it = wit0 and Φw,it/wit0 = [βit 1/2vec(βitβ
′
it) · · · ]′

then

wij,t

wit,0
≈ 1 + ỹ′jt

Φw,it

wit0
= 1 + x̃′jtβit +

1
2

vect(x̃jt x̃′jt)
′vec(β jtβ

′
jt) + · · ·

=
M

∑
m=1

(x̃′jtβit)
m

m!
−→ exp

[
x̃′jtβit

]
, as m → ∞.

Writing β′
it = [1 b′it γ′

it] and assuming the first characteristics in xjt is unobserved and
denote by ξ jt then we have that

wit,j

wit,0
≈ exp

(
ξ jt + x′jtbit + c′jtγit

)
Finally because wit,0 + ∑Jt

j=1 wit,j = 1, then 1 + ∑Jt
j=1 wit,j/wit,0 = 1/wit,0 and

wit,j ≈
exp

(
x′jtbit + c′jtγit + ξ jt

)
1 + ∑Jt

k=1 exp
(
x′ktbit + c′ktγit + ξkt

) ,

and the weight for the outside option is given by

wit,0 ≈ 1

1 + ∑Jt
k=1 exp

(
x′ktbit + c′ktγit + ξkt

) .

A.5 Proof of Proposition 4

We start by stating Berry’s Inversion theorem for demand systems. See Berry (1994) for
a full proof. Then the proof consists in verying the conditions of the theorem for the
demand system in (25).
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Berry’s Inversion Theorem Consider the metric space (RK, d) with d(x, y) = ||x − y||
and || · || denoting the sup-norm. Let f : RK → RK satisfy:

i. ∀x ∈ RK, f (x) is continuously differentiable such that for any j and k:

∂ f j(x)
∂xk

≥ 0

K

∑
k=1

∂ f j(x)
∂xk

< 1

ii. minj infx f (x) := x > −∞

iii. There is a value x̄ with the property that if for any j xj ≥ x̄ then for some k (not
necessarily equal j) fk(x) < xk.

Then there is a unique fixed point x0 ∈ RK to f . Moreover, let X := [x, x̄]K and define
the truncated function f̂ j(x) = min{ f j(x), x̄}. Then f̂ (x) is a contraction of modulus less
than one on X .

Proof. Verying the conditions of Berry’s Inversion Theorem

Denote by θ the parameters to estimate in market t; st the vector of observed aggre-
gate share, and s̃t(δt, θ2; dt, Xt, Jt) the vector of model-implied shares. Here the operator
f : RJt → RJt for which we look a fixed point is given by:

f (δ) = δ + log st − log s̃t(δ, θ2; dt, Xt, Jt)

On this operator we check the conditions for Berry’s inversion. On the following
we drop the t index and denote the model implied market share for asset j as s̃j :=
s̃j(δ, θ2; dt, Xt, Jt).

• Checking i. We start by verifying that the first derivatives are non-negative, we
have that:

∂ f j(δ)

∂δk
=


1 − 1

s̃j

∂s̃j
∂δj

if k = j

− 1
s̃j

∂s̃j
∂δk

if k ̸= j
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We know that s̃j ≥ 0 and using the definition for the model-implied shares we have
that

∂s̃j

∂δk
=

∂

∂δk

[
∑
i∈I

(
Ai

A

) ∫
wij(vi)dFv(vi)

]
= ∑

i∈I

(
Ai

A

) ∫ ∂wij(vi)

∂δk
dFv(vi)

where
∂wij(vi)

∂δk
=

wij(vi)(1 − wij(vi)) if k = j

−wik(vi)wij(vi) if k ̸= j

From the previous we see that if k ̸= j then
∂wij
∂δk

≤ 0 and since (Ai/A) > 0 then
∂s̃j
∂δk

≤ 0. For k = j notice that
∂wij
∂δk

≤ wij and then
∂s̃j
∂δk

≤ s̃j so
∂s̃j
∂δk

. The next step is to
verify that the sum of partial derivatives is less than 1. Notice that:

Jt

∑
k=1

∂ f j(δ)

∂δk
=

∂ f j(δ)

∂δj
+ ∑

k ̸=j

∂ f j(δ)

∂δk

= 1 − 1
s̃j

∂s̃j

∂δj
+ ∑

k ̸=j

(
− 1

s̃j

∂s̃j

∂δk

)

= 1 − 1
s̃j

[
Jt

∑
k=1

∂s̃j

∂δk

]
= 1 − 1

s̃j

[
Jt

∑
k=1

∑
i∈I

(
Ai

A

) ∫ ∂wij(vi)

∂δk
dFv(vi)

]

= 1 − 1
s̃j

[
∑
i∈I

(
Ai

A

) Jt

∑
k=1

∫ ∂wij(vi)

∂δk
dFv(vi)

]

Given the definition of s̃j it is sufficient to show that ∑Jt
k=1

∫ ∂wij(vi)

∂δk
dFv(vi) <

∫
wij(vi)dFv(vi).

For this we notice that

Jt

∑
k=1

∂wij(vi)

∂δk
=

∂wij(vi)

∂δj
+ ∑

k ̸=j

∂wij(vi)

∂δk
= wij(vi)(1 − wij(vi))− ∑

k ̸=j
wij(vi)wik(vi)

= wij(vi)

[
1 − ∑

k ̸=j
wik(vi)

]
≤ wij(vi)

• Checking ii. There first step is to rewrite the model-implied shares as
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s̃j = ∑
i∈I

(
Ai

A

) ∫
wij(vi)dFv(vi) = exp(δj)∑

i∈I

(
Ai

A

)
Dij(δ)

with Dij(δ) =
∫ exp(hij(vi))

1 + ∑J
j=1 exp(δj + hij(vi))

dFv(vi)

This implies that ln(s̃j) = δj + ln
(
∑i∈I(Ai/A)Dij(δ)

)
and that

f (δ)j = ln(sj)− ln

(
∑
i∈I

(Ai/A)Dij(δ)

)

Now notice that when δm → −∞ for m ̸= j then the term Dij(δ) tends to
∫

exp(hij(vi))dFv(vi)

so a lower bound for f (δ)j is

δj > ln(sj)− ln

[
∑
i∈I

(Ai/A)
∫

exp(hij(vi))dFv(vi)

]

So condition ii. is satisfied with δ := minj δj.

• Checking iii. For this part set δk = −∞ for k ̸= j and defined δ̄j as the value of
δj such that s̃0(δ, θ2) = s0, that is the value of δj that along with δk = −∞ would
match the observed shares for the outside good. Moreover let δ̄ > maxjδ̄j.

If δ is such that ∃j with δj > δ̄ then s̃0(δ) < s0 and hence ∑It
k=1 s̃(δ)k > ∑Jt

k=1 sk

which means that there is a least one element k such that s̃(δ)k > sk. For such k we
have that f (δ)k < δk as required in part iii.
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B Data Appendix

Table B1: Summary Statistics for Stock Characteristics

Variable N. Stocks Mean Median Std. Dev. Min Pc. 25th Pc. 75th Max
2000-2004
Market Beta 499 0.684 0.639 0.554 -0.238 0.302 0.960 3.974
log Market Equity 499 8.009 7.985 1.900 0.598 6.897 9.175 13.256
log Total Assets 499 8.404 8.572 1.858 1.516 7.348 9.751 13.455
log Book-to-Market Equity 499 -0.408 -0.360 0.923 -5.521 -0.968 0.206 3.653
Profitability 499 0.211 0.192 0.227 -1.752 0.104 0.319 0.785
Investment 499 0.073 0.051 0.193 -0.811 -0.016 0.132 1.305
E-score 499 0.059 0.000 0.238 -0.500 -0.125 0.333 0.500
2005-2009
Market Beta 696 1.208 1.099 0.713 -0.163 0.683 1.587 3.974
log Market Equity 696 8.038 7.981 1.804 0.923 6.884 9.299 13.149
log Total Assets 696 8.298 8.261 1.736 2.513 7.159 9.537 14.673
log Book-to-Market Equity 696 -0.482 -0.482 0.916 -5.659 -1.073 0.086 4.716
Profitability 696 0.223 0.211 0.251 -2.381 0.121 0.333 0.941
Investment 696 0.072 0.055 0.200 -0.741 -0.015 0.139 0.917
E-score 696 0.048 0.000 0.173 -0.500 0.000 0.200 0.500
2010-2014
Market Beta 1122 1.294 1.223 0.646 0.009 0.812 1.678 3.182
log Market Equity 1122 8.460 8.558 1.801 1.169 7.345 9.657 13.374
log Total Assets 1122 8.665 8.650 1.869 1.534 7.539 9.871 14.697
log Book-to-Market Equity 1122 -0.599 -0.593 0.936 -7.699 -1.150 -0.002 4.218
Profitability 1122 0.227 0.209 0.241 -2.098 0.120 0.319 0.878
Investment 1122 0.062 0.046 0.151 -0.691 -0.007 0.114 0.816
E-score 1122 0.020 0.000 0.168 -0.500 0.000 0.125 0.500
2015-2019
Market Beta 955 1.150 1.139 0.569 -0.396 0.779 1.487 3.184
log Market Equity 955 8.910 9.064 1.850 1.054 7.632 10.203 14.068
log Total Assets 955 9.003 8.949 1.903 1.534 7.803 10.263 14.780
log Book-to-Market Equity 955 -0.842 -0.794 1.061 -9.991 -1.441 -0.160 4.943
Profitability 955 0.261 0.223 0.292 -2.880 0.127 0.359 1.034
Investment 955 0.053 0.033 0.173 -0.633 -0.021 0.095 0.911
E-score 955 0.047 0.000 0.141 -0.500 0.000 0.125 0.500

Notes: Summary statistics for the stock’s characteristics used during estimation. Statistics are compute
over pooled quarterly observations of the variables every five years. Summary Statistics present mean,
median, standard deviation, minimum, 25th percentile, 75th percentile and maximum.
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Figure B1: Distribution of Institutional Investors by type
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Notes: Evolution of institutional investors by type from 2000q1 to 2020q4. The classification of institutional
investors follows the six categories as in Koijen and Yogo (2019).
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Table B2: Environmental Indicators from MSCI

Positive Indicators Negative Indicators
Environmental Opportunities Hazardous Waste
Waste Management Regulatory Compliance
Packaging Materials and Waste Ozone Depleting Chemicals
Climate Change Toxic Spills and Releases
Environmental Management Systems Agriculture Chemicals
Water Stress Climate Change
Biodiversity and Land Use Impact of Products and Services
Raw Material Sourcing Biodiversity and Land Use
Natural Resource Use Operational Waste
Environmental Opportunities - Green Buildings Supply Chain Management
Environmental Opportunities in Renewable Energy Water Management
Waste Management - Electronic Waste Other Concerns
Climate Change - Product Carbon Footprint
Climate Change - Insuring Climage Change Risk
Other Strengths

Notes: List of environmental performance indicators in the MSCI dataset. Each indicator is a dummy
variable. The threshold for satisfying an indicator are determined by MSCI and are not disclosed with the
data.
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C Complementary Results

Figure C1: Estimated coefficient for E-scores at different values of AUM
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Notes: This plot shows the effective coefficient corresponding to E-scores: γ̂it = γ̂0 + κ̂log(AUM)it + σ̂vit.
The estimates (γ̂0, κ̂, σ̂) are obtained over 2-year estimation windows ranging from 2000-Q1 to 2019-Q4.
The plot shows the estimated effective coefficient using the mean, 25th and 75th percentile of log assets
under management in each estimation window. Shaded areas correspond to the 95% confidence intervals
of how the coefficient on E-scores varies across investors based on the assumption that unobserved demo-
graphics, vit, are normally distributed. Recession periods of the US economy are shown as shaded gray
regions.
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Figure C2: Estimated coefficient for E-scores at mean quarterly AUM
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Notes: This plot shows the effective coefficient corresponding to E-scores: γ̂it = γ̂0 + κ̂log(AUM)it + σ̂vit.
The estimates (γ̂0, κ̂, σ̂) are obtained over 2-year estimation windows ranging from 2000-Q1 to 2019-Q4
and according to estimation based on logit demand or mixed logit demand. The case of logit demand
corresponds to γ̂it = γ̂

logit
0 . The plot shows the estimated effective coefficient using the mean of log

assets under management in each quarter from 2000-Q1 to 2019-Q4. Shaded areas correspond to the 95%
confidence intervals of how the coefficient on E-scores varies across investors based on the assumption
that unobserved demographics, vit, are normally distributed. Recession periods of the US economy are
shown as shaded gray regions.
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Table C1: Counterfactual holdings and price changes from a ban of green investing for
pension funds

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Observed Portfolio Statistics in 2019-Q1

N. Stocks 104 104 104 103 103

ME (USD Bill.) 2847 2115 1814 5789 5356

Agg. Port. Share (%) 9.310 6.917 5.932 18.930 17.515

Counterfactual Agg. Port Shares (%)

Logit 9.331 6.926 5.940 18.919 17.476

Mixed Logit 9.417 6.985 5.991 18.869 17.233

Counterfactual Price change (%)

Logit 0.222 0.138 0.138 -0.059 -0.220

Mixed Logit 1.142 0.988 0.988 -0.319 -1.611

Observed Price Change (%)

2019 Q1 -2019-Q2 -1.046 3.496 2.606 2.950 4.734

Notes: This table shows the effect of a ban of green investing for pension funds on aggregate holdings
and equity prices in a counterfactual exercise using data and estimates for 2019-Q1. The portfolios were
constructed by sorting stocks by their E-score, and grouping them according to quintiles. Portfolio 1
contains the 20% of stocks with lowest E-scores, while Portfolio 5 contains the 20% of stocks with highest
E-scores. The first three rows in the table show observed portfolio statistics in 2019-Q1, the quarter where
the portfolios where constructed. The following 4 rows show the counterfactual changes in aggregate
portfolio holdings and value-weighted prices changes according to a logit demand specification and to
a mixed logit demand specification. Finally, the last row in the table shows observed value-weighted
average price change between 2019-Q1 and 2019-Q2 for each portfolio.
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