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Abstract

Using unique data from LinkedIn profiles, we measure the adoption of AI technologies

by mutual fund managers. Compared to low-AI funds, high-AI funds generate supe-

rior returns and incur lower expenses. AI outperformance is particularly strong among

discretionary funds, which rely on human judgment, as opposed to quantitative funds.

The greater the AI adoption, the more pronounced the time-varying skill of fund man-

agers across different market conditions. The stock-picking abilities of high-AI funds

improve with the availability of big data, such as satellite imagery of parking lots. The

local availability of AI skills is a key determinant of cross-sectional variation in mutual

fund AI investment. Our findings are robust to using geographic variation in AI supply

as an instrument for AI utilization by mutual funds.
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1 Introduction

There is much excitement and speculation about the potential for Artificial Intelligence

(AI) to significantly impact GDP growth and productivity, with projections that range from

the modest to simply astounding.1 There is similar uncertainty about the effect of AI on

different industries and occupations since this depends on the types of human skills that AI

might enhance and those it could render obsolete. Evidence is mixed on whether AI enhances

skilled work. While research on earlier forms of AI finds that the technology raised wages of

skilled workers, other studies indicate that generative AI can serve, at least to some degree,

as a complement to low-skilled workers within a given occupation.2

In the paper, we study the influence of AI on investment management, specifically its

utilization by mutual funds and the impact on their performance. A recent global survey

of investment managers suggests that a majority (54%) report making some use of AI in

investment strategy or asset class research (Mercer, 2024 survey).3 The survey suggests

that AI is seen as valuable in generating ‘alpha’, since it facilitates the crunching of massive

datasets to detect market trends, in analyzing company financials, and even satellite imagery

of parking lots to uncover insights no human could process at scale. It is also lauded for

improving cost efficiency and risk mitigation.

While our paper focuses on the impact of AI on investment performance, we believe

that the study can offer insight into the broader ramifications of AI for human productivity.

An issue of keen interest is whether we should expect the AI revolution to complement and

strengthen human skills, such as in investment management, or whether we might expect
1On the high side, an IDC report claims that AI could contribute $19.9 trillion to the global economy

through 2030, accounting for 3.5% of global GDP (IDC Economic Impact https://my.idc.com/getdoc.
jsp?containerId=prUS52600524). However, MIT economist Daron Acemoglu estimates a more modest
GDP increase of 1.1 to 1.6% over 10 years, with an annual productivity gain of only 0.05%.https://news.
mit.edu/2024/what-do-we-know-about-economics-ai-1206

2See, for instance, https://www.cbo.gov/publication/61147
3https://www.mercer.com/insights/investments/portfolio-strategies/

ai-in-investment-management-survey/.
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AI and powerful machines to largely displace human skills and judgment in investment

professionals (Cao et al., 2024). Hence, as part of our analysis, we examine whether AI

tends to have a differential impact on investment strategies in which there is a greater

contribution by human skills and judgment relative to strategies that are less discretionary

and more algorithmic and quantitative (Abis, 2022).

We begin by determining the extent of AI utilization by an assessment of the AI skills

of individuals hired by mutual fund managers using LinkedIn profile data from Revelio

Labs. The dataset provides structured information on the employment history of several

hundred million individuals across the globe, including job titles and functions, educational

background, and firm affiliations. Revelio uses machine learning algorithms to identify and

categorize skills associated with each individual based on their listed experiences and roles.

For each skill, we compute its AI-relatedness score by the likelihood of its co-occurrence

with any of the AI core skills (Babina et al., 2024). Next, we compute the AI skill level of

each individual by taking the average of the AI-relatedness scores across all skills associated

with that individual. For our main independent variable of interest, we measure the level

of investment in AI technologies made by a mutual fund manager (investment adviser) by

taking the average of the AI skill levels of all individuals employed by that manager.

Why do certain mutual fund managers invest more in AI technologies than others? We

conjecture that since AI skills are scarce and geographically concentrated (e.g., in Silicon

Valley), the local supply of AI technologies could be a major determinant of the cross-

sectional variation in the level of investment in AI technologies by mutual fund managers. For

each metropolitan area, we measure the local supply of AI technologies by taking the average

of the AI skill levels of individuals working in that area. Consistent with our conjecture, the

local supply of AI technologies is significantly positively associated with the adoption of AI

technologies by mutual fund managers. A one percentage point increase in the local supply

of AI technologies is associated with a 36 to 55 basis-point increase in the AI utilization by
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mutual funds. Our results suggest that AI adoption is constrained by the local supply of AI

technologies, and mutual fund managers located in metro areas with a larger supply of AI

technologies tend to invest more in AI technologies.

The geographic variation in the local supply of AI skills provides a source of exogenous

variation in the utilization of AI by mutual funds. Subsequently, we show that our findings

are robust to using the exogenous variation as an instrument for the utilization of AI by

investment managers.

We begin our empirical analyses by examining whether the adoption of AI technologies

by mutual funds leads to improved fund performance. To this end, we first sort mutual

funds into quintiles each month based on their level of investment in AI technologies. We

find that high AI funds (top quintile) begin with much higher levels of AI investment from the

beginning of our sample. Interestingly, these high AI funds have continued to aggressively

adopt AI technologies and have greatly increased the gap with the rest of the funds in the

recent years.

For each quintile-sorted portfolio, we compute the equal- and value-weighted averages

of fund returns in excess of their prospectus benchmark returns, as well as the difference in

benchmark-adjusted returns between the highest and lowest quintile (long/short) portfolios.

We find that the long/short portfolio has benchmark-adjusted returns of 4.3 basis points

per month (0.52% annualized), with a t-statistic of 2.46. The AI outperformance is both

economically and statistically significant. We obtain similar results when we compute the

alphas (risk-adjusted returns) of benchmark-adjusted returns.

AI technologies can also enhance fund performance by reducing expenses, which tend

to substantially erode net returns. To assess the impact of AI utilization on fund expenses,

we decompose returns (net of expenses) into two components: returns (gross of expenses)

and expenses. Indeed, we find that high AI funds incur substantially lower expenses than

low AI funds, with expenses being 1.7 basis points per month lower. In additional tests that
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explicitly control for fund characteristics, including expenses, we find that a one standard

deviation increase in mutual fund AI investment leads to 1.7 basis-point higher returns per

month.

As noted earlier, one of our objectives is to try to answer whether AI can be expected

to enhance human performance or to largely bypass human skills, at least in the area of in-

vestment management. Hence, after establishing AI outperformance, we turn to examining

which types of funds derive the most value from AI technologies. Are these funds that invest

based on human discretion and judgment, or are these funds that rely more on quantitative

and algorithmic techniques? Our approach draws upon arguments and modeling in Abis

(2022) and Kacperczyk et al. (2016) that time-varying fund manager skill is a human trait.

We categorize mutual funds as being quantitative or discretionary by training machine learn-

ing models (random forest) on textual data obtained from the Principal Investment Strategy

sections of mutual fund prospectuses sourced from SEC filings ((Abis, 2022)).

Our results are quite illuminating and show that AI tends to boost the performance

of discretionary rather than quantitative funds. This is consistent with the view that rather

than replacing human intelligence, artificial intelligence is more likely to enhance it, con-

sistent with the findings of Cao et al. (2024). Among discretionary funds, high-AI funds

outperform low-AI funds by 7.2 basis points per month (0.86% annualized). In contrast,

among quantitative funds, AI outperformance is muted and statistically insignificant. Thus,

AI technologies appear to have a larger impact on discretionary funds that rely on human

judgment than on quantitative funds that rely on algorithms. We further corroborate that

AI tends to enhance human intelligence by showing that the source of the improved perfor-

mance is time-varying and is evident in stock-picking and market-timing skills conditional

on market conditions.

We expect AI and machine learning to be particularly powerful in processing unstruc-

tured big data, such as satellite imagery. Using the staggered introduction of satellite imagery
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of parking lots for retail firms (Katona et al., 2025), we find that the positive impact of AI

technologies on stock-picking ability is enhanced by the availability of unstructured big data.

Overall, our results suggest that mutual funds utilizing AI technologies are better equipped

to process and exploit big data as more unstructured information becomes available.

Our paper is related to recent papers that examine the impact of AI on firm produc-

tivity. Among these, Babina et al. (2024) develops some of the AI investment measures that

we also employ in our paper. Babina et al. (2024) shows that there is a stark increase in

AI investment across sectors. It finds that AI-investing firms experience significantly higher

growth, primarily through increased product innovation. Another related paper is Cao et al.

(2024), which investigates the issue of ‘Man vs. Machine’ and provides some of the motiva-

tion for our paper. Cao et al. (2024) finds that humans win when institutional knowledge

is crucial, though AI wins when information is transparent but voluminous. It documents

synergies between humans and machines and informs on how humans can leverage their

advantage to better adapt to growing AI prowess.

Our paper is also related to Kacperczyk et al. (2014), which develops a new measure of

managerial ability and shows that the same fund managers that pick stocks well in expansions

also time the market well in recessions. Kacperczyk et al. (2016) develops an attention

allocation model that uses the state of the business cycle to predict information choices by

fund managers. Our finding is that these managers with discretionary investment strategies

and time-varying skills tend to obtain greater performance benefits from the use of AI.

A paper that provides a machine learning approach to categorize active mutual funds

as either quantitative (reliant on computer models and fixed rules) or discretionary (reliant

on human judgment) is Abis (2022). The paper provides evidence that quants might have

more learning capacity but less flexibility to adapt to changing market conditions than dis-

cretionaries. We adopt a similar machine learning approach to classify funds as quantitative

or discretionary and show that the performance benefit of AI is primarily evident in discre-
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tionary funds. A paper that sheds light on quantitative equity research analysts (Quants) is

Birru et al. (2024). The paper provides evidence of their role in discovering market anomalies

and moving the markets to greater pricing efficiency.

.

2 Data and methodology

2.1 Data contruction

Our source of LinkedIn profile data is Revelio Labs, which provides detailed information

on the employment histories of a large sample of individuals. Revelio Labs data are derived

from publicly available online resumes, primarily sourced from LinkedIn. The dataset pro-

vides structured information on employment history, including job titles, firm affiliations,

tenure periods, educational background, and job functions.

We obtain mutual fund returns, total net assets (TNA), expenses, and holdings from

the CRSP Survivor-Bias-Free Mutual Fund database. CRSP holdings data offer greater

coverage than the Thomson/Refinitiv Mutual Fund Holdings (s12) database for our sample

period, and holdings are available on a monthly basis for the majority of our sample funds.

We aggregate share-class-level information to the fund (portfolio) level using crsp portno.

We match mutual fund managers (advisers) from our mutual fund datasets to compa-

nies in the Revelio Labs database using Legal Entity Identifier (LEI) numbers, if available,

and company names. For adviser identification, we obtain detailed information on mutual

fund advisers as well as sub-advisers directly from SEC filings: Form N-SAR and Form N-

CEN. We match funds available in the CRSP dataset with those in the N-SAR filings using a

name-matching algorithm (Han et al., 2024), and with funds in the N-CEN filings using the

crsp cik map file made available by CRSP. Form N-SAR filings were discontinued in 2018
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and replaced by Form N-CEN filings in 2019.

Form N-CEN filings report advisers’ Legal Entity Identifier (LEI) numbers, if available,

which are also provided for a subset of companies in the Revelio Labs data. We use LEI

numbers to match mutual fund managers with companies in the Revelio Labs data. We

extrapolate LEI numbers for advisers available in both N-CEN and N-SAR filings using

SEC file numbers, which consistently identify mutual fund advisers across different SEC

filings. For the remaining advisers, we use a name-matching algorithm to match mutual

fund managers from our mutual fund datasets with companies in the Revelio Labs data.

Since company names may not be reported consistently and tend to be quite similar across

subsidiaries and affiliates, we strive to be conservative when in doubt during the name-

matching process.

Since we focus on actively managed U.S. domestic equity funds, we require that funds

belong to one of the nine Morningstar categories, known as the Morningstar equity style box,

defined by the funds’ size and growth/value tilts: Large, Mid-cap, Small × Growth, Blend,

Value. We obtain Morningstar categories from the Morningstar Direct database. We match

funds from CRSP with those from Morningstar based on CUSIP, ticker, and fund name, in

that order (Berk and van Binsbergen, 2015; Pástor et al., 2015). We exclude index funds and

exchange-traded funds using the fund flags available from CRSP. To avoid the incubation

bias (Evans, 2010), we require that funds’ TNAs be greater than $5 million at the beginning

of the month.

2.2 AI measures

We construct our AI measures using LinkedIn profile data obtained from Revelio Labs.

Revelio uses machine learning algorithms to identify and categorize skills associated with each

individual (user) based on their listed experiences and roles. For each skill j, we compute
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its AI-relatedness score by the likelihood of its co-occurrence with any of the AI core skills

(Babina et al., 2024):

AI relatednessj = Number of individuals with skill j and any of the AI core skills
Number of individuals with skill j

, (1)

where the average is taken over all individuals associated with skill j. For the AI core

skills, we use Artificial Intelligence, Machine Learning, Deep Learning, Natural Language

Processing, and Computer Vision.

We report AI relatedness scores for a few selected skills in Figure 1. Among the top AI-

related skills are Pattern Recognition, Data Science, Signal Processing, and Image Processing,

with AI-relatedness scores of 0.81, 0.66, 0.63, and 0.59, respectively. On the other hand,

traditional data analysis skills, such as Statistics and Data Analysis have relatively low AI-

relatedness scores of 0.19 and 0.08, respectively. General-purpose programming languages

such as R and Python, which are widely used in machine learning applications, have relatively

high AI-relatedness scores of 0.31 and 0.19, respectively. In contrast, traditional finance skills

such as Corporate Finance and Investments have AI-relatedness scores of virtually zero.

[Insert Figure 1]

Next, we compute the level of AI skills of each individual (employee) by taking the

average of the AI-relatedness scores across all skills associated with that individual. To

illustrate the roles (positions) of AI skilled workers play within mutual fund investment

managers, we report the average level of AI skills of employees for a few selected roles

(O*NET titles) in Figure 2. Not surprisingly, Data Scientists have the highest level of

AI skills. Computer scientists such as Software Developers, Computer Programmers, and

Computer Systems Analysts also have high levels of AI skills. In contrast, traditional finance

positions such as Investment Fund Managers and Financial and Investment Analysts have
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relatively low levels of AI skills.

[Insert Figure 2]

For our main independent variable of interest, we measure the level of investment in

AI technologies made by each mutual fund investment manager (adviser), AIMF , by taking

the average of the AI skill levels of all individuals employed by that adviser. We report some

summary statistics in Table 1.

[Insert Table 1]

3 Empirical results

3.1 Does AI investment lead to improved fund performance?

We begin our empirical analyses by examining whether mutual fund AI investment

leads to improved fund performance. To this end, we first sort mutual funds into quintiles

each month based on their level of investment in AI technologies, AIMF , as defined in Section

2.2. To examine the cross-sectional variation in AI investment, we report the value-weighted

12-month rolling average level of AI investment for each quintile over time in Figure 3.

[Insert Figure 3]

Top quintile AI funds exhibit much higher levels of AI investment from the beginning of

our sample period by construction of sorts. However, the gap in the levels of AI investments

between high AI funds and the rest has started to increase rapidly in the past few years,

suggesting that some mutual funds have started aggressively adopting AI technologies.

Next, for each quintile-sorted portfolio, we compute the equal- and value-weighted aver-

ages of fund returns in excess of benchmark returns, as well as the differences in benchmark-
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adjusted returns between the highest and lowest quintile (long/short) portfolios. For bench-

marks, we use Morningstar benchmark indices. We report the time-series averages in Table

2.

[Insert Table 2]

In Panel A, we examine equal-weighted returns and find that the top (bottom) quin-

tile portfolio, sorted by mutual fund AI investment, has the highest (lowest) benchmark-

adjusted returns. The long/short portfolio has benchmark-adjusted returns of 4.3 basis

points per month (0.52% annualized), with a t-statistic of 2.42. The AI outperformance

is both economically and statistically significant. Our results remain similar when we use

value-weighted returns in Panel B. Although the statistical significance is slightly lower, the

difference in fund performance remains significant at the 10% level and is economically larger

when value-weighted. For the remaining analyses, we focus on equal-weighted returns unless

otherwise stated, as our focus is on comparing average performance.

For robustness checks, we compute the alphas (risk-adjusted returns) of benchmark-

adjusted returns for the long/short portfolio relative to factor models commonly used in

evaluating mutual fund performance: the CAPM, the Fama-French 3-factor model (Fama

and French, 1993), and the Carhart 4-factor model (Carhart, 1997). We report the results

in Table 3. Our results on AI outperformance remain similar when we examine the alphas.

High AI funds have 3.3 to 3.5 basis points per month higher alphas than low AI funds.

Interestingly, compared to low AI funds, high AI funds tend to load more positively on value

and momentum factors, which have consistently higher return premia across diverse markets

and asset classes (Asness et al., 2013). Thus, trading risk factors in the right direction

partially contributes to the outperformance of high AI funds.

[Insert Table 3]
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3.2 Does AI investment lead to reduced expenses?

We expect that AI’s contribution to improved performance primarily stems from stock

picking and market timing, as we will examine in later subsections. However, AI technologies

can also enhance fund performance by reducing expenses, which tend to substantially erode

net returns. To assess the impact of AI on fund expenses, we decompose returns (net of

expenses) into two components: returns (gross of expenses) and expenses. For each of these

components, we conduct portfolio sort analyses similar to those in the previous subsection,

and report the results in Table 4.

[Insert Table 4]

Our results on net returns (in excess of prospectus benchmark returns) in Panel A

of Table 2 are reproduced here for comparison. In terms of gross returns, which exclude

the effects of expenses, we still observe that high AI funds outperform low AI funds by 3

basis points per month. The AI outperformance in gross returns is slightly smaller, but

still significant, compared to that in net returns, suggesting that AI technologies help funds

reduce expenses. Indeed, we find that high AI funds incur substantially lower expenses than

low AI funds, with expenses being 1.7 basis points per month lower.

3.3 Controlling for fund characteristics

In the previous subsection, we showed that AI technologies tend to reduce expenses,

which, in turn, improve fund performance. We also showed that AI outperformance remains

robust even when the effects of expenses on fund returns are removed. In this subsection,

we examine the impact of AI investment on fund performance while explicitly controlling for

fund characteristics, including expenses, to further corroborate our main findings in Section

3.1.
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Specifically, we estimate the following linear regression model:

BARi,t (Alphai,t) = βAIMF
i,t + γΓi,t−1 + θi,t−1 + εi,t (2)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of

fund i in excess of its prospectus benchmark return in month t. Alphai,t is the CAPM alpha,

defined as Ri,t − βi,t−1Rm,t, where Ri,t and Rm,t are the returns of fund i and the market,

respectively, in excess of the risk-free rate in month t, and βi,t−1 is the market beta of fund i,

estimated over a 12-month rolling window from month t−12 to t−1. AIMF
i,t represents the level

of investment in AI technologies by mutual fund i’s investment adviser, as defined in Section

2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of total

net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural

logarithm of fund age (in years). θi,t−1 denotes category-by-time fixed effects. Standard

errors are double-clustered by fund and time.

We report the results in Table 5. In columns (1) and (2), we use benchmark-adjusted

returns as the dependent variable. In the univariate regression in column (1), we find that β̂

is positive and statistically significant at the 1% level. A one standard deviation increase in

mutual fund AI investment leads to a 1.7 basis-point increase in benchmark-adjusted returns

per month (0.017 = 0.67×0.026). When we control for fund characteristics in column (2), β̂

remains positive and statistically significant at the 5% level, although the effect is marginally

smaller. Our results remain unchanged when we replace benchmark-adjusted returns with

CAPM alphas as the dependent variable in columns (3) and (4). Overall, the results in this

subsection are consistent with those based on portfolio sorts in Section 3.1.

[Insert Table 5]
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3.4 Instrumenting mutual fund AI investment

One concern in our analyses thus far is that our measure of investment in AI technolo-

gies by mutual fund managers is likely to suffer from measurement errors, which may lead

to a well-known attenuation bias. For instance, since we only measure investment in human

capital likely related to AI technologies, we may miss investment in other types of capital,

such as computing capacity and data storage, which are key to the performance of AI and

machine learning.

There are also endogeneity concerns related to self-selection and omitted variables that

could cause the bias to go in the opposite direction. For instance, why do certain investment

managers invest more in AI technologies than others? We address this challenge using

instrumental variables (IV) regressions. Although it is a priori unclear whether investment

managers who are better at generating alphas are also more likely to invest in AI technologies,

IV regressions can help mitigate such potential endogeneity concerns.

Why do certain investment managers invest more in AI technologies than others? We

conjecture that, since AI skills are scarce and geographically concentrated (e.g., in Silicon

Valley), the local supply of AI technologies will be a major determinant of the cross-sectional

variation in mutual fund AI investment. Building on this idea, we instrument mutual fund AI

investment using the local supply of AI technologies in the areas where investment managers

are located.

Specifically, for each metropolitan area, we measure the local supply of AI technologies,

AILocal, by taking the average of AI skill levels of all individuals working in that area at that

time. For illustrative purposes, we present a map of the local supply of AI technologies in

2023 in Figure 4. The San Jose metropolitan area (a.k.a. Silicon Valley) has the highest

local AI supply in the United States, followed by Seattle, San Francisco, Boston, and Austin

metropolitan areas. There is substantial variation in the local supply of AI technologies
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within the same state. In California, San Jose has the highest AI supply in the United

States, while Bakersfield has one of the lowest. In Texas, Austin has one of the highest AI

supplies in the country, whereas Lubbock has one of the lowest.

[Insert Figure 4]

With our instrument in hand, we estimate the following two-stage least squares (2SLS)

model:

AIMF
i,t = β1AILocal

i,t + γ1Γi,t−1 + θ1
i,t−1 + ε1

i,t (first stage) (3)

BARi,t (Alphai,t) = β2ÂIMF
i,t + γ2Γi,t−1 + θ2

i,t−1 + ε2
i,t (second stage) (4)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of

fund i in excess of its prospectus benchmark return in month t. Alphai,t is the CAPM alpha,

defined as Ri,t − βi,t−1Rm,t, where Ri,t and Rm,t are the returns of fund i and the market,

respectively, in excess of the risk-free rate in month t, and βi,t−1 is the market beta of fund

i, estimated over a 12-month rolling window from month t − 12 to t − 1. AIMF
i,t represents

the level of investment in AI technologies by mutual fund i’s investment advisers, as defined

in Section 2.2. AILocal
i,t is the local supply of AI technologies available to mutual fund i’s

investment adviser. Γi,t−1 is a vector of lagged fund characteristics, including the natural

logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio,

and the natural logarithm of fund age (in years). θi,t−1 denotes category-by-time fixed effects.

Standard errors are double-clustered by fund and time.

We report our first-stage results in Table 6. Consistent with our conjecture, the local

supply of AI technologies is significantly positively associated with investment in AI tech-

nologies by mutual fund managers. A one percentage point increase in the local supply of AI

technologies is associated with a 36 to 55 basis-point increase in mutual fund AI investment.
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Our results suggest that AI investment is constrained by the local supply of AI technologies,

and mutual fund managers located in metro areas with a larger supply of AI technologies

tend to invest more in AI. In terms of fund characteristics, mutual funds that are larger,

younger, and trade more tend to have higher levels of AI investment. As seen in Section 3.2,

the expense ratio is negatively associated with the level of AI investment.

[Insert Table 6]

Finally, we present our second-stage results in Table 7. In columns (1) and (2), we

use benchmark-adjusted returns as the dependent variable. In the univariate regression

in column (1), we find that β̂2 is positive and statistically significant at the 10% level.

Our IV estimate is about 4.85 times larger than our OLS estimate reported in Table 5

(4.85 = 0.126/0.26), suggesting that measurement errors in our measure of mutual fund AI

investment may suffer from attenuation bias. Based on our IV estimate, a one standard de-

viation increase in AI investment leads to an 8.4 basis-point increase in benchmark-adjusted

returns per month (1.01% annualized). Our results remain similar when we control for fund

characteristics and replace benchmark-adjusted returns with CAPM alphas. Thus, our IV

results suggest that our main findings on AI outperformance are likely causal.

[Insert Table 7]

3.5 Man vs. Machine: Do AI technologies improve the perfor-

mance of quantitative or discretionary funds?

After establishing AI outperformance, we turn to examining which types of funds derive

the most value from AI technologies. Specifically, we aim to answer the following question:

Will AI enhance machines to the point where they replace humans (man vs. machine), or
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will AI improve human performance, enabling humans to coexist with machines (man +

machine)?

To address this question, we classify mutual funds into two categories: quantitative

funds, which rely on algorithms and signals, and discretionary funds, which rely on human

judgment. We train machine learning models (random forest) on textual data obtained from

the Principal Investment Strategy sections of mutual fund prospectuses (Abis, 2022).

Mutual funds are double-sorted into two-by-five portfolios based on their quantita-

tive/discretionary classification and their level of AI investment. We report the results in

Table 8. Among discretionary funds, high-AI funds outperform low-AI funds by 7.2 basis

points per month (0.86% annualized). In contrast, among quantitative funds, AI outperfor-

mance is muted and statistically insignificant. Thus, AI technologies appear to have a larger

impact on discretionary funds that rely on human judgment than on quantitative funds that

rely on algorithms.

[Insert Table 8]

Our double-sort results suggest that, rather than replacing human intelligence, artificial

intelligence is more likely to augment it, consistent with the findings of Cao et al. (2024).

To corroborate our claim that AI is likely to augment human intelligence, we examine the

time-varying fund manager skill in the next sub-section.

3.6 Time-varying fund manager skill

Kacperczyk et al. (2014) find that mutual fund managers exhibit time-varying skills,

engaging in stock picking during normal times and switching to market timing during bad

times. Kacperczyk et al. (2016) propose a rational attention allocation model to explain

these empirical results. In their model, skilled fund managers have limited attention and,

as a result, rationally allocate it between two types of information: idiosyncratic shocks and
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aggregate shocks. Paying attention to aggregate shocks becomes more important in bad

times, when both the amount of market risk and investors’ risk aversion increase.

Building on the model of Kacperczyk et al. (2016), Abis (2022) argue that time-varying

fund manager skill is a human trait. She finds that this trait is more pronounced among

discretionary funds that rely on human judgment and is muted among quantitative funds

that rely on algorithms. As shown in the previous subsection, if artificial intelligence indeed

augments rather than replaces human intelligence, we would expect that time-varying fund

manager skill improves with the use of AI technologies. We test this prediction in this

subsection.

To do so, we define the stock picking (SP ) and market timing (MT ) skills of mutual

funds as the covariance between fund excess weights and idiosyncratic returns and market

returns, respectively, following Kacperczyk et al. (2014):

SPi,t =
Ni,t−1∑

j

(wi,j,t−1 − wm,j,t−1) (Rj,t − βj,t−1Rm,t) (5)

MTi,t =
Ni,t−1∑

j

(wi,j,t−1 − wm,j,t−1) (βj,t−1Rm,t) (6)

where i indexes funds, j indexes stocks, and t indexes time in months. wi,j,t−1 − wm,j,t−1

represents fund i’s portfolio weight on stock j in excess of the market weight at the end of

month t − 1. Rj,t and Rm,t are the returns on stock j and the market, respectively, during

month t. βj,t−1 is the market beta of stock j, estimated over a 12-month rolling window from

month t − 12 to t − 1. The summation is taken over all stock holdings of fund i at the end

of month t − 1, Ni,t−1

Intuitively, stock picking (SP ) skill is higher if the fund tends to overweight (under-

weight) stocks with positive (negative) alphas in the following month. Similarly, market

timing (MT ) skill is higher if the fund tends to overweight high (low) beta stocks when the
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market return is positive (negative) in the following month.

To test whether AI technologies improve time-varying fund manager skill, we estimate

the following linear regression model:

SPi,t (MTi,t) = βAIMF
i,t + δ

(
AIMF

i,t × 1(Volatile markett)
)

+ γΓi,t−1 + θi + θt (θi,t−1) + εi,t

(7)

where i indexes mutual funds and t indexes time in months. AIMF
i,t represents the level of

investment in AI technologies by mutual fund i’s investment advisers, as defined in Section

2.2. 1(Volatile markett) is an indicator variable that takes a value of one if market volatility

in month t exceeds its 80th percentile, and zero otherwise. Market volatility is measured

as the standard deviation of daily market returns within that month. Γi,t−1 is a vector of

lagged fund characteristics, including the natural logarithm of total net assets (TNA, in $

million), expense ratio (in percent), turnover ratio, and the natural logarithm of fund age

(in years). θi, θt, and θi,t−1 are fund, time, and category-by-time fixed effects, respectively.

We present the results in Table 9. In columns (1) and (2), where the dependent

variable is SP , we find that β̂ is positive and statistically significant, while δ̂ is negative

and statistically significant. The signs of β̂ and δ̂ reverse in columns (3) and (4), where the

dependent variable is MT . These results support our prediction: high-AI funds demonstrate

better stock picking during normal times and superior market timing during volatile periods

when aggregate market risk and investor risk aversion are elevated.

Overall, our findings suggest that AI technologies enhance time-varying skills – traits

traditionally associated with human discretion (Abis, 2022). Thus, our results across this

and the previous subsection support the view that artificial intelligence augments human

intelligence rather than replaces it, pointing to a “man + machine” equilibrium (Cao et al.,

2024).
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[Insert Table 9]

3.7 Satellite imagery of parking lots for retailers

Thus far, we have shown that mutual fund AI investment lead to improved fund perfor-

mance in terms of benchmark-adjusted returns, alphas, and time-varying stock-picking and

market-timing skills. In this subsection, we take a closer look at the source of the improved

performance of high-AI funds.

We expect that AI and machine learning will be particularly powerful in processing

unstructured big data, such as satellite imagery of parking lots for retailers. To test our

hypothesis, we estimate the following linear regression model:

Alphaj,t = ρ
(
Weighti,j,t−1 × 1(Postj,t−1) × AIMF

i,t

)
+ δ1 (Weighti,j,t−1 × 1(Postj,t−1))

+ δ2
(
Weighti,j,t−1 × AIMF

i,t

)
+ δ3

(
1(Postj,t−1) × AIMF

i,t

)
+ β1Weighti,j,t−1 + β21(Postj,t−1) + β3AIMF

i,t + γ1Γi,t−1 + γ2Γj,t−1 + θi + θj + θt + εi,j,t

(8)

where i indexes mutual funds, j indexes stocks, and t indexes time in months. Alphaj,t is

the alpha (idiosyncratic return) of stock j in month t, defined as Rj,t − βj,t−1Rm,t, where Rj,t

and Rm,t are the returns of stock j and the market, respectively, in excess of the risk-free

rate in month t, and βj,t−1 is the market beta of stock j, estimated over a 12-month rolling

window from month t − 12 to t − 1. Weighti,j,t−1 = wi,j,t−1 − wm,j,t−1 is fund i’s portfolio

weight on stock j in excess of its market weight at the end of month t − 1. 1(Postj,t−1)

is an indicator variable that takes a value of one if firm j is covered by RS Metrics for

satellite imagery of parking lots in month t − 1, and zero otherwise. The timing of satellite

imagery availability is sourced from Katona et al. (2025). AIMF
i,t represents the level of

investment in AI technologies by mutual fund i’s investment advisers, as defined in Section
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2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of

total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the

natural logarithm of fund age (in years). Γj,t−1 is a vector of lagged stock characteristics,

including the percentile rankings of market capitalization, book-to-market ratio, and the past

12-month return (excluding the most recent month). θi, θj, and θt represent fund, stock,

and time fixed effects, respectively. The sample includes retail firms covered by RS Metrics

from 12 months before to 12 months after satellite imagery coverage of parking lots became

available. Standard errors are double-clustered by fund and stock.

We present the results in Table 10. Our main variable of interest is the triple interaction

term, which captures the effect of AI on stock picking following the availability of satellite

imagery of parking lots. In column (1), ρ̂ is positive and statistically significant, suggesting

that the positive impact of AI technologies on stock selection is enhanced by the availability

of big data, such as satellite imagery of parking lots. Our findings remain robust to the

inclusion of fund and stock characteristics in columns (2) through (4). Overall, our results

suggest that funds utilizing AI technologies are better equipped to process and exploit big

data as more unstructured information becomes available.

[Insert Table 10]

4 Conclusion

In the paper, we study the influence of AI on investment management, specifically

its utilization by mutual fund managers and its impact on their performance. In addition,

the study provides insight into the broader implications of AI for human productivity and

displacement. The issue is whether we should expect the AI revolution to complement and

strengthen human skills, such as in investment management, or whether we might expect AI

and powerful machines to largely replace human skills and judgment in these endeavors.
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Using unique data from LinkedIn profiles, we measure the adoption of AI technologies

among mutual fund management companies. This is done by computing the AI skill level of

each individual by taking the average of AI-relatedness scores across all skills associated with

that individual. The level of investment in AI technologies made by a mutual fund advisor

is measured by the average of the AI skill levels of all individuals employed by that advisor.

Among our results, we show the local supply of AI technologies is a major determinant of

the cross-sectional variation in mutual fund AI investment. The geographic variation in the

local supply of AI skills provides a source of exogenous variation in the utilization of AI

by mutual funds. We show our findings are robust to using the exogenous variation as an

instrument for the utilization of AI by funds.

Compared to low-AI funds, high-AI funds earn superior benchmark-adjusted returns

and incur lower expenses. The long/short portfolio has benchmark-adjusted returns of 4.3

basis points per month (0.52% annualized). The AI outperformance is both economically and

statistically significant. We obtain similar results when we compute the alphas (risk-adjusted

returns) of benchmark-adjusted returns.

Our results are quite instructive in their implications for human-machine complemen-

tarity. In particular, our results show that AI tends to boost the performance of discretionary

funds that invest based on human skills and judgment — relative to funds that rely more

on quantitative and algorithmic techniques. Among discretionary funds, high-AI funds out-

perform low-AI funds by 8.8 basis points per month (1.06% annualized). In contrast, among

quantitative funds, AI outperformance is muted and statistically insignificant. This is in

keeping with the view that rather than replacing human intelligence, artificial intelligence

is more likely to augment it, consistent with the findings of Cao et al. (2024). We further

corroborate that AI tends to augment human intelligence by showing that the source of

the improved performance is time-varying and is evident in stock-picking and market-timing

skills conditional on market conditions. The stock-picking skills of high-AI funds improve
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with the availability of big data, such as satellite imagery of parking lots for retailers.
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Figure 1: This figure shows the AI-relatedness scores for a few selected skills.
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Figure 2: This figure shows the AI-relatedness scores for a few selected roles (O*NET
titles).
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Figure 3: This figure shows the value-weighted average level of investment in AI technologies
by mutual fund investment managers, sorted into quintiles.
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Figure 4: This figure shows the local supply of AI technologies in 2023.

28



Table 1: Summary statistics

This table presents summary statistics for the key variables used in our analyses. All variables are indexed
by mutual fund i and time t in months. AIMF and AILocal represent our measures of mutual fund investment
in, and local supply of, AI technologies, respectively, as defined in Section 2.2. BARi,t denotes fund i’s
return in excess of its prospectus benchmark return in month t. Alphai,t is the CAPM alpha, defined as
Ri,t − βi,t−1Rm,t, where Ri,t and Rm,t are the returns on fund i and the market, respectively, in excess of
the risk-free rate in month t, and βi,t−1 is the market beta of fund i, estimated over a 12-month rolling
window from month t − 12 to t − 1. SPi,t and MTi,t capture the stock picking and market timing skills of
mutual funds, defined as the covariance between fund weights (in excess of the market) and the idiosyncratic
returns (alphas) and systematic returns of the stock holdings, respectively (Kacperczyk et al., 2014). See
Equations (5) and (6) in Section 3.6 for details. The remaining variables represent lagged fund characteristics,
including total net assets (TNA, in $ billions), expense ratio (in percent), turnover ratio, and fund age (in
years). Share-class-level variables are aggregated to the fund (portfolio) level using crsp portno, by summing
TNAs, taking value-weighted averages of the expense and turnover ratios, and measuring fund age as the
time elapsed between the end of month t − 1 and the inception date of the oldest share class.

Statistic N Mean St. Dev. Pctl(25) Median Pctl(75)
AIMF 145, 742 0.85 0.67 0.52 0.67 0.87
AILocal 145, 742 0.57 0.14 0.47 0.53 0.64
BAR 145, 742 −0.12 1.65 −0.97 −0.11 0.73
Alpha 145, 742 −0.24 2.02 −1.26 −0.17 0.84
SP 157, 437 −0.13 1.73 −0.97 −0.07 0.78
MT 157, 437 0.86 3.55 −1.12 0.96 2.87
TNA 145, 742 2.29 4.99 0.16 0.59 1.91
Expense ratio 138, 155 0.99 0.32 0.81 0.99 1.17
Turnover ratio 138, 174 0.57 0.46 0.26 0.45 0.73
Fund age 145, 742 19.11 13.84 9.77 17.07 24.56

29



Table 2: Does AI investment lead to improved fund performance?

This table presents the results of portfolio sorts based on AI investment. First, we sort the funds into
quintile portfolios each month based on the level of investment in AI technologies by mutual fund managers
(investment advisers). Next, we compute the equal- and value-weighted average returns of the funds in
each quintile, as well as the difference between the extreme quintile portfolios (long/short portfolio). Fund
returns are reported as excess returns relative to their prospectus benchmark returns. t-statistics, based on
Newey-West standard errors with five lags, are reported in parentheses, with statistical significance at the
10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Panel A: Benchmark-adjusted returns (equal-weighted)

Portfolios sorted on AI investment
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.119∗∗∗ −0.092∗∗∗ −0.110∗∗∗ −0.099∗∗ −0.076∗∗ 0.043∗∗

(−3.33) (−2.74) (−3.19) (−2.55) (−2.21) (2.46)

Panel B: Benchmark-adjusted returns (value-weighted)

Portfolios sorted on AI investment
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.122∗∗∗ −0.119∗∗∗ −0.112∗∗∗ −0.091∗∗ −0.070∗∗ 0.052∗

(−2.98) (−4.37) (−3.63) (−2.47) (−2.20) (1.77)

30



Table 3: Can AI outperformance be explained by common risk factors?

This table presents the results of the following linear regression model:

Rp,t = αp + bpMKTt + spSMBt + hpHMLt + upUMDt + εp,t

where Rp,t represents the value-weighted average benchmark-adjusted return of the long/short portfolio,
which is sorted into quintiles based on the level of investment in AI technologies by mutual fund managers
(investment advisers). MKTt, SMBt, HMLt, and UMDt are the factor returns on the market, size, value,
and momentum (Fama and French, 1993; Carhart, 1997). t-statistics, based on Newey and West standard
errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels
indicated by *, **, and ***, respectively.

Benchmark-adjusted returns
(1) (2) (3)

Alpha 0.035∗∗ 0.035∗∗ 0.033∗

(2.06) (2.09) (1.95)
MKT 0.009∗∗ 0.010∗∗∗ 0.015∗∗∗

(2.01) (2.64) (3.67)
SMB −0.009 −0.006

(−1.21) (−0.74)
HML 0.006 0.011∗

(0.97) (1.82)
UMD 0.016∗∗∗

(3.71)

31



Table 4: Does AI investment lead to reduced expenses?

This table presents the results of portfolio sorts based on AI investment. First, we sort the funds into
quintile portfolios each month based on the level of investment in AI technologies by mutual fund managers
(investment advisers). Next, we compute the equal-weighted average returns (both before and after expenses)
and expenses for the funds in each quintile, as well as the difference between the extreme quintile portfolios
(long/short portfolio). Fund returns are reported as excess returns relative to their prospectus benchmark
returns. t-statistics, based on Newey-West standard errors with five lags, are reported in parentheses, with
statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Portfolios sorted on AI investment
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

Net returns −0.119∗∗∗ −0.092∗∗∗ −0.110∗∗∗ −0.099∗∗ −0.076∗∗ 0.043∗∗

(−3.33) (−2.74) (−3.19) (−2.55) (−2.21) (2.46)
Gross returns −0.034 −0.007 −0.018 −0.016 −0.004 0.030∗

(−0.92) (−0.21) (−0.52) (−0.40) (−0.10) (1.68)
Expenses 0.090∗∗∗ 0.085∗∗∗ 0.089∗∗∗ 0.085∗∗∗ 0.074∗∗∗ −0.017∗∗∗

(56.12) (82.06) (43.11) (47.14) (21.21) (−6.70)
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Table 5: Controlling for fund characteristics

This table presents the results of the following linear regression model:

BARi,t (Alphai,t) = βAIMF
i,t + γΓi,t−1 + θi,t−1 + εi,t

where i indexes mutual funds and t indexes time (in months). BARi,t denotes the return of fund i in excess
of its prospectus benchmark return in month t. Alphai,t is the CAPM alpha, defined as Ri,t − βi,t−1Rm,t,
where Ri,t and Rm,t are the returns of fund i and the market, respectively, in excess of the risk-free rate in
month t, and βi,t−1 is the market beta of fund i, estimated over a 12-month rolling window from month t−12
to t − 1. AIMF

i,t represents the level of investment in AI technologies by mutual fund i’s investment advisers,
as defined in Section 2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of
total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of
fund age (in years). θi,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by
fund and time, and t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, **, and ***, respectively.

BAR Alpha
(1) (2) (3) (4)

AIMF 0.026∗∗∗ 0.019∗∗ 0.026∗∗∗ 0.018∗

(2.73) (2.10) (2.69) (1.91)
log(TNA) −0.003 0.002

(−0.66) (0.38)
Expense ratio −0.119∗∗∗ −0.110∗∗∗

(−4.89) (−3.98)
Turnover ratio −0.052∗ −0.076∗∗∗

(−1.66) (−2.81)
log(Fund age) 0.004 −0.017∗

(0.39) (−1.91)
Category-by-time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R2 0.16 0.16 0.58 0.57
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Table 6: Determinants of mutual fund AI investment

This table presents the results of the following linear regression model:

AIMF
i,t = βAILocal

i,t + γΓi,t−1 + θi,t−1 + εi,t

where i indexes mutual funds and t indexes time in months. AIMF
i,t represents the level of investment in AI

technologies by mutual fund i’s investment adviser, as defined in Section 2.2. AILocal
i,t is the local supply of AI

technologies available to mutual fund i’s investment adviser. Γi,t−1 is a vector of lagged fund characteristics,
including the natural logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover
ratio, and the natural logarithm of fund age (in years). θi,t−1 denotes category-by-time fixed effects. Standard
errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with statistical
significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

AIMF

(1) (2) (3) (4) (5) (6)
AILocal 0.551∗ 0.500∗ 0.397∗ 0.476∗ 0.569∗ 0.359∗

(1.91) (1.90) (1.76) (1.70) (1.94) (1.67)
log(TNA) 0.030∗∗ 0.027∗∗

(2.45) (2.09)
Expense ratio −0.416∗∗∗ −0.359∗∗∗

(−2.69) (−2.72)
Turnover ratio 0.060∗ 0.091∗∗∗

(1.69) (2.65)
log(Fund age) −0.061∗ −0.069∗∗

(−1.83) (−2.08)
Category by time FEs Yes Yes Yes Yes Yes Yes
Observations 145,742 145,742 138,155 138,174 145,742 138,152
Adjusted R2 0.09 0.09 0.12 0.09 0.09 0.13
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Table 7: Instrumental variables (IV) regressions

This table presents the results of the following two-stage least squares model:

AIMF
i,t = β1AILocal

i,t + γ1Γi,t−1 + θ1
i,t−1 + ε1

i,t (first stage)

BARi,t (Alphai,t) = β2ÂIMF
i,t + γ2Γi,t−1 + θ2

i,t−1 + ε2
i,t (second stage)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of fund i in excess
of its prospectus benchmark return in month t. Alphai,t is the CAPM alpha, defined as Ri,t − βi,t−1Rm,t,
where Ri,t and Rm,t are the returns of fund i and the market, respectively, in excess of the risk-free rate
in month t, and βi,t−1 is the market beta of fund i, estimated over a 12-month rolling window from month
t − 12 to t − 1. AIMF

i,t represents the level of investment in AI technologies by mutual fund i’s investment
advisers, as defined in Section 2.2. AILocal

i,t is the local supply of AI technologies available to mutual fund
i’s investment adviser. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of
total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of
fund age (in years). θi,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by
fund and time, and t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, **, and ***, respectively.

BAR Alpha
(1) (2) (3) (4)

ÂIMF 0.126∗ 0.205∗ 0.114∗ 0.197∗

(1.88) (1.80) (1.84) (1.91)
log(TNA) −0.009 −0.003

(−1.38) (−0.30)
Expense ratio −0.050 −0.043

(−1.26) (−0.95)
Turnover ratio −0.072∗ −0.094∗∗∗

(−1.95) (−3.10)
log(Fund age) 0.016 −0.005

(1.31) (−0.30)
Category by time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R2 0.16 0.15 0.58 0.57
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Table 8: Man vs. Machine: Do AI technologies improve the performance of quantitative or
discretionary funds?

This table presents the results of double sorts based on quantitative fund classification and AI investment.
First, we sort the funds into two-by-five portfolios each month, based on the fund’s quantitative/discretionary
classification (Abis, 2022) and the level of investment in AI technologies by the fund’s investment adviser.
Next, we compute the value-weighted average return of the funds in each portfolio, as well as the difference
between the extreme quintile portfolios (long/short portfolio) for each classification. Fund returns are re-
ported as excess returns relative to their prospectus benchmark returns. t-statistics, based on Newey-West
standard errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, **, and ***, respectively.

Portfolios sorted on AI investment
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

Discretionary −0.125∗∗∗ −0.087∗ −0.087∗∗ −0.091∗∗ −0.053 0.072∗

(−2.75) (−1.67) (−2.24) (−1.98) (−1.32) (1.96)
Quantitative −0.138∗∗∗ −0.156∗∗∗ −0.156∗∗∗ −0.124∗∗∗ −0.083∗∗ 0.055

(−3.67) (−5.25) (−4.07) (−3.01) (−2.40) (1.33)
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Table 9: Time-varying fund manager skill

This table presents the results of the following linear regression model:

SPi,t (MTi,t) = βAIMF
i,t + δ

(
AIMF

i,t × 1(Volatile markett)
)

+ γΓi,t−1 + θi + θt (θi,t−1) + εi,t

where i indexes mutual funds and t indexes time in months. AIMF
i,t represents the level of investment

in AI technologies by mutual fund i’s investment advisers, as defined in Section 2.2. SPi,t and MTi,t

capture the stock picking and market timing skills of mutual funds, defined as the covariance between
fund weights (in excess of the market) and the idiosyncratic returns (alphas) and systematic returns of the
stock holdings, respectively (Kacperczyk et al., 2014). See Equations (5) and (6) in Section 3.6 for details.
1(Volatile markett) is an indicator variable that takes a value of one if market volatility in month t exceeds its
80th percentile, and zero otherwise. Market volatility is measured as the standard deviation of daily market
returns within that month. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm
of total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm
of fund age (in years). θi, θt, and θi,t−1 are fund, time, and category-by-time fixed effects, respectively.
Standard errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with
statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

SP MT
(1) (2) (3) (4)

AIMF 0.031∗ 0.020∗∗ −0.032 −0.018
(1.76) (2.16) (−1.52) (−1.52)

AIMF × 1(Volatile market) −0.045 −0.030∗ 0.133∗∗ 0.086∗∗

(−1.42) (−1.70) (2.20) (2.50)
log(TNA) −0.142∗∗∗ −0.113∗∗∗ −0.011 0.001

(−5.27) (−10.15) (−0.96) (0.14)
Expense ratio −0.086 −0.012 0.022 0.036

(−1.47) (−0.28) (0.84) (1.24)
Turnover ratio −0.146∗∗∗ −0.090∗∗∗ 0.063∗∗∗ 0.030∗∗∗

(−4.54) (−4.79) (3.15) (2.81)
log(Fund age) 0.042 0.032∗∗ 0.027∗∗ 0.013

(1.51) (2.09) (2.07) (1.33)
Fund fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes
Category-by-time FEs Yes Yes
Observations 149,332 149,332 149,332 149,332
Adjusted R2 0.22 0.58 0.91 0.96
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Table 10: Stock picking with satellite imagery of parking lots

This table presents the results of the following linear regression model:

Alphaj,t = ρ
(
Weighti,j,t−1 × 1(Postj,t−1) × AIMF

i,t

)
+ δ1 (Weighti,j,t−1 × 1(Postj,t−1))

+ δ2
(
Weighti,j,t−1 × AIMF

i,t

)
+ δ3

(
1(Postj,t−1) × AIMF

i,t

)
+ β1Weighti,j,t−1 + β21(Postj,t−1) + β3AIMF

i,t + γ1Γi,t−1 + γ2Γj,t−1 + θi + θj + θt + εi,j,t

where i indexes mutual funds, j indexes stocks, and t indexes time in months. Alphaj,t is the alpha (idiosyn-
cratic return) of stock j in month t, defined as Rj,t −βj,t−1Rm,t, where Rj,t and Rm,t are the returns of stock
j and the market, respectively, in excess of the risk-free rate in month t, and βj,t−1 is the market beta of stock
j, estimated over a 12-month rolling window from month t−12 to t−1. Weighti,j,t−1 = wi,j,t−1 −wm,j,t−1 is
fund i’s portfolio weight on stock j in excess of its market weight at the end of month t−1. 1(Postj,t−1) is an
indicator variable that takes a value of one if firm j is covered by RS Metrics for satellite imagery of parking
lots in month t − 1, and zero otherwise. The timing of satellite imagery availability is sourced from Katona
et al. (2025). AIMF

i,t represents the level of investment in AI technologies by mutual fund i’s investment
advisers, as defined in Section 2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural
logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural
logarithm of fund age (in years). Γj,t−1 is a vector of lagged stock characteristics, including the percentile
rankings of market capitalization, book-to-market ratio, and the past 12-month return (excluding the most
recent month). θi, θj , and θt represent fund, stock, and time fixed effects, respectively. The sample includes
retail firms covered by RS Metrics from 12 months before to 12 months after satellite imagery coverage of
parking lots became available. Standard errors are double-clustered by fund and stock, and t-statistics are
reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and
***, respectively.
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Table 10–Continued

Alpha
(1) (2) (3) (4)

Weight × Post × AIMF 0.21∗∗ 0.21∗∗ 0.24∗∗ 0.24∗∗

(2.38) (2.36) (2.34) (2.41)
Weight × Post −0.13 −0.12 0.01 −0.004

(−0.95) (−0.92) (0.05) (−0.04)
Weight × AIMF −0.04 −0.04 −0.03 −0.03

(−0.60) (−0.54) (−0.39) (−0.43)
Post × AIMF −0.07 −0.06 −0.17∗∗ −0.17∗∗

(−0.99) (−0.91) (−2.11) (−2.19)
Weight −0.31∗∗∗ −0.32∗∗∗ −0.26∗∗∗ −0.25∗∗∗

(−4.45) (−4.61) (−3.95) (−4.10)
Post −0.72 −0.75 −0.85 −0.87

(−1.02) (−1.06) (−1.13) (−1.15)
AIMF 0.08 0.08 0.12 0.12

(0.63) (0.58) (0.93) (0.92)
Fund fixed effects Yes Yes Yes Yes
Stock fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Fund characteristics Yes Yes
Stock characteristics Yes Yes
Observations 85,620 80,865 85,600 80,846
Adjusted R2 0.24 0.24 0.26 0.26
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