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Abstract

When firms choose their capacity and then compete à la Bertrand, the market equilib-

rium can correspond to the Cournot outcome (Kreps and Scheinkman, 1983). In the banking

sector, a bank’s lending capacity is determined by its capital structure due to regulatory cap-

ital requirements. This paper establishes the conditions under which the Bertrand-Cournot

equivalence extends to banks. I treat capital as an imperfect capacity commitment, allowing

banks to distribute dividends and raise additional capital at a short-term premium during

the competition stage. I show that if the loan market is not severely affected by some types

of frictions and the short-term premium is sufficiently large, the Cournot outcome is the

unique equilibrium of the game. Such micro-foundations for Cournot competition in the loan

market open new perspectives to the modelling of an elaborate, yet tractable, banking sector

in macroeconomic models.

1 Introduction

In recent years, the macro-banking literature has received growing attention as researchers are

introducing more elaborate banking sectors into macroeconomic models in order to capture the
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special role of banks in the economy. To this end, models include some key ingredients such as

risk, limited liability, regulation, and asymmetric information. When several of these features are

present, perfect competition can help maintain tractability. However, the banking sector is highly

concentrated and banks have market power (Degryse and Ongena, 2008; Freixas and Rochet,

2008). Consequently, assuming perfect competition may result in outcomes or predictions that

overlook important mechanisms driven by market power.

The tension between capturing key features of banking, incorporating imperfect competition, and

maintaining tractability is a recurring challenge in the literature. Several papers incorporate micro-

founded financial frictions into macroeconomic models, yet the lenders in these frameworks often

lack the defining features of banks and are instead modeled as simple, risk-neutral agents (Bernanke

and Gertler, 1986, 1990; Brunnermeier and Sannikov, 2014). Other contributions incorporate some

important features of banks—such as credit and liquidity risk—but assume perfect competition

and abstract from regulatory features (e.g.Christiano et al. (2010)). Finally, another set of papers

includes many of the relevant bank characteristics, but run into tractability issues. Thakor (1996)

and Begenau (2020) include capital requirements, but bypass the challenges associated with limited

liability by proxing deposit insurance with a reduced-form subsidy from the government to banks.

Abadi et al. (2022) allow banks to have market power, but they need to rely on a reduced-form

cost function for banks, which is meant to capture agency costs and regulations. This paper

proposes a solution to this modelling problem by micro-founding the Cournot competition in the

banking sector under certain conditions. The Cournot approach effectively accounts for imperfect

competition, improves tractability and, it enables researches to include many of the key ingredients

in their models.

When combined with asymmetric information and regulation, imperfect competition can generate

important economic mechanisms that would not arise under perfect competition Martinez-Miera

and Repullo (2010); Schliephake (2016). Moreover, what matters is not only that competition is

imperfect, but also the specific form it takes. Monopolistic competition is the main alternative

to Cournot when researchers aim to capture bank market power. In the banking literature, the
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most common approaches are competition à la Salop and à la Dixit-Stiglitz.1. In a Salop model,

borrowers are uniformly distributed on a circle and banks decide their location. Borrowers incur

transportation costs to reach a bank. This type of competition can be narrowly interpreted as

purely spatial, emphasasing that physical distance is an important factor in the lending market

(Nguyen, 2019; Degryse and Ongena, 2005; Petersen and Rajan, 2002) or, in a broader sense, the

unit circle can be seen as the space of products where banks offer loans with different features

(e.g. customer service, payroll management) to gain market power. The standard interpretation of

Dixit-Stiglitz also relies on product differentiation, but it implies that, ceteris paribus, borrowers

are better off by having multiple loans with different banks rather than having one large loan with

one bank. Ulate (2021) provides a plausible micro-foundation: the CES demand can be generated

by a two step decision process in which first borrowers choose a bank through a taste shock

and then decide on the loan quantity. These models rely on plausible non-monetary frictions to

justify market segmentation. In contrast, the model proposed in this paper micro-founds Cournot

competition using a simpler setting, with risk-neutral agents aiming to maximize cash flows.

The starting point of the micro-foundations of Cournot competition is Kreps and Scheinkman

(1983)(hereinafter KS) who show that in a two-stage game in which firms first choose capacity

and then compete à la Bertrand, the unique subgame perfect equilibrium is the Cournot outcome.

Given this setting, the banking sector seems a natural application for two reasons: (1) given

an amount of regulatory capital, capital requirements constrain a bank’s lending capacity, hence

bank capital choice can be interpreted as a capacity choice (Schliephake and Kirstein, 2013);

(2) banks typically do not raise capital and issue loans simultaneously, but have medium-term

capital targets (Couaillier, 2021). On the other hand, bank capital is different from physical

capital. While physical capital investments, such as constructing a plant, are not feasible in the

short term, bank capital can be a more flexible form of capacity. Maggi (1996) develops a model

of capacity-price competition and allows firms to adjust their capacity in the second stage, but

1For competition à la Salop, examples include but are not limited to:Dell’Ariccia (2001); Chiappori et al. (1995);
Andrés and Arce (2012); Andrés et al. (2013); for competition à la Dixit-Stiglitz:Gerali et al. (2010); Ulate (2021);
Wang et al. (2022); Abadi et al. (2022).
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restricts the analysis to differentiated goods and linear demand. Schliephake and Kirstein (2013)

prove that Maggi (1996) can be extended to banks that issue risk-free loans, and show that if the

cost of raising capital in the second stage is sufficiently high, the Cournot outcome is the unique

subgame perfect equilibrium.

This paper generalizes that result. It identifies the conditions under which Cournot competition

is the unique equilibrium in a richer banking environment, characterized by three key features.

First, banks are protected by limited liability and deposits are insured by the government. Second,

banks are subject to capital requirements and can adjust their capital in the competition stage. In

line with Schliephake and Kirstein (2013), I find that the cost of recapitalising must be sufficiently

high in order to sustain the Cournot equilibrium. If capacity constraints are not relevant, the

competition stage reverts to a standard Bertrand game. Third, and most critically, loans are risky

and their risk is endogenous - specifically, the probability of default to depend on the rate charged

by the bank. This feature allows to incorporate asymmetric information as loan pricing can affect

borrower selection and behaviour. Depending on the friction modeled, a higher loan rate may

result in a safer portfolio (De Meza and Webb, 1987; Bernanke and Gertler, 1990) or a riskier one

(Stiglitz and Weiss, 1981; Martinez-Miera and Repullo, 2010) or have an ambiguous effect on loan

quality (House, 2006). The endogeneity of risk requires particular attention, as it threatens the

Bertrand-Cournot equivalence. In KS, firms with small capacities have no incentive to undercut

each other, as both operate at full capacity and price cuts do not increase sales. As a result,

choosing capacity in stage one becomes equivalent to choosing quantity. However, in a banking

context with asymmetric information, even a bank operating at full capacity may want to reduce its

rate to improve its risk profile. For example, under moral hazard, a lower interest rate may induce

borrowers to choose safer projects (Boyd and De Nicolo, 2005; Martinez-Miera and Repullo, 2010),

improving expected returns despite fixed loan volume. Therefore, a second necessary condition

for the Cournot outcome is that the expected residual cash flow— loan revenues net of deposit

repayments—must be increasing in the loan rate. In practice, this condition limits how sensitive

default risk can be to loan interest rate.
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Finally, in settings where banks possess private information about borrower quality, price com-

petition may trigger selection problems such as the winner’s curse (Von Thadden, 2004), which

eliminates pure-strategy equilibria and consequently break down the Bertrand-Cournot equiva-

lence.

This paper contributes to the micro-foundation banking models that assume Cournot competition,

but more importantly, provides a new tool which may open new perspectives for future research

in macro-banking.

The rest of the paper is organised as follows: Section 2 sets up the model and find the equilibrium

of the baseline game; Section 3 presents which frictions can be captured by the model; in Section

4 I allow banks to raise capital in the second stage and I discuss the assumptions on the dividends;

Section 5 concludes.

2 The baseline model

The model builds on Kreps and Scheinkman (1983) and Martinez-Miera and Repullo (2010).

Consider the following two-bank two-stage game. In stage 1, each bank i ∈ {1, 2} chooses an

initial capital level ki ∈ R+. In stage 2, banks compete à la Bertrand in the loan market subject

to capital requirements. At this stage, banks are allowed to adjust their capital position: they

can either reduce capital by distributing dividends at a unit cost δ or raise more capital at a

short-term premium κ. I assume δ to be positive and arbitrarily close to zero 2. In the baseline

model I assume κ = +∞ as in KS, which implies that banks cannot raise capital in the short term.

This assumption is relaxed in Section 4, where I derive the conditions under which the equilibrium

of the game is unaltered. Capital regulation requires each bank to fund a fraction γ ∈ (0, 1) of

its loans li with capital, such that ki ≥ γli. Loans can also be financed through deposits, di ,

which are supplied inelastically and are fully insured by the government. Let L(r) denote the

direct loan demand at the gross loan rate r. The second stage is a Bertrand competition with

2When δ = 0, Cournot outcome is still a SPNE, a positive but arbitrarily close to zero cost is sufficient to rule
out multiplicity of equilibria. This assumption and alternative setups will be discussed in Section 4
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capacity constraintsFollowing KS, I assume that loan demand is rationed according to an efficient

rule: borrowers willing to accept higher rates are served first:

li =


min

(
ki
γ
, L(ri)

)
if ri < rj

min
(
ki
γ
,max

(
L(ri)

2
, L(ri)− kj

γ

))
if ri = rj

min
(
ki
γ
,max

(
0, L(ri)− kj

γ

))
if ri > rj

where ri is the gross loan interest rate named by bank i. Each bank cannot exceed its regulatory

capacity ki/γ, determined by the capital requirement. If bank i sets the lowest rate, it serves

the entire market up to its capacity. If both banks offer the same rate, demand is split equally

unless one bank lacks the capacity to serve half the market, in which case the other bank serves

the residual demand. Lastly, if bank i offers the higher rate, it is only able to serve any residual

demand left by its competitor. Note that efficient rationing is not an inconsequential assumption;

KS result does not hold under other types of rationing without further assumptions 3. In a setting

where borrower type is private information, caution is required when applying this rationing rule.

Since borrowers are served based on their willingness to pay, it is essential that willingness to

pay is independent of borrower type. Otherwise, the ordering implied by efficient rationing would

contradict the assumption that banks cannot observe borrower type. Hence, in settings like Stiglitz

and Weiss (1981) Cournot competition cannot be meaningfully applied4.

Finally the inverse loan demand is given by r(L), which is the gross interest rate on loans as a

function of total loans L = l1 + l2.

Assumption 1. The function r(L) is strictly positive, twice continuously differentiable and strictly

decreasing.

Differently from Schliephake and Kirstein (2013), loans are allowed to be risky. Assume that all

agents are risk neutral and the risk-free rate is normalised to one. The fraction of loans that

3See Lepore (2009) for more details
4See Section 3.2
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default5 is governed by the random variable x, which is distributed according to the cumulative

distribution function F (x|ri) which has support [0, 1].

Assumption 2. F (x|ri) is twice continuously differentiable in x and ri, and it is strictly increasing

in x over its support. Furthermore, bank i’s distribution of defaults depends only on the interest

rate set by bank i, that is Fi(x|ri, rj) = F (x|ri).

This specification captures endogenous risk, where the default distribution depends on the loan

rate set by bank i. Although general, it rules out models in which the competitor bank’s rate rj

affects the fraction of defaults. This distinction is important for identifying the types of frictions

that can micro-found the functional form F (x|ri). As I will extensively discuss in Section 3, this

model can nest a series of moral hazard setups, but it is not suited to capture settings in which

banks have different information sets. In a classic moral hazard framework, due to limited liability,

borrowers choose riskier projects when facing a higher loan rate. This mechanism corresponds to

∂F
∂ri

< 0, indicating that higher rates increase the probability of default. However, since the core

results of the model do not hinge on the sign of this partial derivative, I do not impose additional

restrictions on F .

2.1 Cournot game

Before turning to the two-stage game, I present the equivalent one-stage Cournot game, in which

banks choose capital and loan quantities simultaneously. First, note that capital is endogenously

more costly than deposits due to deposits insurance. A bank fails if it cannot repay its depositors in

full, in which case shareholders receive nothing and insured deposits are repaid by the government.

From the bank’s perspective, deposits are repaid at the risk-free rate conditional on survival,

whereas capital must be repaid at the risk-free rate in expectation over all states of the world. As

a result, capital requirements are binding: ki = γli and di = (1− γ)li for i ∈ {1, 2}. Taking lj as

5I assume that if the loan defaults the recovery rate is zero, however the model can be easily extended to a
positive recovery rate.
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given, bank i solves the following problem:

max
li≥0

(∫ x̃

0

((1− x)r(L)− (1− γ)) dF (x|r(L))− γ
)
li

where x̃ is the maximum fraction of defaults that allows the bank to repay deposits, implicitly

defined by:

(1− x̃)r(L)li = (1− γ)li ⇒ x̃ =
r(L)− (1− γ)

r(L)

Define the function

Z(L) =

∫ x̃

0

((1− x)r(L)− (1− γ)) dF (x|r(L))

which represent the expected average residual cashflow, which is the cashflow accruing to share-

holders once deposits are repaid. In this framework, Z(L) plays the role of the inverse demand

function in a standard Cournot model, therefore, in order to guarantee the existence and the

uniqueness of the Cournot equilibrium, I assume the following:

Assumption 3. Z ′(L) < 0 and Z ′(L) + Z ′′(L)L < 0.

As I will discuss in the next section, the monotonicity is also crucial in the two-stage game.

Proposition 1. Let

b(lj) = arg max
li≥0

(Z(L)− γ)li

Under assumptions 1-3, the best response function b(·) has a unique fixed point b(lC) = lC. There-

fore (lC , lC) and r(2lC) are respectively the equilibrium quantities and the equilibrium rate of the

Cournot game.

Proof. See Appendix.

Before turning to the two-stage game, I define an auxiliary Cournot game that helps partition

the subgame space into three relevant regions, as shown in Figure 1. In other words, banks are

assumed to have already raised sufficient capital and, must compare the profitability of using that
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capital to issue loans versus distributing dividends. Specifically, let:

b̂(lj) = arg max
li≥0

(Z(L)− γ(1− δ))li

It is straightforward to prove that b̂(·) has the same properties of b(·) and that b̂(lj) < b(lj), with

strict inequality when b(lj) is positive.

Now I proceed to the two-stage game, which has the following timeline: fist banks choose capital,

second banks compete over rates in the loan market. Based on the resulting demand, each bank

raises deposits and adjusts its capital position: if it holds excess capital relative to its loan volume,

it pays out dividends; otherwise, it relies on deposits to meet funding needs. In the sections

that follow, I solve the game by backward induction and show that, under certain conditions, the

Cournot outcome characterized in the this section is the unique subgame perfect Nash equilibrium.

2.2 Second stage: Bertrand competition with capital requirements

In stage 2, every pair (k1, k2) is a different subgame which I denote by H(k1, k2). The strategy

space of bank i, which I denote by Si,2, is the space of distributions over loan rates. Define

Gi(r) ∈ Si,2 as Pr(ri ≤ r) = Pr(ri < r) + αi(r), where αi(r) is the probability mass on r. Let

Supp(Gi) = [ri, r̄i] be the support of the distribution of the rates named by bank i. Taking Gj as

given, if bank i names the rate ri it expects to issue:

li(ri, Gj) = min

(
ki
γ
,max

(
0, L(ri)−

kj
γ

))
(Gj(ri)− αj(ri))+

+ min

(
ki
γ
,max

(
L(ri)

2
, L(ri)−

kj
γ

))
αj(ri)+

+ min

(
ki
γ
, L(ri)

)
(1−Gj(ri))

Gj(ri)−αj(ri) is the probability that rj < ri, hence bank i will serve the residual demand (if any);

αj(ri) is the probability that rj = ri, hence bank i and bank j split the demand; finally 1−Gj(ri)

is the probability that rj > ri, hence bank i will serve the entire demand up to its capacity. In
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the second, stage bank i aims at maximising6

max
Gi∈Si,2

{
M(Gi, Gj) =

∫ r̄i

ri

(m(ri)li(ri, Gj) + (1− δ) (ki − γli(ri, Gj))) dGi(ri)

}

where m(ri) = Z(L(ri)) =
∫ x̃

0
((1− x)ri − (1− γ)) dF (x|ri). Note that m′(r) = Z ′(L)L′(r) > 0.

The assumption on the monotonicity of Z(L), implies that the average residual cashflow is increas-

ing in own rate. While for firms operating under constant returns to scale it is straightforward that

an increase in price raises the average profit margin, for banks there are additional mechanisms

at work7:

∂m(r)

∂r
=
∂x̃

∂r
rF (x̃|r)︸ ︷︷ ︸

(+) Buffer

+

∫ x̃

0

F (x|r)︸ ︷︷ ︸
(+) Margin

+ r
∂F

∂r︸︷︷︸
(±) Distribution shifting

dx R 0

The first term reflects a buffer effect: as the loan rate increases, the default threshold x̃ rises,

allowing the bank to remain solvent in a greater number of states. The second term captures a

margin effect: higher loan rates increase returns on performing loans, much like standard pricing

logic in firm theory. The final component, the distribution shifting effect, reflects how the dis-

tribution of defaults responds to changes in the loan rate. This effect is ambiguous in sign, as

it depends on the specific frictions driving borrower behavior. For example, in a moral hazard

setting (Boyd and De Nicolo, 2005; Martinez-Miera and Repullo, 2010; Schliephake, 2016) result

in a negative distribution shifting effect. Assumption 3 ensures that the overall expression remains

well-behaved: it rules out excessively strong negative distribution shifting effects by requiring that

Z(L) be decreasing in L. In practice, this limits the sensitivity of portfolio risk to changes in the

loan rate.

The existence of an equilibrium in each subgameH(k1, k2) is guaranteed by Theorem 5 of Dasgupta

and Maskin (1986) 8. Define ργ(y) to be the loan rate that satisfies m(ργ(y)) = γy, and let

6Note that whenever ki > γli, bank i always prefer to pay out dividends to make the capital requirement
binding. The reason is that the cost of paying dividends is assumed to be sufficiently small so that the bank is not
willing to hold capital in excess of the regulatory minimum

7Note that m(r) =
∫ x̃

0
rF (x|r)dx by integration by parts.

8by lowering its rate a bank always benefits from a (weak) increase in demand, hence bank i’s payoff is weakly
lower semi-continuous in ri; whereas the sum of the payoffs is upper semi-continuous in both ri and rj .
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Λγ(y) = L(ργ(y)) denote the corresponding loan demand. Consider subgames H(k1, k2) such that

mini
ki
γ
≥ Λγ (1− δ). In this case, the capacity constraints are non biding at the zero-profit rate,

hence the game reduces to a standard Bertrand competition. The unique equilibrium strategies

(G∗1, G
∗
2) are such that r1 = r2 = ργ (1− δ) with probability 1. Banks’ equilibrium payoffs are

equal to Mi(G
∗
i , G

∗
j) = (1 − δ)ki. For the rest of the paper consider only subgames in which

mini
ki
γ
< Λγ (1− δ), i.e. at least one bank is constrained at the zero-profit rate.

Lemma 1. In every subgame it must be that ri ≥ r
(
k1+k2
γ

)
≡ rFC for all i ∈ {1, 2}.

Proof. Fix any Gj, if a bank names a rate r ≤ rFC , then it is operating at full capacity with

probability one. Given that m(r) is an increasing function of r, any r < rFC is strictly dominated

by rFC . In other words, when a bank reaches maximum capacity has no incentive to undercut

the opponent as it would decrease the expected residual cashflow without improving the quantity.

Therefore any rate r < rFCcannot be part of an equilibrium strategy and ri ≥ rFC .

Lemma 2. If r̄1 = r̄2 = r̄ and αi(r̄) > 0 for i ∈ {1, 2}, then

ri = r̄i = rFC and
ki
γ
≤ b̂

(
kj
γ

)
∀i ∈ {1, 2}

Proof. See Appendix.

Lemma 2 states that if there exists an equilibrium in which banks have the same supremum, this

sumpremum must be smaller or equal to the full capacity rate. The intuition is the following:

if r̄ > rFC , then the bank with (weakly) more capacity has capital in excess with probability 1.

Hence, the strategy r̄ would be dominated by r̄ − ε, with ε arbitrarily small, which keeps the

expected average residual cashflow constant and increases the quantity. The second part of the

lemma, ki
γ
≤ b̂

(
kj
γ

)
, ensures that each bank has no incentive to charge a rate that is higher than

r̄ and be the monopolist of the residual demand.

Lemma 3. If r̄i > r̄j or r̄i = r̄j and αj(r̄j) = 0, then:
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(a) r̄i = r
(
b̂
(
kj
γ

)
+

kj
γ

)
and the equilibrium payoff of bank i is equal to

Mi(G
∗
i , G

∗
j) = (m(r̄i)− γ(1− δ)) b̂

(
kj
γ

)
︸ ︷︷ ︸

P (kj)

+(1− δ)ki

(b) ki
γ
> b̂

(
kj
γ

)
(c) ri = rj and αi(ri) = 0 for all i ∈ {1, 2}

(d) ki ≥ kj

(e) the equilibrium payoff of bank j is uniquely determined by (k1,k2) and

P (kj)
kj
ki

+ (1− δ)kj ≤Mj(G
∗
j , G

∗
i ) ≤ P (kj) + (1− δ)ki

Proof. See Appendix

In any mixed strategy equilibrium, each bank must be indifferent over all loan rates within the

support of its strategy. Suppose bank i charges the higher supremum r̄i > r̄j . Then bank i must

be serving a positive residual demand at r̄i ; otherwise, it would have an incentive to undercut

its rival. Moreover, to prevent profitable deviations, r̄i must be such that the bank issues exactly

b̂
(
kj
γ

)
- the best response under the auxiliary Cournot game when facing residual demand.

The lemma also implies that the bank with the higher supremum rate must have greater capital.

The intuition is that the more capitalized bank must be sufficiently compensated—via a favor-

able rate and allocation—so that it restrains its lending capacity rather than undercutting the

competitor and eliminating their profit opportunities.

Dasgupta and Maskin (1986) guarantee the existence of an equilibrium, therefore every H(k1, k2)

has an equilibrium that must respect Lemmas 1-3. We can divide the subgames space into three

relevant regions (see Figure 1 for reference) .

• Region 1
{
H(k1, k2) : mini

ki
γ
> Λγ(1− δ)

}
: in this region banks are so much capitalised

that capacity constraints do not matter. The subgame equilibrium is r1 = r2 = ργ(1 − δ)
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Figure 1: Equilibrium regions of the baseline model

with probability one and the equilibrium payoffs are Mi(G
∗
i , G

∗
j) = (1− δ)ki for i ∈ {1, 2}.

• Region 2
{
H(k1, k2) : ki

γ
≤ b̂

(
kj
γ

)
∀i ∈ {1, 2}

}
: in this region banks operate at full capacity.

The subgame equilibrium is r1 = r2 = rFC with probability one and the equilibrium payoffs

are Mi(G
∗
i , G

∗
j) = m(rFC)ki

γ
for i ∈ {1, 2}.

• Region 3A
{
H(k1, k2) : k1 ≥ k2 and k1

γ
> b̂

(
k2
γ

)}
: in this region there is a mixed strategy

equilibrium which has the characteristics described by Lemma 3. The equilibrium payoffs

are M1(G∗1, G
∗
2) = P (k2)+(1−δ)k1 and P (k2)k2

k1
+(1−δ)k2 ≤M2(G∗2, G

∗
1) ≤ P (k2)+(1−δ)k1

• Region 3B: symmetric to Region 3A

Note that stage 2 payoffs are continuous functions of k1 and k2.

2.3 First stage: capital choice

In the first stage, each bank chooses a capital level according to some probability measure µi(k)

with support [ki, k̄i] ⊆ R+. Denote by Si,1 the strategy space of stage 1. Bank i aims to maximise
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its expected profits:

max
µi(ki)∈Si,1

{
π(µi, µj) =

∫ k̄i

ki

∫ k̄j

kj

(
Mi(G

∗
i , G

∗
j)− ki

)
dµj(kj)dµi(ki)

}

where µj is the opponent’s strategy and (G∗i , G
∗
j) and the equilibrium strategies of the second-stage

subgame H(k1, k2).

Proposition 2. Under assumptions 1-3, the Cournot outcome, k1 = k2 = γlC and r1 = r2 = rC,

is the unique subgame perfect Nash equilibrium (SPNE) of the two-stage game.

Proof. See Appendix for a formal proof. Below I provide a sketch of the proof.

To illustrate the logic, restrict the attention to pure strategies and partition the capital space into

the three regions presented before:

• Region 1 (Overinvestment region): bank i profits are given by πi(ki, kj) = (1 − δ)ki − ki =

−δki. In this region the bank has raises too much capital. As paying dividends is costly,

from a stage 1 perspective, the bank is better off by raising less capital. Hence any (k1, k2)

that belong to region 1 cannot be a SPNE.

• Region 2 (Cournot region): bank i profits are given by πi(ki, kj) = m(rFC)ki
γ
− ki =(

Z
(
ki+kj
γ

)
− γ
)
ki
γ

. In this region banks operate at full capacity and charge the full ca-

pacity rate, hence the stage 1 strategic choice of capacity is equivalent to the strategic choice

of quantity. The only possible subgame perfect equilibrium in this region the Cournot equi-

librium (k∗1, k
∗
2) = (γlC , γlC)9.

• Region 3A (Asymmetric overinvestment region): bank 1 profits are equal to π1(k1, k2) =

P (k2) − δk1. Bank 1’s profits are decreasing in k1, hence bank 1 is better off by raising

less capital. Note that this is true even at the border of the region when k1 = k2. The

intuition is that in this region bank 1 has raised too much capital and has to pay dividends

9Note that the Cournot equilibrium belongs to this region because b̂(l) ≤ b(l) for all l.
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Figure 2: Full game equilibrium

in expectation. A positive cost for paying dividends rules out the possibility of having an

equilibrium in this region and ensures the uniqueness of the SPNE.

• Region 3B: symmetric to 3A.

Therefore the only subagme perfect equilibrium is (k∗1, k
∗
2) = (γlC , γlC), in stage 2 r1 = r2 = rFC =

r(2lC) with probability one.

3 Modelling the banking sector: When can we assume

Cournot competition?

The key condition that must hold in order to assume Cournot competition is that the average

expected residual cashflow must be increasing in own rate. Clearly, Cournot competition can be

assumed when risk is exogenous
(
∂F
∂r

= 0
)

(e.g. Villa, 2023; Bahaj and Malherbe, 2020). In this

section I go over the most common frameworks of asymmetric information and state whether is
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possible or not to micro-found Cournot competition.

3.1 Moral Hazard

Due to limited liability, when entrepreneurs face a higher loan rate, they choose a riskier project

or exert less effort, hence the probability of default is increasing in loan rate. Consider a modified

version of Boyd and De Nicolo (2005). Entrepreneurs choose among projects that require one unit

of investment and have the following return function:

X =


α(p) with prob. (1− p)

0 with prob. p

Therefore entrepreneurs optimally pick a project by choosing the probability of default p. Assume

α(p) to be continuous, increasing and strictly concave. Each entrepreneur t has her outside option

ūt and solves the following problem

u(r) = max
p∈[0,1]

(1− p)(α(p)− r)

such that u(r) ≥ ūt

In order to have an interior solution I further assume that α(0)−α′(0) < r < α(1). The first order

condition is given by:

r − α(p∗) + (1− p∗)α′(p∗) = 0

By the implicit function theorem

dp∗

dr
=

1

2α′(p∗)− (1− p∗)α′′(p∗)
> 0

When charged a higher rate, entrepreneurs choose projects with higher probability of default. For

simplicity assume that all loans are perfectly correlated. The expected average residual cashflow
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is given by:

m(r) = (1− p∗(r))(r − (1− γ))

The key condition is that m(r) increasing, i.e.

m′(r) = −dp
∗

dr
(r − (1− γ)) + (1− p∗(r)) > 0

⇔ dp∗

dr
<

1− p∗(r)
r − (1− γ)

This inequality implies that the probability of default must not respond too much to an increase

in the loan rate. For instance, if p(r) = a+ br, then:

m′(r) = −b(r − (1− γ)) + 1− a− br > 0

⇔ b <
1− a

2r − (1− γ)
≤ 1− a

1− γ

In conclusion, provided that the marginal residual cashflow is increasing in the loan rate, Cournot

competition can be justified also in framework that entail moral hazard (Martinez-Miera and

Repullo, 2010; Schliephake, 2016; Gasparini, 2023; Corbae and Levine, 2019).

3.2 Heterogeneous types of borrowers, adverse or favourable selection

and screening

Recall the assumption of efficient rationing: when loan demand exceeds a bank’s capacity, borrow-

ers with higher reservation rates are served first. In environments where borrower types are private

information, caution is required when applying this rule. Since rationing is based on willingness

to pay, it must be the case that willingness to pay is independent of borrower type. Otherwise,

the assumption of private information would be contradicted, as the bank would effectively be

able to infer borrower types through observed reservation rates. This restriction rules out models

in which the lending rate affects the composition of the borrower pool through selection effects,

such as adverse selection or advantageous selection (Stiglitz and Weiss (1981); De Meza and Webb
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(1987); House (2006)).

Finally, if the banks can screen borrowers through imperfect signals, the assumption F (x|ri, rj) =

F (x|ri) might not be preserved. In particular, if banks observe uncorrelated private signals about

borrower risk, strategic interaction becomes more complex. As shown in Marquez, 2002, the bank

charging a higher rate will draw from a worse distribution, consisting of borrowers rejected by

the lower-priced competitor. In such settings, banks have an incentive to undercut each other

even when capacity constraints bind, which undermines the Cournot-Bertrand equivalence. One

way to restore the equilibrium result is to assume that banks observe a common signal (e.g. open

banking).

4 Adjusting capital in the second stage

This section relaxes the assumption on the short term capital premium (κ = +∞) and discusses the

conditions under which the Cournot equilibrium remains the unique SPNE of the two-stage game.

It also revisits the assumptions on dividend payments and proposes an alternative formulation.

4.1 Raising additional capital

Consider the same two-stage game as in the baseline model, but now allow for κ < ∞. In this

modified setup, when capital requirements are binding and loan demand exceeds capacity, banks

may choose to raise additional capital during the second stage in order to serve unmet demand.

This setting is conceptually similar to extensions of KS studied in the industrial organisation

litarature. Boccard and Wauthy (2000; 2004) allow firms to build extra capacity in the competition

stage at a premium cost. They show that when the Cournot price is below the short-term capacity

cost, the Cournot outcome remains the unique SPNE. Otherwise, firms compete à la Bertrand and

the price equals the premium. However, their analysis relies on implicit parametric restrictions,

and a stronger assumption is actually needed.

Assumption 4. ργ(1 + κ) > r(b̂(0)).
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This assumes that the rate that makes the bank indifferent between raising or not extra capital is

larger than the monopolist rate of the auxiliary game. Note that even when banks are allowed to

adjust capital in stage two, the existence of equilibrium in every subgame remains guaranteed by

Theorem 5 in Dasgupta and Maskin (1986).

Lemma 4. In subgames H(k1, k2) where k1+k2
γ

< Λγ(1 + κ), the unique subgame equilibrium is

r1 = r2 = ργ(1 + κ) with probability one.

Proof. See Appendix for a formal proof. The intuition is that when k1+k2
γ

< Λγ(1 + κ), then

rFC > ργ(1 + κ), hence at the full capacity rate banks find it optimal undercut the opponent

and expand their capacity. The typical demand-stealing mechanism of Bertrand competition is

restored. Therefore, banks undercut each other until they make zero profits, i.e. r1 = r2 =

ργ(1 + κ).

Lemma 5. In subgames H(k1, k2) such that k1+k2
γ
≥ Λγ(1 + κ), lemmas 1 to 3 hold.

Proof. See Appendix.

The intuition is that when k1+k2
γ
≥ Λγ(1 + κ), which implies rFC ≤ ργ(1 + κ), the possibility to

raise more capital does not create any profitable deviation in the subgames equilibria found in

the baseline game. Assumption 4 plays an important role for Lemma 3 as it ensures that the

equilibrium payoffs are solely determined by (k1, k2) and are the same of the baseline game.

Now we can divide the subgames into four relevant regions. Regions 1 and 3A/B are the same of

the baseline game with the same payoffs. Region 2 is now defined as{
H(k1, k2) : k1+k2

γ
≥ Λγ(1 + κ) and ki

γ
≤ b̂

(
kj
γ

)
∀i = 1, 2

}
. Finally in Region 4, defined as{

H(k1, k2) : k1+k2
γ

< Λγ(1 + κ)
}
,the equilibrium strategies are r1 = r2 = ργ(1 + κ) and the equi-

librium payoffs Mi(G
∗
i , G

∗
j) = (1 + κ)ki for i = 1, 2. Also in this case, payoffs are continuous in

(k1, k2).

Proposition 3. Under assumptions 1-4, the Cournot outcome is the only SPNE of the two stage

game.
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Figure 3: Equilibrium regions when ργ(1 + κ) > r(b̂(0))

Proof. For a formal proof see Appendix.

In Region 4, there cannot be a SPNE as πi(ki, kj) = κki, hence both banks have the incentive to

increase capital. The intuition is that banks anticipate that they are going to expand capacity in

the second stage. As raising capital in the short term is more costly, hence they are better-off by

raising more capital in stage 1. In Regions 1 to 3A/B everything works as in the baseline game.

4.2 Paying dividends

In the baseline model I assume that the cost of paying dividends δ must be positive but sufficiently

small. A positive cost is necessary to ensure equilibrium uniqueness, as it eliminates profitable

deviations involving excess capital. Alternatively, it is possible to assume that in the first stage

bank equity requires a premium rK > 0, while dividend payments are costless. The essential

modeling requirement is that adjusting capital in the second stage must be costly, to avoid banks

deliberately overcapitalizing. However, this adjustment cost must remain low enough that banks
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Figure 4: Subgame-perfect equilibrium with capital adjustment

do not hold excess capital relative to the regulatory constraint. If dividend payments are highly

costly or outright prohibited (δ → ∞) the game needs simplifying assumptions in order to be-

come tractable. When it is not possible to pay out dividends, the level of bank capital not only

determines the lending capacity of the bank, but also the marginal funding costs. With fixed

capital, a bank that issues fewer loans relative to its equity requires fewer deposits - or none at all

if li ≤ ki. Moreover, as deposits are guaranteed by the government, the marginal cost of deposits

depends on leverage (di/li): the more leveraged is a bank, the more likely it is to fail and hence the

cheaper the deposits10. Schliephake and Kirstein (2013) show that the Cournot outcome is SPNE

in a tractable model in which banks are not allowed to pay dividends, issue risk-free differentiated

loans, and loan demand is linear. In contrast, when dividend payments are allowed at a small

cost, leverage is fixed by the capital requirement, which implies that the marginal cost of deposits

is constant across loan volumes.

10Recall: the cost of deposits is the risk-free rate times the probability of survival of the bank
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δ →∞ with no risk, bank loans as imperfect substitutes and linear demand
Schliephake and Kirstein (2013)

> 0 but close to zero* this paper

= 0 multiplicity of equilibria

κ →∞ baseline game (for firms: Kreps and Scheinkman (1983))

<∞ but large** this paper (for firms: Boccard and Wauthy (2000; 2004))

= 0 standard Bertrand competition

Table 1: This table summarises how different values for the parameters of the model map to the literature. * δ is

sufficiently small such that (1− δ)(ki − γli) ≥ rili
∫ x̌
x̃
F (x|ri)dx, where x̌ = (rili − di)/rili is the default boundary

when the bank does not distribute dividends; **κ is such that ργ(1 + κ) ≥ r(b̂(0)).

5 Conclusion

This paper shows that Cournot competition in the banking sector can be micro-founded through

a two-stage game in which banks first choose capital levels and then compete à la Bertrand in

the loan market, subject to capital requirements. For the Cournot outcome to arise as the unique

subgame perfect equilibrium, two key conditions must be satisfied. First, the expected average

residual cash flow must be increasing in the loan rate. This condition rules out settings where

moral hazard effects are sufficiently strong to reverse the relationship between loan pricing and

expected residual cashflow. Second, the cost of short-term recapitalization must be sufficiently

high. This ensures that capital requirements act as effective capacity constraints. Together, these

conditions ensure that capacity choices made in the first stage result into effective quantity choices

in the second stage, thus recovering the logic of Cournot competition.
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Appendix

Proposition 1: assumption 3 guarantee that when b(lj) it is positive it must satisfy the following

first order condition:

Z ′(b(lj) + lj)b(lj) + Z(b(lj) + lj)− γ = 0

Given the equation above, the best response function has the following properties:

[a] b(lj) is strictly decreasing : by the implicit function theorem

db(lj)

dlj
= − Z ′(b(lj) + lj)(b(lj) + 1)

2Z ′(b(lj) + lj) + Z ′′(b(lj) + lj)b(lj)
< 0

[b] b′(lj) > −1: increase lj by ε and decrease b(lj) by the same amount. The FOC is equal to:

Z ′(b(lj) + lj)(b(lj)− ε) + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)b(lj) + Z(b(lj) + lj)− γ︸ ︷︷ ︸
=0

−Z ′(b(lj) + lj)ε

= −Z ′(b(lj) + lj)ε > 0

Hence it must be that b′(lj) < −1.
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[c] If lj > b(lj), then b(b(lj)) < lj: set lj = b(lj) and b(lj) = lj and evaluate the FOC:

Z ′(b(lj) + lj)lj + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)(lj + b(lj)− b(lj)) + Z(b(lj) + lj)− γ

= Z ′(b(lj) + lj)(lj − b(lj)) < 0

as lj > b(lj) by hypothesis. This implies that the best response to b(lj) is smaller than lj,

i.e. b(b(lj)) < lj.

Property 3 ensures that b(lj) is a contraction and therefore has a unique fixed point.

Capital requirement binding in Stage 2. Given any triple (ki, li, ri) if ki > γli, bank i prefers

to issue dividends and raise more deposits to make the capital requirement binding

∫ x̃

0

((1− x)ri − (1− γ)) dF (x|ri)li + (1− δ)(ki − γli) ≥
∫ x̌

0

(
(1− x)rili − (li − ki)+

)
dF (x|ri)

where x̌ = rili−(li−ki)+
rili

and (y)+ = max{0, y}. It is always possible to have a positive but arbitrarily

close to zero δ that make the inequality above true. Re-arranging:

(1− δ)(ki − γli) ≥ rili

∫ x̌

x̃

F (x|ri)dx

The RHS is strictly smaller than rili(x̌− x̃) = (ki − γli), hence there exists a δ̄ > 0, such that

(1− δ̄)(ki − γli) = rili

∫ x̌

x̃

F (x|ri)dx

Hence for any δ < δ̄ the inequality holds.

Lemma 2: WLOG let k1 ≥ k2. By hypothesis r̄1 = r̄2 = r̄. Now suppose r̄ > rFC . Bank 1 would

have a profitable deviation to name a rate that is lower but arbitrarily close to r̄
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lim
ε↓0

M1(r̄−ε, Gj)−M1(r̄, Gj) = α2(r̄)(m(r̄)−γ(1−δ))
[
min

(
k1

γ
, L(r̄)

)
−max

(
L(r̄)

2
, L(r̄)− kj

γ

)]
> 0

Hence it must be that r̄ ≤ rFC . Now I prove the second part of the lemma. By lemma 1, it must

be that ri = r̄i = rFC for all i. Then if bank i names a rate r > rFC , its payoff must be equal to

(m(r)− γ(1− δ))
(
L(r)− kj

γ

)
+ (1− δ)ki

Let li = L(r)− kj
γ

, then it is equivalent to maximise
(
Z
(
li +

kj
γ

)
− γ(1− δ)

)
li. By definition it

is maximised at li = b̂
(
kj
γ

)
, hence it must be that ki

γ
≤ b̂

(
kj
γ

)
, otherwise bank i would have a

profitable deviation.

Lemma 3: WLOG assume r̄1 > r̄2. Before proceeding I must prove that k2 ≥ γΛγ(1 − δ) is

incompatible with the hypotheses of the lemma. By hypothesis, mini
ki
γ
< Λγ(1 − δ), hence if

k2 > Λγ(1− δ), then k1 < Λγ(1− δ). By naming r ∈
(
ργ(1− δ), r

(
k1
γ

))
bank 2 gets a payoff that

is strictly higher than (1− δ)k2. Hence in equilibrium it must be that r̄2 > ργ(1− δ). However if

r̄1 > r̄2, it implies that when bank 1 names r̄1, the residual demand is always equal to zero and

M1(r̄1, G2) = (1−δ)k1. However this cannot be part of an equilibrium as bank 1 has the profitable

deviation to name any rate r ∈ (ργ(1− δ), r̄2).

For (a) and (b): consider the function

φ(r) = (m(r)− γ(1− δ)) max

(
0, L(r)− kj

γ

)

By naming any rate r ≥ r̄1, bank 1 gets M1(r,G2) = φ(r) + (1 − δ)k1, hence it must be that

φ(r) is maximised at r̄1. In order to maximise φ(r), bank 1 should choose r such that k2
γ
≤

L(r) ≤ k1+k2
γ

. For any level of r there is a loan quantity, namely l(r) = L(r) − k2
γ

, such that
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φ(r) =
(
Z
(
l(r) + k2

γ

)
− γ(1− δ)

)
l(r). Picking r to maximise φ(r) is equivalent to maximise:

max
l∈[0, k1γ ]

(
Z

(
l +

k2

γ

)
− γ(1− δ)

)
l

By Assumption 3, this is maximised at min
(
k1
γ
, b̂
(
k2
γ

))
, if the capital requirement binds we are

in the case of Lemma 2, which is incompatible with the hypothesis of this lemma, hence it must

be that k1
γ
> b̂

(
k2
γ

)
and r̄1 = r

(
b̂
(
k2
γ

)
+ k2

γ

)
.

(c) Suppose that ri < rj. By naming ri bank i gets Mi(ri, Gj) = (m(ri)−γ(1−δ)) min
(
ki
γ
, L(ri)

)
+

(1 − δ)ki. Clearly if L(ri) >
ki
γ

, then the payoff is strictly increasing in rand bank i would have

the profitable deviation to name ri + ε; if L(ri) <
ki
γ

, it must be that ri = r(b̂(0)) otherwise bank

i would have a profitable deviation. However ri ≤ r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
< r(b̂(0)), therefore it

cannot be an equilibrium. It must be that r1 = r2 = r. Note that r > rFC , otherwise for bank

1 would be profitable to deviate and name r
(
b̂
(
k2
γ

)
+ k2

γ

)
. Now I prove that αi(r) = 0 for all

i ∈ {1, 2}. Let i denote the bank that has (weakly) more capital11 and bank j the bank that has

(weakly) less capital. Suppose bank j names r with positive probability. Then bank i prefers to

name a rate that is smaller but arbitrarily close to r

lim
ε↓0

Mi(r−ε, Gj)−Mi(r,Gj) = αj(r)(m(r)−γ(1−δ))
(

min

(
ki
γ
, L(r)

)
−max

(
L(r)

2
, L(r)− kj

γ

))
︸ ︷︷ ︸

>0

Therefore it must be that αj(r) = 0. Bank j names r with zero probability, however r is the

infimum of the support, hence it must be that bank j names a rate that is arbitrarily close and

above r but not exactly r

Mj(r,Gi)− lim
ε↓0

Mj(r + ε, Gi) = αi(r)(m(r)− γ(1− δ))
(

min

(
kj
γ
,
L(r)

2

)
−max

(
0, L(r)− ki

γ

))
︸ ︷︷ ︸

>0

Hence it must be that αi(r) = 0.

11I still have to prove that this is bank 1.
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(d) r ≤ r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
, implies L(r) ≥ b̂

(
k2
γ

)
+ k2

γ
> k2

γ
. Hence the equilibrium payoff of

bank 2 must be equal to m(r)k2
γ

. Now suppose k2 > k1, it must be that the equilibrium payoff

of bank 1 is equal to m(r)k1
γ

. By part (a) we also know that the equilibrium payoff of bank 1 is

equal to P (k2) + (1 − δ)k1, which implies that m(r) = P (k2) γ
k1

+ γ(1 − δ). The payoff of bank

2 can be re-written as P (k2)k2
k1

+ (1 − δ)k2. If bank 2 names r = r
(
b̂
(
k1
γ

)
+ k1

γ

)
> r̄1, it gets

P (k1) + (1− δ)k2. Therefore if P (k1) + (1− δ)k2 > P (k2)k2
k1

+ (1− δ)k2, which can be re-written as

k1P (k1) > k2P (k2), bank 2 has a profitable deviation and k2 > k1 contradicts the hypotheses of the

lemma. Define the function ψ(k) = kP (k) = k
(
Z
(
b̂
(
k
γ

)
+ k

γ

)
− γ(1− δ)

)
b̂
(
k
γ

)
and compute

the derivative12

ψ′(k) =

(
Z

(
b̂

(
k

γ

)
+
k

γ

)
− γ(1− δ)

)(
b̂

(
k

γ

)
− k

γ

)
Hence:

ψ(k2)− ψ(k1) =

∫ k2

k1

(
Z

(
b̂

(
k

γ

)
+
k

γ

)
− γ(1− δ)

)(
b̂

(
k

γ

)
− k

γ

)
dk

Bank 2 has a profitable deviation if the expression above is negative. As b̂(·) is decreasing, this

integral is more likely to be positive when k2 is as small as possible. From (b) we know that

k2 > γb̂−1
(
k1
γ

)
, hence:

ψ(k2)− ψ(k1) < ψ

(
γb̂−1

(
k1

γ

))
− ψ(k1)

= k1

((
Z

(
b̂−1

(
k1

γ

)
+
k1

γ

)
− γ(1− δ)

)
b̂−1

(
k1

γ

)
−
(
Z

(
b̂

(
k1

γ

)
+
k1

γ

)
− γ(1− δ)

)
b̂

(
k1

γ

))
≤ 0

The term above is negative because by definition
(
Z
(
l + k1

γ

)
− γ(1− δ)

)
l is maximised at b̂

(
k1
γ

)
.

Therefore it must be that k1 ≥ k2.

Finally (e): from part (a), (c) and (d) we know that

m(r)
k2

γ
≤ (m(r)− γ(1− δ)) min

(
k1

γ
, L(r)

)
+ (1− δ)k1 = P (k2) + (1− δ)k1

12See KS for details on how to derive the expression of ψ′(k).
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Hence in equilibrium bank 2 can get at most P (k2)+(1−δ)k1. We also know that P (k2)+(1−δ)k1 =

(m(r)− γ(1− δ)) min
(
k1
γ
, L(r)

)
+ (1− δ)k1 ≤ m(r)k1

γ
, which implies m(r) ≥ P (k2) γ

k1
+ γ. Hence

m(r)k2
γ
≥ P (k2)k2

k1
+ (1− δ)k2.

Proposition 2: WLOG let k̄1 ≥ k̄2.

• (Step 1) In equilibrium it must be that k̄1/γ ≥ b(k2/γ). Suppose not: k̄1/γ < b(k2/γ), which

implies that b(k̄1/γ) > b(b(k2/γ)). As k2 ≤ k̄1, it must be that k2/γ < b(k2/γ). Then it

must be that b(b(k2/γ)) > k2/γ
13. By transitivity, k2/γ < b(k̄1/γ). Therefore when bank 2

raises k2 is for sure in Region 2:

π(k2, µ1) =

∫ k̄1

k1

(
Z

(
k1 + k2

γ

)
− γ
)
k2

γ
dµ1(k1)

The profits are strictly increasing in k2 as k2 < b(k1/γ) for all k1 ∈ [k1, k̄1], hence bank 2

can profitably deviate and name k2 + ε. Therefore it must be that k̄1/γ ≥ b(k2/γ).

• (Step 2) k̄1/γ ≤ b(k̄2/γ). Suppose not: k̄1/γ > b(k̄2/γ). Then when bank 1 raises k̄1 is either

in region 2 or in region 3A:

π(k̄1, µ2) =

∫ ξ(k̄1)

k2

(
Z

(
k̄1 + k2

γ

)
− γ
)
k̄1

γ
dµ2(k2) +

∫ k̄2

ξ(k̄1)

(P (k2)− δk1)dµ(k2)

where ξ(k) = 1
γ
b̂−1
(
k
γ

)
. The profits are strictly decreasing in k̄1, in particular the first term

is decreasing because k̄1/γ ≥ b(k2/γ) ≥ b(k2/γ) for all k2 in the support. Therefore bank 1

would have the profitable deviation to raise k̄1 − ε. Hence it must be that k̄1/γ ≤ b(k̄2/γ).

• (Step 3) The previous step imply that k̄1/γ = b(k̄2/γ) = b(k2/γ), which implies that bank

2’s equilibrium strategy is a pure strategy k2; bank 1 best response to the pure strategy k2

is b
(
k2
γ

)
. In turn, bank 2 must best respond to that hence k2

γ
= b

(
k1
γ

)
= b

(
b
(
k2
γ

))
. The

unique solution is k1 = k2 = γlC , and in the second stage banks name rFC = r(2lC) = rC

with probability one.

13See proof of Proposition 1 for the properties of b(·)
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Lemma 4: Recall that demand is rationed according to the efficient rule as in the baseline game.

In particular, when banks name the same rate, they can raise more capital only if they cannot

serve the entire demand collectively, i.e. r1 = r2 = r and L(r) > k1+k2
γ

.

(Step 1) ri ≥ ργ(1 + κ) for all i ∈ {1, 2}. Suppose not and let ri < ργ(1 + κ) for some i. By

hypothesis ργ(1 + κ) < rFC , hence when bank i names riit gets:

Mi(ri, Gj) = m(ri)
ki
γ

Bank i is operating at full capacity and does not find it profitable to raise more capital as ri <

ργ(1 + κ). However m(·) is an increasing function, hence bank i would be better off by naming

ri + ε. Hence, this cannot be an equilibrium and it must be that ri ≥ ργ(1 + κ) for all i ∈ {1, 2}.

(Step 2) r̄i ≤ ργ(1 + κ) for all i ∈ {1, 2}. Suppose not and let r̄i > ργ(1 + κ). WLOG divide the

proof into two cases:

• r̄i > r̄j or r̄i = r̄j and αj(r̄j) = 0. By naming r̄i bank i gets Mi(r̄i, Gj) = (1 − δ)ki. As

rj ≥ ργ(1 + κ), bank j will always find it profitable to raise more capital and supply the

entire market, therefore bank i has no residual demand to serve. Bank i is better off by

naming ργ(1 + κ) and getting (1 + κ)ki.

• r̄i = r̄j = r̄ and αi(r̄) > 0 for all i = 1, 2. If ργ(1 + κ) < r̄ < rFC :

Mi(r̄, Gj) = αj(r̄)

[(
m(r̄)− γη

(
L(r̄)

2

))
L(r̄)

2
+ η

(
L(r̄)

2

)
ki

]
+ (1− αj(r̄))(1− δ)ki

If bank i instead names r̄ − ε:

lim
ε↓0

Mi(r̄ − ε) = αj(r̄) [(m(r̄)− γη(L(r̄)))L(r̄) + η(L(r̄))ki] + (1− αj(r̄))(1− δ)ki
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Hence:

lim
ε↓0

Mi(r̄ − ε)−Mi(r̄, Gj) =

αj(r̄)

[
(m(r̄)− γη(L(r̄)))

L(r̄)

2
+

(
η

(
L(r̄)

2

)
− η(L(r̄))

)(
γ
L(r̄)

2
− ki

)]
> 0

where

η(l) =


(1− δ) if l ≤ ki

γ

(1 + κ) if l > ki
γ

The first term is larger than zero because m(r̄) − γη(L(r̄)) ≥ m(r̄) − γ(1 + κ) > 0 as

r̄ > ργ(1 + κ). The second term is non-negative because either η
(
L(r̄)

2

)
= η(L(r̄)); or

η(L(r̄)) = 1+κ and η
(
L(r̄)

2

)
= 1− δ, which implies ki

γ
> L(r̄)

2
. Finally if r̄ ≥ rFC both banks

have incentives to undercut as in every standard Bertrand game.

Therefore it must be that r̄i ≤ ργ(1 + κ) for all i ∈ {1, 2}.

(Step 3) ργ(1+κ) ≤ ri ≤ r̄i ≤ ργ(1+κ), then that ri = ργ(1+κ) with probability 1 for all i ∈ {1, 2}

is the only possible equilibrium (existence is guaranteed by Dasgupta and Maskin (1986), however

is immediate to show that given the opponent’s strategy there are no profitable deviations).

Lemma 5: Start with Lemma 1. The proof is the same of the baseline model as we are working

under the hypothesis that k1+k2
γ
≥ Λγ(1 + κ), which implies rFC ≤ ργ(1 + κ). Lemma 2 follows

exactly.

the possibility of expanding does not alter the first part of the proof. Hence, if r̄1 = r̄2 = r̄ and

αi(r̄) > 0 for all i ∈ {1, 2} it must be that r̄ = r = rFC . Banks do not have incentives to undercut

the opponent, so we must check that there are no incentives to charge a higher rate. Given the

opponent strategy αj(r
FC) = 1, bank i maximises its payoff:

max
r
Gj(ργ(1 + κ))

(
(m(r)− γ(1− δ)) min

(
ki
γ
, L(r)− kj

γ

))
+ (1− δ)ki

the payoff is multiplied by Gj(ργ(1 + κ)) because if the opponent charges a rate higher than
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ργ(1 + κ) it will serve the entire market. However αj(r
FC) = 1 and k1+k2

γ
≥ Λγ(1 + κ), imply

Gj(ργ(1 + κ)) = 1. The rest of the proof follows.

Finally. Lemma 3. WLOG of generality let r̄1 > r̄2. Before proceeding I must prove that k2 ≥

γΛ(γ(1−δ)) is incompatible with the hypotheses of the lemma. By hypothesis, mini
ki
γ
< Λγ(1−δ),

hence if k2 > Λγ(1−δ), then k1 < Λγ(1−δ). By naming r ∈
(
ργ(1− δ),min

(
r
(
k1
γ

)
, ργ(1 + κ)

))
bank 2 gets a payoff that is strictly higher than (1 − δ)k2. Hence in equilibrium it must be that

r̄2 > ργ(1− δ). However if r̄1 > r̄2, it implies that when bank 1 names r̄1, the residual demand is

always equal to zero and M1(r̄1, G2) = (1 − δ)k1. However this cannot be part of an equilibrium

as bank 1 has the profitable deviation to name any rate r ∈ (ργ(1 − δ), r̄2). By naming any rate

r ≥ r̄1, bank 1 gets M1(r,G2) = G2(ργ(1 + κ))φ(r) + (1 − δ)k1, hence it must be that φ(r) is

maximised at r̄1. The optimisation problem is equivalent to the one of the baseline model, hence

r̄1 = r
(
b̂
(
k2
γ

)
+ k2

γ

)
. By Assumption 4, r(b̂(0)) < ργ(1 + κ), hence r

(
b̂
(
k2
γ

)
+ k2

γ

)
< ργ(1 + κ)

and r̄2 ≤ r̄1 < ργ(1 + κ). This implies that G2(ργ(1 + κ)) = 1 and the rest of the proof follows.

Proposition 3. WLOG let k̄1 ≥ k̄2. The proof follows the steps of Proposition 2, but we need to

add a preliminary step:

• (Step 1) k1/γ ≥ Λγ(1+κ)− k̄2/γ for all i ∈ {1, 2}. Suppose not and k1/γ < Λγ(1+κ)− k̄2/γ.

When bank i raises k1, it is for sure in Region 4 and gets profits equal to

π1(k1, µj) = (1 + κ)k1 − k1 = κk1

this is clearly increasing in k1, hence bank i would have the profitable deviation to name

k1 + ε. This inequality implies that k̄1/γ ≥ k1/γ ≥ Λγ(1 + κ)− k2/γ.

• (Step 2) In equilibrium it must be that k̄1/γ ≥ b(k2/γ). Suppose not: k̄1/γ < b(k2/γ), which

implies k2/γ < b(k̄1/γ). Therefore when bank 2 raises k2 is either in Region 4 or in Region

2:

π(k2, µ1) =

∫ β(k2,κ)

k1

κk2dµ1(k1) +

∫ k̄1

β(k2,κ)

(
Z

(
k1 + k2

γ

)
− γ
)
k2

γ
dµ1(k1)

where β(k2, κ) = γΛγ(1 + κ) − k2. Profits are strictly increasing in k2 for all k1 ∈ [k1, k̄1],
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hence bank 2 can profitably deviate and name k2 + ε. Therefore, putting together step 0

and step 1 it must be that k̄1/γ ≥ max{b(k2/γ),Λγ(1 + κ)− k2/γ}.

• (Step 3) k̄1/γ ≤ b(k̄2/γ). Suppose not: k̄1/γ > b(k̄2/γ) and k̄1/γ ≥ Λγ(1 + κ)− k2/γ. Then

when bank 1 raises k̄1 is either in region 2 or in region 3A:

π(k̄1, µ2) =

∫ ξ(k̄1)

k2

(
Z

(
k̄1 + k2

γ

)
− γ
)
k̄1

γ
dµ2(k2) +

∫ k̄2

ξ(k̄1)

(P (k2)− δk1)dµ(k2)

where ξ(k) = 1
γ
b̂−1
(
k
γ

)
. The profits are strictly decreasing in k̄1, in particular the first term

is decreasing because k̄1/γ ≥ b(k2/γ) ≥ b(k2/γ) for all k2 in the support. Therefore bank 1

would have the profitable deviation to raise k̄1 − ε.

• (Step 4) Putting together the previous steps it must be that k̄1/γ ≤ b(k̄2/γ) and k̄1 ≥

max{b(k2/γ),Λγ(1 + κ) − k2/γ}, which implies that bank 2 is playing a pure strategy k2.

Bank 1, must best respond to the pure strategy k2, hence Bank 1 will solve:

max
k1≥0

π1(k1, k2)

where

π1(k1, k2) =


κk1 if k1

γ
≤ Λγ(1 + κ)− k2

γ(
Z
(
k1+k2
γ

)
− γ
)
k1
γ

if Λγ(1 + κ) < k1
γ
≤ b̂

(
k2
γ

)
P̃ (k2)− k1 if k1

γ
> b̂

(
k2
γ

)
Hence

k∗1
γ

= max
(
b
(
k∗2
γ

)
,Λγ(1 + κ)− k∗2

γ

)
. At the same time bank 2 will have to best

respond to that and similarly
k∗2
γ

= max
(
b
(
k∗1
γ

)
,Λγ(1 + κ)− k∗1

γ

)
. As δ is arbitralily small

rC < r(b̂(0)) < ργ(1+κ). Therefore b
(
k∗i
γ

)
> Λγ(1+κ)− k∗i

γ
, which imply

k∗i
γ

= b
(
b
(
k∗i
γ

))
=

lC .
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