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Abstract

We examine how households dampen volatility prices through their demand for
Short Put Products (SPPs) – a globally popular structured product that offers high
headline rates in exchange for selling a put option. Using a comprehensive dataset
covering all index-linked SPP issuances worldwide since market inception, we empiri-
cally show that SPP issuance volumes rise when the volatility of the underlying asset is
high, as higher volatility allows to offer higher headline rates. In turn, increased SPP
issuance drives down the prices of deeply out-of-the-money put options, suppressing
the corresponding volatility risk premium. To uncover the underlying mechanism and
quantify the equilibrium effects of these innovative products on volatility prices, we
develop a structural model in which households underweight left-tail risk, driving de-
mand for SPPs. Risk-averse financial intermediaries optimize the headline rate offered
on these products while imperfectly hedging their exposure. As volatility rises, stronger
demand for SPPs – driven by higher headline rates – exerts downward pressure on op-
tion prices, particularly at strikes below 100%. Our findings reveal a novel channel for
enhancing financial stability: household demand for innovative security designs lowers
the cost of insuring against left-tail risk for other market participants.
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I. Introduction

Over the past 25 years, financial institutions have increasingly designed and marketed

products with non-linear payoffs – embedding the sale or purchase of options – to cater to

households’ “non-standard” preferences. These products include retail structured products

(Celerier and Vallee (2017), Vokata (2023)), structured funds (Gao, Hu, Kelly, Peng and

Zhu, 2024), or structured annuities (Koijen and Yogo, 2022). Collectively, these financial

products represent several trillion dollars of assets under management as of 2024. While

their penetration rate has historically been high in Europe and Asia, this class of products

has experienced rapid growth in the U.S. in recent years.1 Despite their growing importance,

the asset pricing implications of these products remain under-explored.

Among these instruments, Short Put Products (SPPs) – the most widely sold retail struc-

tured product globally – may particularly affect volatility pricing. Through SPPs, households

implicitly sell large quantity of deeply out-of-the-money put options in exchange for attrac-

tive coupons, thereby increasing their exposure to left-tail risk. Consistent with the growing

literature on demand pressure effects in option markets (beginning with Gârleanu, Pedersen

and Poteshman (2009)), the hedging activities of intermediaries issuing these products may

exert downward pressure on put option prices. By allowing households to bear left tail risk,

the development of SPPs may thus, in equilibrium, lower the price of insurance against such

risk. This phenomenon could be sufficiently pronounced to have implications for financial

stability, given the large size of SPP markets relative to underlying option markets, espe-

cially at low moneyness levels. As shown in Figure 1, for the three main equity indices –

Eurostoxx, Nikkei 225, and S&P 500, – SPP outstanding volumes represent approximately

25%, 15% and 5%, respectively, of the open interest for out-of-the-money put options with

maturity over three months.

INSERT FIGURE 1

1In Europe, approximately 15% of households hold retail products with non-linear payoffs.
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This study therefore aims to address the following questions: Can households suppress

volatility prices through their demand for SPPs? What are the underlying mechanism and

equilibrium effects? How does the magnitude of these pricing effects vary with market

conditions, for instance in times of stress?

To address these questions, we follow a two-step approach. First, we leverage a compre-

hensive dataset that includes all SPPs issued globally since the market’s inception, merged

with data on option prices and open interest, to provide reduced-form evidence of a robust

link between realized volatility, SPP issuance, and volatility prices. Second, we develop and

estimate a structural model to flesh out the economic mechanism at play, allowing us to

precisely characterize and quantify the equilibrium effects of the SPP market development

through counterfactual analysis.

Our dataset covers the global issuance of SPPs over the 2005-2019 period and includes

key product characteristics for each SPP, including the underlying asset, maturity, detailed

payoff design, issuance volume, and issuance date.2 The payoff formula of these products

depends on the performance of an underlying asset – typically an equity index or a stock

– and is determined by two parameters: the headline rate, a fixed coupon paid periodically

until maturity, and the barrier, usually set between 50% and 70% of the underlying price at

issuance. At maturity, the investor receives their capital back if and only if the underlying

asset is above the barrier. If the final value of the underlying falls below the barrier, the

investor’s final payment is adjusted for the negative performance of the underlying asset.

Hence, SPPs offer a fixed coupon in most scenarios, while fully exposing retail investors to

left-tail risk.3 These products are also often labeled as Yield-Enhancement Products (YEPs),

although this terminology does not accurately capture their economic substance in our view.

We focus our analysis on equity index-linked SPPs, which account for 188 000 products

2Data source is similar to the one in Celerier and Vallee (2017), except that the dataset for this study
extends beyond Europe and covers a longer period.

3Many of these products also embed an autocall feature, meaning that the product is redeemed early if
the underlying asset is above the barrier at any coupon date. This features limits the upside for the investor,
while keeping the downside largely unchanged.
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and $650 billion in cumulated issuances across North America, Europe, and Asia over the

2005-2019 period, and represent around half of total SPP volumes. The twelve most popular

underlying indices, for which we collect detailed data on the volatility surface and open

interest, account for 99% of the equity index-linked SPPs. These indices also represent

over 70% of global market capitalization, illustrating their relevance for financial stability.

Median maturity, headline rate, and barrier levels in our sample are three years, 7.5%, and

60%, respectively. We extract headline rates – a central outcome of interest– using a text

analysis algorithm applied to the product payoff descriptions. Finally, outstanding volumes

and the open interest for put option of corresponding strikes and maturity amount to 13 and

67 billion dollars on average in 2015, suggesting a possible significant impact of SPPs on the

price of tail risk.

Our empirical analysis yields two key findings. On the SPP market front, we show that

issuance volumes increase as realized volatility rises. Specifically, higher realized volatility

predicts higher headline rates offered by SPPs, as the premium of the embedded put options

increases with underlying the asset volatility. We estimate that the elasticity of headline

rates to 90-day realized volatility is approximately 0.4. In turn, higher realized volatility–

through its impact on headline rates– drives higher net issuance volumes, consistent with

household demand particularly responding to this design feature.

On the volatility market front, we find that higher SPP issuance volumes predict lower

implied volatility and a lower volatility premium, defined as the spread between implied and

realized volatility. This relationship is strongest around the 60% moneyness level, corre-

sponding to the most common SPP barrier, but is evident across all moneyness levels below

100%. The effect is also larger when the size of the corresponding option market is smaller,

such as for the Kospy 200, or the Hang Seng China Enterprise (HSCEI) indices. Second, the

suppressing effect of SPP issuance on volatility prices is particularly pronounced following

significant drops in the underlying index, when early redemption of outstanding products

becomes unlikely. To strengthen causal identification, we exploit a natural experiment in
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South Korea, where regulators temporarily banned the issuance of HSCEI-linked SPPs in

September 2015. We find that, while realized volatility declines after the ban– as it followed

a market crash – implied volatility increases, and open interest in corresponding put options

decreases. This result holds in a difference-in-differences specification, supporting the causal

link between SPP issuance and volatility pricing.

These empirical facts support the case that SPP issuances suppress volatility prices,

and particularly so in times of stress when equity markets are down or volatility is high.

Household demand for SPPs would therefore make them play the somewhat unexpected role

of volatility price stabilizer. These patterns are persistent at a relatively long horizon, and

therefore do not correspond to the micro-structure concept of price impact. This persistence

suggests that the asset pricing phenomenon we are exploring results from long run demand

and supply equilibrium effects, motivating a demand-based option pricing framework that

delivers a stationary equilibrium.

We therefore theoretically investigate the economic mechanism that can rationalize these

empirical findings. Financial intermediaries, who issue SPPs to households and trade options

and the underlying asset to hedge SPP contracts, are a natural focus of our framework. When

structuring short put products, intermediaries hedge the associated market risks. The typical

hedge for a SPP requires the intermediaries to short a portfolio of puts on the underlying

asset and short the dividend exposure through dividend swaps. If competitive intermediaries

could hedge their risks perfectly, as would be the case in a Black-Scholes-Merton economy,

options would be redundant assets and hedging would have no effect on option prices. In

reality, however, even intermediaries cannot hedge options perfectly because trading cannot

be implemented in continuous time due to transactions costs and because the volatility of

the underlying evolves stochastically over time (Figlewski, 1989). In addition, intermediaries

are sensitive to risk, for instance due to capital constraints and agency costs.

We accordingly develop a structural model with these features, which we estimate to

rigorously describe and quantify the impact of household demand for SPPs on volatility
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prices. The economy is populated by a representative household, a representative dealer, and

outside investors with exogenous demand for options, in the style of Gârleanu et al. (2009),

who all trade in discrete time. The investment set includes a riskless asset, an equity index,

an SPP, and a set of plain-vanilla European puts on the equity index. Financial markets

are driven by an exogenous state vector consisting of the prevailing interest rate and the

stochastic volatility of the stock index. The dealer sets the headline rate and put prices,

matches the demand for the SPP from households and puts from institutional investors,

and partially hedges by trading the stock index. In line with the intermediary asset pricing

literature, the dealer has CARA utility. The household can invest in the risk-free asset, the

equity index, and the SPP, but cannot trade options. Each period, household demand for

the SPP is affected by their time-invariant preferences, the endogenous SPP design (that is,

the headline rate that it offers given a fixed maturity and barrier), and time-varying market

conditions. This setting allows for substantial flexibility in modeling household preferences

and beliefs.

We estimate the model by likelihood-based inference, as follows. For each level of the

risk-free rate and the equity index volatility, the model provides the household demand for

the SPP, the SPP headline rate set by the dealer, and the implied volatility of each put. We

compare these values with monthly data on the swap rate, equity index return, SPP headline

rate, and implied volatility of puts, which allows us to estimate the structural parameters of

the model by maximum likelihood. We apply this method to products tied to the Eurostoxx

50, which is the index with the largest market share of SPPs.

The model predicts that household demand for SPPs and headline rates increase when

volatility increases and interest rates decrease, which is consistent with the data. The demand

for the SPP is null when the representative household has Epstein-Zin Utility. However, we

do obtain significant household demand for SPPs when households underweight the left-tail

risk, for instance when the household neglects to some extent the probability that the SPP

may not pay the headline rate.
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We conduct a counterfactual analysis showing that the implied volatility of a put contract

on the equity index with a 60% strike is ca. 2 percentage points higher in the absence of

the SPP compared to a market in which the SPP is traded. Furthermore, the equilibrium

impact of SPPs increases with both the volume of issuance of SPPs, and the volatility of the

equity index.

We conclude our analysis by first noting that a similar phenomenon is at play for dividend

futures, and by developing a trading strategy based on our empirical findings. When the

outstanding volume of SPPs goes up, the term structure of dividends flattens. We show that

a long-short trading strategy in volatility markets that sort stocks by their associated SPP

issuance volumes yields attractive Sharpe ratios, which further speaks to the significance and

persistence of the equilibrium effects we document.

Our results suggest that the development of markets for innovative securities can af-

fect the supply and demand equilibrium for volatility prices by incorporating non-standard

household preferences into prices through intermediaries hedging strategies. Crucially, this

impact is concentrated on the left-tail risk as households’ tolerance for taking this exposure

drives a security design that implicitly sells deeply out-of-the-money put options. As op-

tion markets prices are key inputs for financial institutions risk management models, and as

certain economic agents likely have elastic demand for downside protection, the effects we

document have the potential to influence risk-taking, and in turn financial stability. While

the development of retail structured products has raised concerns over investor protection,

our findings uncovers a potential trade-off between retail investor protection and financial

stability. Banning SPPs may have a hidden cost, as illustrated by our event study on the

ban on HSCEI-linked SPPs in South Korea in 2015.4 More broadly, our results speak to the

equilibrium effects of a change in the macro-structure of financial markets, in our case the

introduction of a new asset class that allows a class of investor to express preferences they

could not express before.

4There also was a more recent ban on Kospi2-linked SPPs in February 2024.
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This paper makes contributions to multiple strands of the literature. Our work expands

the burgeoning literature of market macrostructure covered in Haddad and Muir (2025) in

a new dimension: asset prices are impacted by how financial institutions connect different

asset classes or capital market segments to respond to a specific demand from a class of

investor previously excluded. This role is different from the traditional intermediation, and

is economically closer to what banks do when structuring securitization.

Relatedly, our findings are consistent with models that emphasize supply and demand

factors, such as funding constraints of financial intermediaries or limits to arbitrage, as key

drivers of asset prices. Gârleanu et al. (2009) develop a demand-based option pricing model

and show that demand pressures from the put-call imbalance explain cross-sectional varia-

tions in volatility skewness across U.S. equity options. Vayanos and Vila (2009), Greenwood

and Vayanos (2014) and Greenwood and Vissing-Jørgensen (2018) explain the term structure

of riskless returns in a segmented supply and demand framework. Risk-averse intermediaries

trade with end clients with strong preferences for specific-maturity bonds, hence driving

price and return variations across different maturities. Brown, Davies and Ringgenberg

(2018) study non-fundamental demand in ETF market. Our contribution is to provide a

micro-foundation for demand pressures by pinning down household as a source of demand

for left-tail risk and quantify its asset pricing implications.

The paper also adds to the literature on the volatility risk premium (Bakshi, Carr and

Wu, 2008; Bollerslev, Tauchen and Zhou, 2009; Todorov, 2010; Han and Zhou, 2012; Cao

and Han, 2013) and on spillovers between distinct but related capital markets, such as

derivative markets and their underlying asset markets (Calvet, Gonzalez-Eiras and Sodini,

2004; Henderson, Pearson and Wang, 2015).

Finally, this study speaks to the general equilibrium effects of the class of financial prod-

ucts studied in Celerier and Vallee (2017), Vokata (2021), Calvet, Célérier, Sodini and Vallee

(2023), and Vokata (2023), retail structured products, which have been shown to be effective

at catering to, or mitigating, household behavioral biases.

7



II. Background and Data

A. SPPs: Definition and Market Development

Short Put Products (SPPs), also commonly referred to as Yied Enhancement Products

(YEPs), are the most popular category of retail structured products. Retail structured

products include any fixed-maturity investment products marketed to retail investors that

offer a payoff varying automatically and non-linearly with the performance of an underlying

asset.5 Typically designed with embedded options, these products leave no room for dis-

cretionary investment decisions before maturity. While the underlying assets are primarily

equity indices and individual stocks, they may also include commodities, fixed-income assets,

or alternative indices.

A defining feature of SPPs is that their payoff at maturity embeds the sale of a put

option, exposing retail investors to tail risk. More precisely, the capital remains protected

on the downside as long as the underlying asset stays above a predefined barrier. If the

underlying falls below this barrier, the investor participates in its negative performance.

This downside exposure allows intermediaries to enhance the coupon payments offered at

regular intervals until maturity – referred to as the headline rate. As a result, the payoff

formula of a standard SPP is determined by two key parameters, the headline rate – the

fixed coupon paid at regular interval until maturity, and the barrier – typically set between

50% and 80% of the underlying asset’s price at issuance. Figure 2 illustrates the payoff

diagram of a typical SPP at maturity, while Panel A of Figure 3 presents a histogram of

barriers observed in our dataset.

INSERT FIGURE 2

INSERT FIGURE 3

5Exchange traded funds, which have payoffs that are a linear function of a given underlying financial
index, are not retail structured products.
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The first SPPs were introduced in Europe in the early 2000s, since the inception of

the retail market for structured products. Since then, their adoption has grown steadily

worldwide, with volumes surging across Asia, Europe, and the U.S. alongside the broader

expansion of retail structured products. As of 2023, global outstanding volumes of retail

structured products exceed $2 trillion, with Asia accounting for 50% and the U.S and Eu-

rope each representing 25%.6 While synthetic Capital Guarantee Products (CGPs) initially

dominated the market, SPPs have since emerged as the leading design in most regions, repre-

senting nearly 40% of total issuances in 2017 and around $400 billion in outstanding volumes

by 2024.7 A large share of SPPs also embed an autocall feature, meaning that the product

is redeemed early if the underlying asset trades above a pre-defined level at a coupon date.

This features limits the upside for the investor as the headline rate is likely to be paid only

during a short period, and therefore allows to raise the headline rate the product offer. This

feature keeps the downside for the investor largely unchanged.

B. Hedging SPP Issuances and the Market for Out of the Money Puts

When issuing structured products, banks typically mitigate the risk of large payouts

to investors by buying or selling options that offset these liabilities. In the case of SPPs,

the issuing bank sells put options that mirror the exposure of the end user, or roll similar

positions with a shorter maturity. Banks often rely on a combination of initial hedging

with options and dynamic vega-hedging using the underlying asset. This latter approach

is necessary because the autocall feature creates a Vanna exposure, i.e. a sensitivity of the

product vega to changes in the underlying price (and volatility) .

A key characteristic of SPPs is the large relative size of their market compared to the

put option markets where banks hedge. To hedge these products, banks typically sell deeply

out-of-the money puts with relatively long maturity. However, the open-interest on these

markets is generally limited, often not exceeding a few hundred billion dollars. The largest

6See SRP Global Market Review: H1 2024.
7See Calvet et al. (2023) for more details on CGPs.
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option market is in the U.S., where institutional investors such as pension funds and hedge

funds actively participate and buy puts to protect their portfolios against pronounced drops.

Europe follows as the second-largest market, while Asia – despite having the largest share

of SPP outstanding volumes as of 2015 – has a relatively small options market.

C. Data

C.1. SPPs Volumes, Underlying Assets, and Payoff Formula

We obtain detailed information on all retailed structured products issued globally since

market inception, including SPPs, from a specialized private data provider. For each product,

we observe key characteristics such as the underlying asset, maturity, exact payoff structure,

issuance volume, issuance and redemption date.

While existing literature on retail structured products has primarily focused on specific

geographic areas, such as Europe and the U.S., this study leverages the dataset’s global

coverage, exploiting data from products issued in North America, Europe and Asia. This

comprehensive coverage provides a rich cross-section for analysis and is crucial for our study,

as a large share of these products are structured on foreign underlying assets. Consequently,

observing both domestic and foreign issuances is essential to fully capture the demand pres-

sure on put option markets.

Our dataset includes all SPPs issued globally since market inception that matured before

2020. In total, it covers 362,000 products issued across 52 countries, representing $1.3

trillion of cumulated issuance (in current dollars). To enhance the accuracy of each product’s

headline rate and barrier, we apply a textual analysis algorithm to the payoff description,

following the approach in Celerier and Vallee (2017). This algorithm also enables us to

identify key payoff features that influence headline rates.8

We focus our analysis on index-linked SPPs, which represent 45% of SPP total volumes,

188 000 products, and $650 billion in cumulated issuances over the 2005-2019 period. Our

8The code is available in the Internet Appendix.
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focus on index-linked SPPs is motivated by two key factors. First, we have access to high-

quality volatility surfaces for the top 12 indices, which collectively cover more than 99% of

index-linked SPPs. Second, these 12 indices represent over 70% of global market capitaliza-

tion, making their impact on financial stability particularly relevant. The 12 indices, ranked

by decreasing SPP market share size, are Eurostoxx 50, Nikkei, S&P 500, Hang Seng China

Enterprise Index, Kospi 200, FTSE 100, Russell, Hang Seng Index, CAC 40, Swiss Market

Index, DAX, and MIB Index.

C.2. Implied Volatility

For the three main SPP underlying indices – Eurostoxx 50, Nikkey, and S&P500 – we

obtain a monthly panel dataset of implied volatility surfaces from a trading desk of a global

investment bank. This dataset spans 2002 to 2019 and provides implied volatility at the un-

derlying asset, moneyness, and maturity levels. For each index at time t, we observe implied

volatility for moneyness levels ranging from 50% to 150% in 10% increments, with maturities

of 3, 12, and 24 months. This data is of higher quality than the one from commercial vendor

because the trading desk continuously model the volatility surface, even in the absence of

listed trades.

For all 12 indices, we obtain volatility surfaces, prices, realized volatility, and open interest

from the OptionMetrics IvyDB Global Indices dataset. For each index at time t, we observe

implied volatility across different strike prices. We merge these volatility surfaces with index

price data to express strikes as a percentage of the underlying asset price. To ensure data

reliability, we validate OptionMetrics data for strikes above 80% by comparing it against the

investment bank’s volatility surface.

Finally, we complement our dataset with swap rates for distributing countries, sourced

from Bloomberg. Specifically, we include German swap rates for all European countries,

along with swap rates for Canada, China, Hong Kong, Japan, South Korea, Singapore,

Sweden, Switzerland, Taiwan, the UK, and the U.S.
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C.3. Monthly Panel

To perform our empirical analysis, we construct a monthly panel of underlying indices

spanning the 2005-2019 period. For each month-underlying observation, the panel includes

issuance and outstanding volumes of SPPs, volatility prices at three maturity across different

strikes, as well as average headline rates, realized volatility, and swap rates.

For each index, issuance volumes represent the total volume of SPPs that use the index as

an underlying asset, divided by the total number of underlying assets in each product. This

adjustment accounts for the fact that 88% of SPPs have more than one underlying asset,

with an average of 2.5 underlying assets per product. To measure outstanding volumes, we

compute the rolling sum of issuances, subtracting the rolling sum of matured products while

accounting for early redemptions.

The final panel consists of 2,160 observations spanning 180 months across twelve indices.

D. Summary Statistics

Figure 4 illustrates the growth of the SPP market across the U.S., Europe, and Asia

since 2005, highlighting its significant size relative to corresponding put option markets.

The figure demonstrates the rapid adoption of SPPs in Europe and Asia, as well as their

more recent expansion in the U.S.. On average over the period, global outstanding volumes

of index-linked SPPs accounted for 16% of the open interest in index-linked put options

worldwide.

INSERT FIGURE 4

Tables I provides summary statistics on all variables included in our empirical analysis.

The strike of the embedded put option ranges from 50% of the initial value of the underlying

(10th percentile) to 70% (90th percentile). The median maturity is 3 years. On average,

SPPs offer a headline rate and excess ex-post return of 6.5% (median 6%) and 4.9% (median

5.1%), respectively. In addition, most SPPs earned positive excess returns, as confirmed in
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Panel B of Figure 3. Panel B of Figure 3 reports the distribution of ex post excess returns

across SPPs.

INSERT TABLE I

The second panel of Tables I provides summary statistics on our monthly panel of SPP

volumes, volatility prices, and put option open interest. While the median outstanding

volumes of SPPs amount to 3.4 billion $, the median open interest of put options of strikes

at 80% or below amounts and maturity higher than three months amounts to 12.5 billion $,

suggesting a possible large impact of SPPs on the price of tail risk.

III. Empirical Results

We establish two sets of reduced-form findings. On the SPP market side, we provide

evidence that net issuance volumes increase when realized volatility is higher, as the headline

rates SPPs offer are higher under these market conditions. On the option market side, we find

that the price of volatility decreases when SPP volumes increase. This relationship is more

pronounced when the market has experienced a significant drop recently, as the SPP autocall

feature is then unlikely to be triggered. A natural experiment in South Korea leveraging

a targeted SPP ban strengthens a causal interpretation of the relationship between SPP

volumes and volatility prices.

A. Realized Volatility and SPP Issuances

We first document that the headline rate of SPPs significantly varies with market con-

ditions, namely realized volatility and the level of interest rates. In Figure 5, we plot the

average headline rates of SPP linked to the EuroStoxx 50 and the 90-day realized volatility

for that index between 2005 and 2020. We observe a clear positive correlation between these

two quantities. This relationship is intuitive as the premium of a put increases when the
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volatility of the underlying asset is high, and SPPs embed a short position in puts. The

relationship between headline rates and interest rates has been first uncovered in Celerier

and Vallee (2017), although on a shorter and narrower sample.

INSERT FIGURE 5

To more precisely measure the relationship between headline rates and market conditions,

we run the following regressions at the SPP issuance level:

log(HeadlineRatei) = α + βvHistV ola,t + βrIRtγi + ϵi, (1)

where HeadlineRatei is the headline rate of issuance i, HistV olt is the 90-day realized

volatility in month t of the underlying asset a, and IRt is the 3-year CMS swap rate in the

country of issuance in month t, and γi are a set of fixed effects, namely month, underlying

assets, product design and country fixed effects. Regression coefficients are presented in

Table II. We observe that even in this saturated specification the level of realized volatility

is highly predictive of the headline rate offered by a SPP, with an elasticity around 0.4.

Interest rates also predict headline rate, which is consistent with banks aiming to preserve

the headline rate when interests come down, as documented in Celerier and Vallee (2017).

The economic magnitude of this relationship is less pronounced than the one with volatility,

which is to be expected as given that volatility has a more direct effect on the designs that

banks can structure.

INSERT TABLE II

We also investigate whether headline rates, and relatedly realized volatility, are predictive

of SPP net issuance volumes.9 We regress the net issuance volume of issuance for SPP linked

9Net issuance is the volume of SPP issuance in a month minus the volume that is redeemed in that month,
early or not. Banks typically issue a new SPP when a given issuance is redeemed, to encourage investors to
roll-over their capital. Similar to mutual funds, net flows better capture the demand for the asset class, and
the change of notional that banks need to hedge.
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to a given index on quartiles of realized volatility, calculated at the index level. Consistent

with household preferences for high headline rates, we observe that SPP issuance volume

is significantly higher when headline rates offered are high, and relatedly when realized

volatility is high. Together, these findings highlight the endogenous nature of SPP design

and volume.

INSERT TABLE IV

B. SPP Volumes and Volatility Prices

We now turn to studying whether SPP issuances predicts the level of implied volatility.

In Panel A of Figure 1, we plot the average yearly issuance volume of SPP linked to a given

index, scaled by the index open interest. In Panel B, we plot the volatility risk premium

for the three indices, i.e. the difference between the 1 year implied volatility and the 90-day

realized volatility, at the 60 to 100% moneyness, with 10% increments. We observe that the

volatility risk premium is negatively correlated with the amount of SPP issuance, and that

this relationship is more pronounced for moneyness around 60%.

This relationship is confirmed when looking at the broader sample of indices. We plot the

average volatility premium over SPP outstanding volumes scaled by open interest in figure

6 over the 12 indices we previously study. We observe a strong negative relationship in this

cross-section.

INSERT FIGURE 6

To gain identification and identify the existence of this relationship in the time-series, we

now run the following specification:

IV u
K=k,t = α + βSPPV olumes+ βvHistV ola,t + βrIRt + γt + γu + εut , (2)

where IV u
K=k,t is the 1-year implied volatility of underlying asset u and moneyness k, in
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month t, SPP V olumeut is the SPP volume with underlying asset u in month t. γt and γ
u

are month and underlying fixed effects. Standard errors are clustered at the month level.

Table V provides the coefficient estimates when we use the proprietary volatility surface

for the three main indices, S&P 500, Eurostoxx 50, and Nikkei 225. We use absolute SPP

issuance volumes in Column 1, and scale SPP issuance volumes by indices market capitaliza-

tion in Columns 2 to 8. The main advantage of this proprietary dataset of volatility surface

is that we can span moneyness from 50 to 100% (Columns 3 to 8).

Overall, we observe that the amount of SPP issuance is predictive of lower implied volatil-

ity. This result is robust when running regressions in levels or in logs, and when scaling

volumes by indices market capitalization. When looking at the cross-section of moneyness,

we observe that the relationship is more pronounced at 60%, and decreases as moneyness

rises, consistent with the cross-sectional figure

INSERT TABLE V

To better visualize these relationships, we plot in Figure 7 the coefficient estimates for

dummies for quintiles of issuance volumes in Panel A, and strikes, in Panel B in a regression

where the dependent variable is the 1 year implied volatility (in level). These figures suggest a

concave relationship between SPP volumes and implied volatility, and confirm the monotonic

relationship relative to moneyness.

INSERT FIGURE 7

Finally, Figure 2 confirm that we obtain similar result when using the full sample of

index-linked SPP and volatility surface data from option metrics.

INSERT TABLE VI

C. Market Downturns

Table VII shows the dampening effects of SPP outstanding volumes in periods of market

downturns. We create dummies for index yearly returns below 15%, 25% and 35%. As
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expected given the well known negative correlation between volatility and returns, we ob-

serve that implied volatility increases during market downturns. However, this increase is

significantly lower when outstanding SPP volumes are high. The economic magnitude is

large, as changing quartiles of SPP outstanding volume can affect implied volatility under

market stress by several percentage points. The magnitude is larger when the market drop

is more pronounced. This result is consistent with SPPs playing a particularly pronounced

dampening role on the price of tail risk in times of stress.

INSERT TABLE VII

D. Natural Experiment

In September 2015, following a warning from the South Korean Financial Services Com-

mission (FSC), the four largest SPP providers in South Korea decided to halt the issuance of

HSCEI-linked SPPs. The warning came after a SPP provider announced that HSCEI-linked

SPPs issued in April 2015 were expected to hit the barrier and trigger capital losses due to

the sharp decline in the HSCEI index. The FSC cautioned SPP providers, stating that it

might consider banning SPPs linked to certain indices. In response, all major SPP providers

in South Korea ceased issuing HSCEI-linked SPPs. Panel A of Figure 8 illustrates the drop

in the issuance of HSCEI-linked SPPs after the warning.

INSERT FIGURE 8

Panel B of Figure 8 displays the associated impact on the volatility surface: following the

regulator’s warning, volatility prices increased, with the effect being particularly pronounced

at lower strike prices. The figure plots the HSCEI volatility surface before and after the ban,

highlighting the shift. The sharpness of the shock allows us to gain causal identification.

A natural concern relates to the endogeneity of the regulator’s decision, as it was issued in

response to prevailing market conditions, namely a strong drop in the index value. However,

if anything, the primary endogeneity concern would bias results in the opposite direction
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of our findings. The FSC’s warning was issued after a 35% drop in the HSCEI index and

several months of high volatility, as shown in Panel A of Figure 8. The endogeneity bias

would therefore predict lower implied volatility after the warning, as markets tamper off, not

higher as we observe.

IV. Structural Model

Having established that SPP volumes are endogenous to the security design, and that

SPP volumes are predictive of implied volatility levels, we develop a quantitative model that

captures the equilibrium that jointly determines these three outcome variables. This theoret-

ical exercise allows us to quantify these equilibrium effects by implementing counterfactual

exercises, and to investigate how household preferences affect volatility prices through the

development of innovative security design. In this framework, we consider market conditions,

namely the level of historical volatilty and interest rate, as state variables, which also allows

to condition our findings for these dimensions. Motivated by our empirical analysis, we focus

on the headline rate as the main parameter of the SPP design, and consider the barrier and

maturity as fixed.

A. Assets

We consider a discrete-time financial market defined at dates t = 0, . . . ,∞. In the em-

pirical implementation of the model, the time index t will refer to a month. At each date t,

financial market participants can trade four securities: (i) a riskless zero-coupon bond, (ii)

an equity index fund, (iii) a short put product (SPP) written on the equity index, and (iv)

a set of plain-vanilla European puts on the equity index. The zero-coupon bond, the SPP,

and the European puts all reach maturity at date t+ T. In the empirical application, we set

T equal to 36 months, which is the median maturity of an SPP on the Eurostoxx 50.
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Zero-coupon bond and equity index. Let Rf,t:t+T denote the net arithmetic return on

the zero-coupon bond between t and t+T, and let Rm,t:t+T denote the net arithmetic return

on the equity index over the same period. The zero-coupon bond and the equity index have

infinitely elastic supplies, so that their returns are taken as exogenous to the model.

The exogenous state vector:

zt = (z1,t, z2,t)
′. (3)

captures time-varying conditions in the bond and equity markets. The state variable z1,t

drives relevant interest rates and the state variable z2,t the volatility of the equity index

return, as we now explain.

We define the state variable z1,t as the yield on the riskless zero-coupon bond issued at t

and maturing at date t+ T, expressed in annual units. We assume that the yield satisfies a

first-order autoregression:

z1,t − µ1 = ϕ1(z1,t−1 − µ1) + σ1 ε1,t

for every t. The return on the zero-coupon bond over its life, Rf,t:t+T , is linked to the

annualized yield, z1,t, via the usual relationship: Rf,t:t+T = (1 + z1,t)
T/12 − 1.

For simplicity, we assume that the spread between the T -period zero yield and the 1-

period zero yield is time-invariant, and we denote by π denote this constant spread. The net

arithmetic interest rate per period is therefore Rf,t:t+1 = (1 + z1,t − π)1/12 − 1 for every t.

We model the equity index by assuming that its log excess return follows a process with

constant mean and stochastic volatility. Specifically, let rem,t:t+1 = ln(1 + Rm,t:t+1) − ln(1 +

Rf,t:t+1) denote the log excess return on equity between t and t+ 1. We posit that:

rem,t:t+1 = µr + ez2,t+1/2εm,t+1, (4)

where µr is a constant, z2,t+1 is the state variable controlling stochastic volatility, and εm,t+1

19



is a stochastic shock. The state variable z2,t satisfies the first-order autoregression:

z2,t − µ2 = ϕ2(z2,t−1 − µ2) + σ2 ε2,t (5)

in every period t. The dynamics of the equity index return between t and t+ T follows from

the identity Rm, t:t+T = (1 +Rm,t:t+1) . . . (1 +Rm,T−1:T )− 1.

We close the specification of bond and equity returns by assuming that the vector of

stochastic shocks, εt+1 = (ε1,t+1, ε2,t+1, εm,t+1)
′, is independent through time. Furthermore,

it is Gaussian with zero mean and variance-covariance matrix:

Σ =


1 ρ1,2 ρ1,m

ρ1,2 1 ρ2,m

ρ1,m ρ2,m 1

 (6)

in every period t.

To sum up, equations (3)-(6) fully specify the dynamics of bond and equity returns.

Throughout the paper, we consider the state vector, zt, the vector of shocks, εt, and the

parameters µ1, ϕ1, σ1, µr, µ2, ϕ2, σ2, ρ1,2, ρ1,m, and ρ2,m as exogenous inputs of the general

equilibrium model.

Short put product. The SPP is issued at t and is illiquid until it reaches maturity at

date t+T. Its payoff at date T depends on a barrier, B, defined at the contract’s origination,

and is contingent on the performance of the equity index over the period, Rm,t:t+T . If the

return is above the barrier, the SPP pays off a coupon rate yt. Otherwise, the SPP has the

same return as the equity index. More compactly, the net payoff of the SPP per unit of

capital invested is given by:

Rspp, t:t+T = yt 1{Rm, t:t+T>B} +Rm, t:t+T 1{Rm, t:t+T ≤B},
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where yt is the coupon rate per period and B is the barrier. For SPPs written on the

Eurostoxx 50, the barrier B has a median value of -40%. To avoid arbitrage opportunities,

we we assume that B < 0 and Rf,t:t+T > B/2. in every state of the world.

In the general equilibrium model defined in Section IV.C, the barrier is taken as exoge-

nous, but the coupon rate per period is endogenously determined by supply and demand

forces. The coupon yield will then be a function of the state:

yt = Y (zt), (7)

where the mapping Y ( · ) is determined in general equilibrium.

Puts. Investors can trade a set of plain-vanilla puts written on the equity index, which

are issued at t and reach maturity at date t + T. Their strikes are exogenous and denoted

by K1, . . . , KN . A European put with strike Kn pays off (Kn − 1−Rm, t:t+T )+ at date t+ T,

where x+ denotes the maximum of x and 0 for every real number x. The prices of the

European puts, Pput,n,t, and their net returns, Rput,n,t = (Kn − 1 − Rm, t:t+T )+/Pput,n,t − 1,

are endogenously determined in general equilibrium.

An important property of our setup is that the SPP can be hedged partially, but not

fully, by trading the zero-coupon bond, the equity index, and European puts at date t.

The explanation is that the payoff of the SPP is discontinuous at Rput,n,t = B, while the

assets used for hedging purposes (bond, equity, puts) have continuous payoffs. Put slighlty

differently, an SPP contract delivers the same payoff at maturity as a portfolio containing

(i) a short position in 1 put option on the equity index with strike 1 +B, (ii) B units of the

zero-coupon bond, and (iii) (yt − B) units of a digital call options paying $1 if the equity

index return exceeds the barrier. We do not assume that a digital call option of maturity

T is traded in our setting, a reflection of the fact that digital call options are thinly traded

and difficult to hedge in practice (Gallus, 1999). Hence, the SPP is not a redundant asset
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in our setting.

B. Agents

Every period t, financial markets are populated by three types of investors: a long-lived

representative household, a representative dealer, and a group of investors with an inelastic

demand for puts.

Households. The representative household at t trades and consumes at dates t, t + T,

t+2T, . . . ,∞. It can trade the riskless asset, the equity index fund, and the SPP. Importantly,

it does not have access to put markets.

The household’s consumption-portfolio problem is defined as follows. The household

starts period t with wealth WH
t . It allocates Ct to consumption and invests the remaining

wealth, FWH
t = WH

t − CH
t , in financial assets through the dealer. The dealer receives a

fraction ϕ of gross invested wealth, FWH
t , as compensation for his services. The household’s

net invested wealth is therefore

XH
t = (1− ϕ)FWH

t

at the end of period t. The household allocates a fraction αHm,t of net invested wealth to the

index fund, a fraction αHspp,t to the SPP, and the remaining fraction, 1 − αHm,t − αHspp,t, to

the zero-coupon bond. The financial wealth available to the household at the beginning of

period t+ T is therefore

WH
t+T = XH

t

(
1 +Rf,t:t+T + αHm,tR

e
m,t:t+T + αHspp,tR

e
spp,t:t+T

)
,

where Re
m,t:t+T = Rm,t:t+T −Rf,t:t+T and Re

spp,t:t+T = Rspp,t:t+T −Rf,t:t+T denote, respectively,

the excess return on the index fund and the SPP over the period.

The household selects consumption and portfolio weights by maximizing the Epstein-Zin
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recursive utility:

V H(WH
t ; zt, Y ) = max

{CHt ,αHm,t,αHspp,t}

[
(1− δT ) (CH

t )1−1/ψ + δT (µHt+T )
1−1/ψ

] 1
1−1/ψ , (8)

where Y is the state-contingent SPP coupon yield defined in (7) and

µHt =
{
EP
t [V

H(WH
t+T )

1−γ]
} 1

1−γ

is the certainty equivalent of future consumption. The household is a price-taker viewing

the state-contingent SPP yield and other asset prices as exogenous. We denote by

αHspp,t = αHspp(zt, Y )

the optimal SPP weight in period t.

Dealers. The dealer available in period t has no initial wealth but receives from the house-

hold the management fee XD
t = ϕFWH

t = ϕXH
t /(1− ϕ), or equivalently

XD
t = XH

t /λ
H ,

where λH = (1 − ϕ)/ϕ. The dealer allocates a fraction αDm,t of his wealth XD
t to the index

fund, a fraction αDspp,t to the SPP, a fraction αDput,n,t to each put n, and the remaining fraction

to the zero-coupon bond.

The dealer’s wealth in period t+ T is

WD
t+T = XD

t

(
1 +RD

t:t+T

)
,
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where

RD
t:t+T = Rf, t:t+T + αDm,tR

e
m, t:t+T + αDspp,tR

e
spp, t:t+T +

N∑
n=1

αDput,n,tR
e
put,n, t:t+T (9)

denotes the dealer’s portfolio return, and Re
put,n, t:t+T = Rput,n, t:t+T − Rf,t:t+T is the excess

return of each put n over the period.

The dealer has constant absolute risk aversion (CARA) utility, Ut = −EP
t (e

−AtWD
t+T ).

The CARA specification is commonly used in intermediary asset pricing (see, e.g., He and

Krishnamurthy (2018)) because it permits the dealer to absorb the losses than can be caused

by imperfect hedging or mismatches between supply and demand. We assume that the CARA

coefficient in period t satisfies At = γD/XD
t , which allows us to obtain stationary portfolio

weights, as we now explain.

The dealer solves the optimization problem

max
αDt

Et
[
−e−γD (WD

t+T /X
D
t )
]
,

where αDt = (αDm,t, α
D
spp,t, α

D
put,1,t, . . . , α

D
put,N,t). Since W

D
t+T/X

D
t = 1 + RD

t:t+T , the solution to

this problem is independent of the wealth level XD
t . We denote by

αD[zt;Y (zt)]

the optimal portfolio of the dealer.

We observe that since the dealer is short-lived, his portfolio depends on the current state

of the bond and equity markets, zt, and on the SPP coupon yield in the current state,

Y (zt). By contrast, the household’s optimal portfolio depends on the coupon yield in all

states, as the household is long-lived and the mapping Y characterizes all current and future

investment opportunities.
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Exogenous Demand for Puts. We assume that an unmodelled group of investors has

an inelastic demand for puts, as in Gârleanu et al. (2009). Specifically, this group invests

dEn X
D
t

units of each put n, where dEn ∈ R.We take the number of puts demanded per unit of wealth,

dEn , as exogenous. Importantly, the exogenous demand, dEn X
D
t , grows with the size of the

economy, so that the pricing impact of the demand pressure remains sizable over time.

C. Stationary General Equilibrium

We focus on a stationary general equilibria, in which the joint distribution of asset returns

conditional on the state, zt, remains the same over time.

Definition 1 (Stationary General Equilibrium): A stationary general equilibrium consists of

a state-contingent SPP yield, Y (zt), and state-contingent put prices, Pput,n(zt), such that

markets clear:

αDspp,t[zt;Y (zt)]X
D
t + αHspp,t(zt, Y )XH

t = 0

αDput,n[zt;Y (zt)]X
D
t + dEn X

D
t Pput,n(zt) = 0

in every period t and state zt.

We divide the equilibrium equations by the dealer’s wealth and obtain:

αDspp,t[zt;Y (zt)] = −λH αHspp,t(zt, Y ) (10)

αDput,n[zt;Y (zt)] = −dEn Pput,n(zt). (11)

These equations show that the dealer offsets the position of the household sector in the SPP

market, and the exogenous demand in the market for each put. In general equilibrium the
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dealer finds it optimal to offset the positions of other agents.

PROPOSITION 1: In a stationary general equilibrium, the SPP yield, Y (zt), and the dealer’s

hedge, αDm [zt, Y (zt)], satisfy:

E
(
Re

m,t:t+T Mt+T

∣∣ zt) = 0, (12)

E
(
Re

spp,t:t+T Mt+T

∣∣ zt) = 0, (13)

where the excess return on the SPP satisfies

Re
spp,t+1 = Y (zt)1{Rm,t:t+T>B} +Rm,t:t+T 1{Rm,t:t+T≤B} −Rf,t:t+T ,

and the stochastic discount factor is given by:

Mt+T = e−γ
D{αDm [zt,Y (zt)]Rem,t:t+T−λ

H αHspp(zt,Y )Respp,t:t+T−
∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+}.

The price of each put n is given by:

Pput,n(zt) =
Et [ (Kn − 1−Rm,t:t+T )+Mt+T | zt]

(1 +Rf,t:t+T )E (Mt+T | zt)
, (14)

for every t and zt.

We henceforth denote by Vn(zt) the implied volatility of put n resulting from Pput,n(zt).

PROPOSITION 2: There exists a unique stationary equilibrium.
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D. Estimation Strategy

The estimation is based on the following structural equations:

z1,t = µ1 + ϕ1(z1,t−1 − µ1) + σ1 ε1,t, (15)

z2,t = µ2 + ϕ2(z2,t−1 − µ2) + σ2 ε2,t, (16)

rem,t = µr + ez2,t/2εm,t (17)

ySPP,t = Y (zt) + σspput (18)

IVn,t = Vn(zt) + σIV ηn,t (19)

The model is specified by the following parameters. The interest rate and equity index

returns are parameterized by µ1, ϕ1, σ1, µr, µ2, ϕ2, and σ2. In simulations, we have verified

that the demand for the SPP, α exhibits limited variation with respect to the patience

parameter, δ, and the elasticity of intertemporal subsitution, ψ. For this reason, we calibrate

and we estimate the model parameters

θ = (µ1, ϕ1, σ1, µr, µ2, ϕ2, σ2, ρ1,2, ρ1,m, ρ2,m︸ ︷︷ ︸
assets

, γ, λH︸ ︷︷ ︸
household

, γD︸︷︷︸
dealer

, dE︸︷︷︸
demand pressure

, σspp, σIV︸ ︷︷ ︸
measurement

).

The vector θ has K + 15 components, where K is the number of puts.

The estimation of θ requires the following. For a given θ, we compute the household’s

demand schedule for the SPP, αHspp[zt;Y (zt)], by solving the Bellman equation (1). We then

obtain the dealer’s demand for the equity index and the SPP yield spread in each state zt

by solving the set of first-order conditions (10) and (11).

We estimate the parameter vector θ by likelihood-based inference. The observation vector

contains the interest rate, the equity excess return, and the endogenous prices:

yt = (z1,t, r
e
m,t, Xt), (20)
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where

Xt = (ySPP,t, IV1,t, . . . , IVn,t) (21)

contains equilibrium quantities;

The one-step likelihood of yt+1 is given by

f(yt+1|y1:t) =

∫∫
h(yt+1|y1:t, z2,t, z2,t+1)f(z2,t, z2,t+1|y1:t)dz2,tdz2,t+1.

We note that h(yt+1|y1:t, z2,t, z2,t+1) = h(yt+1|z1,t, z2,t, z2,t+1) and therefore

h(yt+1|y1:t, z2,t, z2,t+1) = f(Xt+1|z1,t+1, z2,t+1) f(reM,t+1|z1,t, z2,t, z1,t+1, z2,t+1)

× f(z1,t+1|z1,t, z2,t, z2,t+1),

where f(Xt+1|z1,t+1, z2,t+1), f(R
e
M,t+1|z1,t+1, z2,t+1, z1,t, z2,t) and f(z1,t+1|z2,t+1, z1,t, z2,t) have

closed-form expressions provided in the Appendix.

Since the volatility state is not observed directly, we sequentially approximate its distri-

bution by a particle filter {z(b)2,t}Bb=1.

1. We simulate forward each particle and obtain {(z(b)2,t , z̃
(b)
2,t+1)}Bb=1, which targets the dis-

tribution of (z2,t, z2,t+1) conditional on y1:t.

2. We approximate the one-step ahead likelihood by:

f̂(yt+1|y1:t) =
1

B

B∑
b=1

h(yt+1|yt, z(b)2,t , z̃
(b)
2,t+1)

3. We assign to each particle the nonormalized importance weight:

p
(b)
t+1 =

h(yt+1|yt, z(b)2,t , z
(b)
2,t+1)∑B

b′=1 h(yt+1|yt, z(b)2,t , z
(b)
2,t+1)

4. We sample the particle z
(b)
2,t+1 from the candidate particles z̃

(1)
2,t+1, . . . , z̃

(B)
2,t+1 with prob-
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abilities p
(1)
t+1, . . . , p

(B)
t+1. We repeat the same procedure to obtain z

(2)
2,t+1, . . . , z

(B)
2,t+1.

E. Estimation Results

Preliminary results from the model estimation are provided in Table VIII. We consider a

version of the model under which investors neglect the probability that the equity index

may generate a return lower than the barrier and the SPP may therefore pay less than the

headline rate. The demand for the SPP is then substantial. The unrestricted estimate in

column 1 corresponds to our baseline model. The restricted estimate in column2 corresponds

to model where λh is set to zero, i.e. where household demand for SPP cannot play a role

in the stochastic discount factor. The comparison between these two estimations allows us

to reject the null hypothesis that household demand for SPPs do not play a role in the

stochastic discount factor.

The SPP yield spread increase with the interest rate and equity volatility, which is con-

sistent with the empirical evidence in Figure 5.

INSERT TABLE VIII

In Figure 9, we compare the implied volatility curve produced by the model estimation

with the average one observed in the data, along SPP volumes and across moneyness. The

model outputs closely match their empirical counterparts, which provides a validation for

the framework.

INSERT FIGURE 9

V. Conclusion

This study uncovers how the development of Short Put Products (SPPs) has significant

implications for volatility pricing and financial stability. By allowing households to implicitly
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sell deep out-of-the-money put options, SPPs create a persistent demand for left-tail risk

exposure, which in turn affects its equilibrium pricing on the option market. Higher SPP

issuance volumes suppress implied volatility and the volatility risk premium, particularly at

the moneyness levels corresponding to common SPP barriers. These effects are amplified

in periods of market stress, when early redemption of existing products becomes unlikely,

reinforcing the role of SPPs in volatility price suppression.

To explain these empirical patterns, we develop a demand based asset pricing frame-

work that captures the interactions between households, intermediaries, and option markets.

Our estimation results suggest that household preferences?such as underweighting left-tail

risk?drive demand for SPPs, which in turn influences equilibrium option prices through inter-

mediaries? hedging behavior. Counterfactual analysis confirms that, in the absence of SPPs,

implied volatility would be significantly higher, highlighting the role of these instruments in

shaping volatility market dynamics.

These insights have broad implications for financial market participants and policymak-

ers. First, by altering the pricing of downside protection, SPPs can impact risk management

strategies for institutional investors. Second, our results suggest a trade-off between investor

protection and financial stability: while regulators may seek to limit household exposure to

complex financial products, restricting SPPs may also increase the cost of insuring against

tail risk, as seen in the South Korean regulatory intervention. Finally, our study underscores

the broader equilibrium effects of market innovation, showing that the introduction of new

financial instruments can reshape asset pricing by incorporating previously unaccounted-for

investor preferences.

Overall, our research contributes to the growing literature on the macrostructure of fi-

nancial markets by highlighting how financial innovation and household demand interact to

influence option pricing and volatility dynamics, reinforcing the need to consider equilibrium

effects when assessing whether a given financial innovation is beneficial or harmful.
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Proof of Proposition 1

The dealer selects the portfolio weight of equity, αDm,t, the weight of the SPP, αDspp,t and
weight of each put, αDput,n,t, that maximizes expected utility. The corresponding first-order
conditions are:

Et
[
Re

m, t:t+T e
−γD(αDm,tRem, t:t+T+αDspp,tRespp, t:t+T+

∑N
n=1 α

D
put,n,tR

e
put,n, t:t+T )

]
= 0,

Et
[
Re

spp,t+1e
−γD(αDm,tRem,t+1+α

D
spp,tR

e
spp,t+1+

∑N
n=1 α

D
put,n,tR

e
put,n,t+1)

]
= 0,

Et
[
Re

put,n,t+1e
−γD(αDm,tRem,t+1+α

D
spp,tR

e
spp,t+1+

∑N
n=1 α

D
put,n,tR

e
put,n,t+1)

]
= 0,

for every n ∈ {1, . . . , N}. Let

M0
t+T = e−γ

D(αDm,tRem, t:t+T+αDspp,tRespp, t:t+T+
∑N
n=1 α

D
put,n,tR

e
put,n, t:t+T ). (1)

We infer from (4) and (5) that

M0
t+T = e−γ

D[αDm,tRem, t:t+T−λHαHspp,tRespp, t:t+T−
∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+ +(1+Rf,t:t+T )

∑N
n=1 d

E
nPn]. (2)

Since (1 + Rf,t:t+T )
∑N

n=1 d
E
nPn is known conditional on zt, we infer that is also a stochastic

discount factor.
The first-order condition for holdings of put n can be rewritten as:

Et [(Kn − 1−Rm)+Mt+T ] = (1 +Rf,t)PnEt [(Kn − 1−Rm)+Mt+T ] ,

and we conclude that the proposition holds.

Equity Premium

We assume the following:

rem,t+1 = µr(zt) + ez2,t+1/2εm,t+1 (1)

Et(rem,t+1) = λV art(r
e
m,t+1) (2)

Et(Rm,t:t+T −Rf,t:t+T ) = RP, (3)

where RP is an exogenous constant. The values of µr(zt) and λ are unique and can be
computed as follows.

LEMMA 2: The drift in each state is given by

µr(zt, λ) = λEt
{[
ez2,t+1/2εm,t+1 − Et(ez2,t+1/2εm,t+1)

]2}− Et(ez2,t+1/2εm,t+1). (4)

33



The parameter λ is the unique solution to the equation:

ρ(λ) = RP, (5)

where

ρ(λ) = E

{
T∏
i=1

(1 + z1,t+i−1)
1
12 exp

[
µr(zt+i−1) + ez2,t+i/2εm,t+i)

]
− (1 + z1;t)

T/12

}
(6)

for every λ ∈ R.

Proof. The system has the following properties. Since

Et(rem,t+1) = µr(zt) + Et(ez2,t+1/2εm,t+1),

we obtain that

V art(r
e
m,t+1) = Et

{[
ez2,t+1/2εm,t+1 − Et(ez2,t+1/2εm,t+1)

]2}
,

and therefore

µr(zt) = λEt
{[
ez2,t+1/2εm,t+1 − Et(ez2,t+1/2εm,t+1)

]2}− Et(ez2,t+1/2εm,t+1). (7)

Under the assumptions of the model, we obtain:

1 +Rm,t:t+T = (1 +Rf,t:t+1) . . . (1 +Rf,t+T−1:t+T ) exp
(
reM,t:t+1 + · · ·+ rem,t+T−1:t+T

)
=

T∏
i=1

(1 +Rf,t+i−1:t+i) exp
[
µr(zt+i−1) + ez2,t+i/2εm,t+i)

]
=

T∏
i=1

(1 + z1,t+i−1)
1
12 exp

[
µr(zt+i−1) + ez2,t+i/2εm,t+i)

]
.

and
1 +Rf,t:t+T = (1 + z1,t)

T/12, (8)

Let

ρ(λ) = E

{
T∏
i=1

(1 + z1,t+i−1)
1
12 exp

[
µr(zt+i−1) + ez2,t+i/2εm,t+i)

]
− (1 + z1;t)

T/12

}
(9)

We obtain λ by solving

Existence and Uniqueness of One-Step Equilibrium

The consumption-portfolio problem of the household at date t depends both on (i) the
value of the SPP yield spread on contracts issued at date t and (ii) the value of the SPP yield
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spread in future states, which determines the continuation value of future wealth. To prove
the existence and uniqueness of a stationary general equilibrium, it is useful to distinguish
between current and future spreads.

We accordingly rewrite the household’s decision problem as follows. Let Z denote the
state space and let Y0 : Z → R+ denote a continuous mapping providing the state-contingent
SPP yield spread at dates t + T, t + 2T, . . . ,∞. The household selects consumption and
portfolio weights at date t by maximizing the Epstein-Zin recursive utility:

V H [WH
t ; y(zt), Y0, zt] = max

{CHt ,αHm,t,αHspp,t}

[
(1− δT ) (CH

t )1−1/ψ + δT (µHt+T )
1−1/ψ

] 1
1−1/ψ , (1)

where the excess return on the SPP is given by:

Re
spp, t:t+T = y(zt)1{Rm, t:t+T>B} +Re

m, t:t+T 1{Rm, t:t+T ≤B}, (2)

the wealth available at the beginning of date t+ T by:

WH
t+T = XH

t

(
1 +Rf,t:t+T + αHm,tR

e
m,t:t+T + αHspp,tR

e
spp,t:t+T

)
,

and the certainty equivalent of future wealth by:

µHt+T =
(
EP
t

{
V H

[
WH
t+T ;Y0(zt+T ), Y0, zt+T

]1−γ}) 1
1−γ

.

We denote by
αHspp,t = αHspp[y(zt), Y0, zt]

the household’s optimal SPP weight in period t. We know that αHspp(yt, Y0, zt) is contained
in [0, 1] and is a continuous function of yt, Y0, and zt. We do not need to reformulate the
dealer’s problem since her decisions do not depend on future investments opportunities.

More generally, we establish the existence of a one-step equilibrium under the following
set of sufficient conditions.

CONDITION 1 (Sufficient conditions for existence of one-step equilibrium): The state vector
zt is first-order Markov and contained in a compact subset, Z, of a Euclidean space. The
household share of the SPP,

αHspp(yt, Y0, zt), (3)

is contained in [0, 1], is continuous and increasing in yt, and satisfies αHspp(0, Y0, zt) = 0 for
every zt.

The condition αHspp(0, Y0, zt) = 0 states that if the SPP yield spread is zero, the SPP is
dominated by the bond and the household allocates no funds to the SPP. Let C+ denote the
set of continuous mappings define on Z and taking values in R+. In the rest of the section,
we derive the following result.

PROPOSITION 3 (Existence and uniqueness of one-step equilibrium): Assume that Con-
dition 2 holds. For every Y0 ∈ C+, there exists a unique Y1 ∈ C+ such that for every state
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zt ∈ Z, the dealer maximizes her utility and the SPP and put markets clear:

αDspp,t[zt, Y1(zt)] = −λH αHspp,t[Y1(zt), Y0, zt], (4)

αDput,n[zt;Y1(zt)] = −dEn Pput,n(zt). (5)

We denote by T the transformation on C+ that maps the future yield spread, Y0, to the
current equilibrium yield spread: Y1 = T (Y0).

The proof of the proposition proceeds as follows. Consider the stochastic discount factor

Mt+T (a
D
m , yt, a

H
spp) = e−γ

D[aDm Rem, t:t+T−λ
H aHsppR

e
spp, t:t+T (yt)−

∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+]

where Re
spp, t:t+T (yt) = yt 1{Rm, t:t+T>B} + Re

m, t:t+T 1{Rm, t:t+T ≤B} expresses the SPP’s excess

return as a function of the the current yield.

LEMMA 3 (Auxiliary function G): For a given state, zt, SPP yield spread, yt, and household
demand for the SPP, αHspp,t, the dealer’s first-order condition in zt:

Et
[
Re

m, t:t+T Mt+T (α
D
m,t, yt, α

H
spp,t)

]
= 0. (6)

has a unique solution, αDm,t, which we denote by G(yt, α
H
spp,t, zt). Furthermore, the dealer’s

equity share, αDm,t = G(yt, α
H
spp,t, zt), is strictly increasing in the SPP yield spread, yt, and in

the household’s demand for the SPP, αHspp,t.

Proof. Consider the function f(αDm,t, yt, α
H
spp,t) = Et

[
Re

m, t:t+T Mt+T (α
D
m,t, yt, α

H
spp,t)

]
, or equiv-

alently

f(αDm,t, yt, α
H
spp,t) = Et

{
Re

m, t:t+T e
−γD[αDm,tRem, t:t+T−λHαHspp,tRespp, t:t+T (yt)−

∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+]

}
.

We note that
∂f

∂αDm,t
= −γD Et

[
(Re

m, t:t+T )
2Mt:t+T

]
< 0,

∂f

∂yt
= γD λH αHspp,t Et

(
Re

m, t:t+T 1{Rm, t:t+T>B}Mt:t+T

)
,

∂f

∂αHspp,t
= γD λH Et

(
Re

m, t:t+T R
e
spp, t:t+T Mt+T

)
.

By the Implicit Function Theorem, the partial derivatives of G are given by:

∂G

∂yt
= − ∂f

∂yt
×
(

∂f

∂αDm,t

)−1

= λH αHspp,t
Et
(
Re

m, t:t+T 1{Rm, t:t+T>B}Mt:t+T

)
Et
[
(Re

m, t:t+T )
2Mt+T

] , (7)

∂G

∂αHspp,t
= − ∂f

∂αHspp,t
×
(

∂f

∂αDm,t

)−1

= λH
Et
(
Re

m, t:t+T R
e
spp, t:t+T Mt+T

)
Et
[
(Re

m, t:t+T )
2Mt+T

] . (8)
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Since Et
(
Re

m, t:t+T Mt+T

)
= 0, we know that

Et
(
Re

m, t:t+T 1{Rm, t:t+T>B}Mt+T

)
= −Et

[
Re

m, t:t+T 1{Rm, t+T≤B}Mt:t+T

]
> 0. (9)

Hence the function G strictly increases in yt.
Similarly, since Re

m, t:t+T R
e
spp, t:t+T = (Re

m, t:t+T )
21{Rm, t:t+T≤B}+ytR

e
m, t:t+T 1{Rm, t:t+T>B}, we

infer that

Et
(
Re

m, t:t+T R
e
spp, t:t+T Mt+T

)
= Et

[
(Re

m, t:t+T )
21{Rm, t:t+T≤B}Mt+T

]
+yt Et

[
Re

m, t:t+T 1{Rm, t:t+T>B}Mt+T

]
> 0.

Hence the function G strictly increases in αHspp,t.

In a one-step equilibrium, the following first-order conditions hold:

Et
(
Re

m, t:t+T Mt+T

)
= 0, (10)

Et
(
Re

spp,t+1Mt+T

)
= 0. (11)

By equation (2), the first-order condition (11) can be rewritten as:

yt Et
(
1{Rm, t:t+T>B}Mt+T

)
+ Et

(
Re

m, t:t+T 1{Rm, t:t+T ≤B}Mt+T

)
= 0, (12)

or

yt = −
Et
(
Re

m, t:t+T 1{Rm, t:t+T ≤B}Mt+T

)
Et
(
1{Rm, t:t+T>B}Mt+T

) > 0. (13)

We infer from equation (10) that

yt =
Et
(
Re

m, t:t+T 1{Rm, t:t+T>B}Mt+T

)
Et
(
1{Rm, t:t+T>B}Mt+T

) . (14)

Since the return on the SPP is deterministic for Rm, t:t+T > B, this equation reduces to:

yt =
Et
[
Re

m, t:t+T 1{Rm, t:t+T>B}M
∗
t+T (α

D
m,t)
]

Et
[
1{Rm, t:t+T>B}M

∗
t+T (α

D
m,t)
] , (15)

where
M∗

t+T (α
D
m,t) = e−γ

D[αDm,tRm,t:t+T−
∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+]. (16)

We now study the properties of the function on the right-hand side of equation (15).

LEMMA 4 (Auxiliary function H): The function H(αDm,t, zt) strictly decreases in αDm,t for
every state zt.
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Proof. We let

H(a, zt) =
u(a, zt)

v(a, zt)
−Rf,t,t:T , (17)

where

u(a, zt) = Et
[
Rm, t:t+T 1{Rm, t:t+T>B}M

∗
t+T (a)

]
,

v(a, zt) = Et
[
1{Rm, t:t+T>B}M

∗
t+T (a)

]
.

We note that
∂u

∂a
= −γD Et

[
(Rm, t:t+T )

2 1{Rm, t:t+T>B}M
∗
t+T

]
∂v

∂a
= −γD Et

[
Rm, t:t+T 1{Rm, t:t+T>B}M

∗
t+T

]
= −γD ut(a).

We infer that

∂H

∂a
= γD

{
Et
[
Rm, t:t+T 1{Rm, t:t+T>B}M

∗
t+T

]}2
−{

Et
[
(Rm, t:t+T )

2 1{Rm, t:t+T>B}M
∗
t+T

]} {
Et
[
1{Rm, t:t+T>B}M

∗
t+T

]}
{
Et[1{Rm, t:t+T>B}M

∗
t+T ]

}2 .

By the Cauchy Schwarz inequality, the numerator is negative.10 Hence, H is strictly decreas-
ing in a. We also note that

∣∣∣∣∂H∂a (a, zt)

∣∣∣∣ ≤ γD
Et
[
(Rm, t:t+T )

2 1{Rm, t:t+T>B}M
∗
t+T

]
Et[1{Rm, t:t+T>B}M

∗
t+T (a)]

.

for every a and zt.

We consider the function

Φ(yt, Y0, zt) = yt −H
{
G[yt, α

H
spp(yt, Y0, zt), zt], zt

}
.

Under Condition 2, the function αHspp increases in yt. By Lemmas 3 and 4, the function Φ
therefore increases in yt.

When yt = 0, the household has zero demand for the SPP; αHspp(0, Y0, zt) = 0, as per
Condition 2. Hence,

Φ(0, Y0, zt) = −H [α̂(zt), zt] ,

where α̂(zt) = G(0, 0, zt) denotes the dealer’s optimal equity share in the absence of the SPP
contract. The equity share, α̂(zt), satisfies the first-order condition:

Et
{
Re

m, t:t+T e
−γD[αDm,tRem, t:t+T−

∑N
n=1 d

E
n (Kn−1−Rm,t:t+T )+]

}
= 0, (18)

10Let X = Rm, t:t+T 1{Rm, t:t+T>B} [M
∗
t+T (a)]

1/2 and Y = 1{Rm, t:t+T>B} [M
∗
t+T (a)]

1/2. By the Cauchy
Schwarz inequality, [E(XY )]2 < E(X2)E(Y 2). The inequality is strict because X and Y are not perfectly
correlated.
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or, more compactly, Et
{
Re

m, t:t+T M
∗
t+1[α̂(zt)]

}
= 0. Since

Et
{
Re

m, t:t+T 1{Rm, t:t+T>B}M
∗
t+1[α̂(zt)]

}
= −Et

{
Re

m, t:t+T 1{Rm, t:t+T≤B}M
∗
t+1(α̂(zt))

}
> 0,

we infer that H [α̂(zt), zt] > 0 and therefore Φ(0, Y0, zt) < 0.
We also note that

∂Φ(yt, Y0, zt)

∂yt
≥ 1. (19)

Hence Φ(yt, Y0, zt) is positive for yt sufficiently large. We infer that the equation Φ(yt, Y0, zt) =
0 has a unique solution, so that there exists a unique one-step equilibrium for every zt.

We further note that
Y1(zt, Y0) ≤ |H [G(0, 0, zt), zt] | (20)

for every zt ∈ Z and Y0 ∈ C+.

Proof of Proposition 2

Let C denote the set of continuous functions defined on Z and taking values on the real
line. Let ∥f∥∞ = supz∈Z |f(z)| denote the sup norm. We know that (C, ∥f∥∞) is a Banach
space.

Consider
ȳ = max

zt∈Z
|H [G(0, 0, zt), zt] | <∞. (1)

We know that for every function Y0 ∈ C, the transform Y1 = T Y0 takes values between 0 and
ȳ, as equation (20) implies. For this reason, we henceforth focus on the subset of functions:

K = {f ∈ C : 0 ≤ f(z) ≤ ȳ for every z ∈ Z}.

The set K is convex and closed.
Consider the function f(yt, aspp, zt) = H [G(yt, aspp, zt), zt] . By the chain rule,

∂f

∂aspp
(yt, aspp, zt) =

∂H

∂aM
[G(yt, aspp, zt), zt]

∂G

∂aspp
(yt, aspp, zt). (2)

The functions on the right-hand side are bounded and we let

K1 = sup

{∣∣∣∣ ∂f∂aspp
(yt, aspp, zt)

∣∣∣∣ ; (yt, aspp, zt) ∈ [0, ȳ]× [0, 1]×Z
}
.

Importantly, we note that the upper bounds ȳ and K1 do not depend on the household
demand for the SPP.11

11Furthermore, we infer from and that

K1 ≤ λH γD sup
(yt,aspp,zt)∈[0,ȳ]×[0,1]×Z

Et

{
Re

m, t:t+T Re
spp, t:t+T Mt+T [G(aspp, zt), yt, zt]

}
Et

{
1{Rm, t:t+T>B} Mt+T [G(aspp, zt), yt, zt]

} . (3)
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CONDITION 2 (Sufficient conditions for existence of stationary equilibrium): There exists
kspp > 0 such that the household share of the SPP, αHspp(yt, Y0, zt), satisfies

|αHspp(yt, Y ′
0 , zt)− αHspp(yt, Y0, zt)| ≤ kspp ∥Y ′

0 − Y0∥∞

for every Y0, Y
′
0 ∈ K, yt ∈ [0, ȳ], and zt ∈ Z. Furthermore, the constant kspp satisfies kspp <

1/K1.

We consider Y0, Y
′
0 ∈ K. Let Y1 = T Y0 and Y ′

1 = T Y ′
0 . For a given state zt, we let

yt = Y1(zt) and y
′
t = Y ′

1(z
′
t). Since Φ(y′t, Y

′
0 , zt) = Φ(yt, Y0, zt) = 0, we infer that

Φ(y′t, Y
′
0 , zt)− Φ(y′t, Y0, zt) = Φ(yt, Y0, zt)− Φ(y′t, Y0, zt). (4)

We infer from (19)
|y′t − yt| ≤ |Φ(yt, Y0, zt)− Φ(y′t, Y0, zt)|. (5)

Sufficient Condition 2 implies

|Φ(y′t, Y ′
0 , zt)− Φ(y′t, Y0, zt)| ≤ ksppK1 ∥Y ′

0 − Y0∥∞. (6)

We infer from (4), (5) and (6) that

|y′t − yt| ≤ ksppK1 ∥Y ′
0 − Y0∥∞.

Since this inequality holds for every state zt, the transformation T is a contraction:

∥T Y ′
0 − T Y0∥∞ ≤ ksppK1 ∥Y ′

0 − Y0∥∞.

Hence, the contraction mapping T has a unique fixed point.

Alternative specification of the dealer

The wealth of the dealer in period t is

XD
t = ϕFWH

t = ϕXH
t /(1− ϕ).

We write
XH
t = λHXD

t ,

where λH = (1− ϕ)/ϕ.
The dealer’s wealth in period t+ T is

WD
t+T = XD

t

(
1 +RD

t:t+T

)
.
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where

RD
t:t+T = Rf, t:t+T + αDm,tR

e
m, t:t+T + αDspp,tR

e
spp, t:t+T +

N∑
n=1

αDput,n,tR
e
put,n, t:t+T (1)

denotes the dealer’s return over the period.
The dealer has constant absolute risk aversion (CARA) utility:

EP
0

∞∑
t=1

δtut(W
D
t )

where ut+T (W
D
t+T ) = −e−AtWD

t+T /At and At = γD/XD
t .

Let αDt = (αDm,t, α
D
spp,t, α

D
put,1,t, . . . , α

D
put,K,t). Assume that to minimize attention costs etc.,

the dealer chooses the portfolio αDt and is then precluded from modifying it thereafter.
The dealer solves the optimization problem

max
αDt

Et
[
−e−γD (WD

t+T /X
D
t )
]
.

Since WD
t+T/X

D
t = 1+RD

t:t+T , the solution to this problem is independent of the wealth level
XD
t . We denote by

αD[zt;Y (zt)]

the optimal portfolio of the dealer.
We can also assume that the dealer consumes XD

t at date t and keeps the residual risk:

XD
t

(
αDm,tR

e
m, t:t+T + αDspp,tR

e
spp, t:t+T +

N∑
n=1

αDput,n,tR
e
put,n, t:t+T

)
. (2)

Likelihood

As we explain in the main text, the one-step likelihood of yt+1 is

f(yt+1|y1:t) =

∫∫
h(yt+1|y1:t, z2,t, z2,t+1)f(z2,t, z2,t+1|y1:t) dz2,t dz2,t+1,

where

h(yt+1|y1:t, z2,t, z2,t+1) = f(z1,t+1|zt, z2,t+1) f(reM,t+1|zt, zt+1) f(Xt+1|zt+1). (1)

We explain below how to compute the conditional densities on the right-hand side of (1).
First, conditional on zt, the state vector zt+1 is Gaussian with mean (µ1+ϕ1(z1,t−µ1), µ2+

ϕ2(z2,t − µ2))
′ and variance-covariance matrix(

σ2
1 ρ12 σ1 σ2

ρ12 σ1 σ2 σ2
2

)
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Hence

f(z1,t+1|zt, z2,t+1) = n
[
z1,t+1;µ1 + ϕ1(z1,t − µ1) + σ1ρ12ε2,t+1;σ

2
1(1− ρ212)

]
,

where

ε2,t+1 =
1

σ2
[z2,t+1 − µ2 − ϕ2(z2,t − µ2)]

denotes the normalized innovation on state 2.
Second, we turn to the conditional distribution of

reM,t+1 = µr + ez2,t+1/2εM,t+1 (2)

conditional on density zt and zt+1). The variance-covariance matrix of the Gaussian vector
εt = (ε1,t, ε2,t, εm,t)

′:

Vε =

 1 ρ12 ρ1M
ρ12 1 ρ2M
ρ1M ρ2M 1


The Cholesky decomposition of Vε can be written as

Vε = LL⊤

where L = (Lij) is a lower triangular matrix. We consider the random vector ut = L−1ut, or
equivalently

εt+1 = Lut+1, (3)

The vectors are ut is iid N (0, I) and satisfy:

ε1,t+1 = L1,1 u1,t+1

ε2,t+1 = L2,1 u1,t+1 + L2,2 u2,t+1

εm,t+1 = L3,1 u1,t+1 + L3,2 u2,t+1 + L3,3 u3,t+1.

If the vectors zt and zt+1 are known, then ε1,t+1, ε2,t+1 u1,t+1 and u2,t+1 are also known.
We note that reM,t+1 = µr + ez2,t+1/2εM,t+1 satisfies

reM,t+1 = µr + ez2,t+1/2(L3,1u1,t+1 + L3,2u2,t+1 + L3,3u3,t+1) (4)

Hence

f(rem,t+1|zt, zt+1) = n
[
rem,t+1;µr + ez2,t+1(L3,1u1,t+1 + L3,2u2,t+1); e

z2,t+1L2
33)
]
, (5)

where

u1,t+1 = ε1,t+1/L1,1, (6)

u2,t+1 = (ε2,t+1 − L2,1 u1,t+1)/L2,2. (7)
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Price Elasticity

Let vsppt denote the volume of SPP. The stochastic discount factor can be written as
Mt+T = e−mt+T (zt,v

spp
t ), where

mt+T (zt, v
spp
t ) = γD

[
αDm (zt, v

spp
t )Re

m,t:t+T − λH vsppt Re
spp,t:t+T −

N∑
n=1

dEn (Kn − 1−Rm,t:t+T )+

]
.

We know that

E[Re
m,t:t+TMt+T (zt, v

spp
t )
∣∣ zt] = 0

E[Re
spp,t:t+TMt+T (zt, v

spp
t )
∣∣Zt] = 0,

for every vsppt and zt.
By (14), the price of a put satisfies:

ln[Pput,n(zt, v
spp
t )] = ln{E [ (Kn − 1−Rm,t:t+T )+Mt+T (zt, v

spp
t )| zt]}

− ln {E [Mt+T (zt, v
spp
t )| zt]} − ln(1 +Rf,t:t+T ).

We observe that

∂E (Mt+T | zt)
∂vsppt

= γD E
([

λH Re
spp,t:t+T − ∂αDm (zt, v

spp
t )

∂vsppt

Re
m,t:t+T

]
Mt+T

∣∣∣∣ zt) = 0.

Hence,

∂ ln[Pput,n(zt)]

∂vsppt

=
∂ ln {E [ (Kn − 1−Rm,t:t+T )+Mt+T | zt]}

∂vsppt

=
1

E [ (Kn − 1−Rm,t:t+T )+Mt+T | zt]
∂ {E [ (Kn − 1−Rm,t:t+T )+Mt+T | zt]}

∂vsppt

=
1

Pput,n(1 +Rf,t:t+T )E (Mt+T | zt)
∂ {E [ (Kn − 1−Rm,t:t+T )+Mt+T | zt]}

∂vsppt

=
γD

Pput,n(1 +Rf,t:t+T )E (Mt+T | zt)
×

E
{
(Kn − 1−Rm,t:t+T )+

[
λH Re

spp,t:t+T − ∂αDm (zt, v
spp
t )

∂vsppt

Re
m,t:t+T

]
Mt+T

∣∣∣∣ zt} .
By the chain rule,

∂ lnPput,n

∂vsppt

=
1

Pput,n

V egan,t
∂IVn,t
∂vsppt

=
V egan,t
Pput,n

IVn,t
vsppt

∂ ln IVn,t
∂ ln vsppt
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Hence

∂ ln IVn,t
∂ ln vsppt

=
γD vsppt

V egan,tIVn,t(zt)(1 +Rf,t:t+T )E (Mt+T | zt)
×

E
{
(Kn − 1−Rm,t:t+T )+

[
λH Re

spp,t:t+T − ∂αDm (zt, v
spp
t )

∂vsppt

Re
m,t:t+T

]
Mt+T

∣∣∣∣ zt} .
LEMMA 5: The sensitivity of the dealer’s optimal risky share with respect to the SPP volume
is given by

∂αDm
∂vsppt

= λH
κ0κ2 + κ21

κ0(κ2 + κ3) + λH γD vtκ1(κ3κ0 − κ21)/κ0
, (1)

where

κ0 = E
(
1{RM>B}Mt+T

)
> 0

κ1 = −E
(
Re

m 1{RM<B}Mt+T

)
> 0

κ2 = E
[
(Re

m)
2 1{RM<B}Mt+T

]
> 0

κ3 = E
[
(Re

m)
2 1{RM>B}Mt+T

]
> 0

Proof. The dealer’s optimal risky share and the SPP yield solve:

f(αDm , yt; v
spp
t ) = E(Re

mM) = 0 (2)

g(αDm , yt; v
spp
t ) = E(Re

sppM) = 0 (3)

By the Implicit Function Theorem,

∂αDm
∂vsppt

=

∂f
∂v

∂g
∂y

− ∂f
∂y

∂g
∂v

∂f
∂y

∂g
∂αDm

− ∂f
∂αDm

∂g
∂y

, (4)

We note that

∂f

∂αDm
= −γD(κ2 + κ3)

∂f

∂y
= λH γD vsppt κ1

∂f

∂v
= λH γD (κ2 + yt κ1)

∂g

∂αDm
= −γD (κ2 + yt κ1)

∂g

∂y
= (1 + λH γD vt yt)κ0

∂g

∂v
= λH γD (κ2 + y2t κ0),
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where yt = κ1/κ0. We verify that

∂f

∂v

∂g

∂y
− ∂f

∂y

∂g

∂v
= λH γD

(
κ0κ2 + κ21

)
∂f

∂y

∂g

∂αDm
− ∂f

∂αDm

∂g

∂y
= γD

[
κ0(κ2 + κ3) + λH γD vtκ1(κ3κ0 − κ21)/κ0

]
Hence,

∂αDm
∂vsppt

= λH
κ0κ2 + κ21

κ0(κ2 + κ3) + λH γD vtκ1(κ3κ0 − κ21)/κ0
. (5)

The sensitivity is thus

∂ ln IVn,t
∂ ln vsppt

= γD λH vsppt ×

E
{
(Kn − 1−Rm,t:t+T )+

[
Re

spp,t:t+T − κ0κ2+κ21
κ0(κ2+κ3)+λH γD vtκ1(κ3κ0−κ21)/κ0

Re
m,t:t+T

]
Mt+T

∣∣∣ zt}
V egan,tIVn,t(zt)(1 +Rf,t:t+T )E (Mt+T | zt)

.

If Kn ≤ 1 +B,

∂ ln IVn,t
∂ ln vsppt

= λH γD vsppt

(κ0 κ3 − κ21)(1 + λH γD vt κ1/κ0)

κ0(κ2 + κ3) + λH γD vtκ1(κ3κ0 − κ21)/κ0

×
E
{
(Kn − 1−Rm,t:t+T )+ Re

m,t:t+T Mt+T

∣∣ zt}
V egan,tIVn,t(zt)(1 +Rf,t:t+T )E (Mt+T | zt)

,

Finally, if Kn = 1 +B,

∂ ln IVn,t
∂ ln vsppt

= −λH γD vsppt

(κ0 κ3 − κ21)(1 + λH γD vt κ1/κ0)

κ0(κ2 + κ3) + λH γD vtκ1(κ3κ0 − κ21)/κ0

× κ2 − (Rf,t −B)κ1
V egan,tIVn,t(zt)(1 +Rf,t:t+T )E (Mt+T | zt)

,

which is approximately equal to

∂ ln IVn,t
∂ ln vsppt

= −λH γD vsppt

κ0 κ3 − κ21
κ0(κ2 + κ3)

κ2 − (Rf,t −B)κ1
V egan,tIVn,t(zt)(1 +Rf,t:t+T )E (Mt+T | zt)

.
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Appendix A. Figures
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Panel A. Scaled SPP Issuance Volumes across Indices
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Panel B. Volatility Premium across Indices
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Figure 1. Average Scaled Volumes and Volatility Premium across Indices

Panel A plots the average yearly issuance volumes of SPP scaled by market capitalization across the three
indices, S&P500, Nikkei225, and Eurostoxx50. Panel B plots the volatility premium, i.e. the difference
between 1 year implied volatility and 90Day-realized volatility, at the 60, 70, 80, 90, and 100% strikes for
the three indices, S&P 500, Nikkei 225, and Eurostoxx 50.
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Headline Rate + Principal
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Figure 2. Design of a Simple Short Put Product

This figure shows the pay-off diagram of a typical Short Put Product.
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Panel A. Histogram of SPP Strikes
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Panel B. Histogram of SPP Ex Post Excess Returns
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Figure 3. SPP Issuance volumes across Strikes and Ex-Post Excess Returns

Panel A presents the distribution of SPP issuance volumes by percentage strikes over the 2005-2019 period,
along with the percentage of products that hit the barrier. Panel B shows the histogram of SPP ex-post
excess returns over the same period. Ex-post excess returns are calculated as the difference between the SPP
realized return at maturity and the corresponding 3-year swap rate. The sample consists of 100,000 SPPs
issued globally since 2005, with indices as their underlying assets.
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Figure 4. Outstanding Volumes of Index-linked SPPs Across Regions

The figure plots the evolution of outstanding volumes of index-linked SPPs across Europe, Asia and the
U.S. in billion dollars from 2005 to 2016. The red line represents the size of these outstanding volumes
relative to the open interest of all index-linked put options worldwide with strikes at or below 80% and
maturities exceeding three months.
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Figure 5. Eurostoxx SPP Headline Rates and realized volatility

This figure displays the fitted headline rates of SPPs issued globally from 2005 to 2019, with the Eurostoxx
50 as the underlying asset, alongside the 90-day realized volatility of the Eurostoxx 50. The sample is
structured as a monthly panel, where realized volatility represents the average 90-day realized volatility for
each month, and the fitted headline rate corresponds to the predicted headline rate for a simple SPP with a
3-year maturity and a 60% strike. We obtain the predicted headline rate by regressing the headline rates of
50,000 products in our sample on month, maturity, strike, the number of payoffs, the number of underlying
assets (fixed effects), and dummies for key payoff features, such as worst-off, protection tracker, and knock-in.

51



Hang Seng China Enterprises

Hang Seng

Kospi 200

Nasdaq

Nikkei

S&P 500

Eurostoxx 50

2
3

4
5

6
Vo

la
tili

ty
 S

ke
w 

in
 B

p

0 20 40 60 80
Outstanding Volumes to Open Interest, in %

Figure 6. SPP Outstanding Volumes and Volatility Skewness

This figure displays the average volatility skewness over the 2005-2019 period versus outstanding volumes of
SPP in percent of the open interest for options with a strike below 80% and a maturity above three months.
The average volatility skewness is measured using monthly measure of the difference between mean implied
volatility at the 80% strike and mean implied volatility at the 100% strike. Out sample focused on the 10
indices used as undrlyings for 99% of SPPs using indices as underlyings during the 2005-2019 period.
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Panel A. Across SPP Issuance Volumes
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Panel B. Across Strikes
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Figure 7. Impact of SPP Issuance Volumes on Implied Volatility: Coefficient
Estimates
This figure plots the coefficient estimates of dummies for quintiles of issuance volumes in
Panel A, and strikes, in Panel B in a regression where the dependent variable is the 1 year
implied volatility. The sample is a monthly panel of the three indices, S&P500, Nikkei225,
and Eurostoxx50. The regression includes month and underlying fixed effects.
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Panel A. HSCEI-linked SPPs - Issuance Volumes
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Panel B. HSCEI Volatility Surface Before and After Regulation

Before After

Figure 8. Natural Experiment: 2015 South Korean Ban on HSCEI-Linked SPPs

Panel A plots the issuance volumes of HSCEI-linked SPPs over the 2005-2019 period. The vertical line
indicates the date of the informal ban of HSCEI-linked SPPs by the South Korean market authority. Panel
B plots the average volatility surfaces in the year before and the year after the ban.
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Panel A. Across SPP Issuance Volumes
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Panel B. Across Strikes
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Figure 9. Impact of SPP Issuance Volumes on Implied Volatility: Model versus
Empirics
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Figure 10. Cumulative P&L on long-short volatility and variance swaps portfolio

This figure plots the cumulative gains from implementing a monthly long-short trading strategy held to its
1 year maturity, based on sorting stocks on the amount of outstanding volumes of short put products.
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Table I
Summary Statistics on Short Put Products (2005-2019)

Mean S. D. p10 p25 p50 p75 p90

Product Characteristics, N =178,161

Maturity, in years 3.0 1.1 1.5 3.0 3.0 3.0 3.1
Headline Rate

Yearly Coupon, in % 6.5 2.4 4.0 4.8 6.0 7.8 10.0
Spread to Benchmark, in % 4.5 2.0 2.2 3.0 4.2 5.6 7.2

Strike, in % of the index initial price 58.2 8.9 50.0 50.0 60.0 65.0 70.0
Ex-Post Returns

Yearly Return, in % 5.5 8.6 1.1 3.9 5.4 7.2 9.5
Excess to 1-year Risk Free Rate,

in %
4.9 4.4 1.2 3.2 5.1 6.7 8.5

Issuance Volumes
In million $ 5.1 15.3 0.1 0.6 2.0 5.4 12.3

Underlying Index, Market Share in %
Eurostoxx 50 29.2
S&P 500 18.2
Nikkei 225 17.1
Hang Seng China 13.6
Kospi 200 10.5
Hang Seng 2.8
Russel 2.7
FTSE 2.6
Swiss Market Index 1.6
Cac 40 0.8
Dax 0.7
Nasdaq 0.2

Monthly Panel across 12 Indices and 180 months, N =2,160

Market Parameters, in %
3-year Swap Rate 2.4 1.6 0.6 1.3 2.1 3.4 4.6
Realized Volatility over 90Days 18.1 7.9 10.5 12.6 16.0 21.3 29.2
Implied Volatility - Three Main Indices, in %
60% Strike 31.7 6.2 25.1 27.8 30.6 34.8 39.2
80% Strike 25.1 5.6 19.7 21.2 23.9 27.5 31.8
100% Strike 19.9 5.4 14.4 16.1 18.9 22.2 25.8

Implied Volatility - All Indices, in %
80% Strike 25.0 6.7 18.3 20.7 23.6 27.5 32.8
90% Strike 22.8 6.8 16.2 18.6 21.4 25.2 30.4
100% Strike 21.0 6.8 14.3 16.6 19.7 23.2 28.5

Volumes
Issuance Volumes, In billion $ 0.5 0.8 0.0 0.0 0.1 0.7 1.4
Outstanding Volumes, In billion $ 9.8 13.9 0.1 0.7 3.4 12.5 32.5
Open Interest, In billion $ 67.3 116.1 2.1 4.1 12.5 53.8 267.9

This table reports summary statistics on our total sample of index-linked SPPs, as well as
our aggregated monthly panel of SPP volumes, volatility prices, and market parameters. SPP
data are from a dataset that covers the global issuance of SPPs over the 2005-2019 period.
Volatility prices for the three main indices, S&P 500, Eurstox 50, and Nikkei 225, are from
a proprietary dataset of a major investment bank. Volatility prices and open interest for all
indices are from OptionMetrics. Open interest is the open interest of put options with strikes
at 80% and maturity over three months.
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Table II
Market Conditions and Product Design

Headline Rate (spread to benchmark)
in % in Log

(1) (2) (3) (4) (5) (6)

90D realized volatility, in % 0.11∗∗∗ 0.05∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01)

3Y Swap Rate 0.11 -0.32∗∗∗ -0.72∗∗∗

(0.10) (0.08) (0.11)

90D realized volatility, Log 0.43∗∗∗ 0.19∗∗∗ 0.19∗∗∗

(0.05) (0.04) (0.03)

3 Year Swap Rate, Log -0.08∗ -0.26∗∗∗ -0.59∗∗∗

(0.04) (0.03) (0.06)

Fixed Effects
Underlying Yes Yes Yes Yes Yes Yes
Year - Yes Yes - Yes Yes
Design - - Yes - - Yes
Market Country - - Yes - - Yes

Observations 178,161 178,161 178,156 177,892 177,892 177,887
R2 0.12 0.24 0.36 0.10 0.21 0.34

This table displays the coefficients of OLS regressions in which the dependent variable is the spread between
the product headline rate and the benchmark interest rate. Headline rate is defined as the fixed yearly rate
that the investor receives in the best possible scenario. The benchmark rate is the 3 year swap rate of the
distribution country. The sample includes all SPP products issued over the 2005-2019 period with one or
several indices as underlyings. Design fixed effects include fixed effects for maturity, strike, number of payoff
features, number of scenari. Standard errors are clustered at the month and the index-year levels. *, **,
and *** represent statistical significance at the 10%, 5%, and 1% confidence levels, respectively.
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Table III
Realized Volatility and SPP Volumes

Net Issuances, in Billion $ Outstanding Volumes, in Billion $

Estimation Samples Indices Period Indices Period

3 main All ≤2011 >2011 3 Main All ≤2011 >2011
(1) (2) (3) (4) (5) (6) (7) (8)

Volatility 2nd Quartile 0.02 0.04 0.01 0.02 1.87∗ 1.32∗∗ 2.01∗∗∗ 0.59
(0.08) (0.03) (0.02) (0.04) (1.09) (0.57) (0.35) (0.36)

Volatility 3rd Quartile 0.25∗∗∗ 0.10∗∗∗ 0.03∗ 0.10∗∗∗ 3.58∗∗∗ 2.38∗∗∗ 2.69∗∗∗ 1.61∗∗∗

(0.08) (0.04) (0.02) (0.04) (1.28) (0.84) (0.51) (0.45)

Volatility 4th Quartile 0.26∗∗∗ 0.12∗∗∗ 0.04∗∗ 0.19∗∗∗ 3.31∗∗ 2.85∗∗ 3.19∗∗∗ 1.82∗∗

(0.08) (0.05) (0.02) (0.04) (1.52) (1.35) (0.67) (0.71)

3Y Swap Rate 0.20∗∗∗ 0.03∗∗∗ 0.01 0.05∗∗∗ -7.56∗∗∗ -0.08 0.42∗∗∗ -1.12∗∗∗

(0.04) (0.01) (0.01) (0.02) (0.64) (0.31) (0.13) (0.14)

Fixed Effects
Month Yes Yes Yes Yes
Index Yes Yes Yes Yes Yes Yes Yes Yes

Observations 540 2,136 1,008 1,128 540 2,136 1,008 1,128
R2 0.13 0.05 0.34 0.12 0.81 0.77 0.78 0.88

This table displays the coefficients from regressing monthly index implied volatility on SPP issuance volumes
with corresponding underlying. Monthly issuance volumes are scaled by the market cap of corresponding
indices. The model includes month and index fixed effects, as well as strike fixed effects in Column 1. The
sample includes monthly implied volatility data at 1 year for the 12 leading global indices over the 2005-
2019 period: S&P500, Eurostoxx 50, Nikkey, Hang Send, Han Seng China Enterprise, Swiss Market Index,
CAC 40, DAX, Nasdaq, Russel, FTSE, Kosip 200. Standard errors are clustered at the month and at the
index-year levels. *, **, and *** represent statistical significance at the 10%, 5%, and 1% confidence levels,
respectively.
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Table IV
Headline Rates and SPP Volumes

Net Issuances, in Billion $

Estimation Samples Indices Period

3 main All ≤2011 >2011
(1) (2) (3) (4)

Headline Rate 0.11∗∗∗ 0.03∗∗∗ 0.01∗∗∗ 0.04∗∗∗

(0.03) (0.01) (0.00) (0.01)

3Y Swap Rate 0.06 0.02∗∗∗ 0.01 0.02
(0.04) (0.01) (0.01) (0.01)

Constant -0.81∗∗∗ -0.22∗∗∗ -0.01 -0.32∗∗∗

(0.15) (0.04) (0.04) (0.07)

Fixed Effects
Index Yes Yes Yes Yes

Observations 534 1,761 727 1,034
R2 0.12 0.05 0.31 0.10

This table displays the coefficients from regressing SPP net issuance volumes on the average headline rate
offered by these products. The model includes index fixed effects, as well as strike fixed effects in Column
1. Standard errors are clustered at the month level. *, **, and *** represent statistical significance at the
10%, 5%, and 1% confidence levels, respectively.
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Table V
The Impact of SPP Volumes on Implied Volatility: Effects on the Volatility

Surface of S&P500, Eurostoxx 50, and Nikkei 225

Dependent Variable : Implied Volatility, in %

Strike All 50% 60% 70% 80% 90% 100%

(1) (2) (3) (4) (5) (6) (7) (8)

Monthly Issuance Volumes, in Billion $ -0.43∗∗∗

(0.12)
Scaled Issuance Volumes, in basis points -0.23∗∗∗ -0.40∗∗∗ -0.31∗∗∗ -0.26∗∗∗ -0.20∗∗∗ -0.13∗ -0.08

(0.07) (0.11) (0.09) (0.08) (0.07) (0.07) (0.08)

90-Day Realized Volatility, in % 0.23∗∗∗ 0.23∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.23∗∗∗ 0.26∗∗∗ 0.29∗∗∗

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03)

3-Year Swap Rate, in % -0.05 -0.06 -0.05 -0.11 -0.15 -0.13 -0.06 0.12
(0.17) (0.17) (0.25) (0.21) (0.20) (0.19) (0.17) (0.16)

Fixed Effects
Strike Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes
Index Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,240 3,240 540 540 540 540 540 540
R2 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97

This table displays the coefficients from regressing monthly index implied volatility on SPP issuance volumes
with corresponding underlying. In Column 1, SPP volumes are issuance volumes, in Columns 2 to 8, SPP
issuance volumes are scaled by market cap. The model includes month and index fixed effects, as well as
strike fixed effects in Columns 1 and 2. The sample includes monthly implied volatility data at 1 year for the
three main indices of the US, Europe and Asia: S&P500, Nikkei225, and Eurostoxx50. The sample covers
the 2005-2019 period. Standard errors are clustered at the month and at the index-year levels. *, **, and
*** represent statistical significance at the 10%, 5%, and 1% confidence levels, respectively.
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Table VI
The Impact of SPP Volumes on Implied Volatility: Effects for All Indices

across Strikes, Time, and Exposure

Dependent Variable : Implied Volatility, in %

Strikes Time Period Option Market Size

All 80% 90% 100% <2011 ≥2011 All Strikes 80%
(1) (2) (3) (4) (5) (6) (7) (8)

Scaled Issuance Volumes, in BP -0.34∗∗∗ -0.39∗∗∗ -0.35∗∗∗ -0.30∗∗∗ -0.39∗∗∗ -0.13∗∗ 0.27 0.35
(0.10) (0.11) (0.10) (0.11) (0.14) (0.05) (0.30) (0.32)

Volumes × Medium Option
Market

-0.54∗ -0.62∗∗

(0.29) (0.31)

Volumes× Small Option Market -0.65∗∗ -0.80∗∗∗

(0.28) (0.31)

90-Day realized volatility, in % 0.41∗∗∗ 0.40∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.41∗∗∗ 0.25∗∗∗ 0.41∗∗∗ 0.40∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.07) (0.03) (0.03) (0.03)

3-Year Swap Rate -0.21∗ -0.27∗∗ -0.20∗ -0.16 -0.53∗∗∗ -0.15 -0.21∗∗∗ -0.27∗∗∗

(0.12) (0.12) (0.12) (0.12) (0.17) (0.09) (0.07) (0.07)

Fixed Effects
Strike Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes Yes Yes
Index Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,398 2,128 2,135 2,135 983 1,145 6,398 2,128
R2 0.92 0.91 0.92 0.92 0.91 0.92 0.92 0.91

This table displays the coefficients from regressing monthly index implied volatility on SPP issuance volumes
with corresponding underlying. Monthly issuance volumes are scaled by the market cap of corresponding
indices. The model includes month and index fixed effects, as well as strike fixed effects in Column 1. The
sample includes monthly implied volatility data at 1 year for the 12 leading global indices over the 2005-2019
period: S&P500, Eurostoxx 50, Nikkei 2255, Hang Seng, Han Seng China Enterprise, Swiss Market Index,
CAC 40, DAX, Nasdaq, Russel, FTSE, Kospi 200. Standard errors are clustered at the month and at the
index-year levels. *, **, and *** represent statistical significance at the 10%, 5%, and 1% confidence levels,
respectively.
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Table VII
SPP Volumes and Implied Volatility in Times of Market Stress

Dependent Variable : Implied Volatility, in % Realized
Vol

Market Stress Indicator Yearly Returns< −15% Yearly Returns< −25% Yearly Returns< −35%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Market Stress 9.21∗∗∗ 14.02∗∗∗ 1.24 14.60∗∗∗ 21.97∗∗∗ 3.92∗∗ 17.34∗∗∗ 25.86∗∗∗ 7.72∗∗∗ 1.73
(1.45) (3.15) (1.06) (1.66) (2.84) (1.74) (1.47) (3.31) (2.40) (1.66)

SPP Volume Quartiles -0.58∗∗∗ -0.36∗∗ -0.30∗∗∗ -0.45∗∗∗ -0.29∗ -0.27∗∗∗ -0.39∗∗ -0.30∗ -0.31∗∗∗ -0.19∗

(0.17) (0.17) (0.07) (0.16) (0.16) (0.06) (0.16) (0.16) (0.07) (0.11)

Market Downturn × Quartiles -1.74∗∗ -0.61∗ -2.84∗∗∗ -1.74∗∗∗ -3.48∗∗∗ -2.56∗∗∗ -0.34
(0.68) (0.33) (0.63) (0.46) (1.05) (0.61) (0.34)

3-Year Swap Rate 1.76∗∗∗ 1.73∗∗∗ -0.56∗∗∗ 1.70∗∗∗ 1.68∗∗∗ -0.56∗∗∗ 1.97∗∗∗ 1.96∗∗∗ -0.54∗∗∗ -0.43∗∗∗

(0.15) (0.15) (0.09) (0.14) (0.14) (0.09) (0.14) (0.14) (0.08) (0.10)

Fixed Effects
Month - - Yes - - Yes - - Yes Yes
Strike Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Index Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5,177 5,177 5,177 5,177 5,177 5,177 5,177 5,177 5,177 1,728
R2 0.56 0.56 0.90 0.62 0.63 0.90 0.58 0.59 0.90 0.86

This table displays the coefficients from regressing monthly index implied volatility on an indicator dummy for
market stress and its interaction with quartiles of SPP outstanding volumes. The model includes index and
strike fixed effects, as well as month fixed effects in Columns 3, 6, 9 and 10. The sample includes monthly
implied volatility data at 1 year for the 12 leading global indices over the 2005-2019 period: S&P500,
Eurostoxx 50, Nikkei225, Hang Seng, Han Seng China Enterprise, Swiss Market Index, CAC 40, DAX,
Nasdaq, Russel, FTSE, Kospi 200. Standard errors are clustered at the month level. *, **, and *** represent
statistical significance at the 10%, 5%, and 1% confidence levels, respectively.
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Table VIII
Maximum Likelihod Estimation

of Structural Model

Unrestricted Estimate Restricted Estimate
(1) (2)

Interest Rate
Mean µ1 0.01928 0.01924
Persistence parameter ϕ1 0.99699 0.99676
Volatility σ1 0.00212 0.00211

Equity Index
Mean log volatility µ2 -5.49322 -5.50605
Persistence parameter ϕ2 0.93439 0.93319
Volatility of log volatility σ2 0.33565 0.33668

Correlations
ρ12 0.10121 0.10291
ρ1M 0.25972 0.28945
ρ2M -0.13300 -0.14236

Stochastic discount factor
Sensitivity of SDF to SPP volume, λH 0.38810 0

Payoff of Exogenous Put Portfolio:
ST = 0.0 0.63072 0.53537
ST = 0.5 -1.11587 -1.14221
ST = 0.6 -0.82323 -0.82332
ST = 0.7 -0.66744 -0.65700
ST = 0.8 -0.88680 -0.86121
ST = 0.9 -0.41482 -0.33398

Measurement errors
Yield spread 0.01556 0.01615
Put prices 0.00629 0.00633

Test of the restriction λH = 0
Log likelihood 6286.82283 6283.32066
LR statistic 7.00325
p value 0.00814

This table displays the ML estimates of the structural model outlined in Section IV.
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Table IX
Volatility and Variance Swap Portfolios

Sorted on Outstanding Short Put Products

2004-2018 2007-2018 2009-2018
Portfolio Var Swap Vol Swap Var Swap Vol Swap Var Swap Vol Swap

Low Mean -14.79 -18.46 -13.19 -17.71 -47.91 -47.53
Sd 31.36 28.98 33.78 31.21 18.60 20.03
Sharpe -0.47 -0.64 -0.39 -0.57 -2.58 -2.37

2 Mean -11.43 -17.10 -6.82 -13.58 -39.93 -41.43
Sd 31.10 28.25 33.32 30.28 18.64 19.94
Sharpe -0.37 -0.61 -0.20 -0.45 -2.14 -2.08

3 Mean -4.49 -11.26 0.83 -7.36 -29.64 -32.94
Sd 30.85 27.94 33.01 29.96 21.08 21.61
Sharpe -0.15 -0.40 0.03 -0.25 -1.41 -1.52

4 Mean 3.28 -5.66 8.61 -2.31 -24.21 -28.44
Sd 34.58 29.32 37.07 31.49 21.08 21.20
Sharpe 0.09 -0.19 0.23 -0.07 -1.15 -1.34

High Mean 22.93 10.06 28.41 13.42 -15.24 -19.36
Sd 42.11 33.26 45.07 35.53 23.95 22.77
Sharpe 0.54 0.30 0.63 0.38 -0.64 -0.85

High-Low Mean 37.72 28.52 41.60 31.12 32.67 28.17
Sd 16.80 10.99 17.51 11.08 10.27 8.57
Sharpe 2.25 2.59 2.38 2.81 3.18 3.29

This table presents return statistics associated with variance and volatility swap portfolios formed by sorting
on the total outstanding of short put products scaled by the underlying stocks’ market capitalization. At
each month, stocks are sorted into five portfolios based on the total outstanding of structured retail products
associated with each stock scaled by the market cap. Variance and volatility swaps with one year of maturity
are formed for each stock and grouped into the sorted portfolios. The ex-post hold-to-maturity returns in
units of vega notionals are reported for each portfolio group. The returns for each monthly portfolio groups
are annualized (hold-to-maturity return means are multiplied by 12 and standard deviations are multiplied
by square root of 12).
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Table X
Sharpe Ratios for Long Short Volatility and Variance Swap Portfolios

with Alternative Sorting Variables

2004-2018 2007-2018 2009-2018
Type VarSwap VolSwap VarSwap VolSwap VarSwap VolSwap
Sort Variable

Outstanding MarketCapScaled 2.25 2.59 2.38 2.81 3.18 3.29
Outstanding 1.78 1.92 1.91 2.05 3.20 3.13
NetIssuance MarketCapScaled 1.87 2.11 1.89 2.15 2.31 2.27
NetIssuance 1.28 1.28 1.40 1.45 1.92 1.73
Maturity -1.24 -1.28 -1.30 -1.38 -1.85 -1.72
Issuance 0.86 0.74 0.96 0.84 0.83 0.65

This table presents the long-short portfolio sharpe ratio associated with variance and volatility swap portfolios
formed by sorting on variables capturing the stock and flow of short put products. At each month, stocks
are sorted into five portfolios based on the sorting variable. Variance and volatility swaps with one year of
maturity are formed for each stock and grouped into the sorted portfolios. The ex-post hold-to-maturity
returns are reported in units of vega notionals for each portfolio group. The sharpe ratio is based on
annualized returns (each porfolio’s hold-to-maturity mean return is multiplied by 12, and standard deviations
are multiplied by square root of 12).
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