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ABSTRACT

We experimentally study how information partitioning affects learning and beliefs.

Holding the informational content constant, we show that observing small pieces of

information at higher frequency (narrow brackets) causes beliefs to become overly

sensitive to recent signals compared to observing larger pieces of information at lower

frequency (broad brackets). As a result, partitioning information in narrow or broad

brackets causally affects judgements. Observing information in narrow brackets leads to

less accurate beliefs and to worse recall than observing information in broad brackets.

As mechanism, we provide direct evidence that partitioning information into narrower

brackets shifts attention from the macro-level to the micro-level, which leads people to

overweight recent signals when forming beliefs.
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1 Introduction

When evaluating services, goods, or assets, individuals may seek out information to judge

whether certain desired characteristics are satisfied. While gathering information, both

individuals and information providers can decide how much information to consult or to

display at any one time. For instance, consider a prospective investor who gathers information

about a company or a consumer who reviews product ratings for a particular good. Sometimes,

we review (or obtain) the available information sequentially and in small amounts whereas at

other times we review all available information at once. Generally speaking, is it possible

that grouping individual information signals into smaller or larger partitions has an effect on

learning and beliefs? Bayes’ Theorem would prescribe that the partitioning of information

should not influence beliefs. However, whether this is the case is ultimately an empirical

question.

Taking this observation as a point of departure, this article studies whether information

partitioning has a causal influence on investors’ learning and beliefs. While the influence of

partitioning is well-documented in choice (e.g., Read et al., 1999; Ellis and Freeman, 2024), its

implications have not been studied for the formation of expectations. Using four preregistered

experimental studies, we show that partitioning information into narrower or broader brackets

has a significant influence on how people incorporate such information into their expectations.

In order to identify the causal effect of information partitioning on learning, we designed

a setting in which the frequency of observing new information can be exogenously assigned,

beliefs can be cleanly elicited, and a normative benchmark for learning can be established.

Subjects repeatedly observe signals – framed as price movements – to learn about the quality

of a risky asset. Subjects know that the asset has a fixed probability of a price increase in

each period, which we refer to as its fundamental quality. As such, a price increase (decrease)

corresponds to a positive (negative) signal about the asset’s quality. Subjects’ task is to

infer the quality of the risky asset from the price path, i.e., the asset’s price movements over

50 periods. The key component of our study is whether the elicited beliefs depend on how

information is partitioned.
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In our experiments we exogenously vary the frequency at which subjects observe new

information. In the narrow information treatment, subjects observe how the price path builds

over time and we elicit subjects’ beliefs about the asset’s fundamental quality every 10 periods.

This treatment aims to elicit beliefs when information arrives in small amounts at higher

frequency. In the broad information treatment, subjects observe the entire price path at once

and we elicit subjects’ beliefs only after period 50. This treatment aims to elicit beliefs when

information arrives in large amounts at lower frequency. In our experiments, we have direct

control over objective expectations and can compare them to subjects’ subjective beliefs.

Importantly, a Bayesian agent in our setting would provide an identical posterior belief after

the final period irrespective of the frequency of observed information. This allows us to

document systematic errors in the belief formation process which we can directly attribute to

the partitioning of information.

Our findings can be summarized as follows. We find that partitioning information into

narrower or broader brackets significantly influences how individuals incorporate such infor-

mation into their expectations. Most importantly, observing information in small amounts

at higher frequency leads to greater estimation errors (i.e., less precise beliefs) relative to

observing the same information in large amounts at lower frequency. The difference in estima-

tion errors is not only statistically highly significant, but also sizable, as estimation errors are

on average 28% greater when information is observed at higher frequency relative to lower

frequency. To understand why beliefs become less precise when information is observed at

higher frequency, we investigate the formation of subjects’ beliefs more closely. We show that

partitioning information into narrower brackets causes individuals to overweight more recent

information and to underweight more distant information. The observed belief movement

when information arrives at small amounts at higher frequency can thus be broadly reconciled

with diagnostic expectations (Bordalo et al., 2018, 2019) or with the notion that individuals

learn with gradually fading memory (Malmendier and Nagel, 2016; Nagel and Xu, 2022).

Under diagnostic expectations, individuals on average adjust their beliefs in the right direction

but overweight more recent information, while under learning with fading memory, individuals

increasingly underweight more distant information. Conversely, we show that partitioning
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information into broader brackets causes individuals to evaluate information jointly and to

put more equal weight on all available information.

Next, we aim to provide evidence on the psychological microfoundation. We conjecture that

observing smaller bits of information at higher frequency shifts attention from the macro-level

to the micro-level. This heightened attention to small and frequent information signals causes

beliefs to become overly sensitive to recent information which leads to overextrapolation from

such information. To establish attention as mechanism we proceed in two steps. First, we

investigate subjects’ memory between the treatments. Attention and memory have an intimate

relation as attention determines how information is encoded into memory (Schwartzstein,

2014; Bohren et al., 2024). In line with earlier studies on choice bracketing (Read et al.,

1999) we expect that observing information in small amounts at higher frequency (narrow

information treatment) causes individuals to selectively focus their attention on small blocks

of information, thereby losing sight of the big picture. To analyze the influence of information

partitioning on memory, we ask subjects after a random trial a number of questions in which

they have to recall some of the encountered information. Consistent with our conjecture, we

provide evidence that subjects who observe information at lower frequency are consistently

better at recalling past information.

Second, to provide more direct evidence for attention as underlying behavioral mechanism,

we conduct an additional experiment, in which we employ techniques from cognitive psychology

to exogenously manipulate attention in the narrow information treatment (Verghese, 2001;

Mrkva and Van Boven, 2017). Specifically, before reporting their final estimate, participants

have to watch the entire price path rebuild and have to identify the price of the asset

for five randomly selected periods. Importantly, this manipulation does not provide any

new information for participants. However, it allows us to look at whether information

partitioning influences the allocation of attention and whether shifting attention away from

the micro-level (i.e., individual price changes) to the macro-level (i.e., the entire price path)

diminishes the observed gap in beliefs. Consistent with this conjecture, we show that our

attention manipulation almost fully closes the gap in beliefs between the narrow and the

broad information treatment observed in our baseline experiment. Beliefs are not only less
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influenced by recent information, but subjects also recall the provided information better and

provide much more accurate beliefs. The attention manipulation thus shows that attention is

a key driver of the information partitioning effect.

Finally, we explore the influence of information partitioning in two specific applications.

We first focus on a finance context in which more recent information is arguably also

more informative. If that is the case, observing information in narrow brackets - and hence

overweighting recent information - may result in better calibrated beliefs. We test this

conjecture in a third experiment on an investor sample. Importantly, the experiment employs a

data-generating process governed by a Markov chain that leads a Bayesian agent to overweight

more recent information. In line with the information partitioning effect documented in our

baseline experiments, subjects in the narrow treatment now indeed provide more accurate

beliefs as they put more weight on more recent information than subjects in the broad

treatment. We then turn to a consumer choice application, in which customers judge the

quality of good based on online reviews. In contrast to our baseline experiments, such a

setting features more qualitative information, and is not about probabilistic beliefs but the

perceived quality of a good. We conduct a fourth experiment in which subjects learn about a

fictional smartphone based on product ratings to investigate the information partitioning

effect in the consumer choice context. As before, subjects in the narrow treatment put

more weight on recently observed information, while subjects in the broad treatment put

more weight on the aggregate information and less weight on recent information. Overall,

these applications demonstrate that our results are highly consistent across information

type (qualitative vs. quantitative), setting (financial markets vs. online market places), and

data-generating processes (equal-weighted information signals vs. Markov chain).

Our findings add to the literature on behavioral biases in belief formation, as recently

reviewed in Benjamin (2019). Prior research shows that people tend to neglect base-rates

(Kahneman and Tversky, 1973; Fischhoff and Bar-Hillel, 1984), display overconfidence (Moore

and Healy, 2008), do not sufficiently account for correlations in the data-generating process

(Enke and Zimmermann, 2019; Ungeheuer and Weber, 2021), sometimes overinfer (Bordalo

et al., 2018, 2020; Hartzmark et al., 2021; Kieren et al., 2022), and sometimes underinfer
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from recent signals (Edwards and Phillips, 1964; Phillips and Edwards, 1966). More recent

research also investigates how heterogeneity in the learning environment can affect the belief

formation process. Ba et al. (2022) and Augenblick et al. (2021) show that people overreact to

information in complex and noisy environments, while they underreact in simple environments.

Bohren et al. (2024) show that learning differs depending on whether information is acquired

from descriptions or from sequential sampling. In a similar spirit, our main emphasis is not

on the type of information being provided. Instead, we are interested in whether partitioning

the same information into narrower or broader brackets affects judgement. An important

conceptual question in sequential belief updating is how individuals group signals (Benjamin

et al., 2016). For instance, if people are assumed to treat signals which they observe as distinct

samples, they would update their beliefs after each signal and their updated belief after the

first signal would subsequently become their prior when updating in response to the next

signal. Alternatively, if people are assumed to pool all signals they have observed up until a

certain point, they would always update from their initial prior using the updated pooled

sample. As argued by Benjamin et al. (2016), differences in grouping can be a mechanism

behind dynamically inconsistent behavior1. Despite its importance, only a few studies have

touched upon that question so far (Benjamin, 2019). Our results show that neither of the

two assumptions regarding information grouping can be considered a universal feature of

information processing. Instead, people group outcomes differently depending on how the

presented information is partitioned.

We also contribute to recent work studying the role of memory in belief formation. For

example, Enke et al. (2020) show that people selectively recall pieces of information from

the past if the context in which it is experienced is similar to today’s context. Consistent

with this notion, an increasing number of studies argues that selective recall of information

might be a potential mechanism for self-servingly biased beliefs (e.g., Bénabou and Tirole,

2002; Chew et al., 2020; Zimmermann, 2020). In contrast to the notion that “losses loom

larger than gains” in choices under risk (Kahneman and Tversky, 1979), individuals seem to

fail to update fully in response to negative news when motivation is at play (Bénabou and

1 He and Xiao (2017) even show that assumptions on how people group signals will matter for any non-Bayesian updating rule.
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Tirole, 2016). Applied to investment decisions, Gödker et al. (2021) show that individuals

tend to over-remember positive investment outcomes and under-remember negative ones.

Jiang et al. (2023) find that investors are more likely to remember market episodes which are

more similar to current market returns. Our study differs in that we do not focus on the type

of information that is being remembered (i.e., “good news” versus “bad news”) but rather

on how the frequency and the partitioning of information makes information more or less

memorable. This has important implications for the understanding of how people learn from

their experiences. In particular, learning from information which arrives in large amounts at

lower frequency appears to foster good memory about the provided information. Conversely,

learning from frequent small bits of information leads to significantly worse memory consistent

with the notion of people losing sight of the trees for the forest (Jacobs and Weber, 2016).

Finally, our study relates to the literature on information aggregation and myopic loss

aversion. Early experimental evidence shows that subjects are less risk-averse when they

observe returns less frequently but aggregatedly or over long-term (rather than short-term)

horizons (Gneezy and Potters, 1997; Benartzi and Thaler, 1999). Similarly, repeated lotteries

are perceived as less risky as the number of repetitions increases (Klos et al., 2005). More

recently, Beshears et al. (2017) aim to resemble a more realistic setting by having subjects

invest in real financial assets over the course of a year and do not find that information

aggregation affects risk-taking. Leveraging a regulatory change in Israel, which required

retirement funds to display returns over periods of at least twelve months instead of one

month, Shaton (2017) provides evidence for myopic loss aversion in the real world. Following

the change, investments in riskier retirement funds increased and fund flows became less

sensitive to past 1-month returns. While we examine the influence of the frequency at which

information is observed, our study is distinct in that individual information is not aggregated.

Instead of observing a 12-month return, subjects in our experiments observe twelve 1-month

returns, either sequentially or at once. Our findings imply that not only the aggregation

of information, but also the frequency at which individual information is observed affect

(risk-taking) behavior.
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2 Conceptual Framework

Suppose in each period t, a good (or service) generates a binary signal st ∈ {g, b}. Signals in

all periods are i.i.d., and the full history of observed signals until period t is represented by

St = (s1, s2, . . . , st). In financial markets, signals can be thought of as earnings surprises or

dividends, whereas in consumer markets, signals can be thought of as quality signals. Which

signal is generated in a given period depends on the good’s underlying type. The agents’

task is to observe the signals and to make inferences about the good’s underlying type. The

good can either be a good or a bad type, represented by G and B, respectively. Each type

corresponds to an underlying distribution from which signals are generated. The probability

of observing signal g is θG for a good type, and θB for a bad type, with 0 < θB < θG < 1. If

signals are ordered outcomes (with good outcomes being preferred over bad outcomes), this

implies that the good type has a signal distribution that first-order stochastically dominates

the bad type. Let πG
0 and πB

0 represent the agent’s prior belief about the good and bad type,

respectively.

Following Gabaix (2019) and Enke and Graeber (2023), we assume that agents form

beliefs based on a convex combination of their prior belief and the (Bayesian) posterior belief

implied by the observed signal:

πG
t (St) = (1− λ)πG

t−1 + λµG
t (1)

with

µG
t (St) =

P (st | θG)πG
t−1∑

j=G,B P (st | θj)πj
t−1

, (2)

where πG
t (St) denotes the agent’s posterior belief that the good’s type is G conditional on the

observed signal history St, π
G
t−1 is the agent’s prior belief in period t− 1, µG

t is the posterior

implied by the signal, P (st | θj) is the probability of observing signal st conditional on the

type j ∈ {G,B}, and λ ≥ 0 represents the relative weight placed on the posterior implied by

the observed signal. This model preserves the martingale property of the Bayesian posteriors.

It nests Bayesian updating for λ = 1. Choosing λ < 1 allows the agent to underinfer from
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new information, whereas λ > 1 allows the agent to overinfer. As such, λ permits a variety

of belief updates ranging from extreme dogmatism (λ = 0), where the agent entirely relies

on their initial belief, to jumping to certainty (λ → (1− πG
t−1)(µ

G
t − πG

t−1)
−1). The resulting

updating process is comparable with an anchoring-and-adjustment heuristic (Tversky and

Kahneman, 1974), in which individuals anchor their estimates on some initial belief and then

adjust it in the direction of the observed information.

Next, assume that agents observe signals in batches of size n ∈ {1, 2, . . . }. Importantly,

the good continues to generate a signal in each period t. However, agents may not observe the

signal in each period. This could either be due to attentional constraints or by deliberation.

We denote the ordered set of signals that an agent observes in any period t by st:n ≡ {gx, by}n,

where gx and by denote the number of g and b signals contained in the batch, with x+ y = n,

and n denotes the size of the batch. Note that when an agent observes signal batch st:n in

period t, this implies that the last signal batch must have been observed in period t− n. As

signals continue to be i.i.d., it follows that:

P (st:n | θj) =
n−1∏
i=0

P (st−i | θj). (3)

We now consider how the agent’s beliefs evolve over t periods under different assumptions

regarding how information is incorporated into beliefs.

Narrow Information Processing. First, assume that information is observed at higher

frequencies. The limit case is n = 1. We call this narrow information processing. If information

is processed in narrow batches of size 1, the agent iterates the updating process described in

Equation (1) and (2) for each of the t periods:

πG,narrow
t (St) = (1− λ)πG,narrow

t−1 + λµG,narrow
t , (4)

with

µG,narrow
t (St) =

P (st | θG)πG,narrow
t−1∑

j=G,B P (st | θj)πj,narrow
t−1

. (5)

This updating procedure is the standard assumption in many models of rational belief
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updating, as new information is immediately incorporated into prior beliefs.

Broad Information Processing. Alternatively, assume that information is observed

at lower frequencies in batches of size n > 1. We call this broad information processing.

Since individuals cannot perform intermediate belief updates when observing information

in batches, they perform a single belief update based on the prior they had in period t− n.

Hence, the updating protocol is:

πG,broad
t (St) = (1− λ)πG,broad

t−n + λµG,broad
t , (6)

with

µG,broad
t (St) =

P (st:n | θG)πG,broad
t−n∑

j=G,B P (st:n | θj)πj,broad
t−n

, (7)

where P (st:n | θj) is the probability of observing batch st:n conditional on the type j ∈ {G,B}

and πG
t−n is the agent’s prior belief before observing the most recent batch in period t− n.

Note that the two updating processes outlined above require a different kind of mental

agility when updating beliefs. If information arrives in narrow batches, agents must put

substantially more effort into updating beliefs (as they update more frequently) but require

less memory as they do not need to keep track of all previous signals. In fact, the current

belief πG
t−1 and the most recent signal st are sufficient to know. If information arrives in broad

batches, individuals update less frequently but must incorporate all n signals of the most

recent batch into their prior belief from period t− n, which requires more memory capacity.

Most importantly, the two updating procedures result in different posterior beliefs,

πG,narrow
t ≠ πG,broad

t , despite observing the same signals up until period t. The only ex-

ception is when λ = 1, i.e. belief updating is Bayesian (see Cripps, 2018; for a related

discussion).
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3 Experimental Design

3.1 Baseline Design

In order to examine the causal effect of information partitioning on learning and beliefs

we require a setting with the following features: (1) individuals repeatedly incorporate

new information signals into their beliefs; (2) the frequency at which individuals observe

new information can be exogenously assigned; (3) beliefs can be compared to a normative

benchmark; and (4) the belief elicitation is incentive-compatible. We design four preregistered

experiments to accommodate these features.

In this section, we outline the features of our baseline experiment (Experiment 1) in

detail. In the experiment, subjects have to form beliefs about the fundamental quality of a

risky asset. The asset has a fixed probability of a price increase, si ∈ {0.20, 0.21, ..., 0.80},

which represents its fundamental quality. The asset starts with an initial price of 400. In each

period t ∈ {1, 2, ..., 50}, the price level of the asset either increases or decreases by a constant

amount; a price increase is always 10 and a price decrease is always −10. In every period,

the current and prior price levels are provided to subjects in a price-line chart. Since a price

increase is more likely to be observed if the risky asset has a higher fundamental quality si,

price changes correspond to signals about the asset’s fundamental quality.

Subjects are informed that the risky asset has a fixed fundamental quality between 20%

and 80%, but are not informed about the actual quality. Their task is to infer this quality from

the observed price changes. Specifically, we ask subjects to report their belief pi regarding

the probability of a price increase of the risky asset. Subjects record their beliefs using a

slider ranging from 20% to 80% in 1 percentage points increments. The key component of

our study is whether the elicited beliefs regarding the fundamental quality depends on how

information is partitioned. We introduce two between-subject treatments for eliciting beliefs

at different frequency, termed narrow information and broad information.

In the narrow information treatment, we elicit subjects’ beliefs about the asset’s fun-

damental quality every 10 periods. This treatment aims to elicit beliefs when information
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arrives in small amounts at higher frequency. Subjects start with an empty price-line chart

at period t = 0 which builds over time, reflecting the notion that small bits of information

arrive at higher frequency. Once they are ready to begin with the task, they observe a price

change every 0.5 seconds until they observe a total of 10 price changes, i.e., until period 10.

Afterwards, we elicit their beliefs about the asset’s fundamental quality (Figure 1a). This

process then continues in batches of 10 periods until subjects reach period 50, leading to a

total of five estimates.

In the broad information treatment, we elicit subjects’ beliefs about the asset’s fundamental

quality only once. This treatment aims to elicit beliefs when information arrives in large

amounts at lower frequency. Similar to before, subjects start with an empty price-line chart

at period t = 0. In contrast to the narrow information treatment, however, the graph does

not build over time. Once subjects are ready to begin, they observe all price changes between

period 1 and 50 at once. Afterwards, we elicit their beliefs about the asset’s fundamental

quality (Figure 1b).

Figure 1: Experiment 1: Treatments

(a) Narrow Information (b) Broad Information

Note: This figure presents exemplary screens of the estimation task as seen by subjects in Experiment 1. In the narrow information
treatment (a), the price-line chart builds over time and subjects beliefs about the asset’s fundamental are elicited every 10
periods. In the broad information treatment (b), subjects observe all price changes between period 1 and 50 at once and their
beliefs are only elicited in period 50.

Overall, subjects play multiple trials each consisting of 50 periods. The fundamental

quality of a risky asset is only fixed for one particular trial and as such varies across trials.
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This information is known to subjects. To account for the fact that subjects in the broad

information treatment make fewer choices than those in the narrow information treatment,

the former will complete eight trials (with 50 rounds each) while the latter only complete four

trials (with 50 rounds each). The experiment concludes with a brief survey about subjects’

socioeconomic background.

To analyze the influence of information partitioning on beliefs, it is crucial for our

experimental design that subjects between treatments have access to the same information.

We address this in two ways. First, our main variable of interest is subjects’ reported belief

about the fundamental quality of the risky asset in period 50. This ensures that the available

information set at the time of the decision is identical and allows to attribute any observed

difference in beliefs to our treatments. Second, we follow convention in randomly generating

the price paths before the experiment (e.g., Hartzmark et al., 2021; Fischbacher et al., 2017).

This not only facilitates between-subject analyses but also allows enables direct comparison of

beliefs between treatments conditional on observing the same information. We first randomly

drew 4 price paths for fundamental qualities greater than 50% (“positive paths” hereafter).

Next, for each price path we rotated price changes to create variation in observed price

path patterns without affecting the final price (and thus increasing statistical power without

changing the final Bayesian posterior). This way, we generated a total of 12 price paths

with fundamental qualities greater than 50%. Finally, we mirrored each price path to obtain

another 12 price paths for fundamental qualities of less than 50% (“negative paths” hereafter).

This allows us to detect potential asymmetries between increasing and decreasing price paths,

leading to a total of 24 price paths.

Subjects are incentivized based on the accuracy of their estimates. At the end of the

experiment, we randomly select three estimates. For each selected estimate pi that is within

plus or minus 5 percentage points of the true probability of a price increase, si, subjects

receive a bonus of £0.3. Additionally, subjects receive a fixed participation fee of £1.25. We

chose this incentivization mechanism for its simplicity by imposing fewer cognitive burdens

on subjects. Overall, this creates a simple and transparent learning environment which fosters

truthful reporting as the number of price increases and decreases are a sufficient statistic for
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calculating the posterior probability which we incentivize. In contrast, recent studies show

that more complex incentivization schemes such as the Binarized Scoring Rule (or variations

such as the Quadratic Scoring Rule) can systematically bias truthful reporting, resulting in

greater errors rates relative to simpler mechanisms (Danz et al., 2022).

In addition to the estimation task, we add a memory elicitation task in the spirit of

Gödker et al. (2021) to control the influence of our treatments on subjects’ memory. The

memory elicitation consists of a number of questions in which subjects have to recall specific

outcomes of the risky asset which they learn about. Specifically, we ask subjects to recall how

many positive and negative price changes they observed, the final price after period 50, as

well as the maximum streak length of subsequent positive respectively negative price changes.

The memory task always occurs after either the first or the last trial of an experiment in

a counterbalanced order. The memory task is not announced beforehand and subjects no

longer have access to the price-line chart. We aggregate the number of correctly recalled

questions to an overall memory score ranging from 0 (none of the five questions was answered

correctly) to 5 (all questions were answered correctly). The memory task is incentivized in

addition to the estimates. Subjects receive £0.1 for each correctly recalled question.

3.2 Recruitment Procedure

The experiment was computerized using oTree (Chen et al., 2016). We recruited a total of

3,059 individuals (N = 713 for Experiment 1) from the crowdsourcing platform Prolific to

participate in four experiments. The design, hypothesis, and sample selection criteria are all

preregistered2. The study obtained ethics approval by the Institutional Review Board of the

authors’ institution. The subject pool is comprised of subjects from the UK and the US.

2 The preregistration documents can be found at https://aspredicted.org/LJ1 GZ3 (Experiment 1), https://aspredicted.org/
DJP 5ZZ (Experiment 2), https://aspredicted.org/rp22-jwdt.pdf (Experiment 3), and https://aspredicted.org/jhf2-wk5x

.pdf (Experiment 4).
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4 Results

4.1 Information Partitioning and Learning

Accuracy of Beliefs

To assess the influence of information partitioning on beliefs, we first compare subjects’

estimation error, computed as the absolute difference between reported beliefs pi and Bayesian

beliefs bi in period 50, between the narrow and broad information treatments. If information

partitioning does not affect beliefs, there should be no difference in estimation error between

treatments. Figure 2 plots the average estimation error for each treatment, split by positive

(i.e., upward-trending) and negative (i.e., downward-trending) price paths.

Figure 2: Experiment 1: Estimation Error

Note: This figure plots the average estimation error (absolute difference between reported beliefs and Bayesian beliefs in period
50) per treatment in Experiment 1 for negative respectively positive price paths.

First, note that irrespective of whether the price path was increasing or decreasing, the

estimation error in the in narrow information treatment (blue bars) is significantly higher than

the estimation error in the broad information treatment (red bars). For negative price paths,

the estimation error in the narrow treatment is 7.9 percentage points, while the estimation
14



error in the broad treatment is 6.3 percentage points, leading to a difference of 1.6 percentage

points (p < 0.001). For positive price paths, the estimation error in the narrow treatment is

also 7.9 percentage points, while the estimation error in the broad treatment is 6.1 percentage

points, leading to a difference of 1.8 percentage points (p < 0.001). In relative terms, this

implies that observing information at higher frequency leads to estimation errors which are

on average 25% and 30% higher relative to observing information at lower frequency.

While the pattern in Figure 2 provides first insights on the influence of information

partitioning on beliefs, we test the following regression model to account for the dependence

of observations:

|Estimatei −Bayesi| = α + β1Bayesi + β2Narrowi + ϵi

We regress subjects’ estimation error after having observed all information on the Bayesian

posterior and a narrow information dummy, which equals 1 if a subject is in the narrow

information treatment and 0 otherwise.

Table 1: Experiment 1: Estimation Error

Overall Overall Negative Positive

bayes -0.07 -0.09 0.25*** -0.13***

(0.00) (0.00) (0.04) (0.04)
narrow 1.70*** 1.67*** 1.51*** 1.82***

(0.29) (0.28) (0.33) (0.37)

Controls No Yes Yes Yes
N 3,700 3,656 1,851 1,805
R2 0.02 0.04 0.06 0.05

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs in
period 50) as dependent variable and the Bayesian posterior, the narrow information dummy and control variables as independent
variables. Standard errors are clustered at the individual level and reported in parentheses. ***, **, and * denote significance at
the 1%, 5%, and 10% level, respectively.

Table 1 presents the results estimated on the whole sample (Columns (1) and (2)), as well

as for positive and negative price paths separately (Columns (3) and (4), respectively). Across

all specifications, the coefficient of Narrow is positive and highly statistically significant

(p < 0.001), suggesting that observing information at higher frequency on average leads to
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greater estimation errors. Consistent with the graphical evidence presented in Figure 2, this

suggests that partitioning information into narrower or broader brackets has a significant

influence on the accuracy of individuals’ expectations.

Information Weights and Belief Formation

To obtain a better understanding of why subjects in the narrow information treatment report

less accurate beliefs despite observing the same information, we investigate subjects’ reaction

to the provided information more closely. Specifically, we examine whether partitioning

information into narrower or broader brackets affects how subjects weigh information brackets

when forming their beliefs. Since subjects in the broad treatment receive all information at

once (one large bracket) and subjects in the narrow treatment receive information in five

brackets of 10 signals, we estimate the weight attached to all information versus the last

observed bracket. To do so, we run the following regression:

Estimatei = α + β1Narrowi + β2Alli + β3Alli ∗Narrowi

+β4Lasti + β5Lasti ∗Narrowi + ϵi

(8)

We regress subjects’ final posterior belief pi in round 50 on the Narrow dummy, as well as on

two variables, Alli and Lasti, that both capture blocks of information, and their interaction

with the treatment dummy. Alli corresponds to information observed over all 50 periods,

while Lasti corresponds to information observed over the last 10 periods. In Columns (1) and

(2) of Table 2, Alli (Lastit) is defined as the change in Bayesian beliefs between period 0 and

50 (40 and 50). In Columns (3) and (4), Alli (Lasti) is defined as the risky asset’s change in

price between period 0 and 50 (40 and 50)3.

As can be inferred, both more distant as well as more recent information influence subjects’

final posterior belief in both treatments. Notice that our design does not favor more recent

information. Instead, a Bayesian would put equal weight on all encountered signals. However,

regardless of whether the informational content is measured by the change in Bayesian

beliefs or by price changes, subjects in the narrow treatment put less weight on more distant

3 Table A2 in Appendix B additionally includes control variables and displays similar results.
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Table 2: Experiment 1: Beliefs

∆ Bayes ∆ Price
(1) (2) (3) (4)

narrow -0.37 omitted -0.37 omitted
(0.35) (0.36)

all 0.98*** 0.99*** 0.08*** 0.08***

(0.01) (0.01) (0.00) (0.00)
all × narrow -0.06*** -0.07*** -0.02*** -0.02***

(0.02) (0.02) (0.00) (0.00)
last 0.13* 0.13* 0.02*** 0.01***

(0.07) (0.07) (0.01) (0.01)
last × narrow 0.83*** 0.88*** 0.07*** 0.08***

(0.11) (0.12) (0.01) (0.01)

FE No Yes No Yes
N 3,700 3,700 3,700 3,700
R2 0.83 0.83 0.83 0.83

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy, Alli
and Lasti and their interactions with the narrow information dummy as independent variables. In columns (1) and (2), Alli
(Lasti) refers to the change in Bayesian beliefs between period 0 and 50 (40 and 50). In columns (3) and (4), Alli (Lasti) refers
to the change in price between period 0 and 50 (40 and 50). Standard errors are clustered at the individual level and reported in
parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

observations (p < 0.001) and more weight on recent information (p < 0.001) than subjects in

the broad treatment. In other words, partitioning information into narrower brackets causes

individuals to overweight more recently observed information brackets and to underweight

more distant information when forming beliefs. Importantly, this pattern is not limited to only

the last information bracket. In Table A3 in Appendix B, we report alternative specifications

that consistently show that subjects in the narrow treatment assign disproportionate weight

to more recent information brackets, while subjects in the broad treatment assign more equal

weight to all available information.

4.2 Exploring the Mechanism

The previous section demonstrates that partitioning information into narrower or broader

brackets influences learning and beliefs. In this section, we aim to provide evidence for a specific

mechanism behind the effect. Note that the belief partitioning effect is not consistent with

Bayesian learning which predicts no difference depending on how information is partitioned.
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Additionally, the effect is not consistent with models of motivated beliefs (e.g., Kunda, 1990;

Brunnermeier and Parker, 2005) or misattribution (e.g., Ross, 1977; Gagnon-Bartsch and

Bushong, 2022) which predict differences based on how desirable information is but not

depending on how the same information is partitioned, or models of recency bias (e.g.,

Camerer and Hua Ho, 1999; Fudenberg et al., 2014) which predict no difference as the most

recent information is identical across treatments. Finally, since our results are robust to

the inclusion of subject fixed effects, the belief partitioning effect cannot be explained by

heterogeneity based on fixed participant characteristics.

We now consider a mechanism under which partitioning information into narrower brackets

shifts attention from the macro-level (i.e., the information as a whole) to the micro-level (i.e.,

individual pieces of information). This heightened attention to small and frequent information

signals causes belief movement to become overly sensitive, which leads to the overweighting

of individual information brackets in the narrow treatment. The conjecture that increased

attention to individual information fosters greater overreaction is supported by recent studies

in economics and cognitive psychology. For instance, Hartzmark et al. (2021) show that

ownership channels attention towards signals associated with owned goods which leads to

over-extrapolation from such signals. Additionally, over-extrapolation is at least partly driven

by the associative nature of memory through recall when making judgements (e.g., Gennaioli

and Shleifer, 2010; Bordalo et al., 2020; Enke et al., 2020). For example, Enke et al. (2020)

show that people overreact to information because they are more likely to recall similar prior

information.

Prior work has shown that attention and memory have an intimate relation. Before a

signal can be recalled, it must first be encoded into memory. In fact, attention determines

what type of information is encoded into memory (Schwartzstein, 2014; Hartzmark et al.,

2021; Bohren et al., 2024). If partitioning information into narrower or broader brackets affects

attention and thus determines which signals are encoded into memory, then the cognitive

process outlined above generates testable hypotheses on comparative statics between the

partitioning of information and individuals’ beliefs and memory. We conjecture that – in the

spirit of choice bracketing (e.g. Read et al., 1999) – observing information at lower frequency
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(narrow information treatment) causes individuals to selectively focus their attention on small

blocks of information, thereby losing sight of the big picture. As a result, beliefs become

overly sensitive to recent information. We therefore expect that excessive attention to the

micro-level leads to worse memory at the macro-level, which eventually causes beliefs to be

further away from the Bayesian benchmark.

Information Partitioning and Memory

To test the mechanism outlined above, we first investigate whether partitioning information

into narrower or broader brackets influences how memorable the observed information is.

If subjects in the broad information treatment pay more attention to information at the

macro-level (i.e., they pay equal attention to all information brackets) than subjects in the

narrow information treatment, they should answer more memory questions correctly.

Table 3 displays subjects’ answers to the memory questions elicited in the baseline

experiment. Panel A shows the fraction of subjects who answered the respective question

correctly. Across questions and treatments approximately 17% of questions were answered

correctly. When the questions ask for the number of increases, the number of decreases or the

final price, the fraction answered correctly is significantly higher in the broad information

treatment than in the narrow information treatment. The differences are sizable as share

of correct answers in the broad information treatment are roughly 50% higher than in the

narrow information treatment. There is no difference between treatments for the questions

about the maximum streak length of increases and decreases. Comparing the number of

correctly answered questions reveals a similar pattern (Panel B).

Our memory analysis shows that subjects in the broad information treatment exhibit a

better recall than those in the narrow information treatment, which is in line with subjects

in the broad information treatment paying more attention to the macro-level than subjects

in the narrow information treatment. Next, we investigate the transmission of memory on

the formation of beliefs, by regressing subjects’ estimation error on their memory score, i.e.,

the number of correctly answered memory questions. Table 4 displays results for the whole

sample (Column 1), the whole sample with a treatment interaction (Column 2) and for
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Table 3: Experiment 1: Memory

Panel A: Fraction in %
Broad Narrow Difference

increases 19.81 13.57 6.24**

(2.11)
decreases 19.81 13.77 6.04**

(2.03)
final price 25.00 16.37 8.63***

(2.69)
streak up 16.04 17.96 -1.93

(0.62)
streak down 17.45 17.17 0.29

(-0.09)

Panel B: Number
Broad Narrow Difference

memory score (all 5) 0.98 0.79 0.19*

(1.83)
memory score (first 3) 0.65 0.44 0.21***

(3.53)

Note: This table displays answers to the memory questions of Experiment 1. Panel A displays the fraction of subjects who
answered correctly per question and by treatment (broad vs. narrow information). Panel B displays the memory score out of all
5 and out of the first 3 questions by treatment. In both panels, the final column presents Mann-Whitney tests for differences in
means across treatments; the corresponding z-scores are reported in parentheses. ***, **, and * denote significance at the 1%,
5%, and 10% level, respectively.

each treatment separately (Columns 3 and 4). All specifications consistently show that the

number of correctly answered memory questions is negatively related to the absolute difference

between subjective and objective beliefs. In other words, better recall at the macro-level

leads to more accurate belief forecasts, consistent with the outlined mechanism. Importantly,

the relation is present in both treatments and approximately equal in magnitude, suggesting

that although memory differs across treatments, the transmission mechanism of memory on

beliefs is not affected by how information is partitioned.

Information Partitioning and Attention

Finally, we aim to provide direct evidence for attention as underlying mechanism behind the

belief partitioning effect. We use a comparative static approach to exogenously manipulate

attention in the narrow information treatment. If the effects in our baseline experiment
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Table 4: Experiment 1: Memory and Accuracy

Overall Overall Narrow Broad

memory score -0.92*** -0.93*** -0.91*** -0.93***

(0.11) (0.15) (0.17) (0.16)
narrow 1.53*** 1.59***

(0.28) (0.34)
memory score × narrow 0.03

(0.23)

N 3,700 3,700 2,004 1,672
R2 0.05 0.05 0.02 0.04

Note: This table shows regressions with the absolute deviation of the subjects’ beliefs from the Bayesian posterior as dependent
variable and the memory score, and control variables as independent variables. Standard errors are clustered at the individual
level and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

are driven by differences in attention depending on how information is partitioned, then

exogenously manipulating attention in the narrow information treatment should diminish the

observed gap in beliefs across treatments. To do this, we conduct an additional experiment

(Experiment 2; N = 352), which directly builds on our baseline design. As in the narrow

information treatment of the baseline experiment, subjects observe a price change every

0.5 seconds and report their beliefs about the asset’s fundamental quality every 10 rounds.

However, before reporting their final belief in period 50, subjects have to watch the entire

price path rebuild and have to identify the price of the asset for five random periods (See

Figure B10 in Appendix C.). This method is inspired by prior research in cognitive psychology,

which shows that visual search fosters attention (Verghese, 2001; Mrkva and Van Boven,

2017). The periods are randomly drawn such that each 10-period bracket of the price path,

i.e., periods 1-10, 11-20, 21-30, 31-40, and 41-50, is covered. The price identification task was

incentivized: One trial was randomly selected to determine the bonus payment and subjects

received £0.5 if they identified all five prices in this trial correctly. We thereby aim to shift

attention away from individual information brackets towards the entire price path. If the

attention manipulation is successful, beliefs will move closer to those in the broad information

treatment of the baseline experiment.

Figure 3 plots subjects’ average estimation error for our attention manipulation (Ex-
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periment 2; in yellow) and compares it to the narrow (blue) and broad (red) information

treatment from the baseline.

Figure 3: Experiment 2: Estimation Error

Note: This figure plots the average estimation error (absolute difference between reported beliefs and Bayesian beliefs in period
50) in Experiment 2 in comparison to the narrow and broad information treatment of Experiment 1 for negative respectively
positive price paths.

Consistent with the our conjecture, we find that estimation errors in the attention

manipulation are significantly lower than those in the narrow treatment of the baseline

experiment (p < 0.01 for both negative and positive paths). Additionally, we find that

estimation errors in the attention manipulation (6.5 and 6.8 for negative and positive price

paths, respectively) are now statistically indistinguishable from estimation errors in the broad

treatment of our baseline experiment (6.1 and 6.3, for negative and positive price paths,

respectively). As such, shifting attention from the micro-level to the macro-level successfully

closes the gap between the narrow and the broad information treatment observed in the

baseline experiment. Table A4 in Appendix B confirms this in a regression setting.

Next, we investigate whether the attention manipulation affects how subjects weight

recent and more distant information when forming their beliefs. Specifically, we run the
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following regression model:

Estimatei = α + β1Attentioni + β2Alli + β3Alli ∗ Attentioni

+β4Lasti + β5Lasti ∗ Attentioni + ϵi

(9)

where Attention is a dummy that equals 1 if a subject is in the attention manipulation

and 0 if a subject is in the narrow information treatment of the baseline experiment. Table

5 presents the results. Compared to subjects in the narrow information treatment of our

baseline experiment, subjects in the attention manipulation underweight recent information

and overweight more distant information. Attention thus directly affects how information is

incorporated into subjects’ beliefs.

Table 5: Experiment 2: Beliefs

∆Bayes ∆Price
(1) (2) (3) (4)

attention -0.14 omitted -0.13 omitted
(0.35) (0.35)

all 0.91*** 0.92*** 0.07*** 0.07***

(0.01) (0.01) (0.00) (0.00)
all × attention 0.11*** 0.12*** 0.02*** 0.02***

(0.02) (0.02) (0.00) (0.00)
last 0.96*** 1.01*** 0.09*** 0.09***

(0.09) (0.00) (0.01) (0.01)
last × attention -0.70*** -0.86*** -0.06*** -0.07***

(0.11) (0.12) (0.01) (0.01)

FE No Yes No Yes
N 3,412 3,412 3,412 3,412
R2 0.83 0.83 0.82 0.82

Note: This table shows regressions with the final posterior belief as dependent variable and the attention dummy, Alli and Lasti
and their interactions with the narrow information dummy as independent variables. In columns (1) and (2), Alli (Lasti) refers
to the change in Bayesian beliefs between period 0 and 50 (40 and 50). In columns (3) and (4), Alli (Lasti) refers to the change
in price between period 0 and 50 (40 and 50). Standard errors are clustered at the individual level and reported in parentheses.
***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

Finally, we use subjects’ answers to the memory questions to validate that our manipulation

indeed affects attention and ultimately memory. The results of this exercise are reported in

Table 6. Panel A shows that the fraction of correct answers in the attention manipulation is
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higher than in the baseline for each of the 3 questions asked in the attention manipulation4.

In comparison to the broad information treatment, the differences in fractions are small and

not significant, but in comparison to the narrow information treatment the differences are

highly significant. The attention manipulation increases the fraction of correct answers in the

narrow information treatment by at least 50%, resulting in a level of correct answers which is

similar to the one in the broad information treatment. Panel B confirms this impression using

the number of correctly answered questions. We conclude that our attention manipulation

was indeed successful in shifting subjects’ attention towards the entire price path, resulting

in a better ability to recall the provided information at the macro-level.

Table 6: Experiment 2: Memory

Panel A: Fraction in %
Attention Broad Difference Narrow Difference

increases 23.58 19.81 3.77 13.57 10.01***

(1.04) (3.77)
decreases 23.58 19.81 3.77 13.77 9.81***

(1.04) (3.68)
final price 24.15 25.00 -0.85 16.37 7.78***

(-0.23) (2.82)

Panel B: Number
Attention Broad Difference Narrow Difference

memory score 0.71 0.65 0.07 0.44 0.28***

(0.58) (4.68)

Note: This table displays answers to the memory questions of Experiment 2 in comparison to the broad respectively narrow
information treatment of Experiment 1. Panel A displays the fraction of subjects who answered correctly per question and Panel
B displays the memory score out of all 3 questions asked in Experiment 2. In both panels, Mann-Whitney tests are used to test
for differences in means; the corresponding z-scores are reported in parentheses. ***, **, and * denote significance at the 1%, 5%,
and 10% level, respectively.

5 Applications

In this section, we explore applications of the influence of information partitioning on the

formation of beliefs. We first study an application to financial markets in which more recent

4 In comparison to the baseline experiment, the recall task in the attention manipulation only comprises the questions regarding
the number of positive and negative price changes, as well as the final price in period 50.
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information carries greater value than older information. Second, we study an application to

consumer choice, in which customers judge the quality of a good based on online reviews.

5.1 Financial Markets

One of the basic premises in financial economics is that market prices are very informative

about the fundamentals of traded assets (Goldstein, 2023). However, not all available (re-

cent and past) prices are equally informative. If markets are efficient, stock prices should

rapidly incorporate all value-relevant signals and thus quickly become stale information. This

distinctive feature is different from the environment studied in our baseline experiments, in

which all information is equally important for the formation of beliefs. Our results so far show

that individuals who observe information in narrow brackets overweight recent information,

leading to less accurate beliefs compared to individuals who observe information in broad

brackets. However, if more recent information is also more informative, observing information

in narrow brackets may result in better calibrated beliefs. We test this conjecture in a third

experiment (Experiment 3; N = 998).

The third experiment builds directly on our baseline design. To incorporate the notion

that more recent information is more important, we changed the underlying data-generating

process from which stock price movements are generated. Specifically, the probability of

positive and negative price changes (+/− 10) now depends on the underlying state of the

asset. At first, the asset can be in a good state or bad state with equal probability. If the

asset is in the good state, the probability of a positive return is 70% (and negative return

30%). If the asset is in the bad state, the probability of a positive return is 30% (and negative

return 70%). The state of the asset remains fixed for 10 periods (out of 50). After every 10th

period the state of the asset changes with 25% probability and remains the same with 75%

probability. As such, price changes are governed by a Markov chain. A direct consequence of

this Markov chain is that a Bayesian agent would overweight more recent signals as they are

more diagnostic of the current state compared to older signals. The data-generating process

is known to the subjects, and their understanding of it is ensured by comprehension checks.

In addition to mimicking a price process representing financial markets, we conduct the
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experiment on a sample of more sophisticated investors who report to regularly participate

in the stock market.

We start by investigating subjects’ estimation error. Table 7 displays estimates of Equation

8 for the whole sample (Columns (1) and (2)), as well as for positive and negative price

paths separately (Columns (3) and (4), respectively). The coefficient of Narrow is highly

statistically significant and of similar magnitude across all specifications, confirming that

information partitioning also affects beliefs in a setting with a different data-generating

process and in a sample of more financially sophisticated investors. Note that the coefficient

is negative, indicating that subjects in the narrow treatment form beliefs that are closer

to the Bayesian benchmark. Although this seems opposite to our previous findings, it is

behaviorally consistent with a data-generating process in which more recent information is

more informative about the underlying state. This conjecture rests on the assumption that

Table 7: Finance Application: Estimation Error

Overall Overall Negative Positive

bayes -0.01 -0.01 0.18*** -0.18***

(0.01) (0.01) (0.02) (0.02)
narrow -3.80*** -3.69*** -4.23*** -3.07***

(0.91) (0.91) (1.17) (1.07)

Controls No Yes Yes Yes
N 3,024 3,000 1,704 1,296
R2 0.01 0.01 0.12 0.16

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs in
period 50) as dependent variable and the Bayesian posterior, the narrow information dummy and control variables as independent
variables. Standard errors are clustered at the individual level and reported in parentheses. ***, **, and * denote significance at
the 1%, 5%, and 10% level, respectively.

individuals in the narrow treatment put more weight on more recent information in their

belief formation than those in the broad treatment, as documented in our main experiment.

To ensure that this is still the case, we estimate Equation 9. Coefficient estimates are displayed

in Columns (1) and (2) of Table 8. As before, we find that individuals who receive information

in narrow brackets put more weight on more recent information than those who receive

information in broad brackets. This finding is important as it shows that the observed behavior

across experiments is identical. However, the underlying data-generating process ultimately
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decides whether the behavior leads to better or worse calibrated beliefs.

Table 8: Applications: Beliefs

Finance Consumer Choice
(1) (2) (3) (4)

narrow -2.36*** omitted -0.32** -0.30**

(0.90) (0.13) (0.13)
all 0.08*** 0.09*** 0.94*** 0.96***

(0.01) (0.01) (0.11) (0.11)
all × narrow -0.00 0.00 -0.31* -0.32*

(0.01) (0.01) (0.17) (0.17)
last 0.12*** 0.11*** 0.05 0.06

(0.02) (0.02) (0.11) (0.11)
last × narrow 0.07*** 0.07*** 0.51*** 0.49***

(0.02) (0.02) (0.17) (0.17)

FE No Yes No No
Controls No No No Yes
N 3,024 3,024 996 989
R2 0.54 0.54 0.13 0.13

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy, Alli
and Lasti and their interactions with the narrow information dummy as independent variables. In column (1) and (2), Alli
(Lasti) refers to the change in price between period 0 and 50 (40 and 50) in the finance application. In column (3) and (4), Alli
(Lasti) refers to the quality of all 15 (the last 3) ratings in the consumer choice application. In column (3) and (4), standard
errors are clustered at the individual level. In column (3) and (4) standard errors are robustly estimated instead of clustered as
there is only one observation per individual. Standard errors are reported in parentheses. ***, **, and * denote significance at
the 1%, 5%, and 10% level, respectively.

5.2 Consumer Choice

In many online market places, consumers can learn about the quality of a good or service by

reading reviews from other customers. Similarly to the information environment studied in

our baseline setting, online market places typically place more equal weight on all available

reviews as long as the product remains the same and is not replaced by an updated version. In

contrast to the settings studied so far, these reviews are often more qualitative in nature, as

customers write about their experiences and opinions. To investigate whether the partitioning

of (qualitative) information into smaller or larger brackets affects consumer judgments, we

conduct a fourth experiment (Experiment 4; N = 996).

In the experiment, subjects learn about the quality of a fictional smartphone. We chose
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smartphones as they are generic products with a stable quality in between new releases. To

assess the quality, subjects observe a total of 15 product ratings. Each rating consists of an

overall score (displayed as a 1 to 5 star rating), a short summary statement of the rating, as

well as one good and one bad aspect about the phone5. After observing the ratings, subjects

assess the quality of the phone on a scale from 1 (very bad) to 7 (very good) in 0.1 increments.

The question wording was inspired by prior research on product ratings (e.g., Floyd et al.,

2014; Ziegele and Weber, 2015). To establish a reasonable benchmark for quality, we follow

Bhatt et al. (2015) and classify products for which the majority of the ratings display 4

and 5 stars as ’good’ products and product for which the majority of the ratings display 1

and 2 stars as ’bad’ products. We drew multiple sets of ratings such that the cumulative

signals imply a good product in some sets and a bad product in other sets. As in our baseline

experiment, we exogenously vary the frequency at which ratings are observed. In the narrow

information treatment, we elicit subjects’ quality assessment after every third rating and as

such 5 times in total. Although subjects observe ratings in batches of 3, all previous ratings

are displayed jointly with the new batch of ratings to avoid memory concerns and make

the comparison as clean as possible. In the broad information treatment, we elicit subjects’

quality assessment only once after all ratings have been observed.

Even in this rather simplistic setting with qualitative information signals, we find that

partitioning information in smaller or larger brackets causally affects judgment. Specifically,

we find that observing reviews in larger brackets (broad treatment) leads to more optimistic

product ratings for good products (4.30 vs. 3.99, for broad and narrow, respectively; p < 0.01).

For bad products, we observe a similar pattern, although less pronounced and not statistically

significant (3.35 vs. 3.24, for broad and narrow respectively; p > 0.1), likely because consumers

have much more differentiated opinions for goods with positive rather than negative evaluations

in online commerce settings (Bhatt et al., 2015).

Since it is difficult to judge whether subjective ratings in the narrow or broad treatment

better reflect subjects’ true opinion in absence of a clear benchmark, we instead focus on how

information is weighted in their final assessment. This allows us to draw inference whether

5 All product ratings displayed in the study are AI generated without reference to a brand. Each rating has been manually
evaluated to ensure its appropriateness and whether the wording is comprehensible. Screenshots of the display format are
contained in Figures B11 and B12 in Appendix C.
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the behavior is internally consistent with the behavior documented in our previous settings.

To do so, we again compare how information early and late in the sequence affects final

judgments across the broad and narrow treatment. Coefficient estimates of Equation 9 are

displayed in Columns (3) and (4) of Table 8. The results confirm our previous conjecture.

We observe that individuals in the narrow treatment put more weight on recently observed

information, while individuals in the broad treatment put more weight on the aggregate

information and less weight on recent information. Overall, this shows that our results are

highly consistent across information type (qualitative vs. quantitative), setting (financial

markets vs. online market places), and data-generating processes (equal-weighted information

signals vs. Markov chain).

6 Alternative Explanations

6.1 Number of Trials

Subjects in narrow information treatment provide estimates more frequently and thus spend

more time and effort on each stock than subjects in the broad information treatment. To avoid

cognitive fatigue and enable a fair comparison between treatments, we confront subjects in the

narrow information treatment with only four instead of eight trials. While our experimental

design does not provide feedback after each trial, subjects might still become more familiar

with the setting over the course of these trials. We therefore check whether the different

number of trials between treatments affects our results. We distinguish between the first

and the second half of trials per treatment. For subjects in the narrow (broad) information

treatment, estimates of the first 2 (4) trials are in the first half, and estimates of the last 2 (4)

trials are in the second half. Our findings remain. Even in the second half of our experiment,

subjects in the narrow information treatment exhibit greater estimation errors and put more

weight on recent rather than more distant observations relative to subjects in the broad

information treatment (See Table A5 and A6 in Appendix B). The fact that subjects in

the broad information treatment face more trials than subjects in the narrow information

treatment cannot explain the information partitioning effect.

29



6.2 Attentiveness

Another potential concern is that some subjects are overburdened with the experiment and

as a result rush through it without being attentive and making an effort. Since subjects in the

narrow treatment have to provide more estimates per trial, they might become careless more

easily. First, as preregistered, subjects who always provide the same estimate or – similar to

the exclusion criteria of Enke and Graeber (2023) – provide estimates which deviate more

than 30 percentage points from the Bayesian posterior6 are excluded. Second, note that the

analysis in the previous subsection confirms our results for the first half of trials, i.e., when

attentiveness in both treatments is still high. Third, we investigate participants’ total working

time as a proxy for effort. If carelessness is at play, we should observe that those participants

who completed the experiment the quickest are driving our results. We follow Enke and

Graeber (2023) and define subjects who are in the bottom quintile of the total working time

distribution as speeders. Table A7 and A8 in Appendix B report results of our main analysis

excluding these speeders. If anything, results for attentive subjects are even stronger than for

the entire sample. The information partitioning effect is not driven by inattentiveness.

6.3 Statistical Skill

The question remains whether our findings are transferable to more experienced and so-

phisticated subjects. Note that subjects in our experiments are required to answer three

comprehension questions correctly before they can proceed to the actual task to ensure

their understanding of the underlying setting (See Appendix C). In addition, subjects who

substantially deviate from the objective benchmark as described above are excluded from

our analysis. Our sample therefore comprises only of subjects who exhibit a sufficient un-

derstanding of the task. Within this sample, we further distinguish between subjects with

low respectively high self-reported statistical skill7. While higher statistical skill is associated

with lower estimation errors in general, the effect of information partitioning on estimation

6 Since the Bayesian posterior in our design is bound between 20% and 80%, a deviation of more than 30 percentage points signals
a significant misunderstanding of the task.

7 Subjects who reported above (below or equal to) median statistical skill belong to the high (low) skill subsample.
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errors is even stronger among high-skilled subjects (Table A9). Observing information at

higher frequency leads also subjects with high skill to overweight recent information and

underweight more distant information relative to observing information at lower frequency

(Table A10). The information partitioning effect thus applies to both naive and sophisticated

subjects.

6.4 Intermediate Updates

Lastly, we investigate the role of intermediate belief updating in the narrow treatment.

Specifically, subjects in our narrow information treatments not only observe the information

at a higher frequency, but also provide an intermediate estimate after each information

bracket. In any standard model of belief updating, the influence of partitioning information at

different frequencies and the updating of beliefs cannot be separated, as individuals are usually

assumed to update whenever new information arrives. Our experiments were designed to

reflect this property and to ensure that each subject briefly reviews the provided information.

Still, we can experimentally test the influence of this intermediate updating.

In our financial markets study, we ran a third treatment in which subjects observe

information in narrow brackets (i.e., the price-line chart slowly builds over time) but only

provide one final estimate. We call this the mixed treatment. Results for the estimation error

are displayed in Figure A1 in Appendix B. As can be inferred, the average estimation error

in the mixed treatment is between the errors in the narrow and broad treatment. This is

not unexpected. Since we cannot control whether subjects pay attention to the individual

information brackets, the mixed treatment likely contains both subjects who do not pay

close attention to intermediate signals and only focus on the final graph (akin to the broad

treatment) and subjects who do pay attention and try to adjust their beliefs after each

information bracket (akin to the narrow treatment).
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7 Conclusion

In this paper, we experimentally study the influence of information partitioning on learning

and beliefs. We show that partitioning information into narrower or broader brackets influences

how individuals incorporate such information into their expectations. Observing information in

narrower brackets causes individuals to overweight more recent information and to underweight

distant information. Similar behavior cannot be observed if information is partitioned into

broader brackets, where individuals appear to put equal weight on recent and distant

information. Depending on the underlying data-generating process, the overweighting of

recent information leads to less or more accurate judgements when information is partitioned in

narrower brackets. In exploring the mechanism, we demonstrate that partitioning information

into narrower brackets channels attention towards isolated information signals rather than

the joint set of information. This heightened attention to small pieces of information not only

leads to overextrapolation from recent signals, but also to significantly worse recall of the

encountered information.

Our results imply that breaking information into smaller or larger partitions can be

a powerful tool to alter individuals’ expectations with applications in diverse fields. For

instance, firms or information providers such as financial advisors often choose whether

to disclose information regarding company performance or product ratings in narrower or

broader brackets. Such choices could either willingly or unwillingly manipulate their clients’

judgements. On a broader scale, one may argue that narrow bracketing enables many well-

documented errors in probabilistic reasoning. For instance, individuals’ belief in the law

of small numbers – i.e., the belief that small random samples are highly representative of

their underlying population (Tversky and Kahneman, 1971) – would have a smaller impact

on judgements if information is presented in broad brackets (and thus in larger samples).

Similarly, base-rate neglect – the fact that people on average under-use prior information

(Kahneman and Tversky, 1973) – causes individuals to “jump to conclusions” when presented

with small information samples but leads to persistent uncertainty when presented with larger

samples (Benjamin, 2019). As such, the implications of base-rate neglect for belief updating
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also likely depend on whether information is framed in narrow or broad brackets.
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A Proofs and Derivations

A.1 Proof of Proposition 1

Proposition 1: For λ = 1 information partitioning information into smaller or larger brackets

does not influence posterior beliefs (πj,narrow
t = πj,broad

t ).

Proof: We first show that for λ = 1, µj,narrow
t = µj,broad

t = µj,Bayes
t .

First, notice that for λ = 1, we obtain πj
t−1 = µj

t−1 for any t. We first show that µj,narrow
t =

µj,Bayes
t . Afterwards, we show that µj,broad

t = µj,Bayes
t , from which µj,narrow

t = µj,broad
t follows.

Narrow Information Processing:

We start by rewriting the model in the posterior-odds form:

µG,narrow
t

µB,narrow
t

=
P (st | θG)
P (st | θB)

· P (St−1 | θG)
P (St−1 | θB)

, (10)

where P (st | θj) is the probability of observing signal st conditional on the type j ∈ {G,B},

and P (St−1 | θG) is the probability of observing the full signal history St−1 until period t− 1

conditional on type j ∈ {G,B}.

Next, notice that P (St−1 | θj) can be rewritten as P (st−1 | θj)P (St−2 | θj) as the signal

process is i.i.d. By continuously substituting, Equation (10) can be rewritten as:

µG,narrow
t

µB,narrow
t

=
P (St | θG)
P (St | θB)

· π
G
0

πB
0

, (11)

where πj
0 represents the agent’s prior belief about the distribution of good and bad types.

This corresponds to the standard Bayesian updating process.

Broad Information Processing:

We again rewrite the model in the posterior-odds form:

µG,broad
t

µB,broad
t

=
P (st:n | θG)
P (st:n | θB)

· P (St−n | θG)
P (St−n | θB)

, (12)
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where P (st:n | θj) is the probability of observing signals from a batch of size n in period t

conditional on type j ∈ {G,B}, and P (St−n | θG) is the probability of observing the full

signal history St−n until period t− n conditional on type j ∈ {G,B}.

Notice that P (st:n | θj) can be rewritten as
∏n−1

i=0 P (st−i | θj) as the signal process is i.i.d.

Additionally, P (St−n | θj) can be rewritten as P (st−n | θj)P (St−n−1 | θj). By continuously

substituting, Equation (12) can be rewritten as:

µG,broad
t

µB,broad
t

=
P (St | θG)
P (St | θB)

· π
G
0

πB
0

, (13)

which is the same as
µG,narrow
t

µB,narrow
t

.

Since for λ = 1, we obtain πj
t = µj

t , it follows that π
j,narrow
t = πj,broad

t .
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A.2 Proof of Proposition 2

Proposition 2: For λ ̸= 1 information partitioning information into smaller or larger brackets

generally results in different posterior beliefs (π
(j,narrow)
t ̸= π

(j,broad)
t ).

Proof: We first show that for narrow information processing the order of signals matters,

whereas for broad information processing it does not. We then show that the two processes

lead to generally different posterior beliefs. Note that for t = 1 the updating processes are

identical as it has to follow that n = 1, too. We thus show that they are different for t > 1.

Order of signals Let σ be a permutation of the set Σ = {1, 2, . . . , t}, and define the

permuted signal sequence as S ′
t = (sσ(1), . . . , sσ(t)) with S ′

t ̸= St.

Narrow Information Processing:

When processing one signal at a time (n = 1), by iterating:

π
(G,narrow)
k (Sk) = (1− λ)π

(G,narrow)
k−1 + λµ

(G,narrow)
k for k = 1, . . . , t (14)

one shows by recursion that

π
(G,narrow)
t (St) = (1− λ)tπG

0 + λ

t∑
i=1

(1− λ)t−iµ
(G,narrow)
i (15)

This is exactly the same algebraic expansion used in the proof of Proposition 1 for λ = 1,

but now with an extra (1− λ) damping at each iteration due to λ ̸= 1.

Consider the permuted belief as:

π
(G,narrow)
t (S ′

t) = (1− λ)tπG
0 + λ

t∑
i=1

(1− λ)t−iµ
(G,narrow)
σ(i) (16)

Then, for any λ ̸= 1, there exist signal sequences St and S ′
t, which are permutations of one

another (i.e., have the same number of g and b signals), such that

π
(G,narrow)
t (St) ̸= π

(G,narrow)
t (S ′

t) (17)
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That is, the narrow belief update is not invariant to the order of signals. To show this, we

proceed by constructing a simple counterexample for t = 2. Consider the following two

sequences of signals S2 = (g, b) and S ′
σ(2) = (b, g).

Case 1: S2 = (g, b)

The agent’s first period belief is

π
(G,narrow)
1 (g) = (1− λ)πG

0 + λµ
(G,narrow)
1 (g; πG

0 ), (18)

where µ
(G,narrow)
1 (g; πG

0 ) denotes the Bayesian posterior for observing signal g conditional on

the prior πG
0 . Then, the agent’s second period belief is

π
(G,narrow)
2 (g, b) = (1− λ)π

(G,narrow)
1 (g) + λµ

(G,narrow)
1 (b; π

(G,narrow)
1 (g)), (19)

where µ
(G,narrow)
1 (b; π

(G,narrow)
1 (g)) denotes the Bayesian posterior for observing signal b condi-

tional on the prior π
(G,narrow)
1 (g).

Case 2: S ′
σ(2) = (b, g)

The agent’s first period belief is

π
(G,narrow)
1 (b) = (1− λ)πG

0 + λµ
(G,narrow)
1 (b; πG

0 ), (20)

where µ
(G,narrow)
1 (b; πG

0 ) denotes the Bayesian posterior for observing signal b conditional on

the prior πG
0 . The second period belief is

π
(G,narrow)
2 (b, g) = (1− λ)π

(G,narrow)
1 (b) + λµ

(G,narrow)
1 (g; π

(G,narrow)
1 (b)), (21)

where µ
(G,narrow)
1 (g; π

(G,narrow)
1 (b)) denotes the Bayesian posterior for observing signal g condi-

tional on the prior π
(G,narrow)
1 (b).

Comparing both second period beliefs, note that µ
(G,narrow)
1 (g; πG

0 ) > πG
0 > µ

(G,narrow)
1 (b; πG

0 )

given that 0 < θB < θG < 1, i.e., signal g increases posteriors about type G, while sig-

nal b decreases them. Given that the function is increasing in µ
(G,narrow)
1 , it follows that

π
(G,narrow)
1 (g) > πG

0 > π
(G,narrow)
1 (b). But then, because the posterior depends nonlinearly on
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the prior for λ ̸= 1, we generally obtain that

µ
(G,narrow)
1 (b; π

(G,narrow)
1 (g)) ̸= µ

(G,narrow)
1 (g; π

(G,narrow)
1 (b)), (22)

and therefore

π
(G,narrow)
2 (g, b) ̸= π

(G,narrow)
2 (b, g). (23)

As such, the narrow belief updating for λ ̸= 1 is non-commutative. In fact, for λ < 1 recent

signals influence beliefs more weakly while earlier signals anchor beliefs more heavily, while

for λ > 1, the opposite is the case.

Broad Information Processing

When processing the information in batches of size n > 1, the updating rule is:

π
(G,broad)
t (St) = (1− λ)π

(G,broad)
t−n + λµ

(G,broad)
t (24)

First, consider the agent’s belief after observing the first batch of signals (t = n), which

simplifies the updating rule to

π
(G,broad)
t (St) = (1− λ)πG

0 + λµ
(G,broad)
t (25)

Since λ ≠ 1, the ordering of signals within a batch can only matter if and only if it affects

the posterior implied by the most recent batch of signals µ
(G,broad)
t . However, because signals

are i.i.d. by assumption, the ordering within a batch of signals is irrelevant:

P (St|θj) =
t∏

i=1

P (si|θj) =
t∏

i=1

P (sσ(i)|θj) = P (Sσ(t)|θj) (26)

From Equation (26) immediately follows that the posterior implied by the signal µ
(G,broad)
t is

independent of the ordering of signals. Thus, by repeated substitution one can show that

π
(G,broad)
t (St) = π

(G,broad)
t (Sσ(t)) (27)
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holds for any t > n, as long as the ordering between batches does not change. Note that

when the ordering between batches changes too, results for the broad information processing

converge to narrow information processing for n → 1, and diverge for n → T .

Determining the Difference

∆ = π
(G,narrow)
t − π

(G,broad)
t = λ

[
t∑

i=1

(1− λ)t−iµ
(G,narrow)
i − µ

(G,broad)
t

]
+ [(1− λ)t − (1− λ)]πG

0

(28)

For this difference to be zero (and the posteriors between the processes to be zero) we thus

require

λ

[
t∑

i=1

(1− λ)t−iµ
(G,narrow)
i − µ

(G,broad)
t

]
= [(1− λ)− (1− λ)t]πG

0 (29)

The RHS is non-zero for λ ̸= 1, but only depends on λ and the scalar πG
0 . It is independent

of the signal ordering and constant for a given λ and prior πG
0 . The LHS, however, depends

on the signal ordering. It thus cannot generally equal the RHS.

It follows that π
(j,narrow)
t is generally not equal to π

(j,broad)
t .
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B Additional Figures and Tables

Figure A1: Intermediate Updates: Estimation Error

Note: This figure plots the average estimation error (absolute difference between reported beliefs and Bayesian beliefs in period
50) per treatment in the Finance Application for negative respectively positive price paths.
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Table A1: Summary Statistics

Panel A: Experiment 1 (N = 713)
Full Sample Broad Narrow Difference

age 41.17 41.05 41.23 0.18
(13.53) (13.28) (13.64)

female 0.48 0.46 0.49 0.03
(0.50) (0.50) (0.50)

risk aversion (1 − 7) 3.58 3.62 3.55 0.07
(1.61) (1.61) (1.62)

statistic skill (1 − 7) 4.06 3.99 4.10 0.11
(1.38) (1.33) (1.40)

Panel B: Experiment 2 (N = 352)
Full Sample

age 36.65
(12.27)

female 0.48
(0.50)

risk aversion (1 − 7) 3.29
(1.57)

statistic skill (1 − 7) 4.23
(1.36)

Note: This table displays summary statistics. Results are reported separately for Experiment 1 (Panel A) by treatment (broad
vs. narrow information) and Experiment 2 (Panel B). The final column in Panel A presents t-tests for differences in means
across treatments. Standard deviations are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10%
level, respectively.
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Table A2: Experiment 1: Beliefs – Controls

∆ Bayes ∆ Price
(1) (2) (3) (4) (5) (6)

narrow -0.37 omitted -0.40 -0.37 omitted -0.40
(0.35) (0.35) (0.36) (0.35)

all 0.98*** 0.99*** 0.98*** 0.08*** 0.08*** 0.08***

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
all × narrow -0.06*** -0.07*** -0.06*** -0.02*** -0.02*** -0.02***

(0.02) (0.02) (0.02) (0.00) (0.00) (0.00)
last 0.13* 0.13* 0.14* 0.02*** 0.01*** 0.02***

(0.07) (0.07) (0.07) (0.01) (0.01) (0.01)
last × narrow 0.83*** 0.88*** 0.83*** 0.07*** 0.08*** 0..07***

(0.11) (0.12) (0.11) (0.01) (0.01) (0.01)

Controls No No Yes No No Yes
FE No Yes No No Yes No
N 3,700 3,700 3,656 3,700 3,700 3,656
R2 0.83 0.83 0.83 0.83 0.83 0.83

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy, Alli
and Lasti, their interactions with the narrow information dummy and control variables as independent variables. In columns (1)
to (3), Alli (Lasti) refers to the change in Bayesian beliefs between period 0 and 50 (40 and 50). In columns (4) to (6), Alli
(Lasti) refers to the change in price between period 0 and 50 (40 and 50). Standard errors are clustered at the individual level
and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.
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Table A3: Experiment 1: Beliefs - Blocks of Information

∆ Bayes ∆ Price
(1) (2) (3) (4) (5) (6)

first40 × narrow -0.07*** -0.02***

(0.02) (0.00)
last10 × narrow 0.81*** 0.06***

(0.11) (0.01)
first30 × narrow -91.08*** -0.04***

(12.18) (0.01)
last20 × narrow 0.79*** 0.05***

(0.11) (0.01)
first20 × narrow -6.58*** -0.01**

(2.12) (0.00)
middle20 × narrow -13.27** -0.02***

(5.21) (0.00)
last10 × narrow 0.80*** 0.06***

(0.11) (0.01)

FE Yes Yes Yes Yes Yes Yes
N 3,700 3,700 3,700 3,700 3700 3700
R2 0.83 0.81 0.83 0.83 0.72 0.82

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy,
different blocks of information, and their interaction with the narrow information dummy as independent variables. For conciseness,
only the coefficients on the interactions are reported. In columns (1) to (3), the blocks of information refer to the change in
Bayesian beliefs. In columns (4) to (6), the blocks of information refer to the change in price. Standard errors are clustered at
the individual level and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.
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Table A4: Experiment 2: Accuracy

Overall Overall Negative Positive

bayes 0.01 0.01 0.26*** -0.08**

(0.01) (0.01) (0.04) (0..04)
attention -1.30*** -1.08*** -1.29*** -0.84**

(0.28) (0.28) (0.33) (0.38)

Controls No Yes Yes Yes
N 3,412 3,360 1,677 1,683
R2 0.01 0.03 0.05 0.03

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs
in period 50) as dependent variable and the Bayesian posterior, the attention dummy and control variables as independent
variables. Standard errors are clustered at the individual level and reported in parentheses. ***, **, and * denote significance at
the 1%, 5%, and 10% level, respectively.
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Table A5: Experiment 1: Estimation Error – Number of Trials

Panel A: First Half
Overall Overall Negative Positive

bayes 0.00 0.02 0.22*** -0.15**

(0.01) (0.01) (0.05) (0.06)
narrow 1.95*** 1.91*** 1.73*** 2.00***

(0.36) (0.36) (0.42) (0.51)

Controls No Yes Yes Yes
N 1,850 1,828 931 897
R2 0.02 0.04 0.07 0.05

Panel B: Second Half
Overall Overall Negative Positive

bayes -0.00 -0.00 0.27*** -0.11**

(0.01) (0.01) (0.05) (0.05)
narrow 1.45*** 1.43*** 1.31*** 1.59***

(0.34) (0.33) (0.40) (0.43)

Controls No Yes Yes Yes
N 1,850 1,828 920 908
R2 0.01 0.04 0.07 0.06

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs in
period 50) as dependent variable and the Bayesian posterior, the narrow information dummy and control variables as independent
variables for the first respectively second half of trials. Standard errors are clustered at the individual level and reported in
parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.
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Table A6: Experiment 1: Beliefs – Number of Trials

Panel A: First Half
∆ Bayes ∆ Price

(1) (2) (3) (4)

narrow -0.32 omitted -0.30 omitted
(0.47) (0.48)

all 0.98*** 1.01*** 0.08*** 0.09***

(0.02) (0.02) (0.00) (0.00)
all × narrow -0.09*** -0.12*** -0.02*** -0.02***

(0.03) (0.03) (0.00) (0.00)
last 0.17 0.18* 0.02** 0.02**

(0.11) (0.11) (0.01) (0.01)
last × narrow 0.94*** 0.98*** 0.08*** 0.09***

(0.16) (0.20) (0.01) (0.02)

FE No Yes No Yes
N 1,850 1,850 1,850 1,850
R2 0.81 0.81 0.81 0.81

Panel B: Second Half
∆ Bayes ∆ Price

(1) (2) (3) (4)

narrow -0.41 omitted -0.43 omitted
(0.42) (0.43)

all 0.98*** 0.99*** 0.08*** 0.09***

(0.02) (0.02) (0.00) (0.00)
all × narrow -0.05** -0.05** -0.01*** -0.01***

(0.02) (0.03) (0.00) (0.00)
last 0.09 0.09 0.01 0.01

(0.09) (0.10) (0.01) (0.01)
last × narrow 0.73*** 0.67*** 0.06*** 0.06***

(0.14) (0.17) (0.01) (0.01)

FE No Yes No Yes
N 1,850 1,850 1,850 1,850
R2 0.85 0.85 0.85 0.85

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy, Alli
and Lasti and their interactions with the narrow information dummy as independent variables for the first respectively second
half of trials. In columns (1) and (2), Alli (Lasti) refers to the change in Bayesian beliefs between period 0 and 50 (40 and 50).
In columns (3) and (4), Alli (Lasti) refers to the change in price between period 0 and 50 (40 and 50). Standard errors are
clustered at the individual level and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level,
respectively.
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Table A7: Experiment 1: Estimation Error – Attentiveness

Overall Overall Negative Positive

bayes -0.00 -0.00 0.23*** -0.08*

(0.01) (0.01) (0.04) (0.05)
narrow 1.86*** 1.76*** 1.66*** 1.83***

(0.34) (0.33) (0.39) (0.43)

Controls No Yes Yes Yes
N 2,876 2,856 1,438 1,418
R2 0.02 0.04 0.05 0.05

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs in
period 50) as dependent variable and the Bayesian posterior, the narrow information dummy and control variables as independent
variables, excluding subjects in the bottom quintile of the total working time distribution. Standard errors are clustered at the
individual level and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.
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Table A8: Experiment 1: Beliefs – Attentiveness

∆ Bayes ∆ Price
(1) (2) (3) (4)

narrow -0.51 omitted -0.53 omitted
(0.39) (0.40)

all 0.99*** 1.00*** 0.08*** 0.08***

(0.02) (0.02) (0.00) (0.00)
all × narrow -0.07*** -0.08*** -0.02*** -0.02***

(0.02) (0.02) (0.00) (0.00)
last 0.13 0.13 0.02** 0.01**

(0.08) (0.08) (0.01) (0.01)
last × narrow 0.87*** 0.92*** 0.08*** 0.08***

(0.13) (0.13) (0.01) (0.01)

FE No Yes No Yes
N 2,876 2,876 2,876 2,876
R2 0.83 0.83 0.83 0.83

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy,
Alli and Lasti and their interactions with the narrow information dummy as independent variables, excluding subjects in the
bottom quintile of the total working time distribution. In columns (1) and (2), Alli (Lasti) refers to the change in Bayesian
beliefs between period 0 and 40 (40 and 50). In columns (3) and (4), Alli (Lasti) refers to the change in price between period 0
and 50 (40 and 50). Standard errors are clustered at the individual level and reported in parentheses. ***, **, and * denote
significance at the 1%, 5%, and 10% level, respectively.
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Table A9: Experiment 1: Estimation Error – Statistical Skill

Panel A: Low Skill
Overall Overall Negative Positive

bayes 0.00 0.00 0.33*** -0.16***

(0.01) (0.01) (0.05) (0.05)
narrow 1.49*** 1.31*** 1.00** 1.54***

(0.35) (0.35) (0.40) (0.49)

Controls No Yes Yes Yes
N 2,284 2,252 1,126 1,126
R2 0.01 0.02 0.06 0.04

Panel B: High Skill
Overall Overall Negative Positive

bayes -0.01 -0.01 0.11* -0.08
(0.01) (0.01) (0.06) (0.06)

narrow 2.33*** 2.40*** 2.44*** 2.36***

(0.48) (0.48) (0.56) (0.43)

Controls No Yes Yes Yes
N 1,416 1,404 725 679
R2 0.04 0.05 0.07 0.04

Note: This table shows regressions with the estimation error (absolute difference between reported beliefs and Bayesian beliefs in
period 50) as dependent variable and the Bayesian posterior, the narrow information dummy and control variables as independent
variables for subjects with low respectively high self-reported statistical skill. Standard errors are clustered at the individual
level and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.
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Table A10: Experiment 1: Beliefs – Statistical Skill

Panel A: Low Skill
∆ Bayes ∆ Price

(1) (2) (3) (4)

narrow -0.09 omitted -0.08 omitted
(0.48) (0.49)

first 40 0.96*** 0.99*** 0.08*** 0.08***

(0.02) (0.02) (0.00) (0.00)
first 40 × narrow -0.07*** -0.09*** -0.02*** -0.02***

(0.02) (0.03) (0.00) (0.00)
last 10 0.22** 0.18* 0.02*** 0.02***

(0.10) (0.10) (0.01) (0.01)
last 10 × narrow 0.87*** 0.96*** 0.08*** 0.08***

(0.15) (0.16) (0.01) (0.01)

FE No Yes No Yes
N 2,284 2,284 2,284 2,284
R2 0.82 0.82 0.82 0.82

Panel B: High Skill
∆ Bayes ∆ Price

(1) (2) (3) (4)

narrow -0.94** omitted -0.93** omitted
(0.45) (0.46)

all 1.00*** 1.00*** 0.09*** 0.09***

(0.02) (0.02) (0.00) (0.00)
all × narrow -0.06* -0.05 -0.02*** -0.02***

(0.03) (0.03) (0.00) (0.00)
last 0.00 0.05 0.00 0.01

(0.10) (0.10) (0.01) (0.01)
last × narrow 0.79*** 0.78*** 0.07*** 0.07***

(0.16) (0.17) (0.01) (0.01)

FE No Yes No Yes
N 1,416 1,416 1,416 1,416
R2 0.85 0.85 0.85 0.85

Note: This table shows regressions with the final posterior belief as dependent variable and the narrow information dummy, Alli
and Lasti and their interactions with the narrow information dummy as independent variables for subjects with low respectively
high self-reported statistical skill. In columns (1) and (2), Alli (Lasti) refers to the change in Bayesian beliefs between period 0
and 50 (40 and 50). In columns (3) and (4), Alli (Lasti) refers to the change in price between period 0 and 50 (40 and 50).
Standard errors are clustered at the individual level and reported in parentheses. ***, **, and * denote significance at the 1%,
5%, and 10% level, respectively.
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C Experimental Instructions and Screenshots

Instructions

General Setting

In period 0 the stock price of a fictional stock amounts to $400. The stock price increases or

decreases every period over 50 periods. The size of the price change is always $10, either up

or down. The likelihood of a price increase is the same for these 50 periods and is randomly

determined in period 0. It can be any percentage number between 20% and 80%. Since there

are equally many percentage numbers above and below 50%, the average probability of a

price increase is 50%.

But if, for example, 62% is drawn, the likelihood of a price increase is 62% in each period and

the likelihood of a price decrease is 38% (100%-62%) in each period. As such, price increases

and decreases are indicative of the drawn likelihood of a price increase for the fictional stock.

Task

You will observe the price changes of the fictional stock over 50 periods. From time to time

you are asked to estimate the randomly determined likelihood of a price increase for this

stock. In particular, you have to enter an integer percentage number between 20% and 80%.

The entire task is repeated up to 8 times for independent fictional stocks, i.e. each stock has

its own randomly determined likelihood of a price increase.

On the next page the compensation scheme is described.

Compensation

In addition to the participation fee of £1.50, you can earn a bonus payment in the estimation

task.

Three of your estimates are randomly selected at the end of the study. Your compensation

increases by £0.30 for each estimate which is within 5% of the correct statistical probability

of a price increase (e.g. the correct probability is 50% and your estimate is between 45% and
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55%).

If you feel that you understand the instructions, press “Next” to proceed to answer a few

comprehension questions before the experiment starts.
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Comprehension Questions

Below we report the comprehension questions that subjects had to answer correctly after

reading the instructions to proceed to the estimation task. Correct responses are displayed in

bold.

1. You observe a price change of $-10, how do you have to update your probability estimate

of a price increase?

• I increase the probability estimate.

• I decrease the probability estimate.

2. Assume the correct statistical probability of a price increase is 70%. Which probability

estimate would be in the range such that you earn a bonus payment?

• 55%

• 67%

• 77%

• 83%

3. Is a probability estimate of 50% reasonable before having seen any price changes?

• Yes

• No

• Can’t be answered
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Screenshots of the Estimation Task

Figures B1 to B4 present the screens of the estimation task as seen by subjects in the experi-

ment (using example stock 1). One round consists of three sequential screens. First, subjects

see the empty price-line chart, only indicating the starting price of 400 in period 0. Second,

the price development appears on the price-line-chart. In the narrow information treatment,

the price-line chart builds over time and subjects beliefs about the asset’s fundamental are

elicited every 10 periods. In the broad information treatment, subjects observe all price

changes between period 1 and 50 at once and their beliefs are only elicited in period 50.

Finally, subjects are informed that they reached the end of the estimation task for this stock

and will continue with the next stock.

Figure B1: Start of the Estimation Task
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Figure B2: Belief Eliciation in Period 10
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Figure B3: Belief Eliciation in Period 50

Figure B4: End of the Estimation Task
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Screenshots of the Recall Task

Figures B5 to B8 present the screens of the recall task as seen by subjects in the experiment.

The recall task consists of four sequential screens. First, the recall task is introduced to the

subjects. Second, subjects are asked to recall the number of price increases and decreases

they observed. Third, they are asked to recall the final price they observed. Finally, subjects

are asked to recall the maximum number of subsequent price increases and decreases they

observed.

Figure B5: Start of the Recall Task

Figure B6: Recall Questions Page 1
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Figure B7: Recall Questions Page 2

Figure B8: Recall Questions Page 3
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Screenshots of Attention Manipulation in Experiment 2

Figure B9 and Figure B10 present the screens of the attention manipulation as seen by subjects

in the second experiment. The attention manipulation consists of two sequential screens.

First, subjects start the rebuild of the price path. Second, once the rebuild is completed,

subjects are asked to identify the asset’s price for 5 periods.

Figure B9: Start of the Rebuild
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Figure B10: Price Identification
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Screenshots of Product Ratings in Consumer Choice Application

Figure B11 and Figure B12 present the screens of the product ratings as seen by subjects in

the consumer choice application. In the narrow information treatment, subjects observe 3

product ratings at a time with the new ratings being presented on top of the previous ratings.

In the broad information treatment, subjects observe all 15 product ratings at once.

Figure B11: Product Ratings - Narrow Treatment
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Figure B12: Product Ratings - Broad Treatment
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