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Abstract

We construct a Stochastic Discount Factor that jointly prices nominal and real bonds

as well as various equity portfolios from 1972 to 2022. Combining it with yield dynamics

across these markets, we estimate term structures of risk premia for real bonds, nom-

inal bonds, and equities. We then decompose equity risk premia into term, inflation,

and cash flow risk premia components—where cash flow risk premia denote expected

returns of dividend strips in excess of maturity-matched nominal bond strips. Term and

inflation risk premia rise with maturity, while cash flow risk premia are hump-shaped

and relatively low at long maturities. Moreover, short-maturity equity risk premia vari-

ation over time is mainly driven by cash flow risk premia, whereas long-maturity equity

risk premia variation is dominated by term and inflation risk premia. These findings

imply that credible explanations for the equity excess volatility puzzle must operate

through bond risk premia dynamics.
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Introduction

Discounting cash flows at different horizons lies at the heart of financial economics, with

important applications in both corporate finance (e.g., evaluating real investment projects

with varying durations) and asset pricing (e.g., assessing the risk premia of assets with

different cash flow maturities). Reflecting its central role, a long-standing literature on the

term structure of interest rates dates back to the 19th century. More recently, research

has focused on the term structures of risk premia in equities and other risky asset classes,

recognizing that most cash flows are not fixed in nominal or real terms (see Binsbergen and

Koijen (2017) for a review). In parallel, recent work emphasizes the role of bond returns in

shaping equity return properties (e.g., Binsbergen (2025)). However, it remains unclear what

features of the equity risk premia term structure are driven by bond risk premia components

versus those arising purely from cash flow risk premia.

In this paper, we address this gap in the literature by decomposing the term structure of

equity risk premia into three components: term risk premia, inflation risk premia, and cash

flow risk premia (defined as the expected returns of dividend strips in excess of maturity-

matched nominal bond strips). The first two components determine bond risk premia, while

the third arises purely from cash flow risk (since dividends are uncertain in both nominal

and real terms). We find that, on average, term and inflation risk premia are low at short

maturities but high at long maturities. In contrast, cash flow risk premia are low (or even

negative) at short and long maturities, peaking at intermediate maturities. Furthermore,

while time variation in short-maturity equity risk premia is almost entirely driven by cash

flow risk premia, variation in long-maturity equity risk premia is largely due to term and

inflation risk premia. This last finding is particularly important, as it suggests that the risk

premia on aggregate equity and bond portfolios (both of which have long cash flow duration)

are primarily driven by common factors related to term and inflation risk premia despite the

fundamentally different nature of equity and bond cash flows. Moreover, it implies the excess

volatility puzzle in equities (Shiller (1981)) is inherently linked to bond risk premia variation.
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We start from a preliminary analysis that demonstrates our key findings using data on

nominal bond yields and dividend strip yields from prior work (Liu and Wu (2021) and

Giglio, Kelly, and Kozak (2024)). Specifically, we construct realized annual returns on bond

and dividend strips (R
(h)
b and R

(h)
e ) from realized 1- to 30-year yields as well as dividend

growth. We then estimate expected returns on bond and dividend strips by regressing 1-year

ahead returns on multiple bond and dividend strip yields simultaneously. Using the regression

fitted values, we obtain bond risk premia from Et[R
(h)
b −R

(1)
b ] and cash flow risk premia from

Et[R
(h)
e − R

(h)
b ]. We then highlight our two key findings: (i) on average, bond risk premia

increase with maturity while cash flow risk premia are hump-shaped, being relatively low at

long maturities and (ii) time variation in short-maturity equity risk premia is almost entirely

driven by cash flow risk premia whereas bond risk premia play a large role in long-maturity

equity risk premia variation. The first finding can be thought of as a term structure extension

of the main result in Binsbergen (2025) that the average return on the equity market in excess

of a duration-matched bond portfolio is very low. The second finding is entirely novel, and

highlights that much of the equity premium variation over time (responsible for the excess

volatility puzzle) is linked to bond risk premia variation.

While our preliminary analysis showcases our main results using a very simple approach,

it faces (at least) three important limitations. First, it is restricted to the sample period in

Giglio, Kelly, and Kozak (2024), with bond yields being substantially lower at the end of the

sample (November 2020) in comparison to the beginning (January 1974). This downward

trend in the sample could potentially imply that average bond returns over the sample are

higher than expected ex-ante and that our expected return proxies partially fit unexpected

returns. Second, bond yields and equity yields are measured from separate sources (with

different underlying methodologies). This internal inconsistency could partially drive our

results (e.g., it could lead to arbitrage opportunities between bond and dividend strips that

generate the type of effects we observe). And third, it cannot disentangle the inflation and

term risk premia components of bond risk premia.

Our more elaborate analysis is designed to address these issues. In particular, we estimate
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a no arbitrage term structure model for bond and dividend strips jointly using data from

January 1972 to December 2022, with bond yields being similar at the beginning and end of

our sample period. The overall results from our no arbitrage model are qualitatively similar to

the ones in our preliminary analysis, indicating that these findings are not due to a mismatch

between the measurement of equity and bond yields or a downward trend in bond yields.

Moreover, our term structure model includes inflation and real bond yield dynamics, allowing

us to show that inflation and term risk premia are each responsible for about half of the bond

risk premia effect on the equity risk premia.

Using our no arbitrage model, we also find that discount rate movements are responsible

for a large fraction of the variation in equity yields (in line with the excess volatility puzzle

of Shiller (1981)) and that discount rates are more important for long-maturity claims (as

in Binsbergen et al. (2013) and Golez and Koudijs (2025)). Importantly, we show that the

discount rate effect on long-maturity equity yields is driven by term and inflation risk pre-

mia, rather than cash flow risk premia. As such, credible explanations for the equity excess

volatility puzzle must operate through bond risk premia dynamics.

Our no arbitrage term structure model is based on a Stochastic Discount Factor (SDF)

constructed to price nominal and real bonds as well as a broad set of equity portfolios.

We rely on the equity portfolios and no arbitrage framework of Giglio, Kelly, and Kozak

(2024) (GKK), but modify it by adding state variables and factors designed to capture real

and nominal bond term structure components. In our baseline specification, we include the

level and slope of nominal and real bond yields as state variables (beyond the four dividend

yields in GKK). Moreover, we include level and slope risk factors based on returns related to

nominal and real bonds (beyond the returns on the overall equity market and equity principal

components used in GKK). We specify the model dynamics following GKK and use a simple

regression-based estimation method (adapted from Adrian, Crump, and Moench (2013)) to

keep the model estimation as transparent as possible. While the model setup involves many

empirical decisions, we provide an extensive set of robustness checks to demonstrate that our

key findings remaining valid under alternative empirical specifications.
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Contribution to the Literature

This paper directly contributes the equity term structure literature (see Binsbergen and

Koijen (2017) for a review).1 We add to this literature by building on the GKK framework

in order to decompose the term structure of equity risk premia into components associated

with inflation risk premia, term risk premia, and cash flow risk premia. We find that while

time variation in the risk premia of short-term dividend strips is mostly driven by cash flow

risk premia, time variation in the risk premia of long-term dividend strips is largely driven

by inflation and term risk premia. Since equity indices are similar to long-term dividend

strips, this finding has profound implications for how we should think about the drivers of

time variation in the equity premium and of the corresponding excess volatility puzzle well

documented in the literature (e.g., Shiller (1981)).

We also contribute to a recent literature that emphasizes bond-based determinants of eq-

uity returns (e.g., Binsbergen (2025), Binsbergen and Ma (2025), and Gormsen and Lazarus

(2025), with the latter two being subsequent to our paper).2 In particular, Binsbergen (2025)

shows that the equity premium is close to zero or even negative over the past five decades

when it is measured as average equity returns in excess of duration-matched Treasury bonds.

This result demonstrates the importance of the bond risk premium component of the equity

premium on average. Our analysis deepens this initial insight along three important dimen-

sions. First, we extend the unconditional result in Binsbergen (2025) to the entire equity

term structure, showing that the average risk premia of dividend strips are almost entirely

driven by the cash flow risk premia component for short maturity contracts and by the bond

1While the equity term structure literature is too long to be properly summarized here, a set of represen-
tative papers are Lettau and Wachter (2007, 2011), Binsbergen, Brandt, and Koijen (2012), Binsbergen et al.
(2013), Belo, Collin-Dufresne, and Goldstein (2015), Cejnek and Randl (2016, 2020), Li and Wang (2018),
Miller (2019, 2020), Gormsen and Koijen (2020), Gonçalves (2021a,b, 2023), Gormsen (2021), Gormsen,
Koijen, and Martin (2021), Bansal et al. (2021), Boguth et al. (2023), Cassella et al. (2023), Gormsen and
Lazarus (2023), Giglio, Kelly, and Kozak (2024), Golez and Jackwerth (2024), Golez and Matthies (2025),
and Golez and Koudijs (2025). See also Backus, Boyarchenko, and Chernov (2018) for a joint analysis of
multiple risk premia term structures, including of dividend strips.

2A somewhat related set of papers studies the comovement between equities and bonds (e.g., Campbell
and Ammer (1993), Baele, Bekaert, and Inghelbrecht (2010), David and Veronesi (2013), Campbell, Pflueger,
and Viceira (2020), Kozak (2022), Laarits (2022), and Chernov, Lochstoer, and Song (2024)).
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risk premia component for long maturity contracts. Second, we show that the time variation

in the risk premia of long maturity dividend strips is in large part driven by time variation

in the maturity-matched bond risk premia, which is not the case for short maturity dividend

strips. And third, we decompose the bond risk premia component into inflation and term risk

premia, shedding light on the underlying economic drivers of the average and time variation

in the equity risk premia.

The rest of this paper is organized as follows. Section 1 provides a preliminary analysis

that showcases our main results using data for bond and dividend strip yields from prior

papers. Section 2 introduces our no arbitrage term structure model while Section 3 covers

its empirical implementation and estimation. In turn, Section 4 validates our estimation by

demonstrating that the model properly prices the test assets we use in the estimation and

implies bond and dividend strip yields that closely match yield data from external sources.

Then, Section 5 provides an empirical analysis of the term structure of equity risk premia

and its components within our no arbitrage term structure model. Section 6 concludes. The

Internet Appendix contains technical derivations, details about the model estimation and

data sources and measurement, and supplementary empirical results.

1 Preliminary Results using Strips Data from Prior Studies

This section provides a preliminary analysis that demonstrates some of our main results using

bond and equity strips data from prior papers. This analysis shows that our main results are

not due to our particular no arbitrage model and empirical choices (albeit our model and

empirical choices allow us to deal with some limitations of this preliminary analysis).

Hereafter, R reflects gross annual nominal returns and we suppress time subscripts inside

statistical moments when convenient (e.g., Et[R] ≡ Et[Rt+1]). Moreover, to facilitate exposi-

tion, we use RP as an abbreviation for both risk premium and risk premia (with the usage

being clear from the context).
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We construct returns on h-year bond and dividend strips (with h from 1 to 30 years) using

R
(h)
b,t =

P
(h−1)
b,t

P
(h)
b,t−1

=
e−(h−1)·y

(h−1)
b,t

e−h·y
(h)
b,t−1

(1)

and

R
(h)
e,t =

P
(h−1)
e,t

P
(h)
e,t−1

=
Dt

Dt−1

·
e−(h−1)·y

(h−1)
e,t

e−h·y
(h)
e,t−1

(2)

with P
(0)
b,t = 1 and P

(0)
e,t = Dt, where Dt is the nominal dividend on the equity index.

We obtain bond yields, y
(h)
b,t = (1/h) · log(P

(h)
b,t ), by combining the dataset in Liu and Wu

(2021) with the 30-year nominal bond yield from the Federal Reserve. We obtain dividend

strip yields (or simply equity yields), y
(h)
e,t = (1/h) · log(P

(h)
e,t /Dt), as well as dividend growth,

Dt/Dt−1, directly from the Giglio, Kelly, and Kozak (2024) (GKK) dataset.3 Since the GKK

dataset covers from January of 1974 to November of 2020, our analysis in this section is

restricted to this period. Further details about data collection and measurement are provided

in Subsection 3.2 since we also use these yields in some parts of our general analysis.

Figure 1(a) plots, in a solid black line, the average realized RP for dividend strips with ma-

turities from 1 to 30 years (i.e., E[R
(h)
e −R

(1)
b ] estimates for h = 1, 2..., 30). The unconditional

equity RP increase with dividend maturity. However, these average equity RP are partially

driven by their bond RP component, as highlighted in Binsbergen (2025). Specifically, the

h-year unconditional equity RP is given by4

E[R(h)
e −R

(1)
b ]︸ ︷︷ ︸

Equity RP

= E[R
(h)
b −R

(1)
b ]︸ ︷︷ ︸

Bond RP

+ E[R(h)
e −R

(h)
b ]︸ ︷︷ ︸

Cash Flow RP

. (3)

3The GKK dataset contains both Re,t = (Pe,t +Dt)/Pe,t−1 and ye,t = log(1 +Dt/Pe,t), allowing us to
measure dividend growth from Dt/Dt−1 = Re,t · (1− e−ye,t)/(eye,t−1 · (1− e−ye,t−1)), which follows directly
from the Re,t definition.

4Note that it is standard practice in the equity term structure literature to study returns on dividend
futures (see the literature review in Binsbergen and Koijen (2017)). The return on a h-year dividend future

is given by R
(h)
e,t /R

(h)
b,t , and thus it contains an adjustment for the h-year bond risk premium. However, the

standard Euler condition in asset pricing models leads to implications for excess returns, not return ratios, so
that the bond risk premia adjustment in the cash flow risk premia of Equation 3 (which follows Binsbergen
(2025)) is more in line with how we think about risk premia in asset pricing (and accounts for an important
Jensen’s inequality term).
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The blue dashed line of Figure 1(a) plots the bond RP, which capture RP related to

inflation and real term risk. They start at 0% and strongly increase with maturity. The

red dash-dotted line of Figure 1(a) plots the cash flow RP, which capture the pure cash flow

component of the equity RP. In contrast to the equity RP, the cash flow RP are hump-shaped.

They start low, increase over the early maturity years, and then decline in later maturity

years. So, the increasing term structure of equity RP is driven by an increasing term structure

of bond RP, not an increasing term structure of cash flow RP. This result is a term structure

extension of the finding in Binsbergen (2025) that the realized equity premium over the last

several decades has been (at most) only a little higher than the duration-matched bond risk

premium realized over the same period.

While the average realized risk premia are interesting and important, the core novel result

in our paper is on risk premia variation over time. To explore this aspect, we estimate

regressions of R
(h)
e,t+1−R

(1)
b,t+1 as well as its two components (R

(h)
b,t+1−R

(1)
b,t+1 and R

(h)
e,t+1−R

(h)
b,t+1)

for each dividend strip maturity h onto lagged bond and equity yields (y
(τ)
b,t and y

(τ)
e,t ) of many

maturities jointly (τ = 1, 5, 10, 15, 20, 25, 30). We treat the fitted values of these regressions

as conditional expected returns. Then, for each dividend strip maturity h, we perform the

equity premium variance decomposition

1 =
Cov

(
Et[R

(h)
e −R

(1)
b ] , Et[R

(h)
b −R

(1)
b ]
)

Var
(
Et[R

(h)
e −R

(1)
b ]
)

︸ ︷︷ ︸
θ
(h)
Bond =Var

(

Et[R
(h)
e −R

(1)
b

]
)

due to Bond RP

+
Cov

(
Et[R

(h)
e −R

(1)
b ] , Et[R

(h)
e −R

(h)
b ]
)

Var
(
Et[R

(h)
e −R

(1)
b ]
)

︸ ︷︷ ︸
θ
(h)
CashFlow =Var

(

Et[R
(h)
e −R

(1)
b

]
)

due to Cash Flow RP

(4)

Figure 1(b) plots the term structure of these variance decompositions. The key finding is

that the importance of the bond RP in explaining equity RP variation is much stronger for

long maturity dividend strips than for short maturity dividend strips. For instance, while

the bond RP explains 0% of the time variation in the RP of the 1-year dividend strip, it

explains close to 40% of the variation in the RP of the 30-year dividend strip.5

5One may think that the increasing θ
(h)
Bond is obvious since θ

(h)
Bond = 0 by construction. However, whether

θ
(h)
Bond for h > 1 is positive or negative depends on the sign of the correlation between bond RP and equity
RP. Moreover, as shown below in Equation 5, even if one thinks the correlation has to be positive (which is
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The analysis above measures dividend growth and equity yields in an internally consistent

manner by taking both from the GKK dataset. However, the dividend measure used in GKK

(which is common in the literature), assigns M&A paid in cash to price appreciation even

though it induces a dividend (see Allen and Michaely (2003)). As we detail in Subsection

3.2, our main analysis instead follows some recent papers that measure aggregate dividends

accounting for M&A paid in cash (e.g., Sabbatucci (2022), Gonçalves (2021a,b), Gonçalves

(2023) and Chabi-Yo, Gonçalves, and Loudis (2025)). As such, Figures 1(c) and 1(d) replicate

Figures 1(a) and 1(b) after replacing the GKK dividend growth (in Equation 2) with dividend

growth calculated using our main dividend measure (under the simplistic assumption that

the equity yields would still match those in GKK). The results are qualitatively similar, but

quantitatively stronger. For instance, while the bond RP explains 0% of the time variation

in the the RP of the 1-year dividend strip, it explains slightly more than 80% of the variation

in the RP of the 30-year dividend strip.

Since the bond RP share of the equity RP variability can be written as

θ
(h)
Bond = Cor

(
Et[R

(h)
e −R

(1)
b ] , Et[R

(h)
b −R

(1)
b ]
)
·
σ
(
Et[R

(h)
b −R

(1)
b ]
)

σ
(
Et[R

(h)
e −R

(1)
b ]
) , (5)

and likewise for θ
(h)
CashFlow, the increasing importance of θ

(h)
Bond can be due to bond RP volatility

increasing more than cash flow RP volatility as the dividend strip maturity increases or due

to the bond-equity RP correlation increasing as dividend strip maturity increases. Figure

2 shows that both channels are important in explaining the variance decomposition results

in Figures 1(b) and 1(d). If either quantity was stuck at the low values observed for short-

maturity dividend strips, then we would not see the strong increase in θ
(h)
Bond present in the

data. The reason is that the multiplicative effect makes these two channels complementary (as

opposed to substitutes). This finding rules out a trivial explanation for the increasing θ
(h)
Bond

we observe: that it is entirely because bond RP volatility strongly increased with maturity.

The results show that it is essential for our variance decomposition findings that the RP

not necessarily the case), whether θ
(h)
Bond increases with maturity beyond h = 1 depends on the joint dynamics

of the bond and equity RP (i.e., the term structures of RP volatilities and equity-bond RP correlations).
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on dividend and bonds strips comove much more strongly at long maturities than at short

maturities. This aspect highlights that the common component of the equity and bond risk

premia is an important driver of time variation in the overall equity premium (which mainly

reflects the RP of long-maturity dividend claims).

Overall, the results in this section extend the insight in Binsbergen (2025) that the average

equity premium is low when measured relative to a duration-matched bond portfolio (with

this duration-adjusted equity premium being the analogue to our cash flow RP). Specifically,

we show that cash flow RP are generally low, particularly for very short-term and very long-

term dividend strips. Moreover, we show that the time variation in the RP of long maturity

dividend strips is in large part driven by time variation in bond RP, which is not the case

for short maturity dividend strips. This last result is entirely novel to our paper and has

important implications for the excess volatility puzzle in equities. Therefore, it is the focus

of our empirical analysis.

However, the analysis in this section has (at least) three important limitations. First,

bond yields are substantially lower at the end of the sample (November 2020) in comparison

to the beginning (January 1974). This downward trend in the sample could potentially

imply that average bond returns over the sample are higher than ex-ante expected and

that our expected return proxies partially fit unexpected returns. Second, bond yields and

equity yields are measured from separate sources (with different underlying methodologies).

This internal inconsistency could partially drive our results (e.g., it could lead to arbitrage

opportunities between bond and dividend strips that generate the type of effects we observe).

And third, we cannot disentangle the inflation and real term RP components of the bond

RP without information on real bond strips.

The subsequent sections deal with these issues. In particular, we estimate a no arbitrage

term structure model for bond and dividend strips jointly using data from January of 1972

to December of 2022, with bond yields being similar at the beginning and end of our sample

period. As such, our core findings are not due to a mismatch between the measurement of

equity and bond yields or a downward trend in bond yields. Moreover, we model inflation
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dynamics (and include data on real interest rates in the estimation) so that we can separately

estimate the effects of the inflation and term RP.

2 A No Arbitrage Term Structure Model

This section details our no arbitrage term structure model, which builds on GKK. The key

addition is that we include factors for nominal and real bonds so as to decompose the equity

risk premia term structure into its inflation, term, and cash flow RP components using a

common asset pricing framework that satisfies no arbitrage. Subsection 2.1 introduces our

return and SDF dynamics, Subsection 2.2 outlines the restrictions imposed by no arbitrage,

and Subsections 2.3, 2.4, and 2.5 provide expressions to recover quantities related to bond,

inflation, and dividend strips. Technical derivations are provided in Internet Appendix A.

We outline our no arbitrage term structure model in annual horizon and nominal terms

to match our empirical analysis. Moreover, to simplify notation, we use lower case letters to

reflect the log of the respective capital letter (e.g., r ≡ log(R)), ∆ to represent first differences

(e.g., ∆πt = πt − πt−1), tilde to represent shocks (e.g., r̃t ≡ rt − Et−1[rt]), and xr to capture

returns in excess of the 1-year nominal bond return (i.e., xr ≡ r − r
(1)
b,t ). We also continue to

suppress time subscripts inside statistical moments when convenient (e.g., Et[r] ≡ Et[rt+1]

and Vart[r] ≡ Vart[rt+1]).

2.1 Return Dynamics and the SDF

Let Πt represent the economy’s inflation index (so that ∆πt is the log inflation rate), r
(1)
b,t =

y
(1)
b,t−1 represent annual log returns on a 1-year nominal bond, xrt = rt − r

(1)
b,t represent a

(nxr × 1) vector of annual log excess returns, and st represent a (ns × 1) state vector. We

summarize the zt = [xrt, st]
′

dynamics through a Vector Autoregressive (VAR) system of
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order one:6

zt = ϕ + Φzt−1 + z̃t (6)

where z̃t =
i.i.d
∼ N (0,Σ), with Σ =


 Σxr Σ

′

xr,s

Σxr,s Σs


, ϕ =


 ϕxr

ϕs


, and Φ =


 0 Φxr,s

0 Φs,s


.

As we detail in the next subsections, to recover information on bond, inflation, and div-

idend strips, we need to include in rt the aggregate equity return, re,t = log(Pe,t+Dt

Pe,t−1
). We

also need to include in st the 1-year Treasury nominal bond yield, y
(1)
b,t , the inflation rate,

∆πt, and the aggregate dividend yield, ye,t = log( Dt

Pe,t
+ 1).7 As such, everything that follows

(including our empirical analysis) imposes re,t ϵ rt and [∆πt, y
(1)
b,t , ye,t] ϵ st.

Under no arbitrage, a log Stochastic Discount Factor (SDF), mt, that prices nominal

returns exists. We assume mt is (conditionally) normal and (conditionally) project mt onto

∆πt, r
(1)
b,t , and rt:

mt+1 = ψ0,t − ψπ,t ·∆πt+1 − ψb,t · r
(1)
b,t+1 − ψ

′

trt+1 + ϵt+1 (7)

= Et[m] − ψπ,t · ∆̃πt+1 − ψ
′

tx̃rt+1 + ϵt+1

= Et[m] − λ
′

t[∆̃πt+1 ; x̃r
∗

t+1] + ϵt+1

= Et[m] − λ
′

tΩz̃t+1 + ϵt+1 (8)

where Et[ϵ] = Et[ϵ · r
(1)
b ] = Et[ϵ ·∆π] = Et[ϵ · r] = 0 holds by construction since Equation 8

represents a conditional projection.8

6Note that, following Gonçalves (2021a) and GKK, we set the predictive coefficients of excess-returns to
zero because returns are not good predictors of future returns or cash flow growth.

7Following Gao and Martin (2021) and GKK, we define the dividend yield based on ye,t = log(Dt/Ve,t+1)
instead of the more common ye,t = log(Dt/Ve,t). As GKK show, this choice leads to closed-form solutions
for equity yields without any approximation.

8GKK directly assume mt is linear in the z̃t shocks associated with returns, which represents Equation
8 with ϵt+1 = 0 (and ∆πt /∈ zt since they do not explore inflation risk premia). We instead start from the
projection in Equation 7 to derive Equation 8. This allows us to show that the assumption required for
the SDF is slightly more general than the assumption imposed in GKK (which they must have imposed to
simplify the exposition). In particular, we can have ϵt ̸= 0 so long as Et[ϵ · s] = 0, as we discuss in the next
subsection.
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The move from the second to the third line in the derivation of Equation 8 imposes the

restriction that ∆πt and a n∗

xr ≤ nxr set of excess returns, x̃r
∗

t , price all excess returns in xrt

(we specify xr∗t in Section 3). The ϵt term allows returns outside of rt to not be priced by

∆πt and x̃r
∗

t (or by xrt). The [∆̃πt+1 ; x̃r
∗

t+1] = Ωz̃t identity (used to go from the third to the

fourth line) is useful in simplifying some of the later expressions, but it imposes no further

restrictions on our SDF dynamics.

To simplify exposition, for now on we refer to ∆πt and xr
∗

t as risk factors and the expected

excess returns implied by the model as risk premia. However, our no arbitrage framework

does not guarantee (or require) that these pricing variables reflect fundamental risks relevant

to the marginal investor. For instance, they could instead reflect the pricing of sentiment as

in Kozak, Nagel, and Santosh (2018).

2.2 Risk Premia Constraints under No Arbitrage

Given the structure outlined in the previous subsection, the no arbitrage condition

Et[e
mt+1+r

(1)
b,t+1 ] = 1 can be written as

Et[m] + 0.5 · Vart[m] = − y
(1)
b,t (9)

and combining Et[e
mt+1+r

(1)
b,t+1 ] = 1 with Et[e

mt+1+rj,t+1 ] = 1 yields

Et[xrj] + 0.5 · Vart[xrj] = − Covt[xrj,m]

⇓

1
′

xrj
(ϕ + Φzt) + 0.5 · 1

′

xrj
Σ1xrj = 1

′

xrj
ΣΩ

′

λt (10)

where 1xrj is a selector vector such that 1
′

xrj
zt = xrj,t.

Equation 10 imposes no arbitrage restrictions linking the VAR dynamics for Et[xr] and

the risk prices embedded in λt. Specifically,

λt = λ︸︷︷︸
(n∗

xr×1)

+ Λ︸︷︷︸
(n∗

xr×nz)

zt (11)
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with

1
′

xrj
ϕ + 0.5 · 1

′

xrj
Σ1xrj = 1

′

xrj
ΣΩ

′

λ (12)

and

1
′

xrj
Φ = 1

′

xrj
ΣΩ

′

Λ (13)

which implies we can directly estimate the dynamics of risk prices (i.e., λ and Λ) and recover

ϕxr and Φxr,s from the no arbitrage conditions in Equations 12 and 13.

Section 3 explains the estimation of ϕs, Φs,s, Σ, λ, and Λ, which is what we need to jointly

recover the VAR and λt dynamics. The model term structure solution in the next subsections

relies on these dynamics as well as on the identifying assumption Et[ϵ · s] = 0.9 If ∆πt and

xr∗t price all assets as assumed in GKK, then Et[ϵ · s] = 0 holds by construction since ϵt = 0.

2.3 Bond Strips

We define an h-year bond strip as a contract that pays one dollar (in nominal terms) at time

t+h and no cash flows in between. Then, the no arbitrage condition for a bond strip can be

written as

P
(h)
b,t ≡ e−h·y

(h)
b,t = Et

[
Mt+1 · P

(h−1)
b,t+1

]
= Et

[
emt+1−(h−1)·y

(h−1)
b,t+1

]
(14)

with boundary condition P
(0)
b,t = 1 so that y

(0)
b,t = 0.

Internet Appendix A shows that, as long as y
(1)
b,t ϵ st, the no arbitrage condition in Equation

14 implies

y
(h)
b,t = a(h)yb

+ b(h)
′

yb
zt (15)

9Formally, let s̃t = Br̃allt + ut be a projection of s̃t onto the entire return space, r̃allt , which can in-

clude managed portfolios (and it also includes ∆̃π since r̃
(1)
π = ∆̃π). Note that r̃j,t = x̃rj,t ∀ j so that

the log SDF can always be written as m̃t+1 = −λall′

t r̃allt+1, and thus ϵt+1 = λ
′

t[∆̃πt+1 ; x̃r
∗
t+1]− λall′

t r̃allt+1

must be in the return space, which implies Et[ϵ · u] = 0. As such, we only require ∆π and rt to span

the space of the mimicking portfolios for st (i.e., Br̃allt = Γ[∆̃π ; r̃t] for some Γ) because, in this case,

Et[ϵ · s] = Et[ϵ · (Br̃all + u)] = Et[ϵ · (Γ[∆̃π ; r̃t] + u)] = 0.

13



Et[xr
(h)
b ] = a

(h)
Eb

+ b
(h)′

Eb
zt (16)

and

Vart[r
(h)
b ] = b

(h)′

Vb
Σb

(h)
Vb

(17)

with boundary condition a
(0)
yb = b

(0)
yb = 0 and recursive parameters

a
(h)
yb = (h−1)

h
·
[
a
(h−1)
yb + b

(h−1)′

yb (ϕ− ΣΩ
′

λ− 0.5 · (h− 1) · Σb
(h−1)
yb )

]

b
(h)′

yb = 1
h
· 1

′

yb
+ (h−1)

h
·
[
b
(h−1)′

yb (Φ− ΣΩ
′

Λ)
]

a
(h)
Eb

= h · a
(h)
yb − (h− 1) · (a

(h−1)
yb + b

(h−1)′

yb ϕ)

b
(h)′

Eb
= h · b

(h)′

yb − (h− 1) · b
(h−1)′

yb Φ− 1
′

yb

b
(h)′

Vb
= −(h− 1) · b

(h−1)′

yb

Given Equations 15 to 17, bond strip realized returns and risk premia follow from

R
(h)
b,t =

P
(h−1)
b,t

P
(h)
b,t−1

= eh·y
(h)
b,t−1−(h−1)·y

(h−1)
b,t (18)

and

Et[R
(h)
b −R

(1)
b ] =

(
eEt[xr

(h)
b

]+0.5·Vart[r
(h)
b

] − 1
)
· ey

(1)
b,t (19)

Moreover, since r
(h)
b,t→t+h = log(1/P

(h)
b,t ), we have that each bond strip (log) discount rate

equals the respective bond strip yield:

dr
(h)
b,t =

1

h
· Et

[
r
(h)
b,t→t+h

]
= y

(h)
b,t (20)

2.4 Inflation Strips

We define an h-year inflation strip (which is the same as a real bond strip) as a contract

that pays Πt+h (in nominal terms) at time t + h and no cash flows in between (with Πt

representing the economy’s inflation index). Then, the no arbitrage condition for an inflation

strip can be written as
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P
(h)
π,t

Πt

≡ e−h·y
(h)
π,t = Et

[
Mt+1 ·

P
(h−1)
π,t+1

Πt

]
= Et

[
emt+1−(h−1)·y

(h−1)
π,t+1+∆πt+1

]
(21)

with boundary condition P
(0)
π,t = Πt so that y

(0)
π,t = 0.

Internet Appendix A shows that, as long as (∆πt , y
(1)
b,t ) ϵ st, the no arbitrage condition in

Equation 21 implies

y
(h)
π,t = a(h)yπ

+ b(h)
′

yπ
zt (22)

Et[xr
(h)
π ] = a

(h)
Eπ

+ b
(h)′

Eπ
zt (23)

and

Vart[r
(h)
π ] = b

(h)′

Vπ
Σb

(h)
Vπ

(24)

with boundary conditions a
(0)
yπ = b

(0)
yπ = 0, and recursive parameters

a
(h)
yπ = 1

h
·
[
(h− 1) · a

(h−1)
yπ − (1π − (h− 1) · b

(h−1)
yπ )

′

(ϕ− ΣΩ
′

λ+ 0.5 · Σ(1π − (h− 1) · b
(h−1)
yπ )

]

b
(h)′

yπ = 1
h
·
[
1
′

yb
− (1π − (h− 1) · b

(h−1)
yπ )

′

(Φ− ΣΩ
′

Λ)
]

a
(h)
Eπ

= h · a
(h)
yπ − (h− 1) · a

(h−1)
yπ + (1π − (h− 1) · b

(h−1)
yπ )

′

ϕ

b
(h)′

Eπ
= (1π − (h− 1) · b

(h−1)
yπ )

′

Φ+ (h · b
(h)
yπ )

′

− 1
′

yb

b
(h)′

Vπ
= (1π − (h− 1) · b

(h−1)
yπ )

′

Given Equations 22 to 24, inflation strip realized returns and risk premia follow from

R
(h)
π,t =

P
(h−1)
π,t

P
(h)
π,t−1

= e∆πt+h·y
(h)
π,t−1−(h−1)·y

(h−1)
π,t (25)

and

Et[R
(h)
π −R

(1)
b ] =

(
eEt[xr

(h)
π ]+0.5·Vart[r

(h)
π ] − 1

)
· ey

(1)
b,t (26)
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We can also obtain each inflation strip (log) discount rate from

dr
(h)
π,t =

1

h
· Et

[
r
(h)
π,t→t+h

]
= y

(h)
π,t +

1

h
· Et [∆πt→t+h]

= y
(h)
π,t + a(h)gπ

+ b(h)
′

gπ
zt (27)

where g
(h)
π,t =

1
h
·Et [∆πt→t+h] = a

(h)
gπ + b

(h)′

gπ zt, with boundary conditions a
(0)
gπ = b

(0)′

gπ = 0, and

recursive parameters

a
(h)
gπ = 1

h
· 1

′

πϕ+ h−1
h

· (a
(h−1)
gπ + b

(h−1)′

gπ ϕ)

b
(h)

′

gπ = 1
h
· 1

′

πΦ + h−1
h

· b
(h−1)′

gπ Φ

2.5 Dividend Strips

We define an h-year dividend strip as a contract that pays Dt+h (in nominal terms) at time

t + h and no cash flows in between (with Dt representing the aggregate dividend).10 Then,

the no arbitrage condition for a dividend strip can be written as

P
(h)
e,t

Pe,t

≡ w
(h)
e,t = Et

[
Mt+1 ·

P
(h−1)
e,t+1

Pe,t

]
= Et

[
w

(h−1)
e,t+1 · emt+1+re,t+1−ye,t+1

]
(28)

with boundary condition V
(0)
e,t = Dt so that w

(0)
e,t = eye,t − 1.

Internet Appendix A shows that, as long as re,t ϵ rt and (y
(1)
b,t , ye,t) ϵ st, the no arbitrage

condition in Equation 28 implies

w
(h)
e,t = ea

(h)
1,we

+ b
(h)′

1,we
zt − ea

(h)
2,we

+ b
(h)′

2,we
zt (29)

with boundary conditions a
(0)
1,we

= a
(0)
2,we

= b
(0)
2,we

= 0 and b
(0)
1,we

= 1ye , and recursive parameters

a
(h)
k,we

= a
(h−1)
k,we

+ (b
(h−1)
k,we

+ 1xre − 1ye)
′

(ϕ− ΣΩ
′

λ+ 0.5 · Σ(b
(h−1)
k,we

+ 1xre − 1ye))

b
(h)′

k,we
= (b

(h−1)
k,we

+ 1xre − 1ye)
′

(Φ− ΣΩ
′

Λ)

10The expressions we obtain for dividend strips apply equally to the cash flow strips of any other asset
paying positive cash flows (beyond the aggregate public equity market). Using this result, a previous version
of this paper also studied the cash flow strips from the aggregate market of public Real Estate Investment
Trusts (REITs). We no longer report the results from public REITs as they are very similar to the dividend
strip results we obtain, and thus are not needed for the main message of this paper.
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Note that since Dt > 0, we have P
(h)
e,t > 0 and w

(h)
i,t > 0 , which allows us to also define

dividend strip yields (or simply equity yields) as11

y
(h)
e,t =

1

h
· log

(
Dt

P
(h)
e,t

)
=

1

h
·
[
log (eye,t − 1)− log

(
w

(h)
e,t

)]
(30)

Furthermore, from the dividend strip weights in Equation 29, we can calculate dividend

strip realized returns and risk premia from

R
(h)
e,t =

P
(h−1)
e,t

P
(h)
e,t−1

=
w

(h−1)
e,t

w
(h)
e,t−1

· ere,t−ye,t (31)

and

Et

[
R(h)

e −R
(1)
b

]
=

1

w
(h)
e,t

·

[
ea

(h)
1,Ee + b

(h)′

1,Eezt − ea
(h)
2,Ee + b

(h)′

2,Eezt

]
− ey

(1)
b,t (32)

with recursive parameters given by

θ
(h)
k,Ee = b

(h−1)
k,we

+ 1xre − 1ye

a
(h)
k,Ee = a

(h−1)
k,we

+ θ
(h)′

k,Ee(ϕ+ 0.5 · Σθ
(h)
k,Ee)

b
(h)′

k,Ee = θ
(h)′

k,EeΦ + 1
′

yb

Moreover, from the dividend strip valuation identity, P
(h)
e,t = Et [Dt+h] · e

−h·dr
(h)
e,t , the divi-

dend strip (log) discount rate and the dividend (log) expected growth are given by

dr
(h)
e,t =

1

h
· log

(
Et

[
Dt+h

P
(h)
e,t

])
=

1

h
· log

(
1

w
(h)
e,t

·

[
ea

(h)
1,dre

+ b
(h)′

1,dre
zt − ea

(h)
2,dre

+ b
(h)′

2,dre
zt

])
(33)

11While Equations 29 and 30 are consistent with GKK, they lead to highly non-linear dividend strip risk
premia (even in logs). To ensure our results are not due to strong non-linearities (which can exacerbate any
potential effect of model mispecification), Internet Appendix D.1 uses the log-linear approximation in Gao
and Martin (2021) (which is an improved version of the Campbell and Shiller (1989) log-linear approximation)

to obtain y
(h)
e,t that is linear in zt, leading to log-linear dividend strip risk premia. The results obtained from

this alternative analysis are similar to the ones we report in the main text.
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and

g
(h)
e,t =

1

h
· log

(
Et

[
Dt+h

Dt

])
= dr

(h)
e,t − y

(h)
e,t (34)

with boundary conditions θ
(1)
1,dre

= 1xre , θ
(1)
2,dre

= 1xre − 1ye , and a
(0)
k,dre

= 0, and recursive

parameters

θ
(h)′

k,dre
= θ

(h−1)′

k,dre
Φ + 1xre − 1ye + 1yb

a
(h)
k,dre

= a
(h−1)
k,dre

+ θ
(h)′

k,dre
ϕ + 0.5 · θ

(h)′

k,dre
Σθ

(h)
k,dre

b
(h)′

k,dre
= θ

(h)′

k,dre
Φ + 1yb

3 Specification of the No Arbitrage Term Structure Model

This section covers our VAR and SDF specifications. Subsection 3.1 details the variables

included in st, rt, and x̃r
∗

t , Subsection 3.2 briefly explains the measurement of these variables,

and Subsection 3.3 briefly discuss the VAR and SDF estimation and its results. Further details

about the estimation procedure are provided in Internet Appendix B.

3.1 Variables in st and rt

As pointed out in Section 2, our no arbitrage term structure framework requires re,t ϵ rt and

[∆πt, y
(1)
b,t , ye,t] ϵ st, and is based on three identifying assumptions:

1. The VAR in Equation 6 summarizes the Et[s] and Et[xr] dynamics

2. ∆π and rt span the space of the mimicking portfolios for st (see Footnote 9)

3. xr∗t prices xrt

Our guiding principle when choosing st, rt, and xr
∗

t is to build a parsimonious specification for

these vectors that is consistent with the prior literature while reasonably satisfying the three

conditions above. Below, we describe exactly how we build st, rt, and xr
∗

t , with measurement

details provided in the next subsection.
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We set st = [∆πt, y
(Level)
π,t , y

(Slope)
π,t , y

(Level)
b,t , y

(Slope)
b,t , ye,t, y

(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ]

′

with

y
(Level)
b,t = y

(1)
b,t so that our state vector satisfies [∆πt, y

(1)
b,t , ye,t] ϵ st and is entirely composed of

yield measures, except for the inflation rate, which is required to obtain the term structure of

inflation risk premia. Using yields is consistent with GKK and with identifying assumption

(1) since we need to have state variables that capture the Et[xr] dynamics (with yields being

essential for this purpose). We include a yield level and slope for real and nominal bonds

since the bond term structure literature shows that two yield factors are enough to capture

much of the variation in bond yields.12 For equities, we follow GKK and include the overall

dividend yield on the equity market as well as yields on Principal Components (PCs) for

equity anomaly portfolios.

We use rt = [{r
(Dur)
π,t }, {r

(Dur)
b,t }, re,t, {r

(Anom)
e,t }]

′

, where {r
(Dur)
π,t } and {r

(Dur)
b,t } contain log

returns on a set of real and nominal bond portfolios that vary in duration and {r
(Anom)
e,t }

contains log returns on long and short anomaly portfolios. The logic of choosing portfolios

with different bond duration is that they are deferentially exposed to yield shocks, and thus

reasonably span the space of mimicking portfolios for st (satisfying the identifying condition

(2)). For equities, we include anomaly portfolios to keep our specification as close as possible

to the one in GKK.

We set [∆̃πt ; x̃r
∗

t ]= [x̃r
(Level)
π,t , x̃r

(Slope)
π,t , x̃r

(Level)
b,t , x̃r

(Slope)
b,t , x̃re,t, x̃r

(PC1)
e,t , x̃r

(PC2)
e,t , x̃r

(PC3)
e,t ]

′

,

where x̃r
(Level)
π,t = x̃r

(1)
π,t = ∆̃πt.

13 As such, real and nominal bonds each have a “level” and a

“slope” factor while equities have an overall equity market factor as well as principal com-

ponents to price anomaly portfolios (as in GKK). All these factors are linear combinations

of the returns in rt, satisfying the technical condition that [∆̃πt ; x̃r
∗

t ] = Ω[x̃rt, s̃t]
′

.

While the choices we make for the state variables, returns, and factors associated with eq-

uities are consistent with GKK, an alternative approach would be to make choices analogous

to the ones we make for real and nominal bonds. Internet Appendix D.3 provides results in

12Internet Appendix D.4 considers a specification with three nominal yields and three real yields in the
state vector. The results are similar to the ones we report in the main text.

13Note that r
(1)
π,t = ∆πt + y

(1)
π,t−1 so that 1-year inflation shocks are equivalent to shocks to annual excess

returns on a 1-year real bond (i.e., x̃r
(1)
π,t = ∆̃πt).
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line with this logic. Specifically, we replace [y
(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ] with y

(Slope)
e,t in the state

vector, {r
(Anom)
e,t } with {r

(Dur)
e,t } in rt, and [x̃r

(PC1)
e,t , x̃r

(PC2)
e,t , x̃r

(PC3)
e,t ] with x̃r

(Slope)
e,t in x̃r∗t .

Then, we obtain y
(Slope)
e,t , {r

(Dur)
e,t }, and x̃r

(Slope)
e,t from portfolios sorted on the equity duration

measure of Gonçalves (2021b). That analysis leads to results that are similar to the ones we

report in the main text (see Internet Appendix D.3 for the details).

3.2 Data Sources and Measurement

We rely on a multivariate time series of overlapping monthly observations in which yields are

in annual units and measured at the end of each month whereas flow variables (i.e., returns

and inflation rate) have annual measurement (i.e., t and t − 1 have a one year gap). The

dataset covers from 01-1972 to 12-2022, with the initial date constrained by the availability

of information on some equity signals as well as on the real and nominal bond yields we use.

This section provides only a brief overview of the measurement and data sources, with all

details provided in Internet Appendix C.

In terms of nominal bonds, we obtain external bond yields, {ŷ
(h)
b,t }

h=15
h=1 , from the in-

terpolated bond yield dataset of Liu and Wu (2021), and use y
(Level)
b,t = y

(1)
b,t = ŷ

(1)
b,t and

y
(Slope)
b,t = ŷ

(15)
b,t − ŷ

(1)
b,t .

14 Moreover, we construct {r
(Dur)
b,t } ⊂ rt using the seven CRSP Fama

bond portfolios (labeled r
(H1toH2)
b,t ), which reflect Treasury bond portfolios with bond maturi-

ties between H1 and H2 years (the shortest duration portfolio has H1 = 0 and H2 = 1 and

the longest duration portfolio has H1 = 10 and H2 = 30). We then set x̃r
(Level)
b,t = x̃r

(5to10)
b,t

and x̃r
(Slope)
b,t = x̃r

(10to30)
b,t − x̃r

(0to1)
b,t .15

For real bonds, we obtain external bond yields, {ŷ
(h)
π,t }

h=10
h=1 , by combining the no-arbitrage

14The preliminary analysis of Section 1 also requires {ŷ
(h)
b,t }

h=30
h=16. For these yields, we also use the Liu and

Wu (2021) dataset, with linear interpolation applied for yields not available in a given month. The linear
interpolation is done between the longest maturity yield available in the Liu and Wu (2021) dataset in the
given month and the GS30 series from the Federal Reserve Economic Data (FRED), which reflects a 30-year
nominal bond yield.

15Internet Appendix D provides two robustness checks on the empirical decisions related to nominal
bonds. The first (in Internet Appendix D.5) uses the interpolated bond yield dataset of Gürkaynak, Sack,
and Wright (2007) (instead of the one from Liu and Wu (2021)). The second (in Internet Appendix D.6)
uses bond returns directly implied by the yields (instead of relying on the CRSP Fama portfolios). In both
cases, the results are similar to the ones we report in the main text.
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bond yields of Chernov and Mueller (2012) with the interpolated bond yields of Gürkaynak,

Sack, and Wright (2010), and use y
(Level)
π,t = ŷ

(1)
π,t and y

(Slope)
π,t = ŷ

(10)
π,t − ŷ

(1)
π,t . Moreover, we

construct {r
(Dur)
π,t } ⊂ rt using r̂

(h)
π,t = ∆πt + h · ŷ

(h)
π,t−1 − (h − 1) · ŷ

(h−1)
π,t for h = 1, 2, ..., 10.

These r̂
(h)
π,t returns are not tradable, and thus we use them in the estimation in a way that

is robust to this fact (see Internet Appendix B for details). However, our approach limits

our ability to extract information about the inflation risk premia dynamics from these r̂
(h)
π,t

returns. So, we add to {r
(Dur)
π,t } log returns on gold obtained from Bloomberg (rGold,t) since

gold is often viewed by market participants a hedge for shocks to expected inflation. In turn,

we set x̃r
(Level)
π,t = x̃r

(1)
π,t = ∆̃πt and x̃r

(Slope)
π,t = x̃rGold,t − x̃r

(1)
π,t = x̃rGold,t − ∆̃πt, which ensures

the r̂
(h)
π,t artificial returns are not used as priced factors in the SDF.16

For equities, we measure the aggregate annual return, re,t, and the aggregate annual div-

idend yield, ye,t, exactly as in Gonçalves (2021b). We also have [y
(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ] ⊂ st,

{r
(Anom)
e,t } ⊂ rt, and [x̃r

(PC1)
e,t , x̃r

(PC2)
e,t , x̃r

(PC3)
e,t ] ⊂ x̃r∗t . Following GKK, {r

(Anom)
e,t } contains

long and short value-weighted tercile portfolios associated with 51 anomaly signals (so 102

portfolios in total). Following the exact methodology of GKK, we construct principal com-

ponent weights and apply those weights to stock-level returns and yields, which gives us

[y
(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ] and [xr

(PC1)
e,t , xr

(PC2)
e,t , xr

(PC3)
e,t ].

3.3 VAR and SDF Estimation

We estimate our no arbitrage term structure model relying on an adaptation of the regression-

based method proposed by Adrian, Crump, and Moench (2013) to our particular empirical

analysis. The procedure is based on three simple steps, which provide consistent estimates (for

π, Π, Σ, λ, and Λ) while imposing the no arbitrage restrictions in Equations 12 and 13. First,

we estimate the VAR system through equation by equation OLS, which yields consistent

estimates of π, Π, and Σ that do not impose the non-arbitrage restrictions. Second, we use

16Internet Appendix D.9 considers a specification that entirely removes information on real bonds from
the analysis. This specification leads to results that are similar to the ones we report in the main text, except
that we cannot separately identify the effect of term and inflation RP implicit in the bond RP. So, the results
from this alternative specification are based on the decomposition in Equation 3 instead of Equation 35.
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the resulting Σ estimate in a restricted least squares estimation of λ and Λ that imposes the

non-arbitrage restrictions (from Equations 10 and 11). Third, we combine the resulting λ and

Λ estimates with the restrictions in Equations 12 and 13 to update our π and Π estimates

so that they satisfy the non-arbitrage restrictions, which in turn allows us to also update Σ.

Further estimation details are provided in Internet Appendix B.

Table 1 reports the VAR coefficients (in standard deviation units) as well as their t-stats

(in parentheses) and each predictive regression R2.17 To conserve space, we focus on the state

variables, st, and risk factors, xr∗t , omitting the results for the full vector of test assets, xrt.

Panel A reports the 1st step estimates (i.e., the VAR OLS estimates) while Panel B focuses

on our final estimates (i.e., the 3-step estimates that impose the no arbitrage restrictions).

Each state variable in st is a significant predictor of at least one other state variable in st or

one risk factor in xr∗t . The Panels A and B estimates are identical for st (by construction)

and relatively similar for xr∗t , which indicates the model’s no arbitrage conditions are not

overly restrictive in our estimation process.

Table 2 shows the correlation matrix of the shocks in st and xr∗t . The most important

observation from this table is that the correlations between the state variable shocks tend to

be moderate so that each state variable displays substantial independent variable. A similar

observation holds for the risk factors.

Table 3 provides the estimated λt coefficients (in standard deviation units), which sum-

marize the risk prices. The average risk prices are statistically significant for all risk factors.

The only exceptions are the risk prices on xrLeveli and xrPC3
e , but time variation in these risk

prices is significantly connected to our state variables, indicating that xrLeveli and xrPC3
e are

still important for capturing conditional risk premia. More broadly, each risk price displays

statistically significant connection to time variation in multiple state variables. These results

suggest that all risk factors we use are relevant to properly capture the risk premia dynamics

17Specifically, the VAR coefficient capturing the effect of x on y, πy,x, is normalized to (σx/σy) · πy,x.
With this normalization, an estimate of 0.10 means that a one standard deviation movement in the x variable
today predicts a 0.10 standard deviation movement in the y variable in one year. In the case of xr∗, we treat
the VAR-implied Et[xr

∗] as the y variable for the normalization.
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in our analysis.

4 Validation of the No Arbitrage Term Structure Model

Before presenting the results from our decomposition of the term structure of equity premia,

this sections provides a brief validation of our no arbitrage model. Subsection 4.1 demon-

strates that our no arbitrage model captures (unconditional and conditional) risk premia on

the test assets and risk factors studied and Subsection 4.2 shows that the model also captures

dynamics of yields on bond and dividend strips obtained from external data sources.

4.1 Model Fit to Risk Premia of Test Assets and Risk Factors

Figure 3 provides scatter plots with x and y axes reflecting the risk premia on the test assets

(i.e., average Et[xRj] ≡ Et[xrj] + 0.5 ·σ2
j values). The x-axes obtain Et[xRj] under the model

(i.e., the VAR estimated under no arbitrage restrictions) while the y-axes obtain Et[xRj]

under the data (i.e., the unrestricted VAR estimated by OLS, which has an average Et[xrj]

that matches the average xrj value). For equities, we show the results for the risk factors

as the PCs properly summarize the excess returns on all anomaly strategies considered.18

Figure 3(a) shows that the average risk premia in the data are well captured by the model.

Figures 3(b), 3(c), and 3(d) consider risk premia conditioned on different levels of Vart[m],

which captures the overall level of risk premia in the model. Overall, the model captures not

only the average risk premia, but also conditional risk premia.

Figure 4 compares the time variation in the factor risk premia under the data (i.e., unre-

stricted VAR) and model (i.e., VAR under no arbitrage restrictions). Clearly, the model fits

well the factor risk premia time variation. We also add the risk premia on a curvature bond

factor (which is not a risk factor under the model) to show that the model fit is also very

good there.

18Letting w(PCk) represent the weights of PCk on all returns, note that σ2
PCk =

∑
j w

(PCk)
j ·Var[xrj ] and

not σ2
PCk = Var[xr

(PCk)
e ]. The economic reason is that xr

(PCk)
e,t is not the log excess return on a tradable

portfolio. Instead, it is the weighted average of the log excess returns on the tradable portfolios in {r
(Anom)
e,t }.
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4.2 Model Fit to Yields of Bond and Dividend Strips

Since the model is estimated to fit the risk premia dynamics of test assets that are closely

connected to the risk factors in the model (by design), it is perhaps not surprising that the

model provides a good fit to the risk premia on the test assets and risk factors considered.

A more relevant question for the purpose of our analysis is whether the model generates

reasonable dynamics for the yields on bonds and dividend strips since these are directly used

in our decomposition for the term structure of equity risk premia, and we do not directly

target the dynamics of these yields in our estimation process (except for y
(1)
b,t , which the model

replicates by construction). Figure 5 provides the time-series of bond and equity yields in the

model as compared to alternative series obtained directly from data external to the model.

Figures 5(a), 5(d), and 5(g) plot the dynamics of real bond yields, y
(h)
π . As discussed in

Section 3.2, the “external data” version of these yields comes from a combination of a flexible

no arbitrage model in the literature (from Chernov and Mueller (2012)) and interpolated

TIPS yields (from Gürkaynak, Sack, and Wright (2010)). Our model produces real bond

yields with dynamics that are remarkably similar to the dynamics of these external yields.

In particular, the 1-year real yield displays cycles over the sample period, ending at a real

interest rate level that is similar to the initial real interest rate in the sample. Moreover, the

real interest rate is negative for most of the 2010s.

Figures 5(b), 5(e), and 5(h) plot the dynamics of nominal bond yields, y
(h)
b . As discussed

in Section 3.2, the “external data” version of these yields come from the interpolated bond

yields of Liu and Wu (2021) (with Internet Appendix D.5 providing a robustness analysis

using nominal bond yields from Gürkaynak, Sack, and Wright (2007)). Figures 5(b) shows

that the model perfectly matches the 1-year bond yield dynamics (by design). The nominal

interest rate does not display a simple secular decline over our sample period. It displays long

periods of interest rate increases (e.g., from the 1970s to the early 1980s) and long periods of

interest rate declines (e.g., from the 1980s to the early 2000s), with many cycles within these

periods. Moreover, it ends at an interest rate level that is roughly the same as (and even

slightly higher than) the initial interest rate level. There is an asymmetry in the speed of
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interest rate increases versus declines, but this aspect does not induce a non-stationarity in

the nominal interest rate that would undermine our VAR estimation. Figures 5(e) and 5(h)

show that the model also matches long-term bond yield dynamics remarkably well despite

not directly targeting them.

Figures 5(c), 5(f), and 5(i) plot the dynamics of equity yields, y
(h)
e . The “external data”

version of these yields come from GKK. The overall dynamics between our model and GKK

are very similar over long periods. However, they do deviate at short periods. These devia-

tions are mainly due to the fact that, as detailed in Internet Appendix C.3, we rely on the

same dividend measurement as Gonçalves (2021b), which accounts for M&A paid in cash.

Incorporating M&A paid in cash helps in making ye,t more stationary and is the right way to

account for aggregate dividends paid to shareholders, as highlighted in Allen and Michaely

(2003) and Sabbatucci (2022). However, Internet Appendix D.2 shows that our equity term

structure decomposition results are similar if we instead use a Dt measure that accounts only

for ordinary dividends.

5 Results from the No Arbitrage Term Structure Model

This section presents the main empirical results from our decomposition of the equity term

structure through the lens of our no arbitrage term structure model. Subsection 5.1 focuses

on the average equity risk premia term structure, Subsection 5.1 considers time variation in

the equity premia term structure, and Subsection 5.1 explores the implications for the excess

volatility puzzle.
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5.1 The Average Equity Risk Premia Term Structure

Our empirical analysis is based the following equity RP decomposition:19

Et[R
(h)
e −R(1)

π ]︸ ︷︷ ︸
Equity RP

= Et[R
(h)
π −R(1)

π ]︸ ︷︷ ︸
Term RP

+ Et[R
(h)
b −R(h)

π ]︸ ︷︷ ︸
Inflation RP

+ Et[R
(h)
e −R

(h)
b ]︸ ︷︷ ︸

Cash Flow RP

(35)

Equation 35 generalizes the decomposition in our preliminary analysis of Section 1 (from

Equation 3). The key improvements are that (i) all terms are measured consistently through

a no arbitrage framework and (ii) it allows us to separately identify the effects of the term

and inflation RP implicitly present in the bond RP of Equation 3. A more nuanced difference

is that Equation 35 defines the equity RP using E[R
(h)
e −R

(1)
π ] instead of E[R

(h)
e −R

(1)
b ], which

facilitates the exposition.20

Figure 6 shows the average model-implied equity RP and their respective term, inflation,

and cash flow RP components (from Equation 35).21 The black solid line shows that equity

RP increase in dividend strip maturity. The other three lines show that this effect is not

uniform across the three equity RP components. Specifically, cash flow RP increase over

short maturities of up to around 5 years and then start to decrease, getting close to 0% at

a 30-year maturity. In contrast, the term and inflation risk premia are strongly increasing in

maturity, and thus drive the increasing pattern of equity risk premia over long maturities.

The hump-shaped term structure of cash flow RP in Figure 6 can be seen as an extension

of the Binsbergen (2025) result that the equity premium is close to zero or even negative

19The cash flow RP terminology comes from Ang and Ulrich (2012), who explore a decomposition similar to
the one in Equation 35. However, their decomposition applies to different return horizons for the aggregate
equity index (instead of different dividend strip maturities) since their objective is to identify the macro
determinants of equity premia variation at different investment horizons.

20An alternative to Equation 35 would be the decomposition

E[R(h)
e −R

(1)
b ]︸ ︷︷ ︸

Equity RP

= E[R(h)
π −R(1)

π ]︸ ︷︷ ︸
Term RP

+ E[(R
(h)
b −R

(1)
b )− (R(h)

π −R(1)
π )]︸ ︷︷ ︸

Inflation RP

+ E[R(h)
e −R

(h)
b ]︸ ︷︷ ︸

Cash Flow RP

which is a better analogue to Equation 3. Since E[R
(1)
b −R

(1)
π ] is small on average and has little variability over

time, the two decompositions yield very similar results. As such, we focus on Equation 35, which facilitates
the exposition as it has a simpler expression for the inflation RP.

21Averaging realized risk premia (using Equations 18, 25, and 31) instead of the conditional risk premia
(from Equations 19, 26, and 32) leads to results that are almost identical to the ones presented in Figure 6.
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over the past five decades when it is measured as average equity returns in excess of a

duration-matched Treasury bond portfolio, E[Re − R
(eDur)
b ]. In particular, Figure 6 extends

this unconditional result to the entire equity term structure, showing that the average risk

premia of dividend strips are almost entirely driven by the cash flow RP component for short

maturity contracts and almost entirely driven by the bond RP components for long maturity

contracts.

While the hump-shaped of the average term structure of cash flow RP may seem sur-

prising, it is entirely consistent with early results from the equity term structure literature.

Specifically, Binsbergen and Koijen (2017) demonstrate that

Et[Re −R
(eDur)
b ]︸ ︷︷ ︸

Duration-Matched Equity RP

=
∞∑

h=1

w
(h)
e,t · Et[R

(h)
e −R

(h)
b ]︸ ︷︷ ︸

Cash Flow RP

≈

∞∑

h=1

w
(h)
e,t · Et[fR

(h)
e ]︸ ︷︷ ︸

Dividend Future RP

(36)

and then find that, from 2002 to 2014, the average fR
(h)
e for maturities from one to five

years tend to (i) increase with maturity and (ii) be higher than the average Re − R
(eDur)
b .

Considering that the h-year dividend future RP is approximately the same as the h-year

dividend future expected return (up to a Jensen’s inequality adjustment, see Footnote 4),

these results point to a potential hump-shape in the the term structure of cash flow risk

premia, which is exactly what our Figure 6 confirms in a more formal way.

5.2 The Time Variation in the Equity Risk Premia Term Structure

Figure 7 plots (demeaned) equity RP over time for three maturities (h = 1, 10, 30 years)

together with their components, which are the term, inflation, and cash flow RP from Equation

35. At the 1-year maturity, equity and cash flow RP track each other almost perfectly, with

a 0.96 correlation. In contrast, the term RP is constant (by design) and the inflation RP

has little volatility and a moderately weak correlation with the equity RP. As we look at

an intermediate maturity of 10-years, the correlation between the equity and cash flow RP

declines to 0.71 and we see more volatility in the term and inflation RP, both of which display

a moderately weak correlation with the equity RP that increases quite drastically over some

27



periods. For instance, while the overall correlation between the 10-year equity and inflation

RP is only 0.15, the two series track each other very well in the late 1970s and during the

1980s, with the inflation RP becoming much less volatile starting in the 1990s. For a long

maturity of 30-years, the equity and cash flow RP display a very weak 0.05 correlation, with

periods in which they move in the same direction and periods in which they move in opposite

directions. In contrast, the 30-year term and inflation RP display substantial volatility and

track the equity RP well, both displaying a 0.58 correlation with the equity RP.

Figure 8 formalizes some of these time-series patterns through the decomposition

1 = θ
(h)
Term + θ

(h)
Inflation + θ

(h)
CashFlow (37)

where θ
(h)
CashFlow =

Cov
(

Et[R
(h)
e −R

(1)
π ] ,Et[R

(h)
e −R

(h)
b

]
)

Var
(

Et[R
(h)
e −R

(1)
π ]

) is the fraction of the h-year equity RP vari-

ability explained by the h-year cash flow RP, with analogous definitions for θ
(h)
Term and θ

(h)
Inflation.

Figure 8(a) shows that variation in short-maturity equity RP is almost entirely driven by

cash flow RP whereas term and inflation RP play the dominant role for long-maturity equity

RP variation. In principle, we could have a different pattern for persistent versus transitory

variation in equity RP. However, Figure 8(b) shows that this is not the case. Specifically, that

figure considers a decomposition analogous to Equation 37 but that defines the θ terms using

annual changes in risk premia. The variance decomposition results are qualitatively similar

to the ones observed in Figure 8(a). That is, cash flow RP dominate for short maturity strips

while term and inflation RP dominate for long maturity strips.

Similar to the discussion in Section 1, we have

θ
(h)
CashFlow = Cor

(
Et[R

(h)
e −R(1)

π ] , Et[R
(h)
e −R

(h)
b ]
)
·
σ
(
Et[R

(h)
e −R

(h)
b ]
)

σ
(
Et[R

(h)
e −R

(1)
π ]
) , (38)

and likewise for θ
(h)
Term and θ

(h)
Inflation. As such, the θ patterns in Figure 8 can be due to the term

structures of correlations with the equity RP or the term structures of volatilities for the

different equity RP components. Figure 9 shows that, as in our preliminary analysis, both

channels are important given their complementarity on the total θ effects (since Equation
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38 is multiplicative). In particular, the correlation between equity RP and cash flow RP is

close to one for the 1-year dividend strip and close to zero for the 30-year dividend strip.

The opposite pattern is observed for term and inflation RP, which have correlations with

equity RP that are close to zero at the 1-year maturity and above 0.50 at a 30-year maturity.

Similar patterns are observed for annual changes in RP, but the quantitative effects are less

pronounced (albeit they remain large). These findings highlight that the common component

of the equity and bond risk premia (through term and inflation RP) is an important driver of

time variation in the overall equity premium (which mainly reflects the RP of long-maturity

dividend strips).

5.3 Time Variation in Equity Yields and the Excess Volatility Puzzle

The results from the prior subsection highlight that equity RP variation is mainly driven by

term and inflation RP variation. We now show that this result has important implications

for research attempting to explain the excess volatility puzzle of Shiller (1981).

In modern asset pricing terminology, the excess volatility puzzle in equities refers to the

fact that a substantial fraction of the variation in the aggregate dividend yield (which mainly

reflects aggregate equity price variation) is driven by discount rate movements. We can see

this puzzle from equity yields as well. Specifically, Equation 34 can be written as

y
(h)
e,t = (dr

(h)
e,t − g

(h)
π,t )︸ ︷︷ ︸

Equity RealDiscountRate

− (g
(h)
e,t − g

(h)
π,t )︸ ︷︷ ︸

ExpectedRealDividendGrowth

(39)

which implies the equity yield variance decomposition

1 = φ
(h)
dr + φ(h)

g (40)

where φ
(h)
dr =

Cov
(

(dr
(h)
e,t −g

(h)
π,t ) , y

(h)
e,t

)

Var
(

y
(h)
e,t

) and φ
(h)
g =

Cov
(

−(g
(h)
e,t −g

(h)
π,t ) , y

(h)
e,t

)

Var
(

y
(h)
e,t

) are the fractions of the

h-year equity yield variability explained by the h-year equity real discount rate and expected

real dividend growth, respectively.

Figure 10(a) reports the term structure of decompositions from Equation 40. The dis-

count rate effect is around 20% for a 1-year dividend strip but increases over dividend strip
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maturities, reaching close to 50% for a 30-year dividend strip. Since the equity index has a

duration that is higher than 30 years empirically (see, e.g., Gonçalves (2023)), a substantial

fraction of the equity index dividend yield variability comes from discount rate movements.

This is exactly the excess volatility puzzle in equities.

The fact that φ
(h)
dr increases with h is consistent with prior findings in the equity term

structure literature (e.g., Binsbergen et al. (2013) and Golez and Koudijs (2025)). Moreover,

it indicates the excess volatility puzzle is quantitatively much stronger for long maturity

dividend strips. To shed further light on the economic mechanism for the excess volatility

puzzle, we decompose the equity real discount rate component of Equation 39 in a way

analogous to what we did for the equity RP in Equation 35:22

(dr
(h)
e,t − g

(h)
π,t )︸ ︷︷ ︸

Equity RealDiscountRate

= (dr
(h)
π,t − g

(h)
π,t )︸ ︷︷ ︸

TermRPComponent

+ (dr
(h)
b,t − dr

(h)
π,t )︸ ︷︷ ︸

InflationRPComponent

+ (dr
(h)
e,t − dr

(h)
b,t )︸ ︷︷ ︸

CashFlowRPComponent

(41)

which implies

1 = φ
(h)
Term + φ

(h)
Inflation + φ

(h)
CashFlow + φ(h)

g (42)

where φ
(h)
CashFlow =

Cov
(

(dr
(h)
e,t −dr

(h)
b,t

) , y
(h)
e,t

)

Var
(

y
(h)
e,t

) is the fraction of the h-year equity yield variability

explained by the h-year cash flow RP component, with analogous definitions for φ
(h)
Term and

φ
(h)
Inflation.

Figure 10(b) reports the term structure of decompositions from Equation 42. The key

result is that the term and inflation RP components are the main drivers of the excess

volatility puzzle. So, economic explanations for the excess volatility puzzle that hinge on the

cash flow RP component of the equity RP are inconsistent with the data. Only economic

22Technically, the term RP component in Equation 41 also includes a real interest rate component since

(dr
(h)
π,t − g

(h)
π,t ) = (dr

(h)
π,t − ir

(h)
π,t ) + (ir

(h)
π,t − g

(h)
π,t )

where ir
(h)
π,t = 1

h
·
∑h

τ=1 Et[r
(1)
π,t+τ ]. However, the dr

(h)
π,t − g

(h)
π,t dynamics are almost completely driven by

dr
(h)
π,t − ir

(h)
π,t (because ir

(h)
π,t − g

(h)
π,t displays relatively little variation over time), so we simplify the exposition

by keeping only the combined term in our decomposition instead of treating the real term RP and real
interest rate components separately.
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mechanisms that affect the equity RP through the term and inflation RP components can

provide an empirically plausible explanation for the excess volatility puzzle.

The results from Figure 10(b) impose non-trivial restrictions on possible explanations

for the excess volatility puzzle in equities. For instance, the habit model of Campbell and

Cochrane (1999) is traditionally viewed as providing a reasonable explanation for this excess

volatility puzzle (even if it may fail on other asset pricing dimensions). Our evidence con-

tradicts this view. The reason is that the model embeds no inflation RP (because inflation

is artificially zero in the model). Of course, subsequent literature has added inflation to the

habit model in order to explain the term structure of interest rates (e.g., Wachter (2006)).

However, our point is that, to be consistent with the evidence, the model should not be able

to produce even the equity excess volatility puzzle in the absence of inflation dynamics.

We pick the habit model as an example in our discussion because this model was in-

troduced precisely to explain the excess volatility puzzle in equities. However, our evidence

provides restrictions for any model that proposes an explanation for the time-varying equity

premium (and thus for the excess volatility puzzle in equities). Perhaps most strikingly, our

results suggest that no model can credibly explain the excess volatility puzzle in the absence

of reasonable inflation dynamics (and also real term premium dynamics). While, tradition-

ally, equity and bond dimensions of asset pricing have been tackled separately, our findings

indicate that we need to tackle them jointly (as, e.g., in Koijen, Lustig, and Nieuwerburgh

(2017)) even when the goal is to explain only the equity risk premium dynamics.

6 Conclusion

In this paper, we develop and estimate a unified, no arbitrage term structure model that

jointly prices nominal bonds, real bonds, and dividend strips from 1972 to 2022. Building on

the Giglio, Kelly, and Kozak (2024) framework, we introduce state variables capturing both

nominal and real bond yield factors, allowing us to decompose the term structure of equity

risk premia into three economically meaningful components: term risk premia, inflation risk
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premia, and pure cash-flow risk premia (i.e., dividend strip expected returns in excess of

maturity-matched nominal bond strips). Our key findings are twofold. First, while term

and inflation risk premia rise monotonically with maturity, cash-flow risk premia exhibit

a hump-shaped profile—peaking at intermediate maturities and falling at long maturities.

Second, short-maturity equity premia variation is driven almost entirely by cash-flow risk

premia, whereas long-maturity equity premia variation is dominated by bond-based (term

and inflation) risk premia. These results imply that credible explanations for the equity

excess volatility puzzle must operate through bond risk premia dynamics

Our approach addresses three limitations of a simpler analysis we provide that directly

uses bond and equity yields available in the literature: (i) it spans a long sample period

with bond yields that are at similar levels in the beginning and end of the sample, (ii) it

imposes internal consistency by pricing bonds and dividend claims within one SDF, and (iii)

it disentangles inflation and real term premia. Compared with the unconditional insights of

Binsbergen (2025), our framework extends the analysis to the full term structure, showing

that the average equity premium at short maturities is almost entirely driven by cash flow

risk premia, whereas at long maturities it is nearly all a bond risk premium phenomenon.

These findings have broad implications. First, they shed light on how different risk pre-

mia components drive expected returns at varying cash flow maturities. This aspect is of

central importance to academics, who seek to understand the drivers of risk premia, and

practitioners, who assess horizon-specific risks when allocating capital across asset classes.

Second, they underscore the need to integrate bond market dynamics (through inflation and

term risk premia) into models of the equity risk premium and suggest that any successful

theory of the equity excess volatility puzzle must also explain the tight connection between

equity and bond risk premia at long cash flow maturities. Future work should tie the joint

equity and bond risk premia dynamics to macro-financial risks or to variation in sentiment

jointly affecting the equity and bond markets.
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Chabi-Yo, F., A. S. Gonçalves, and J. Loudis (2025). “An Intertemporal Risk Factor Model”.

In: Management Science. Forthcoming.

Chernov, M., L. A. Lochstoer, and D. Song (2024). “The Real Channel for Nominal Bond-

Stock Puzzles”. Working Paper.

Chernov, M. and P. Mueller (2012). “The Term Structure of Inflation Expectations”. In:

Journal of Financial Economics 106.2, pp. 367–394.

David, A. and P. Veronesi (2013). “What Ties Return Volatilities to Price Valuations and

Fundamentals?” In: Journal of Political Economy 121.4, pp. 682–746.

34



Gao, C. and I. Martin (2021). “Volatility, Valuation Ratios, and Bubbles: An Empirical

Measure of Market Sentiment”. In: Journal of Finance 76.6, pp. 3211–3254.

Giglio, S., B. Kelly, and S. Kozak (2024). “Equity Term Structures without Dividend Strips

Data”. In: Journal of Finance 79.6, pp. 4143–4196.

Golez, B. and J. Jackwerth (2024). “Holding Period Effects in Dividend Strip Returns”. In:

Review of Financial Studies 37.10, pp. 3188–3215.

Golez, B. and P. Koudijs (2025). “Equity duration and predictability”. Working Paper.

Golez, B. and B. Matthies (2025). “Fed Information Effects: Evidence from the Equity Term

Structure”. In: Journal of Financial Economics 165.103988.
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Table 1
VAR Transition Matrix (1972-2022)

The table reports the basic results from the estimation of our no arbitrage term structure model. In particular, the table
contains the VAR coefficients as well as their t-statistics (in parentheses) and each predictive regression R2. The VAR
coefficients, πy,x, are normalized to standard deviation units, (σx/σy) · πy,x, with VAR-implied Et[xr

∗] treated as the y
variable in the normalization of the VAR coefficients for xr∗. Panel A focuses on the VAR from the first step of our estimation
procedure (which is an unrestricted VAR estimated by OLS) whereas Panel B focuses on the VAR implies by our no arbitrage
term structure model. Sections 2 and 3 provide further details about the term structure model and its empirical specification,
with Section 3.3 discussing the results from this table.

PANEL A - 1st Step: OLS

State Variables Excess Returns

st y
(1)
i y

(TS)
i y

(1)
b y

(TS)
b ye yPC1

e
yPC2
e

yPC3
e

∆π xrLevel
i

xr
Slope

i xrLevel
b

xr
Slope

b xrLevel
e

xrPC1
e

xrPC2
e

xrPC3
e

y
(1)
i

0.38 0.11 -0.36 0.34 -0.32 -0.59 0.41 -0.25 -1.04 -1.38 1.76 1.84 1.68 -0.37 -0.28 1.29 -0.98

(1.93) (0.42) (-2.70) (1.34) (-1.88) (-3.70) (1.78) (-1.10) (-3.75) (-3.75) (2.68) (4.30) (3.78) (-0.57) (-0.29) (2.23) (-1.32)

y
(TS)
i

0.01 0.43 -0.10 0.08 -0.13 -0.39 0.31 -0.12 -0.36 -0.47 1.29 0.84 0.85 -0.59 0.07 0.32 -1.01

(0.12) (2.17) (-1.05) (0.40) (-1.28) (-3.33) (1.81) (-0.78) (-1.78) (-1.78) (2.64) (2.76) (2.40) (-1.22) (0.12) (0.75) (-1.98)

y
(1)
b

0.80 -0.61 1.31 -0.59 0.70 0.97 -0.48 0.49 1.15 1.52 -1.95 -1.23 -0.88 -1.37 0.93 -1.10 1.26

(3.83) (-2.45) (11.84) (-2.85) (3.87) (5.83) (-1.94) (1.99) (4.30) (4.30) (-3.32) (-3.09) (-2.25) (-2.18) (1.85) (-2.07) (1.68)

y
(TS)
b

0.19 -0.04 0.14 0.47 0.12 0.15 0.23 0.31 -0.07 -0.09 -1.10 0.09 0.22 0.14 0.37 -0.85 0.21

(1.51) (-0.28) (1.85) (2.79) (1.20) (1.75) (2.11) (2.45) (-0.46) (-0.46) (-2.60) (0.34) (0.81) (0.39) (0.83) (-2.56) (0.49)

ye

-0.14 0.05 -0.06 0.16 0.58 -0.11 -0.22 -0.43 -0.05 -0.06 0.86 0.25 0.19 0.88 -1.33 0.50 -0.92

(-1.38) (0.43) (-0.77) (1.03) (5.18) (-1.11) (-1.41) (-2.87) (-0.27) (-0.27) (1.86) (0.99) (0.74) (1.80) (-2.56) (1.51) (-2.77)

yPC1
e

-0.18 0.30 -0.15 0.35 -0.23 0.26 0.21 0.25 -0.19 -0.26 -0.61 0.37 0.13 1.13 0.84 -0.62 -0.02

(-1.53) (2.13) (-1.67) (2.01) (-1.83) (2.60) (1.50) (1.22) (-1.46) (-1.46) (-1.35) (1.16) (0.39) (2.83) (1.88) (-1.61) (-0.06)

yPC2
e

-0.07 0.06 -0.10 0.14 -0.05 -0.08 0.16 -0.18 -0.22 -0.30 0.08 0.41 0.39 0.79 -0.28 0.52 0.28

(-0.65) (0.42) (-1.57) (1.02) (-0.71) (-0.98) (1.26) (-1.35) (-1.78) (-1.78) (0.18) (1.98) (1.91) (2.84) (-1.34) (1.95) (1.05)

yPC3
e

-0.04 0.05 -0.03 -0.02 0.03 -0.06 0.05 0.09 0.01 0.02 -0.16 0.17 0.17 -0.09 0.17 -0.22 0.65

(-0.52) (0.59) (-0.79) (-0.26) (0.46) (-1.17) (0.65) (1.04) (0.18) (0.18) (-0.74) (1.13) (1.11) (-0.42) (0.83) (-1.39) (3.67)

R2 65.6% 31.9% 83.5% 41.5% 71.8% 72.7% 44.3% 15.0% 57.2% 57.2% 23.9% 28.8% 25.0% 17.1% 14.1% 21.4% 17.1%

PANEL B - 2nd Step: Implied by SDF

State Variables Excess Returns

st y
(1)
i y

(TS)
i y

(1)
b y

(TS)
b ye yPC1

e
yPC2
e

yPC3
e

∆π xrLevel
i

xr
Slope

i xrLevel
b

xr
Slope

b xrLevel
e

xrPC1
e

xrPC2
e

xrPC3
e

y
(1)
i 0.38 0.11 -0.36 0.34 -0.32 -0.59 0.41 -0.25 -1.04 -1.38 1.76 1.87 1.65 -0.37 -0.28 1.29 -0.98

y
(TS)
i 0.01 0.43 -0.10 0.08 -0.13 -0.39 0.31 -0.12 -0.36 -0.47 1.29 0.83 0.84 -0.59 0.07 0.32 -1.01

y
(1)
b 0.80 -0.61 1.31 -0.59 0.70 0.97 -0.48 0.49 1.15 1.52 -1.95 -1.26 -0.84 -1.37 0.93 -1.10 1.26

y
(TS)
b 0.19 -0.04 0.14 0.47 0.12 0.15 0.23 0.31 -0.07 -0.09 -1.10 0.06 0.24 0.14 0.37 -0.85 0.21

ye -0.14 0.05 -0.06 0.16 0.58 -0.11 -0.22 -0.43 -0.05 -0.06 0.86 0.23 0.17 0.88 -1.33 0.50 -0.92

yPC1
e

-0.18 0.30 -0.15 0.35 -0.23 0.26 0.21 0.25 -0.19 -0.26 -0.61 0.38 0.13 1.13 0.84 -0.62 -0.02

yPC2
e

-0.07 0.06 -0.10 0.14 -0.05 -0.08 0.16 -0.18 -0.22 -0.30 0.08 0.42 0.39 0.79 -0.28 0.52 0.28

yPC3
e

-0.04 0.05 -0.03 -0.02 0.03 -0.06 0.05 0.09 0.01 0.02 -0.16 0.17 0.18 -0.09 0.17 -0.22 0.65

R2
65.6% 31.9% 83.5% 41.5% 71.8% 72.7% 44.3% 15.0% 57.2% 57.2% 23.9% 28.7% 25.0% 17.1% 14.1% 21.4% 17.1%
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Table 2
Correlation Matrix of VAR Shocks (1972-2022)

The table reports the basic results from the estimation of our no arbitrage term structure model. In particular, it contains
the correlation matrix of shocks to the key variables in our analysis (state variables and risk factors). Shocks are obtained
from the VAR implied by our no arbitrage term structure model. Sections 2 and 3 provide further details about the term
structure model and its empirical specification, with Section 3.3 discussing the results from this table.

y
(1)
i y

(TS)
i y

(1)
b y

(TS)
b ye yPC1

e
yPC2
e

yPC3
e

∆π xrLevel
i

xr
Slope

i xrLevel
b

xr
Slope

b xrLevel
e

xrPC1
e

xrPC2
e

xrPC3
e

y
(1)
i 1 -0.87 0.49 -0.44 0.13 0.25 -0.16 0.01 -0.28 -0.28 -0.30 -0.34 -0.24 0.02 -0.14 0.18 -0.15

y
(TS)
i -0.87 1 -0.36 0.52 -0.11 -0.25 0.16 0.02 0.23 0.23 0.12 0.07 -0.08 -0.08 0.21 -0.19 0.12

y
(1)
b 0.49 -0.36 1 -0.78 0.20 0.29 -0.20 0.03 0.49 0.49 0.12 -0.84 -0.70 0.06 -0.05 -0.05 -0.04

y
(TS)
b -0.44 0.52 -0.78 1 -0.16 -0.31 0.20 -0.05 -0.33 -0.33 -0.13 0.39 0.19 -0.10 0.10 -0.09 0.01

ye 0.13 -0.11 0.20 -0.16 1 0.42 -0.36 0.32 0.22 0.22 0.06 -0.16 -0.16 -0.59 0.20 0.15 -0.05

yPC1
e

0.25 -0.25 0.29 -0.31 0.42 1 -0.66 -0.01 0.16 0.16 0.19 -0.19 -0.10 -0.42 -0.16 0.38 -0.05

yPC2
e

-0.16 0.16 -0.20 0.20 -0.36 -0.66 1 0.06 -0.18 -0.18 -0.18 0.13 0.07 0.41 0.13 -0.43 0.04

yPC3
e

0.01 0.02 0.03 -0.05 0.32 -0.01 0.06 1 0.06 0.06 -0.16 0.00 -0.04 -0.24 0.37 0.02 -0.16

∆π -0.28 0.23 0.49 -0.33 0.22 0.16 -0.18 0.06 1 1.00 0.52 -0.45 -0.44 -0.12 0.15 -0.12 0.12

xrLevel
i

-0.28 0.23 0.49 -0.33 0.22 0.16 -0.18 0.06 1.00 1 0.52 -0.45 -0.44 -0.12 0.15 -0.12 0.12

xr
Slope

i -0.30 0.12 0.12 -0.13 0.06 0.19 -0.18 -0.16 0.52 0.52 1 -0.05 -0.03 -0.12 -0.09 0.00 0.32

xrLevel
b

-0.34 0.07 -0.84 0.39 -0.16 -0.19 0.13 0.00 -0.45 -0.45 -0.05 1 0.94 0.01 -0.01 0.18 0.07

xr
Slope

b -0.24 -0.08 -0.70 0.19 -0.16 -0.10 0.07 -0.04 -0.44 -0.44 -0.03 0.94 1 0.06 -0.10 0.22 0.01

xrLevel
e

0.02 -0.08 0.06 -0.10 -0.59 -0.42 0.41 -0.24 -0.12 -0.12 -0.12 0.01 0.06 1 -0.48 -0.39 0.04

xrPC1
e

-0.14 0.21 -0.05 0.10 0.20 -0.16 0.13 0.37 0.15 0.15 -0.09 -0.01 -0.10 -0.48 1 0.07 0.06

xrPC2
e

0.18 -0.19 -0.05 -0.09 0.15 0.38 -0.43 0.02 -0.12 -0.12 0.00 0.18 0.22 -0.39 0.07 1 -0.11

xrPC3
e

-0.15 0.12 -0.04 0.01 -0.05 -0.05 0.04 -0.16 0.12 0.12 0.32 0.07 0.01 0.04 0.06 -0.11 1
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Table 3
SDF Risk Price Parameters (1972-2022)

The table reports the basic results from the estimation of our no arbitrage term structure model. In particular, the table
contains the λt coefficients as well as their t-statistics (in parentheses). The λt coefficients are normalized so that an average
coefficient of 1 implies a one standard deviation positive shock to the respective risk factor implies a m̃ that is one standard
deviation above zero. Similarly, a coefficient of 1 for the effect of si on risk factor xr∗j implies a one standard deviation increase
in si is associated with a one standard deviation increase in the risk price of factor xr∗j . Sections 2 and 3 provide further
details about the term structure model and its empirical specification, with Section 3.3 discussing the results from this table.

Average y
(1)
i y

(TS)
i y

(1)
b y

(TS)
b ye yPC1

e
yPC2
e

yPC3
e

xrLevel
i

0.05 -0.81 -1.49 -0.13 0.42 -0.35 -0.29 -0.47 0.23

(0.48) (-2.00) (-4.63) (-0.35) (1.81) (-1.53) (-1.05) (-2.91) (1.81)

xr
Slope

i

0.23 1.96 2.00 -1.75 -1.12 1.09 0.05 0.43 -0.39

(3.08) (6.08) (7.83) (-6.68) (-5.20) (5.19) (0.19) (1.97) (-3.17)

xrLevel
b

0.61 1.56 0.25 -2.32 -0.66 0.72 0.60 0.28 -0.11

(3.17) (4.32) (0.77) (-7.96) (-2.59) (3.82) (2.50) (1.59) (-0.88)

xr
Slope

b

-0.45 -1.37 -0.28 2.34 0.96 -0.88 -0.65 -0.36 0.25

(-2.52) (-3.31) (-0.68) (7.84) (3.39) (-4.16) (-2.63) (-1.88) (1.88)

xrLevel
e

0.54 0.66 0.04 -2.26 -0.53 0.97 1.19 0.96 -0.28

(7.61) (1.47) (0.10) (-4.78) (-2.12) (3.44) (4.30) (4.15) (-1.87)

xrPC1
e

0.35 0.48 1.00 -0.41 -0.04 -0.41 1.59 0.52 -0.15

(5.47) (0.63) (1.91) (-0.83) (-0.11) (-0.94) (4.16) (2.11) (-0.82)

xrPC2
e

0.25 0.84 -0.12 -1.53 -0.85 0.68 -0.07 0.67 -0.24

(3.61) (2.09) (-0.42) (-4.56) (-3.95) (3.27) (-0.26) (3.19) (-1.97)

xrPC3
e

-0.10 -1.60 -1.38 1.98 0.58 -1.10 -0.24 0.05 0.57

(-1.65) (-3.41) (-4.14) (4.06) (2.30) (-5.05) (-1.01) (0.35) (4.19)
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(a) Average Equity Risk Premia (b) Fraction of Equity RP Variability Explained

(Dividend Growth from GKK) (Dividend Growth from GKK)
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Figure 1
Preliminary Analysis: Decomposing Equity RP Term Structure Average and Time Variation

The graphs display the results from our preliminary analysis of the equity term structure, which is based on bond and
dividend strip yields from the prior literature (i.e., without requiring our no arbitrage term structure model). Panels (a) and
(c) report the average equity RP term structure and its cash flow and bond RP components (from Equation 3). Panels (b)
and (d) report the fraction of equity RP variability explained by its cash flow and bond RP components (from Equation
4). When constructing dividend strip returns, Panels (a) and (b) use dividend growth from Giglio, Kelly, and Kozak (2024)
(GKK) whereas Panels (c) and (d) use our dividend growth measure, which follows Gonçalves (2021a) and incorporates M&A
paid in cash. Section 1 provides further details about measurement and discusses the results from this figure.
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(a) Volatility Ratios of Equity RP Components (b) Correlations with Equity RP

(Dividend Growth from GKK) (Dividend Growth from GKK)
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Figure 2
Preliminary Analysis: Volatility Ratios and Correlations with Equity RP

The graphs display the results from our preliminary analysis of the equity term structure, which is based on bond and
dividend strip yields from the prior literature (i.e., without requiring our no arbitrage term structure model). Panels (a) and
(c) report the volatilities of cash flow and bond RP components as a ratio of the equity RP (as in Equation 5). Panels (b)
and (d) report the of equity RP with their cash flow and bond RP components (also as in Equation 5). When constructing
dividend strip returns, Panels (a) and (b) use dividend growth from Giglio, Kelly, and Kozak (2024) (GKK) whereas Panels
(c) and (d) use our dividend growth measure, which follows Gonçalves (2021a) and incorporates M&A paid in cash. Section
1 provides further details about measurement and discusses the results from this figure.
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Figure 3
Model Fit: Risk Premia of Test Assets

The graphs display scatter plots with y axes reflecting the risk premia on the testing assets (i.e., average
Et[xRj ] = Et[xrj ] + 0.5 · σ2

j based on our unconstrained VAR) and x axes reflecting the same risk premia according to our

no arbitrage model (i.e., average Et[xRj ] = Et[xrj ] + 0.5 · σ2
j based on the SDF-implied VAR of our model). Sections 2 and 3

provide further details about the term structure model and its empirical specification while Section 4.1 discusses the results
from this figure.
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Figure 4
Model Fit: Conditional Risk Premia on Risk Factors

The graphs display time-series plots for the risk premia of the different risk factors, Et[xR
∗

j ] = Et[xr
∗

j ] + 0.5 · σ2
j , obtained

from the unconstrained VAR (estimated by OLS) as well as from our no arbitrage model. Sections 2 and 3 provide further
details about the term structure model and its empirical specification while Section 4.1 discusses the results from this figure.
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Figure 5
Model Fit: Inflation, Bond, and Dividend Strip Yields

The graphs display time-series plots for the yields on real bond, nominal bond, and dividend strips obtained from our no
arbitrage term structure model together with the analogous yields from data external to the model. Sections 2 and 3 provide
further details about the term structure model and its empirical specification while Section 4.2 discusses the results from this
figure.
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Figure 6
The Average Term Structure of Equity Risk Premia: Term RP, Inflation RP, and Cash Flow RP

This figure displays the average term structure of Equity RP and its components (the term, inflation, and cash flow RP from
Equation 35). Sections 2 and 3 provide further details about the term structure model and its empirical specification while
Section 5.1 discusses the results from this figure.
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(a) Term RP (h = 1) (b) Inflation RP (h = 1) (c) Cash Flow RP (h = 1)
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Figure 7
Time Variation in the Term Structure of Equity Risk Premia: Term RP, Inflation RP, and Cash Flow RP

The graphs display time-series plots for the Equity RP components (the term, inflation, and cash flow RP from Equation
35). We consider three maturities (h =1, 10, and 30 years). Sections 2 and 3 provide further details about the term structure
model and its empirical specification while Section 5.2 discusses the results from this figure.
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(a) Fraction of Equity RP Variability Explained by its Components
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(b) Fraction of Equity ∆RP Variability Explained by its Components
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Figure 8
Fraction of Equity Premia Variability Explained by Term RP, Inflation RP, and Cash Flow RP

The graphs display term structure plots of the fraction of equity premia variability explained by each of the Equity RP
components (the term, inflation, and cash flow RP from Equation 35). Similar for annual changes in RP (referred to as
∆RP). Sections 2 and 3 provide further details about the term structure model and its empirical specification while Section
5.2 discusses the results from this figure.
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(a) Volatility Ratios of Equity RP Components (b) Correlations with Equity RP
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(c) Volatility Ratios of Equity ∆RP Components (d) Correlations with Equity ∆RP
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Figure 9
Equity RP Components: Volatility Ratios and Correlations with Equity RP

The graphs display term structure plots of the volatilities of equity RP components (over the equity RP volatility) as well
as of the correlation of equity RP with each of its components (the term, inflation, and cash flow RP from Equation 35).
Similar for annual changes in RP (referred to as ∆RP). Sections 2 and 3 provide further details about the term structure
model and its empirical specification while Section 5.2 discusses the results from this figure.
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(a) Fraction of Equity Yield Variability Explained by Growth and Discount Rate Components
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Figure 10
Fraction of Equity Yield Variability Explained by Expected Growth and Real Equity Discount Rate Components

The graphs display, based on Equation 39, term structure plots of the fraction of equity yield variability explained by expected
growth and real equity discount rate components (the term, inflation, and cash flow RP components from Equation 41).
Sections 2 and 3 provide further details about the term structure model and its empirical specification while Section 5.3
discusses the results from this figure.
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A Derivations for our No Arbitrage Term Structure Model

A.1 Risk Premia Constraints under No Arbitrage

The no arbitrage condition Et[e
mt+1+r

(1)
b,t+1 ] = 1 can be written as:

Et[m] + 0.5 · Vart[m] = − y
(1)
b,t (IA.1)

and combining Et[e
mt+1+r

(1)
b,t+1 ] = 1 and Et[e

mt+1+rj,t+1 ] = 1 with the VAR structure yields:

1
′

xrj
(ϕ + Φzt) + 0.5 · 1

′

xrj
Σ1xrj = 1

′

xrj
ΣΩ

′

λt (IA.2)

where 1xrj is a selector vector such that 1
′

xrj
zt = xrj,t.

Now, conjecture that λt = λ+ Λzt. Then, we have:

1
′

xrj
ϕ + 0.5 · 1

′

xrj
Σ1xrj + 1

′

xrj
Φzt = 1

′

xrj
ΣΩ

′

λ + 1
′

xrj
ΣΩ

′

Λzt (IA.3)

which implies the restrictions

1
′

xrj
ϕ + 0.5 · 1

′

xrj
Σ1xrj = 1

′

xrj
ΣΩ

′

λ (IA.4)

and

1
′

xrj
Φ = 1

′

xrj
ΣΩ

′

Λ, (IA.5)

thereby verifying the λt = λ+ Λzt conjecture.

A.2 Bond Strips

In this section, we derive all expressions related to bond strips.
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A.2.1 Bond Strip Yields

The no arbitrage condition e−h·y
(h)
b,t = Et[e

mt+1−(h−1)·y
(h−1)
b,t+1 ] implies:

h · y
(h)
b,t = − Et[m− (h− 1) · y

(h−1)
b ]− 0.5 · Vart[m− (h− 1) · y

(h−1)
b ]

= y
(1)
b,t + (h− 1) · Et[y

(h−1)
b ]−

(h− 1)

2
· Vart[y

(h−1)
b ] + (h− 1) · Covt[m, y

(h−1)
b ]

(IA.6)

where the second equality uses y
(1)
b,t = −Et[m]− 0.5 · Vart[m].

Now, conjecture that y
(h−1)
b,t = a

(h−1)
yb + b

(h−1)′

yb zt and substitute such conjecture into Equa-

tion IA.6 to get:

h · y
(h)
b,t = y

(1)
b,t + (h− 1) ·

[
a(h−1) + b(h−1)′ (ϕ+ Φzt)

]
−

(h− 1)2

2
· b(h−1)′Σb(h−1) − (h− 1) · λ

′

tΩΣb
(h−1)

= (h− 1) · a(h−1) + (h− 1) · b(h−1)′ϕ−
(h− 1)2

2
· b(h−1)′Σb(h−1)

+ y
(1)
b,t + (h− 1) · b(h−1)′Φzt − (h− 1) · λ

′

ΩΣb(h−1) − (h− 1) · z
′

tΛ
′

ΩΣb(h−1)

⇓

y
(h)
b,t = a(h)yb

+ b(h)
′

yb
zt (IA.7)

which confirms the y
(h−1)
b,t = a

(h−1)
yb + b

(h−1)′

yb zt conjecture with boundary condition a
(0)
yb =

b
(0)
yb = 0 and recursive parameters:

a
(h)
yb = (h−1)

h
·
[
a
(h−1)
yb + b

(h−1)′

yb (ϕ− ΣΩ
′

λ− 0.5 · (h− 1) · Σb
(h−1)
yb )

]

b
(h)′

yb = 1
h
· 1

′

yb
+ (h−1)

h
·
[
b
(h−1)′

yb (Φ− ΣΩ
′

Λ)
]

A.2.2 Bond Strip Returns and Risk Premia

Since R
(h)
b,t = P

(h−1)
b,t /P

(h)
b,t−1 = eh·y

(h)
b,t−1−(h−1)·y

(h−1)
b,t , we have r

(h)
b,t = h · y

(h)
b,t−1 − (h − 1) · y

(h−1)
b,t ,

which implies:
Vart[r

(h)
b ] = b

(h)′

Vb
Σb

(h)
Vb

(IA.8)

and
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Et[xr
(h)
b ] = h · y

(h)
b,t − (h− 1) · Et[y

(h−1)
b ] − y

(1)
b

= h · y
(h)
b,t − (h− 1) ·

[
a(h−1) + b(h−1)′ (ϕ+ Φzt)

]
− y

(1)
b

= a
(h)
Eb

+ b
(h)′

Eb
zt (IA.9)

with recursive parameters:

a
(h)
Eb

= h · a
(h)
yb − (h− 1) · (a

(h−1)
yb + b

(h−1)′

yb ϕ)

b
(h)′

Eb
= h · b

(h)′

yb − (h− 1) · b
(h−1)′

yb Φ− 1
′

yb

b
(h)′

Vb
= −(h− 1) · b

(h−1)′

yb

Finally, we have:

Et[R
(h)
b −R

(1)
b ] = Et

[
er

(h)
b,t+1 − er

(1)
b,t+1

]

= Et

[
exr

(h)
b,t+1 − 1

]
· ey

(1)
b,t

=
(
eEt[xr

(h)
b

]+0.5·Vart[r
(h)
b

] − 1
)
· ey

(1)
b,t (IA.10)

A.3 Inflation Strips

In this section, we derive all expressions related to inflation strips.

A.3.1 Inflation Strip Yields

The no arbitrage condition e−h·y
(h)
π,t = Et[e

mt+1−(h−1)·y
(h−1)
π,t+1+∆πt+1 ] implies:

h · y
(h)
π,t = − Et[m] + (h− 1) · Et[y

(h−1)
i ]− Et[∆π]−

1

2
· Vart[m]

−
1

2
· Vart[∆π − (h− 1) · y(h−1)

π ]− Covt[m,∆π − (h− 1) · y(h−1)
π ]

= y
(1)
b,t + (h− 1) · Et[y

(h−1)
π ]− Et[∆π] (IA.11)

−
1

2
· Vart[∆π − (h− 1) · y(h−1)

π ]− Covt[m,∆π − (h− 1) · y(h−1)
π ]

Now, conjecture that y
(h−1)
π,t = a

(h−1)
yπ + b

(h−1)′

yπ zt and substitute such conjecture into Equa-
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tion IA.11 to get:

h · y
(h)
π,t = 1

′

yb
zt + (h− 1) · [a(h−1)

yπ
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′

ΣΩ
′
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′

yb
+ (h− 1)b(h−1)′

yπ
Φ− 1

′
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y
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+ b(h)
′
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zt (IA.12)

with boundary conditions a
(0)
yπ = b

(0)
yπ = 0, and recursive parameters:

a
(h)
yπ = 1

h
·
[
(h− 1) · a

(h−1)
yπ − (1π − (h− 1) · b

(h−1)
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′
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]
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h
·
[
1
′
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(h−1)
yπ )

′

(Φ− ΣΩ
′

Λ)
]

A.3.2 Inflation Strip Returns and Risk Premia

Since R
(h)
π,t = P

(h−1)
π,t /P

(h)
π,t−1 = eh·y

(h)
π,t−1−(h−1)·y

(h−1)
π,t +∆πt , we have

r
(h)
π,t = h · y

(h)
π,t−1 − (h− 1) · y

(h−1)
π,t +∆πt (IA.13)

which implies

Vart[r
(h)
π ] = b

(h)′

Vπ
Σb

(h)
Vπ

(IA.14)

and

Et[xr
(h)
π ] = h · y

(h)
π,t + Et[∆π − (h− 1) · y(h−1)

π ]− y
(1)
b,t

= a
(h)
Eπ

+ b
(h)′

Eπ
zt (IA.15)
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with boundary conditions a
(0)
yπ = b

(0)
yπ = 0, and recursive parameters:

a
(h)
Eπ

= h · a
(h)
yπ − (h− 1) · a

(h−1)
yπ + (1π − (h− 1) · b

(h−1)
yπ )

′

ϕ

b
(h)′

Eπ
= (1π − (h− 1) · b

(h−1)
yπ )

′

Φ+ (h · b
(h)
yπ )

′

− 1
′

yb

b
(h)′

Vπ
= (1π − (h− 1) · b

(h−1)
yπ )

′

Finally, we have:

Et[R
(h)
π −R

(1)
b ] = Et

[
er

(h)
π,t+1 − er

(1)
b,t+1

]

= Et

[
exr

(h)
π,t+1 − 1

]
· ey

(1)
b,t

=
(
eEt[xr

(h)
π ]+0.5·Vart[r

(h)
π ] − 1

)
· ey

(1)
b,t (IA.16)

A.3.3 Inflation Strip Discount Rates

We can obtain each strip (log) discount rate from

dr
(h)
π,t = Et[

1

h
· r

(h)
π,t→t+h]

= y
(h)
π,t + Et[

1

h
·∆πt→t+h]

= y
(h)
π,t +

1

h
·

h∑

j=1

Et[∆πt+j] (IA.17)

where (conjecturing and verifying that g
(h)
π,t =

1
h
·
∑h

j=1 Et[∆πt+j] = a
(h)
gπ + b

(h)′

gπ zt)

1

h
·

h∑

j=1

Et[∆πt+j] =
1

h
· Et[∆πt+1] +

h− 1

h
· Et

[
1

h− 1
·

h−1∑

j=1

Et+1[∆πt+1+j]

]

=
1

h
· Et[∆πt+1] +

h− 1

h
· Et[a

(h−1)
gπ

+ b(h−1)′

gπ
zt+1]

=
1

h
· Et[1

′

πzt+1] +
h− 1

h
· Et[a

(h−1)
gπ

+ b(h−1)′

gπ
zt+1]

= a(h)gπ
+ b(h)

′

gπ
zt (IA.18)

with boundary conditions a
(0)
gπ = b

(0)′

gπ = 0, and recursive parameters:

a
(h)
gπ = 1

h
· 1

′

πϕ+ h−1
h

· (a
(h−1)
gπ + b

(h−1)′

gπ ϕ)

IA.5



b
(h)

′

gπ = 1
h
· 1

′

πΦ + h−1
h

· b
(h−1)′

gπ Φ

A.4 Dividend Strips (Log-Linear Approximation)

In this section, we derive all expressions related to dividend strips relying on the log-linear

approximation of Gao and Martin (2021) (which is an improved version of the Campbell and

Shiller (1989) log-linear approximation), ∆dt ≈ re,t +
ρe

1−ρe
· ye,t −

1
1−ρe

· ye,t−1, where ∆dt =

log(Dt/Dt−1) and ρe = e−ye . These expressions are used in the robustness check of Section

D.1. The expressions that do not rely on any approximation (used in our baseline analysis)

are provided in Section A.5.

A.4.1 Dividend Strip Yields

The no arbitrage condition e−h·y
(h)
e,t = Et[e

mt+1−(h−1)·y
(h−1)
e,t+1 +∆dt+1 ] implies:

h · y
(h)
e,t = − Et[m] + (h− 1) · Et[y

(h−1)
e ]− Et[∆d]−

1

2
· Vart[m]

−
1

2
· Vart[∆d− (h− 1) · y(h−1)

e ]− Covt[m,∆d− (h− 1) · y(h−1)
e ]

= y
(1)
b,t + (h− 1) · Et[y

(h−1)
e ]− Et[∆d] (IA.19)

−
1

2
· Vart[∆d− (h− 1) · y(h−1)

e ]− Covt[m,∆d− (h− 1) · y(h−1)
e ]
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Now, conjecture that y
(h−1)
e,t = a

(h−1)
ye + b

(h−1)′

ye zt and substitute such conjecture together with

∆dt = [1xre +
ρe

1−ρe
1ye ]

′

zt + [1yb −
1

1−ρe
1ye ]

′

zt−1 into Equation IA.19 to get:

h · y
(h)
e,t = 1

′

yb
zt + (h− 1) · [a(h−1) + b(h−1)

′

(ϕ+ Φzt)]− (1xre +
ρe

1− ρe
1ye)

′

(ϕ+ Φzt)− (1yb −
1

1− ρe
1ye)zt

−
1

2
· (1xre +

ρe
1− ρe

1ye − (h− 1) · b(h−1)
ye

)
′

Σ(1xre +
ρe

1− ρe
1ye − (h− 1) · b(h−1)

ye
)

+ λ
′

tΩΣ(1xre +
ρe

1− ρe
1ye − (h− 1) · b(h−1)

ye
)

= (h− 1) · [a(h−1) + b(h−1)
′

ϕ]− (1xre +
ρe

1− ρe
1ye)

′

ϕ

−
1

2
(1xre +

ρe
1− ρe

1ye − (h− 1) · b(h−1)
ye

)
′

Σ(1xre +
ρe

1− ρe
1ye − (h− 1) · b(h−1)

ye
)

+ (1xre +
ρe

1− ρe
1ye − (h− 1) · b(h−1)

ye
)
′

ΣΩ
′

λ

{1
′

yb
+ (h− 1)b(h−1)′

ye
Φ− (1xre +

ρe
1− ρe

1ye)
′

Φ− (1yb −
1

1− ρe
1ye)

+ (1xre +
ρe

1− ρe
1ye − (h− 1) · b(h−1)

ye
)
′

ΣΩ
′

Λ}zt

⇓

y
(h)
e,t = a(h)ye

+ b(h)
′

ye
zt (IA.20)

with boundary conditions a
(0)
ye = b

(0)
ye = 0, and recursive parameters:

a
(h)
ye = 1

h
·
[
(h− 1) · a

(h−1)
ye − (1xre +

ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye )

′

(ϕ− ΣΩ
′

λ+ 0.5 · Σ(1xre +
ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye ))

]

b
(h)′

ye = 1
h
·
[

1
1−ρe

1
′

ye
− (1xre +

ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye )

′

(Φ− ΣΩ
′

Λ)
]

A.4.2 Dividend Strip Returns and Risk Premia

Since R
(h)
e,t = P

(h−1)
e,t /P

(h)
e,t−1 = eh·y

(h)
e,t−1−(h−1)·y

(h−1)
e,t +∆dt , we have

r
(h)
e,t = h · y

(h)
e,t−1 − (h− 1) · y

(h−1)
e,t +∆dt

= h · y
(h)
e,t−1 − (h− 1) · y

(h−1)
e,t + re,t +

ρe
1− ρe

· ye,t −
1

1− ρe
· ye,t−1 (IA.21)

which implies:
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Vart[r
(h)
e ] = b

(h)′

Ve
Σb

(h)
Ve

(IA.22)

and

Et[xr
(h)
e ] = h · y

(h)
e,t −

1

1− ρe
· ye,t + Et[(h− 1) · y(h−1)

e + re +
ρe

1− ρe
· ye]

= a
(h)
Ee

+ b
(h)′

Ee
zt (IA.23)

with boundary conditions a
(0)
ye = b

(0)
ye = 0, and recursive parameters:

a
(h)
Ee

= h · a
(h)
ye − (h− 1) · a

(h−1)
ye + (1xre +

ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye )

′

ϕ

b
(h)′

Ee
= (1xre +

ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye )

′

Φ+ (h · b
(h)
ye − 1

1−ρe
1ye

)
′

b
(h)′

Ve
= (1xre +

ρe

1−ρe
1ye

− (h− 1) · b
(h−1)
ye )

′

Finally, we have:

Et[R
(h)
e −R

(1)
b ] = Et

[
er

(h)
e,t+1 − er

(1)
b,t+1

]

= Et

[
exr

(h)
e,t+1 − 1

]
· ey

(1)
b,t

=
(
eEt[xr

(h)
e ]+0.5·Vart[r

(h)
e ] − 1

)
· ey

(1)
b,t (IA.24)

A.4.3 Dividend Strip Discount Rates

We can obtain each strip (log) discount rate from

dr
(h)
e,t = Et[

1

h
· r

(h)
e,t→t+h]

= y
(h)
e,t + Et[

1

h
·∆dt→t+h]

= y
(h)
e,t +

1

h
·

h∑

j=1

Et[∆dt+j] (IA.25)
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where (conjecturing and verifying that g
(h)
e,t = 1

h
·
∑h

j=1 Et[∆dt+j] = a
(h)
ge + b

(h)′

ge zt)

1

h
·

h∑

j=1

Et[∆dt+j] =
1

h
· Et[∆dt+1] +

h− 1

h
Et

[
1

h− 1
·

h−1∑

j=1

Et+1[∆dt+1+j]

]

=
1

h
· Et[∆dt+1] +

h− 1

h
· Et[a

(h−1)
g + b(h−1)′

g zt+1]

=
1

h
· Et[re,t+1 +

ρe
1− ρe

· ye,t+1 −
1

1− ρe
· ye,t] +

h− 1

h
· Et[a

(h−1)
g + b(h−1)′

g zt+1]

= a(h)g + b(h)
′

g zt (IA.26)

with boundary conditions a
(0)
g = b

(0)′

g = 0, and recursive parameters:

a
(h)
ge = 1

h
· (1xre +

ρe
1−ρe

1ye)
′

ϕ+ h−1
h

· (a
(h−1)
ge + b

(h−1)′

ge ϕ)

b
(h)

′

ge = 1
h
· [(1xre +

ρe
1−ρe

1ye)
′

Φ + 1
′

yb
− 1

1−ρe
1
′

ye
] + h−1

h
· b

(h−1)′

ge Φ

A.5 Dividend Strips (Exact Expressions)

In this section, we derive all expressions related to dividend strips using no approximation.

A.5.1 Dividend Strip Yields, Returns, and Risk Premia

Let re,t = log(Pe,t+Dt

Pe,t−1
) represent the log return on a portfolio paying the cash flow Dt and

define its dividend yield as ye,t = log( Dt

Pe,t
+ 1). In this case, the no arbitrage condition for

the dividend strip is:

P
(h)
e,t

Pe,t

≡ w
(h)
e,t = Et

[
Mt+1

P
(h−1)
e,t+1

Pe,t

]

= Et

[
w

(h−1)
e,t+1 · emt+1+re,t+1−ye,t+1

]
(IA.27)

with boundary condition P
(0)
e,t = Dt so that w

(0)
e,t = eye,t − 1.

The derivation below shows that, as long as re,t ϵ rt and ye,t ϵ st, the no arbitrage condition

in Equation IA.27 implies:

w
(h)
e,t = ea

(h)
1,we

+ b
(h)′

1,we
zt − ea

(h)
2,we

+ b
(h)′

2,we
zt (IA.28)
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with boundary conditions a
(0)
1,we

= a
(0)
2,we

= b
(0)
2,we

= 0 and b
(0)
1,we

= 1ye , and recursive parameters:

a
(h)
k,we

= a
(h−1)
k,we

+ (b
(h−1)
k,we

+ 1xre − 1ye)
′

(ϕ− ΣΩ
′

λ+ 0.5 · Σ(b
(h−1)
k,we

+ 1xre − 1ye))

b
(h)′

k,we
= (b

(h−1)
k,we

+ 1xre − 1ye)
′

(Φ− ΣΩ
′

Λ)

Using the strip weights in Equation IA.28, we can calculate strip realized returns and risk

premia:

R
(h)
e,t =

P
(h−1)
e,t

P
(h)
e,t−1

=
w

(h−1)
e,t

w
(h)
e,t−1

· ere,t−ye,t (IA.29)

and

Et

[
R(h)

e −R
(1)
b

]
= Et

[
w

(h−1)
e,t+1

w
(h)
e,t

· ere,t+1−ye,t+1

]
− ey

(1)
b,t

=
1

w
(h)
e,t

·

[
ea

(h)
1,Ee + b

(h)′

1,Eezt − ea
(h)
2,Ee + b

(h)′

2,Eezt

]
− ey

(1)
b,t (IA.30)

with recursive parameters given by:

θ
(h)
k,Ee = b

(h−1)
k,we

+ 1xre − 1ye

a
(h)
k,Ee = a

(h−1)
k,we

+ θ
(h)′

k,Ee(ϕ+ 0.5 · Σθ
(h)
k,Ee)

b
(h)′

k,Ee = θ
(h)′

k,EeΦ + 1
′

yb

Since Dt > 0 implies ye,t > 0 and w
(h)
e,t > 0, we can also define dividend strip yields, y

(h)
e,t ,

based on

y
(h)
e,t =

1

h
· log

(
Dt

P
(h)
e,t

)
=

1

h
·
[
log (eye,t − 1)− log

(
w

(h)
e,t

)]
(IA.31)

and solve for dividend strip (log) discount rates (see derivation below):
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P
(h)
e,t = Et [Dt+h] · e

−h·dr
(h)
e,t

⇓

dr
(h)
e,t =

1

h
· log

(
Et

[
Dt+h

P
(h)
e,t

])

=
1

h
· log

(
1

w
(h)
e,t

·

[
ea

(h)
1,dre

+ b
(h)′

1,dre
zt − ea

(h)
2,dre

+ b
(h)′

2,dre
zt

])
(IA.32)

with boundary conditions θ
(1)
1,dre

= 1xre , θ
(1)
2,dre

= 1xre − 1ye , and a
(0)
k,dre

= 0, and recursive

parameters:

θ
(h)′

k,dre
= θ

(h−1)′

k,dre
Φ + 1xre − 1ye + 1yb

a
(h)
k,dre

= a
(h−1)
k,dre

+ θ
(h)′

k,dre
ϕ + 0.5 · θ

(h)′

k,dre
Σθ

(h)
k,dre

b
(h)′

k,dre
= θ

(h)′

k,dre
Φ + 1yb

A.5.2 w
(h)
e,t Derivation

Start by conjecturing that

w
(h)
e,t = ex

(h)
e,1,t − ex

(h)
e,2,t

ea
(h)
1,we

+ b
(h)′

1,we
zt − ea

(h)
2,we

+ b
(h)′

2,we
zt (IA.33)

In this case, the boundary condition w
(0)
e,t = eye,t − 1 implies a

(0)
1,we

= a
(0)
2,we

= b
(0)
2,we

= 0 and

b
(0)
1,we

= 1ye .
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Moreover, substituting the x
(h)
e,k,t = a

(h)
k,we

+ b
(h)′

k,we
zt conjecture in Equation IA.27 implies:

x
(h)
e,k,t = Et[x

(h−1)
e,k +m+ re − ye] +

Vart[x
(h−1)
e,k +m+ re − ye]

2

= − y
(1)
b,t + Et[x

(h−1)
e,k + re − ye] +

Vart[x
(h−1)
e,k + re − ye]

2
+ Covt[m, x

(h−1)
e,k + re − ye]

= a
(h−1)
k,we

+ (b
(h−1)
k,we

+ 1xre − 1ye)
′

(ϕ+ Φzt)

+
1

2
(b

(h−1)
k,we

+ 1xre − 1ye)
′

Σ(b
(h−1)
k,we

+ 1xre − 1ye)− λ
′

tΩΣ(b
(h−1)
k,we

+ 1xre − 1ye)

= a
(h−1)
k,we

+ (b
(h−1)
k,we

+ 1xre − 1ye)
′

ϕ+
1

2
(b

(h−1)
k,we

+ 1xre − 1ye)
′

Σ(b
(h−1)
k,we

+ 1xre − 1ye)

− (b
(h−1)
k,we

+ 1xre − 1ye)
′

ΣΩ
′

λ

+ [(b
(h−1)
k,we

+ 1xre − 1ye)
′

Φ− (b
(h−1)
k,we

+ 1xre − 1ye)
′

ΣΩ
′

Λ]zt

= a
(h)
k,we

+ b
(h)′

k,we
zt (IA.34)

with recursive parameters:

a
(h)
k,we

= a
(h−1)
k,we

+ (b
(h−1)
k,we

+ 1xre − 1ye)
′

(ϕ− ΣΩ
′

λ+ 0.5 · Σ(b
(h−1)
k,we

+ 1xre − 1ye))

b
(h)′

k,we
= (b

(h−1)
k,we

+ 1xre − 1ye)
′

(Φ− ΣΩ
′

Λ)

A.5.3 dr
(h)
e,t Derivation

Start from
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dr
(h)
e,t =

1

h
· log

(
Et

[
Dt+h

P
(h)
e,t

])

=
1

h
· log

(
Et

[
Dt+h

Pe,t+h

·
Pe,t+h

Pe,t

·
Pe,t

P
(h)
e,t

])

=
1

h
· log

(
1

w
(h)
e,t

· Et

[
(eye,t+h − 1) · eΣ

h
τ=1∆pt+τ

])

=
1

h
· log

(
1

w
(h)
e,t

· Et

[
eye,t+h+Σh

τ=1(re,t+τ−ye,t+τ )
]
− Et

[
eΣ

h
τ=1(re,t+τ−ye,t+τ )

])
(IA.35)

Now, note that a few steps of algebra yield:

ye,t+h +
h∑

τ=1

(re,t+τ − ye,t+τ ) =

(
h∑

τ=1

θ
(τ)
1,dre

)
· ϕ+

(
θ
(h)′

1,dre
Φ + 1yb

)
zt +

h∑

τ=1

θ
(τ)
1,dre

z̃t+h−τ+1

h∑

τ=1

(re,t+τ − ye,t+τ ) =

(
h∑

τ=1

θ
(τ)
2,dre

)
· ϕ+

(
θ
(h)′

2,dre
Φ + 1yb

)
zt +

h∑

τ=1

θ
(τ)
2,dre

z̃t+h−τ+1

and substituting these equations into Equation IA.35 implies

dr
(h)
e,t =

1

h
· log

(
1

w
(h)
e,t

·

[
ea

(h)
1,dre

+ b
(h)′

1,dre
zt − ea

(h)
2,dre

+ b
(h)′

2,dre
zt

])
(IA.36)

with boundary conditions θ
(1)
1,dre

= 1xre , θ
(1)
2,dre

= 1xre − 1ye , and a
(0)
k,dre

= 0, and recursive

parameters:

θ
(h)′

k,dre
= θ

(h−1)′

k,dre
Φ + 1xre − 1ye + 1yb

a
(h)
k,dre

= a
(h−1)
k,dre

+ θ
(h)′

k,dre
ϕ + 0.5 · θ

(h)′

k,dre
Σθ

(h)
k,dre

b
(h)′

k,dre
= θ

(h)′

k,dre
Φ + 1yb
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B The VAR and SDF Estimation Procedure

As discussed in Subsection 3.3, we estimate our no arbitrage term structure model relying

on an adaptation of the regression-based method proposed by Adrian, Crump, and Moench

(2013) to our particular empirical analysis. The procedure is based on three simple steps,

which provide consistent estimates (for π, Π, Σ, λ, and Λ) while imposing the no arbitrage

restrictions in Equations 12 and 13.

In Step 1, we obtain consistent estimates for π, Π, Σ through equation by equation OLS

applied to the VAR system in Equation 6. These estimates are consistent but do not impose

the no arbitrage restrictions in Equations 12 and 13, and thus do not allow us to directly

recover λ and Λ and obtain our term structures of risk premia.

In Step 2, we start by defining xr
(adj)
j,t+1 = xrj,t+1 + 0.5 · 1

′

xrj
Σ1xrj and noting that the no

arbitrage conditions in Equations 10 and 11 imply:

xr
(adj)
j,t+1 = 1

′

xrj
ΣΩ

′

λt + x̃rj,t+1

= 1
′

xrj
ΣΩ

′

λ + 1
′

xrj
ΣΩ

′

Λzt + x̃rj,t+1

=

n∗

xr∑

k=1

λk · Cov[x̃r
∗

k, x̃rj] +

n∗

xr∑

k=1

ns∑

l=1

Λk,l · Cov[x̃r
∗

k, x̃rj] · sl,t + x̃rj,t+1 (IA.37)

where λk is the element of λ associated with the risk price of x̃r∗k (other elements of λ are

zero) and Λk,l is the element of Λ associated with the variation in the risk price of x̃r∗k due

to variation in sl,t (other elements of Λ are zero).

So our Step 2 could be to use the initial consistent estimate of Σ from Step 1 and estimate

λ and Λ from a panel OLS regression of xr
(adj)
j,t+1 (using all rj ∈ r) on covariances with

risk factors, Cov[x̃r∗k, x̃rj], as well as on the same covariances interacted with each state

variable. However, we make two modifications to this approach to account for two important

aspects of our empirical analysis. First, the {r
(Anom)
e,t } set is an order of magnitude larger

than the {r
(Dur)
b,t } and {r

(Dur)
π,t } sets. So, instead of including all {r

(Anom)
e,t } returns on the left

hand side of Equation IA.37, we include only [xr
(PC1)
e,t , xr

(PC2)
e,t , xr

(PC3)
e,t ], which are the three
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linear combinations of {r
(Anom)
e,t } that explain the most variability in the long-short anomaly

returns.IA.1 Second, the r̂
(h)
π,t returns in {r

(Dur)
π,t } are not tradable, and thus we do not expect

Equation IA.37 to perfectly hold for them. So, we use only the identifying assumption that

shocks to r̂
(h)
π,t have mean zero instead of the stronger assumption that they have mean zero

and are orthogonal to the state vector, covariances, and their interactions.IA.2 On a practical

level, this means we first estimate λk = λk + Λ
′

ks values from the cross-sectional regression

xr
(adj)
j,t+1 =

n∗

xr∑

k=1

λk · Cov[x̃r
∗

k, x̃rj] (IA.38)

while including the average r̂
(h)
π,t values among the set of xrj considered. Then, we estimate

Λ from the panel regression

xr
(adj)
j,t+1 −

n∗

xr∑

k=1

λk · Cov[x̃r
∗

k, x̃rj] =

n∗

xr∑

k=1

ns∑

l=1

Λk,l · Cov[x̃r
∗

k, x̃rj] · (sl,t − sl) + x̃rj,t+1 (IA.39)

while removing the r̂
(h)
π,t values from the set of xrj,t considered. Then, we recover λk = λk−Λ

′

ks.

Finally, our Step 3 directly imposes the no arbitrage conditions by updating our πxr and

Πxr estimates to satisfy Equations 12 and 13 given our λ and Λ estimates obtained in Step 2.

This allows us to update our π, Π, and Σ estimates accordingly, producing the final consistent

estimates for π, Π, Σ, λ, and Λ that satisfy our no arbitrage conditions.IA.3

IA.1Letting w(PCk) represent the weights of PCk on all returns in {r
(Anom)
e,t }, note the PCk return adjusted

for the Jensen’s inequality is xr
(PCk)
e,t +0.5·

∑
rj∈{r

(Anom)
e,t }

w
(PCk)
j ·Var[xrj ] and not xr

(PCk)
e,t +0.5·Var[xr

(PCk)
e ].

The economic reason is that xr
(PCk)
e,t is not the log excess return on a tradable portfolio. Instead, it is the

weighted average of the log excess returns on the tradable portfolios in {r
(Anom)
e,t }.

IA.2Subsection D.8 considers an alternative specification that treats r̂
(h)
π,t as tradable, thereby relying on the

stronger assumption that r̂
(h)
π,t shocks have mean zero and are orthogonal to the state vector, covariances,

and their interactions. The results are similar to the ones we report in the main text.
IA.3Internet Appendix D.7 provides result (very similar to our baseline analysis) in which we consider a

more involved estimation procedure. Specifically, we iterate on Steps 2 and 3 until Σ converges, always relying
on the latest Σ estimate when estimating the panel regression in Step 2.
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C Data Sources and Measurement (Variables in st and rt)

As discussed in Subsection 3.2, we rely on a multivariate time series of overlapping monthly

observations in which yields are in annual units and measured at the end of each month

whereas flow variables (i.e., returns and inflation rate) have annual measurement (i.e., t and

t− 1 have a one year gap). The dataset covers from 01-1972 to 12-2022, with the initial date

constrained by the availability of information on some equity signals as well as on the real

and nominal bond yields described below.

C.1 Nominal Bonds

Our state vector contains the level and slope of nominal bond yields. We measure y
(Level)
b,t =

y
(1)
b,t = ŷ

(1)
b,t and y

(Slope)
b,t = ŷ

(15)
b,t − ŷ

(1)
b,t , with hats indicating that these bond yields are obtained

directly from external data instead of being implied from our model. We obtain {ŷ
(h)
b,t }

h=30
h=1

from the the updated version of the interpolated bond yield dataset of Liu and Wu (2021).IA.4

Maturities from 1 to 15 years are available over our entire sample period. However, maturities

from 16 to 20 years are only available starting in 07-1981 and maturities from 21 to 30 years

are only available starting on 11-1985. For these maturities, missing monthly yields are

obtained by linear interpolation between ŷ
(15)
b,t and ŷ

(30)
b,t , with the latter measured from the

GS30 series of the Federal Reserve Economic Data (FRED). Note that only ŷ
(1)
b,t and ŷ

(15)
b,t

are used in our model, and they do not require this extra linear interpolation step. However,

we use ŷ
(h)
b,t for other hs in our preliminary analysis in Section 1.

We form our {r
(Dur)
b,t } ⊂ rt using the seven CRSP Fama bond portfolios (labeled r

(H1toH2)
b,t ),

which reflect Treasury bond portfolios with bond maturities between H1 and H2 years (the

shortest duration portfolio has H1 = 0 and H2 = 1 and the longest duration portfolio has

IA.4We obtain the updated version of the interpolated bond yield dataset of Liu and Wu (2021) from
https://sites.google.com/view/jingcynthiawu/yield-data. As shown in Liu andWu (2021), their non-
parametric kernel-smoothing interpolation offers some important advantage over the estimation of Gürkay-
nak, Sack, and Wright (2007), which relies on the parametric interpolation model of Svensson (1994) (an
extension of Nelson and Siegel (1987)). However, Subsection D.5 repeats our analysis using the bond yields
from Gürkaynak, Sack, and Wright (2007), with results that are similar to the ones we report in the main
text.
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H1 = 10 and H2 = 30). We then set x̃r
(Level)
b,t = x̃r

(5to10)
b,t and x̃r

(Slope)
b,t = x̃r

(10to30)
b,t − x̃r

(0to1)
b,t .

Note that our {r
(Dur)
b,t } is composed of tradable portfolios of Treasury bonds. This would

not be the case if we constructed {r
(Dur)
b,t } using nominal bond strip returns calculated from

their yields (i.e., r̂
(h)
b,t = h · ŷ

(h)
b,t−1 − (h− 1) · ŷ

(h−1)
b,t ). However, Subsection D.6 provides results

(similar to the ones we report in the main text) in which {r
(Dur)
b,t } is formed from r̂

(h)
b,t with

h = 2, 3, ..., 15, which are the maturities (beyond h = 1) for which the yield calculation does

not require the extra linear interpolation step explained in the prior paragraph.

C.2 Real Bonds

Our state vector also contains the level and slope of real bond yields (y
(Level)
π,t and y

(Slope)
π,t ).

However, their measurement is more complicated. In particular, we rely on three datasets:

1. yCM: This is the dataset from Chernov and Mueller (2012), which contains quarterly

real bond yields from Q3-1971 to Q4-2002, with annual maturities of 1, 2, 3, 5, 7,

and 10 years. It is based on a no arbitrage term structure model with five factors

(three of which are latent). The model specification and estimation use information

on macroeconomic activity (e.g., GDP and CPI growth), survey-based forecasts of

inflation, nominal Treasury yields, and TIPS yields. We download the dataset from

https://sites.google.com/site/mbchernov/home/published-papers.

2. yFED: This is the dataset from the Cleveland Fed, which contains monthly real bond

yields starting in 01-1982, with annual maturities of 1 and 10 years. It is based on a

model that uses nominal Treasury yields, inflation data, inflation swaps, and survey-

based measures of inflation expectations. We download the dataset from https://www.

clevelandfed.org/indicators-and-data/inflation-expectations.

3. yTIPS: This is the dataset from Gürkaynak, Sack, and Wright (2010), which contains

real bond yields starting in 01-1999, with annual maturities of 2 to 20 years. It is based

on a yield smoothing model applied to Treasury Inflation-Protected Securities (TIPS).

They use the parametric interpolation model of Svensson (1994) (an extension of Nelson
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and Siegel (1987)), analogously to what Gürkaynak, Sack, and Wright (2007) do for

nominal bond yields. We download the dataset from https://www.federalreserve.

gov/data/tips-yield-curve-and-inflation-compensation.htm.

Since the longest maturity we have over our full sample is 10 years, we set y
(Level)
π,t = ŷ

(1)
π,t

and y
(Slope)
π,t = ŷ

(10)
π,t − ŷ

(1)
π,t . We obtain ŷ

(h)
π,t for h = 1, 2, ..., 10 over the period from 01-1972 to

12-2002 from the real yields available in yCM.IA.5 For months after 12-2002, we obtain ŷ
(1)
π,t

from yFED (the only available source in the three datasets), ŷ
(10)
π,t from yFED in 2003 and

from yTIPS starting in 01-2004, and other ŷ
(h)
π,t values from yTIPS.IA.6

To form our {r
(Dur)
π,t } ⊂ rt, we start from returns constructed from yields, r̂

(h)
π,t = ∆πt +

h · ŷ
(h)
π,t−1 − (h − 1) · ŷ

(h−1)
π,t for h = 1, 2, ..., 10. These r̂

(h)
π,t returns are not tradable, and thus

we use them in the estimation in a way that is robust to this fact (see Internet Appendix

B for details). However, our approach limits our ability to extract information about the

inflation risk premia dynamics from these r̂
(h)
π,t returns. So, we add to {r

(Dur)
π,t } log returns on

gold obtained from Bloomberg (rGold,t) since gold is often viewed by market participants as

a hedge for shocks to expected inflation.

As discussed in the Subsection 3.1, we use the level factor x̃r
(Level)
π,t = x̃r

(1)
π,t = ∆̃πt (see

Footnote 13). We then set x̃r
(Slope)
π,t = x̃rGold,t − x̃r

(1)
π,t = x̃rGold,t − ∆̃πt. This is in line with

our interpretation that rGold,t (at least partially) reflects shocks to expected inflation. Impor-

tantly, this approach ensures the r̂
(h)
π,t artificial returns (which embed the measurement errors

of the ŷ
(h)
π,t values) are not used as priced factors in the SDF.

IA.5For the real yields in yCM, we use the latest quarter available in months that are not at quarter ends.
For instance, the real yields from 10-2002 and 11-2002 reflect the real yields from Q2-2002. Moreover, for
maturities h = 4, 6, 8, 9 (which are not available in yCM), we use a linear interpolation between the real
yields on the two closest maturities available.
IA.6We give a preference to real yields from yTIPS over yFED since they require fewer economic assumptions

given that they are based on a yield smoothing model applied to TIPS. However, the prices of TIPS were
unreliable in the early years of their availability due to limited maturities and liquidity (see the discussion
in D’Amico, Kim, and Wei (2018) and Chernov and Mueller (2012)). In fact, Gürkaynak, Sack, and Wright
(2010) only start applying the Svensson (1994) smoothing model in 01-2004 in yTIPS, relying on the restricted

estimation from Nelson and Siegel (1987) in previous months. So, we only use yTIPS to obtain ŷ
(10)
π,t starting

in 01-2004. For h values other than 1 and 10, we have no alternative other than to use yTIPS starting in
2003.
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Given the difficulties in measuring yields and returns associated with real bonds, Sub-

section D.9 considers a specification that entirely removes [∆πt, y
(Level)
π,t , y

(Slope)
π,t ] from the

state vector, {r
(Dur)
π,t } from rt, and [x̃r

(Level)
π,t , x̃r

(Slope)
π,t ] from the SDF. That analysis leads to

results that are similar to the ones we report in the main text. However, in that case we

cannot separately identify the effect of term risk premia and inflation risk premia implicit

in the bond risk premia. So, the results from that alternative specification are based on the

decomposition in Equation 3 instead of Equation 35.

C.3 Equities

We have ye,t ∈ st, re,t ∈ rt, and x̃re,t ∈ x̃r∗t . The aggregate annual equity return, re,t, and

the aggregate annual dividend yield, ye,t = log(Dt/Pe,t + 1), are measured exactly as in

Gonçalves (2021). In particular, annual dividends are based on the sum of dividends over

a 12-month window with no compounding to avoid introducing properties of returns into

dividends (see Binsbergen and Koijen (2010) and Chen (2009)). Moreover, dividends include

M&A paid in cash (as suggested by Allen and Michaely (2003)). Both aspects serve to make

ye,t more stationary (consistent with Koijen and Nieuwerburgh (2011), Sabbatucci (2022),

and Gonçalves (2021)). However, Subsection D.2 considers an alternative specification that

does not include M&A paid in cash in the dividend measurement, with results similar to the

ones reported in the main text.

We also have [y
(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ] ⊂ st, {r

(Anom)
e,t } ⊂ rt, and [x̃r

(PC1)
e,t , x̃r

(PC2)
e,t , x̃r

(PC3)
e,t ] ⊂

x̃r∗t . Following GKK, {r
(Anom)
e,t } contains long and short value-weighted tercile portfolios

associated with 51 common anomaly signals (so 102 portfolios in total). We obtain the

stock-level signals from Jensen, Kelly, and Pedersen (2023), Chen and Zimmermann (2022),

and CRSP+COMPUSTAT (in this order). The end result is that 15 signals are constructed

from CRSP and COMPUSTAT directly, 2 signals come from Chen and Zimmermann (2022)

(Industry Momentum and Short Interest), and the remaining 34 signals come from Jensen,

Kelly, and Pedersen (2023).IA.7 Following the exact methodology of GKK, we construct

IA.7The 15 signals we construct directly from CRSP and COMPUSTAT datasets are the Composite Issuance,
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principal component weights and apply those weights to stock-level returns and yields, which

gives us [y
(PC1)
e,t , y

(PC2)
e,t , y

(PC3)
e,t ] and [xr

(PC1)
e,t , xr

(PC2)
e,t , xr

(PC3)
e,t ].

Our sample period goes from 01-1972 to 12-2022, which ensures nominal bond yields are at

similar levels at the beginning and end of our sample period (see the discussion in Subsection

4.2). However, annual returns on some anomaly portfolios are not available as early as 01-

1972. In particular, one anomaly has monthly portfolio returns starting in 07-1973 and two

anomalies have monthly portfolio returns starting in 01-1973. Moreover, twenty anomalies

have monthly portfolio returns starting in 07-1971 (which does not allow us to create annual

returns as of 01-1972). We input monthly portfolio returns for missing months following

the expectation-maximization algorithm suggested in McCracken and Ng (2016) (which is

similar to the one in Stock and Watson (2002)). Specifically, we start by replacing missing

monthly returns with the respective averages. Then, we estimate principal components and

replace the originally missing monthly returns with the ones implied from the principal

components. We repeat this process until the inputted monthly returns converge. For our

inputted long and short monthly returns to be consistent with inputted long-short returns,

we apply this process separately to long-short returns (obtaining x̂rL−S
t ) as well as to long

and short returns (obtaining x̂rAv
t = 0.5 · x̂rLt +0.5 · x̂rSt ). We then set xrLt = x̂rAv

t +0.5 · x̂rL−S
t

and xrSt = x̂rAv
t −0.5·x̂rL−S

t so that we have, by construction, xrLt −xr
S
t = x̂rL−S

t . We impute

yields on the portfolios associated with the three anomalies that start in 1973 following an

analogous approach. Note that our findings are not driven by this imputation process since

(as detailed in Subsection D.3) we obtain similar results using only portfolios sorted on the

equity duration measure of Gonçalves (2021), which do not require any imputation.

Debt Issuance, Dividend/Price, Industry Momentum-Reversals, Industry Relative Reversals, Industry Rel-
ative Reversals (LV), Investment/Capital, Momentum-Reversals, Return on Assets (Q), Return on Market
Equity, Share Repurchases, Share Volume, Value-Momentum, Value-Momentum-Prof, Value-Profitability.
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D Supplementary Empirical Results

This section presents results from nine alternative empirical specifications for our no arbitrage

term structure model. The core results are provided in Figures IA.1 to IA.3. In particular,

Figure IA.1 shows that, for all nine alternative specifications, the term structures of inflation

and term RP are upward sloping whereas the term structures of cash flow RP are hump-

shaped, with relatively low RP at long dividend strip maturities. Moreover, Figure IA.2

shows that, for all nine alternative specifications, time variation in equity RP is driven by

cash flow RP for short-maturity dividend strips and by term and inflation RP for long-

maturity dividend strips. Finally, Figure IA.3 shows that the term structures of correlations

between the different equity risk premia components is an important driver of the risk premia

time variation results. In particular, term and inflation RP have a very weak correlation with

equity RP at short dividend strip maturities, but a very strong correlation at long dividend

strip maturities. Below, we describe the nine alternative specifications considered.

D.1 Dividend Strips Under Log-Linear Approximation

Our baseline analysis solves for dividend strip pricing information (e.g., returns and risk

premia) using exact expressions that are highly non-linear even in logs (with derivations

provided in Section A.5). While this approach is consistent with GKK, it could be that our

main findings are due to the strong non-linearities of the solution (which can exacerbate any

potential effect of model mispecification). To demonstrate that this is not the case, Figures

IA.1(a) to IA.3(a) replicate our main results using an approximate solution based on the

log-linear approximation of Gao and Martin (2021) (with derivations provided in Section

A.4). In this case, y
(h)
e,t is linear in zt, leading to log-linear dividend strip risk premia.

D.2 Dividends that do Not Incorporate M&A Paid in Cash

Our baseline analysis measures the aggregate annual dividend yield, ye,t, exactly as in

Gonçalves (2021). As discussed in Section C.3, this implies our aggregate dividend measure
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incorporates M&A paid in cash (as suggested by Allen and Michaely (2003) and Sabbatucci

(2022)). While this approach ensures Dt better reflects the aggregate dividends paid to in-

vestors and leads to a more stationary ye,t (consistent with Sabbatucci (2022) and Gonçalves

(2021)), it deviates from the dividend measurement in GKK, which relies only on ordinary

dividends. To demonstrate that our core findings are not driven by this difference in dividend

measurement, Figures IA.1(b) to IA.3(b) replicate our main results with Dt measured from

ordinary dividends only.

D.3 Replacing Anomalies with Equity Duration Portfolios

Our baseline analysis uses as equity test assets 102 long and short portfolios on 51 equity

anomaly strategies. While this approach follows GKK, it differs from how we specify test

assets for nominal and real bonds, which are based on bond portfolios that vary in cash

flow duration. To demonstrate that our core findings are not driven by this difference in

the specification of test assets, Figures IA.1(c) to IA.3(c) replicate our main results using as

equity test assets tercile portfolios sorted on equity duration (we obtain similar results with

quintiles), with the firm-year equity duration measure following Gonçalves (2021).IA.8 This

alternative specification also replaces the three PC-based equity factors in the SDF with a

single equity duration factor (based on returns on the high-low duration portfolio).

IA.8Specifically, at June of each year t (with t from 1970 to 2022), we form three value-weighted portfolios
by sorting stocks based on equity duration to construct our monthly portfolio returns over the subsequent
twelve months. We then calculate annual log returns on a monthly frequency over our entire sample (from
01-1972 to 12-2022). We use NYSE breakpoints to define thresholds to assign stocks into portfolios, but form
portfolios with all stocks in the sample. The low (high) duration portfolio is based on stocks with equity
duration below the 30% (above the 70%) NYSE breakpoints. The mid duration portfolio contains all stocks
that are not assigned to the high or low duration portfolios. The firm-year equity duration dataset from
Gonçalves (2021) starts in 1973 (and is available under https://andreigoncalves.com/). To obtain equity
duration from 1970 to 1972, we combine the first rolling window VAR estimated in Gonçalves (2021) with
firm-level state variables evaluated as of June of 1970, 1971, and 1972. While this approach induces a small
look-ahead bias in our equity duration measure since the first rolling window VAR estimated in Gonçalves
(2021) uses data up to the fiscal year ending in calendar year 1972, this issue only affects equity duration
from 1970 to 1972 and is not the driver of our results as it is not present in our baseline analysis.
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D.4 Three Nominal and Real Bond Yields in State Vector

Our baseline analysis keeps two nominal bond yield state variables (y
(Level)
b,t and y

(Slope)
b,t ) and

two real bond yield state variables (y
(Level)
π,t and y

(Slope)
π,t ). While it is well-known in the bond

term structure literature that two bond yield factors capture much of the variability in bond

yields, many papers use a third factor to capture some of the more nuanced movements in

the bond yield term structure. So, Figures IA.1(d) to IA.3(d) replicate our main results using

three nominal bond yield state variables (ŷ
(1)
b,t , ŷ

(5)
b,t , and ŷ

(15)
b,t ) and three real bond yield state

variables (ŷ
(1)
π,t , ŷ

(5)
π,t , and ŷ

(10)
π,t ).

D.5 Nominal Bond Yields from Gürkaynak, Sack, and Wright (2007)

Our baseline analysis measures ŷ
(h)
b,t (used in y

(Level)
b,t and y

(Slope)
b,t ) based on the interpolated

bond yield dataset of Liu and Wu (2021) (based on a non-parametric kernel-smoothing

interpolation), which offers some important advantage over the estimation of Gürkaynak,

Sack, and Wright (2007) that relies on the parametric interpolation model of Svensson

(1994) (an extension of Nelson and Siegel (1987)). To demonstrate that our core findings

are not sensitive to the choice ŷ
(h)
b,t measurement, Figures IA.1(e) to IA.3(e) replicate our

main results while measuring ŷ
(h)
b,t using the interpolated bond yield dataset of Gürkay-

nak, Sack, and Wright (2007) (obtained from https://www.federalreserve.gov/data/

nominal-yield-curve.htm).

D.6 Nominal Bond Returns Based on Yields

Our baseline analysis uses as nominal bond test assets seven CRSP Fama bond portfolios,

which are tradable. An alternative approach would be to use artificial nominal bond strip

returns given by r̂
(h)
b,t = h · ŷ

(h)
b,t−1 − (h − 1) · ŷ

(h−1)
b,t . While these returns are not tradable,

they are often used in the literature to proxy for bond returns (e.g., Binsbergen (2025)). So,

Figures IA.1(f) to IA.3(f) replicate our main results with r̂
(2)
b,t to r̂

(15)
b,t as the nominal bond

test assets.
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D.7 Estimation Based on Iterative Process Until Σ Converges

As detailed in Section B, we estimate our no arbitrage term structure model relying on

an adaptation of the regression-based method proposed by Adrian, Crump, and Moench

(2013) to our particular empirical analysis. The procedure is based on three simple steps,

which provide consistent estimates (for π, Π, Σ, λ, and Λ) while imposing the no arbitrage

restrictions in Equations 12 and 13. The first estimation step produces a consistent estimate

of Σ, which is used in the second step to estimate λ and Λ, which in turn allow us to update

Σ. Our baseline analysis only performs these three steps once to keep the estimation as simple

as possible. However, we could iterate this process until the Σ estimate converges. Figures

IA.1(g) to IA.3(g) replicate our main results doing that.

D.8 Estimation that Treats Real Bond Returns as Tradable

As detailed in Section B, when estimating our no arbitrage term structure model, we account

for the fact that the real bond test assets based on r̂
(h)
π,t are not tradable. To do that, we

only use the identifying assumption that r̂
(h)
π,t shocks have mean zero instead of the stronger

assumption that they have mean zero and are orthogonal to the state vector, covariances,

and their interactions. This approach implies that our estimation of λ and Λ separately relies

on Equation IA.38 (which include r̂
(h)
π,t ) and Equation IA.39 (which does not include r̂

(h)
π,t ).

Figures IA.1(h) to IA.3(h) replicate our main results while treating r̂
(h)
π,t as tradable, and thus

relying only on Equation IA.37 including all test assets jointly.

D.9 No Information on Real Bonds

As detailed in Section C.2, the data used for real bonds, which are needed to separately

identify the term and inflation components of the bond RP, face some limitations (e.g., the

real bond yields are based on a prior non-arbitrage model until 12-2002). To ensure our core

findings are not due to these data limitations, Figures IA.1(i) to IA.3(i) replicate our main

results while removing all information on the inflation rate and real bonds from s, xr, and
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xr∗. Since in this case we cannot separately identity the term and inflation RP, the figures

provide only information on the bond and cash flow RP.
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(a) Log-Linear Dividend Strips (b) Dividends without M&A (c) Equity Duration Portfolios
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(d) Three Bond Yields (e) GSW Nominal Bond Yields (f) Nominal Bond Returns from Yields
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(g) Iterate on Σ in Estimation (h) Real Bond Returns as Tradable (i) No Real Bond Information
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Figure IA.1
The Average Term Structure of Equity Risk Premia: Term RP, Inflation RP, and Cash Flow RP

(Alternative Specifications)

The graphs in this figure replicate Figure 6 in the main text under alternative specifications for the no arbitrage term
structure model. Specifically, the graphs display the average term structure of Equity RP and its components (the term,
inflation, and cash flow RP from Equation 35). Sections 2 and 3 provide further details about the baseline term structure
model and its empirical specification while Section D describes the alternative specifications we consider.
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(a) Log-Linear Dividend Strips (b) Dividends without M&A (c) Equity Duration Portfolios
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(d) Three Bond Yields (e) GSW Nominal Bond Yields (f) Nominal Bond Returns from Yields

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Term RP
Inflation RP
Cash Flow RP

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Term RP
Inflation RP
Cash Flow RP

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Term RP
Inflation RP
Cash Flow RP

(g) Iterate on Σ in Estimation (h) Real Bond Returns as Tradable (i) No Real Bond Information

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Term RP
Inflation RP
Cash Flow RP

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Term RP
Inflation RP
Cash Flow RP

0

.2

.4

.6

.8

1

0 5 10 15 20 25 30

Bond RP
Cash Flow RP

Maturity (in Years) Maturity (in Years) Maturity (in Years)

Figure IA.2
Fraction of Equity Premia Variability Explained by Term RP, Inflation RP, and Cash Flow RP

(Alternative Specifications)

The graphs in this figure replicate Figure 8(a) in the main text under alternative specifications for the no arbitrage term
structure model. Specifically, the graphs display term structure plots of the fraction of equity premia variability explained
by each of the Equity RP components (the term, inflation, and cash flow RP from Equation 35). Sections 2 and 3 provide
further details about the baseline term structure model and its empirical specification while Section D describes the
alternative specifications we consider.
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(a) Log-Linear Dividend Strips (b) Dividends without M&A (c) Equity Duration Portfolios
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Figure IA.3
Correlations of Equity RP with Term RP, Inflation RP, and Cash Flow RP

(Alternative Specifications)

The graphs in this figure replicate Figure 9(b) in the main text under alternative specifications for the no arbitrage term
structure model. Specifically, the graphs display term structure plots of the correlation of equity RP with each of its
components (the term, inflation, and cash flow RP from Equation 35). Sections 2 and 3 provide further details about the
baseline term structure model and its empirical specification while Section D describes the alternative specifications we
consider.
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