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1 Introduction

Empirically, research on the pricing of realized variance has yielded two salient stylized facts.

Unconditionally, it has been shown that investors pay to receive future realized variance,

instead of being paid to hold this risk. The size of this premium is referred to as the variance

risk premium (VRP) (Carr and Wu, 2009). It is commonly measured at a monthly frequency.

More precisely, the VRP is defined as the certain amount investors commit to pay at the

beginning of the month to receive the uncertain realized variance of daily returns at the end

of the month. The former is referred to as implied variance (IV) and the latter as realized

variance (RV). Implied variance has been shown to be approximated by VIX squared (Carr

and Wu, 2006).

Conditionally, the VRP becomes elevated in the months after market crises (Bekaert and

Hoerova, 2014; Choi, Mueller and Vedolin, 2017). The reason is that although both IV and

RV jump during as a result of the crisis, IV decays more slowly than RV. Studies that have

documented this pattern focus on understanding the dynamics of VIX.1

Theoretically, the pricing of variance risk is nontrivial. Consider a simple one-period

model where a stock pays a stochastic dividend. Expected utility makes the investor value

the stock less than the expected dividend, thus yielding a positive equity premium. This

is an immediate result of Jensen’s inequality. Similar reasoning does not hold for squared

dividend. Jensen’s inequality can no longer be applied, because the function of dividend is

now a composition of a concave and a convex function (i.e., the utility function and squaring,

respectively). Hence, the pricing of realized variance is a nontrivial manner.2

The extant theoretical literature has proposed a variety of models to generate a positive,
1Recent literature surveys on the variance risk premium and the real economy include Zhou (2018) and

Dew-Becker and Giglio (2024).
2Appendix A illustrates this argument in a CARA-normal setting. In this setting, the risk premium for

uncertain dividend is the well-known expression: half times the coefficient of risk aversion, times the total
position, times the variance of dividend. The risk premium for squared dividend in this special case is zero
(i.e., concavity and convexity offset each other perfectly in this case).
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time-varying variance risk premium. All these models are representative agent models.

Rational expectations models that can generate a positive VRP involve, for example, an

agent who faces time-varying economic uncertainty (Bollerslev, Tauchen and Zhou, 2009)

or jump risk (Todorov, 2010). An example of a model that can explain the elevated VRP

post-crisis is a behavioral model that involves an agent who updates too slowly to changing

volatility (Lochstoer and Muir, 2022). Martin and Papadimitriou (2022) propose a model in

which more heterogeneity in beliefs raises implied variance. Perhaps agents disagree more

about the state of the economy in the months after a crisis.

I propose a rational expectations model that can generate the documented stylized facts,

and two additional ones. These additional facts are the puzzling pattern of higher volume on

lower liquidity post-crisis. These two additional facts I document based an intraday trading

data for SPY, an actively traded exchange traded fund (ETF) that tracks the S&P500.3

The sample runs from 1993, the year that VIX was launched and SPY started trading, until

2024. The extensive sample, encompassing ten crises, allows for reliable identification of crisis

patterns.

The novel economic channel that is explored in the model is whether variance swaps are

held to hedge against nontraded-risk shocks. This type of shocks were introduced by Lo,

Mamaysky and Wang (2004) to generate trade in the risky asset. After several standard

asset pricing tests, Carr and Wu (2009) conclude that (p. 1338) “variance risk is generated

by an independent risk factor that the market prices heavily.” In a sense, this paper studies

if nontraded risk might be that risk factor. Receiving realized variance should be particularly

attractive in states of the world where one is forced to sell in declining and illiquid markets,

i.e., crisis periods. To assess whether this liquidity demand could explain a positive variance

risk premium requires a model that endogenizes demand and supply of liquidity.
3Konstantinidi and Skiadopoulos (2016) find that among four candidate models, the one with trading

activity best predicts the VRP out of sample. This suggests that there is an important role for trading in a
model that prices variance.
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The structure of the model is as follows. A variance swap is added to the baseline Vayanos

and Wang (2012) model, which is a Grossman-Stiglitz type model. Information is symmetric

across agents in this baseline model. A fraction of agents experience the nontraded risk shock,

which generates demand for the risky asset, but also an appetite for holding the variance

swap. More specifically, the model consists of three stages. In the first stage, all agents are

homogeneous and can buy or sell variance swaps. In the second stage, a fraction of agents

suffers a nontraded risk (“endowment”) shock, and can trade the risky asset to hedge.4 The

remaining agents endogenously become liquidity suppliers. In the final period, payoffs realize

and agents consume. The key result that the model delivers is that variance swaps serve

to mitigate the utility cost due to nontraded risk shocks. In equilibrium, implied variance

exceeds expected realized variance, because the benefit to those who suffer the shock exceeds

the cost to those who do not. It therefore provides the following insights on the following

four main questions:

1. Does nontraded risk generate a positive VRP?

2. If so, what drives the size of the premium?

3. Can nontraded risk explain an elevated VRP post-crisis?

4. Can it explain more volume on less liquidity post-crisis?

The last question sets the nontraded risk model apart from existing models that feature a

representative agent. These models cannot talk to trading patterns for the simple reason

that there is no trading in such models. The model equilibrium yields relatively simple

closed-form expressions for asset returns, market liquidity, and the variance swap. It provides

the following insights on the four questions.
4The market is incomplete in the sense that the state that determines who experiences the shock cannot

be traded.
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First, the model implies that the VRP is nonnegative. The reason is that variance swaps

mitigate the utility cost of nontraded risk shocks.

Second, the model yields a relatively simple analytical expression for the VRP, which

allows for further analysis on what drives it. It turns out that the VRP increases in risk

aversion and in the variance of the dividend. These results are intuitive. What is less intuitive

is that the VRP also increases in the fraction of agents who experience the nontraded risk

shock. The latter allows for explaining time variation in the VRP beyond what is driven by

time-varying volatility (i.e., beyond “GARCH effects”). This is needed to explain an elevated

VRP post-crisis, which is where I turn next.

Third, the model can explain that the VRP is slow to decay in the months after a crisis,

in particular when judged against the relatively fast decay in variance. The model explains it

through the level of nontraded risk. Either a higher fraction of agents experience nontraded

risk shocks, or agents experience shocks that are larger in size. That is, elevated nontraded

risk can be generated on the extensive or on the intensive margin, respectively.

Fourth, it turns out that the volume pattern can tell the extensive and intensive margin

effects apart. If more volume is accompanied by less liquidity supply, then this is evidence

of an intensive margin effect. If more agents experience the shock and demand liquidity,

then fewer agents are left to supply liquidity and supply becomes more expensive. If, on the

other hand, more volume is accompanied by more liquidity supply, then this is evidence of

an intensive margin effect. One can generate this pattern by fewer agents experiencing larger

shocks, because, in this case, there are more agents left to supply liquidity.

Calibration. To illustrate the model, I calibrate it to match the empirical pattern around

crises. A sample with daily data on VIX and the S&P500 index (SPX) is complemented

with intraday trade data on SPY. Trading due to nontraded risk shocks is identified by the

correlation of daily SPY net volume and SPX return. Net volume is defined the sum of
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signed trade sizes, where the sign is determined by who initiates the trade. It is positive for

buyer-initiated trade and negative for seller-initiated trades. The empirical analysis makes

the paper self-contained. Well documented patterns are reproduced and, as discussed, new

trading patterns are added.

The calibration results show that the high post-crisis VRP is driven by fewer agents

experiencing larger shocks. These agents value the variance swaps so much that the VRP is

238% higher post-crisis. SPY volume is 86% higher and the bid-ask spread is 18% higher.

Liquidity supply, therefore, is lower post-crisis. All else equal, the supply should have been

165% lower, because post-crisis variance is 165% higher. Therefore, to observe a drop in

supply of only 18% must mean that more agents become supplier, and therefore fewer are

demander. To then match an increase in volume needs larger shocks per demander. This is

why the elevated VRP is driven by an intensive margin effect.

Related literature. The nontraded risk shocks in the model endogenously generate positive

covariation between net volume and permanent (log) price changes. This covariation exists

in the sample between daily SPY net volume and permanent SPX changes. It is sizeable,

because the flow-correlated component makes up about a third of the variance of permanent

SPX changes, both before and after a crisis.

The observation that SPY flow correlates with permanent SPX returns relates to a

literature on imperfectly elastic markets. Evans and Lyons (2002) document a similarly

strong correlation for foreign exchange trading. They interpret the finding as due to “portfolio

shifts” by some investors that need to be absorbed by other risk-averse investors. Recently,

Gabaix and Koijen (2024) propose the inelastic market hypothesis that relates inelasticity to

limited flexibility of institutions when responding to asset price fluctuations. Risk aversion in

the Grossman-Stiglitz model could be reinterpreted as such limited flexibility.

The way nontraded risk shocks in the model drive liquidity demand further relates to a
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literature on “leverage-induced flow.” Leverage can force investors to sell in bear markets, but

it also allows them to buy in bull markets. In this spirit, Vayanos (2004) models investors as

fund managers, subject to withdrawals when performance falls below a threshold. Empirically,

Jiang (2024) provides some direct evidence by showing that stocks held by highly leveraged

hedge funds exhibit stronger negative skewness.

Finally, note that my finding of more agents experiencing nontraded risk shocks, i.e., more

leverage-induced trading, increases the VRP sheds new light on one of the main findings

in Bekaert and Hoerova (2013). They document that the VRP declines in response to lax

monetary policy. Such policy might lead investors to lever up, thus leading to more agents

experiencing nontraded risk shocks and, therefore, a higher VRP.

The rest of the paper is organized as follows. Section 2 presents the sample and establishes

the previously mentioned empirical patterns. Section 3 presents the model and derives various

theoretical results. Section 4 calibrates the model to match the VRP and trading patterns

around crises. Section 5 concludes.

2 Empirical patterns

This section presents descriptive empirical results. It confirms the variance patterns that

have been documented in the literature, both realized and implied variance. It does so for a

longer sample that includes ten crisis periods. It complements these pricing patterns with

trading patterns based on intraday trade data.

2.1 Sample

The sample is picked to illustrate how the model can produce the empirical crisis patterns. It

requires data on a stock index, trading in this index, and the price of a variance swap based

on it. A triplet that meets this requirement is the S&P500 index (SPX), trade data for SPY
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which is an exchange traded fund (ETF) that tracks the S&P500, and VIX. SPY is one of

the most actively traded ETFs and can therefore be expected to be representative of index

trading. VIX squared is known to be a reasonable approximation of the price of a variance

swap (Carr and Wu, 2006).

The sample starts on February 4, 1993, and ends on September 13, 2024. The start of

the sample coincides with the start of SPY. 1993 was also the year when VIX was officially

introduced at the Chicago Board Options Exchange (CBOE). The sample can, therefore, not

be extended further back in time.

The sample is sourced from Wharton Research Data Services (WRDS) TAQ, CBOE, and

Nasdaq. The following time series are constructed based on these data sources:

•SPX End-of-month (EOM) value of the S&P 500 index.

•Realized variance (RV) EOM sum of squared daily SPX returns.

•Implied variance (IV) Beginning-of-month (BOM) squared VIX.

•Realized VRP BOM implied variance minus EOM realized variance.

•Volume EOM SPY volume in shares.

•Quoted bid-ask spread EOM time-weighted quoted spread based on official

national best bid-offer (NBBO).

•Quoted depth EOM average of time-weighted quoted depth best bid

and ask based on NBBO.

Details on the construction of all variables used in the analysis are in Appendix B.

[Table 1 about here.]

2.2 Analysis

This section presents various empirical results. First, it analyzes the IV, the RV, and the

VRP time series to reproduce stylized facts. Second, it produces additional results based on
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trade data for SPY. This evidence is novel. Third, it zooms into crisis periods to characterize

a pre- to post-crisis pattern in IV, RV, VRP, and trading in SPY.

2.2.1 Time series for IV, RV, and VRP

Table 1 presents summary statistics for the three key variance-based variables: implied

variance, realized variance, and the variance risk premium. These statistics serve as a “reality

check,” because they can be compared to the ones reported in Carr and Wu (2009, Table 2).

My sample extends theirs in the sense that it covers 32 years (1993-2024) instead of the eight

years they analyze (1996-2003). The summary statistics lead to the following observations.

First, the average realized VRP is positive. That is, the average end-of-month realized

variance exceeds the beginning-of-month implied variance (i.e., squared VIX). Therefore,

those who shorted the variance swap at the beginning of the month earn a premium. This

premium is sizable, because it amounts to 104/342 = 30% annually.

[Figure 1 about here.]

Second, both IV and RV exhibit excess kurtosis and positive skewness. These statistics

are driven by occasional crisis periods, when both types of variance jump to extreme levels.

The realized VRP also exhibits fat tails, but its skew is negative instead of positive. This

is driven by the crisis months in which realized variance jumps unexpectedly, far exceeding

beginning-of-month implied variance. As a result, the realized VRP in those months is

extremely negative. Figure 1 plots all these time series and thus illustrates the excess kurtosis

and skewness. The vertical lines in the graph identify ten crisis periods in the sample period.

The bottom graph plots the realized VRP and thus illustrates the negative jumps in crisis

months.

Third, all three series are positively autocorrelated. The autocorrelation is particularly

strong for implied variance: 0.76. The autocorrelation for realized variance is 0.49. The
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wedge between these two can be explained by the nature of the spikes in RV and IV. Figure 1

shows that the spikes are higher for RV, and that they drop more quickly. Because short and

extreme bursts push the autocorrelation of a series to zero, this force is stronger for RV than

for IV. The spikes decaying more quickly for RV, by the way, is first evidence of the pattern

documented in the literature that the VRP remains elevated in post-crisis periods. I will

revisit this issue when zooming in on the crisis periods.

All these observations are very similar to those documented by Carr and Wu (2009).

The premium for shorting variance is higher in their sample, but skewness, kurtosis, and

autocorrelation are somewhat higher in my sample. Importantly, the time series features are

the same in both samples.

[Figure 2 about here.]

2.2.2 Time series SPY trading

Figure 2 depicts how SPY trading evolved throughout the sample. It plots volume along

with two standard liquidity supply measures: the bid-ask spread and depth at the best quote.

Volume has grown steadily since the inception of SPY and peaks at around 2015. It seems

to stabilize at approximately one billion shares per month since then. In contrast, liquidity

supply is monotonic throughout the sample. Both spread and depth decline steadily.

The figure further suggests that there is a particular pattern for volume and liquidity

around events. Volume seems to jump in crisis months to remain elevated in the months

after. This volume increase is accompanied by worse liquidity in the sense of a higher spread

and lower depth. Whether these crisis patterns are real or merely noise, is analyzed next.

[Figure 3 about here.]
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2.2.3 Crisis patterns

Figure 3 plots the various variance and trade quantities around the ten identified crises. This

done by bucketing the quantities by month relative to the crisis, and then computing the

average for each bucket. The top three plots show how IV, RV, and VRP develop in crisis

periods. RV jumps sharply in the crisis month, but declines quickly to the pre-crisis level in

the three months after. IV, on the other hand, jumps in the month after the crisis, and decays

relatively slowly to the pre-crisis level. Note that the one-month delayed jump is an artefact

of IV being a beginning-of-month variable, as opposed to RV, which is an end-of-month

variable.5 The different levels of decay explain why the VRP jumps in the month after the

crisis, and remains elevated in subsequent months. These patterns are statistically significant

as judged by the confidence intervals.

The bottom three graphs in the figure illustrate the trading patterns. Volume jumps in the

crisis month and remains elevated afterwards. The effect is not only statistically significant,

it is also substantial in economic terms. Volume more than doubles in the crisis month and

remains about one hundred percent higher subsequent months. The liquidity measures also

show significant patterns, both in statistical and in economic terms. The bid-ask spread

jumps by about 20% and remains more than 10% higher in post-crisis months. Depth at the

best quotes drops by almost 50%, and remains depressed by more than 25% in the months

after.

3 Model

The variance swap is priced in an equilibrium model with endowment shocks. It is a Grossman-

Stiglitz type model. More specifically, the proposed model is the symmetric information
5The rationale for this timing throughout the paper is that one-month variance swaps are entered into at

the start of each month, and paid out by the end of it.
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variant that is used in Vayanos and Wang (2012) (VW12). The notation of VW12 is used

for convenience. In a nutshell, the proposed model extends VW12 in two ways. First, all

agents receive a dividend signal in the intermediate round, which creates a need to unwind or

enlarge positions (due to, for example, leverage). Second, the financial market is extended

with a derivative, a variance swap, which enables me to study equilibrium pricing of this

important derivative in a relatively standard setting.

3.1 Model primitives

[Figure 4 about here.]

Figure 4 summarizes the model. It features three periods, indexed by t ∈ {1, 2, 3}. The

financial market consists of a risky asset and a variance swap. The risky asset is in supply of

θ̄ shares that pay v units of a consumption good in Period 3, where v is Gaussian with mean

µv and variance σ2
v . The price of this asset at time t is pt.6

The variance swap is in zero net supply. It trades in Period 1 and pays off the realized

variance of the risky asset in the final period:

x1 = E (V ) , (1)

where7

V =
3∑

τ=2
(pτ − pτ−1)2 . (2)

The price of this swap, y1, is such that the Period 1 investor is indifferent between receiving
6All prices are expressed in units of Period 3 consumption good. In a more extensive model, this is the

outcome of introducing a riskless asset that is used as numéraire for all asset prices (e.g., VW12). We prefer
to keep the presentation brief.

7Price differentials in this model are henceforth referred to as returns. All empirical analysis in this
manuscript uses log prices, so that differentials can indeed be interpreted as price returns.
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a (deterministic) payment y1, or receiving the (stochastic) realized variance at Period 3:

y1 = E (V ×m3) , (3)

where m3 is the (state-dependent) marginal utility of an agent in the final period.8 This

equality that pins down the price of swap is a direct result of the derivative being in zero net

supply and agents being homogeneous ex-ante. An equilibrium expression for y1 is obtained

when solving the model. Finally, note that the swap does not trade in Period 2. This is in

line with the asset pricing literature that is focused on the payoff to variance swaps entered

into at the beginning of the month, and paid out at the end of it (e.g., Carr and Wu, 2009).

Agents. The model features a measure one of agents. Agents are risk-averse and derive

utility from consumption in Period 3. Their utility over the consumption good is exponential:

U(c3) = −exp (−γc3) , (4)

where γ > 0 is the coefficient of absolute risk aversion. Agents are identical in Period 1 and

are, therefore, endowed with the per-capita supply of the asset and the derivative.

Trade is generated in Period 2 as follows. In this period, agents observe part of the

dividend. They will learn the remainder in Period 3. Total dividend can therefore be written

as:9

v = v2 + v3, (5)

where

v2 := Et=2 (v) , v2 ∼ N
(
µv, σ

2
v2

)
, (6)

8Note that the expressions for x1 and y1 do not feature Et=1(m3) in the denominator. The reason is that
prices are expressed in terms of the Period 3 consumption good as discussed in footnote 6.

9One way to generate this structure is to let agents receive a noisy signal on the dividend in Period 2 as in
Appendix C.
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and

v3 ∼ N
(
0, σ2

v3

)
, σ2

v3 = σ2 − σ2
v2, (7)

where

σ2
v = σ2

v2 + σ2
v3. (8)

After they receive this signal, a fraction κ of the agents learns that they will receive an

endowment shock (z × v3) of the consumption good in Period 3 with:

z ∼ N(0, σ2
z), Corr (v2, z) = −1, Corr (z, v3) = 0. (9)

All agents observe the realization of v2, and therefore z, in this intermediate period, but

v3 remains unknown to them until the final period. The agents who will experience the

endowment shock (z × v3) can hedge it by trading the risky asset. For z > 0, for example,

these agents can hedge this risk by selling the risky asset. These agents, therefore, initiate

trades in Period 3 and become liquidity demanders. The remaining agents accommodate

these trades. They become liquidity suppliers.

The perfectly negative correlation between v2 and z could be interpreted as leverage-

induced trading. Bad news on the dividend in the intermediate period coincides with positive

z, which makes the shocked agents sell the risky asset to hedge the increased exposure. One

might say these investors participate in fire sales as they effectively become forced to sell in a

bearish market. Likewise, good news allows these investors to lever up and buy the risky

asset.

CARA-normal models have become workhorse models in the literature, because they

often yields tractable results. The same is true for the proposed model. With normality,

however, the endowment shock (z × v3) can take extremely large negative values, which can

make expected utility infinitely negative. To avoid this corner, VW12 impose the following
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condition on the variance of v3 and z (c.f., VW12, Eqn. (1.2)):

γ2σ2
vσ

2
z < 1. (10)

3.2 Equilibrium quantities

This section presents equilibrium expressions for the quantities in the flow chart at the bottom

of Figure 4. They are derived working backwards from the final period of the model. All

proofs are in Appendix D.

Assumption 1 (Zero intercept.) To focus the analysis on risk transfer only and thus

avoid nonzero intercept terms in returns, in the remainder it is assumed that θ̄ = µv = 0.

Assumption 1 allows us to ignore intercept terms in the pricing of variance (as will be

discussed below, following Lemma 2). This keeps expressions clean and, thereby, maximizes

economic insight. Note further that Assumption 1 is a relatively harmless one for daily

returns as the squared expected return is an order of magnitude smaller than the expected

squared return.10 With Assumption 1, the security becomes a vehicle for investors to transfer

only risk. For completeness, the proofs in Appendix D feature closed-form expressions for the

general case of nonzero θ̄ and µv.

3.2.1 Period 3

The final period quantities are trivial. The price of the risky asset equals the dividend

realization: p3 = v2 + v3. The payoff to being long the variance swap equals the squared

realized price differentials as per (2).
10Remember that realized variance in the empirical analysis is computed as the sum of squared daily

returns.
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3.2.2 Period 2

The most important feature of Period 2 is trading in the risky asset. This trading yields

expressions for the following three quantities: A market-clearing price p2, net volume q2

which is equal to ∆θd2, and price impact λ2. Since liquidity demanders initiate trades, their

demand informs the sign of net volume: negative if they are selling and positive if they are

buying. A standard illiquidity measure is the “Kyle λ.” It is the regression coefficient that

results from regressing price change on net volume (i.e., (p2 − p1) on q2).

Lemma 1 (Period 2 equilibrium quantities.) This lemma presents equilibrium quanti-

ties for trading in the risky asset in Period 2:

p2 = v2 − γσ2
v3κz, (Price) (11)

q2 = ∆θd2 = −κ (1− κ) z, (Net volume) (12)

λ = γσ2
v3

1− κ
. (Illiquidity) (13)

The results in Lemma 1 are relatively straightforward. The price equation shows that p2 is

equal to the expected dividend (v2 is observed before trading) minus a discount to compensate

investors for the remaining dividend risk due to v3. The net volume equation shows that

it scales negatively with z, because it is hedging demand. The size of the scaling factor

reaches its maximum at κ = 1/2. The intuition is that values other than a half creates an

imbalance in the presence of demanders and suppliers. The further κ is below a half, the

fewer demanders there are relative to suppliers, which constrains trade opportunities. The

same holds for values above a half, but now driven fewer suppliers relative to demanders.

This all leads to the interesting result that an increase in the fraction of agents who seek

liquidity (κ) leads to more volume, but only up to a point, after which volume declines.
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3.2.3 Period 1

Before being able to price the variance swap, we need the Period 1 price of the risky asset.

Lemma 2 (Period 1 price risky asset.) The price of the risky asset in Period 1 is:

p1 = 0. (14)

Lemma 2 finds that the price of the risky asset is zero in Period 1. Since in Period 1 the

expected price in later periods is also zero, this result backs up the earlier claim that intercept

terms can be ignored when pricing variance (see discussion following Assumption 1). This

result critically depends on the simplifying assumption that θ̄ = µv = 0. The expression for

the general case along with a short discussion of the various terms is in Appendix D.

With these results in place, it is time to state the main theoretical results. They center on

the price of the variance swap at time zero. Recall that the expression for realized variance is:

V = (p2 − p1)2 + (p3 − p2)2 . (15)

The long side of the swap gets paid this variance in Period 3. In return, this side needs to

pay the short side of the swap a fixed amount at maturity, which is referred to as the price of

the swap: y1. Since the swap is in zero net supply, its price in Period 1 must be equal to the

reservation value of the agent. This value is well defined, because all agents are identical in

Period 1.

Proposition 1 (Period 1 price variance swap.) The Period 1 price of the variance

swap is:

y1 = κyd1 + (1− κ) ys1 =
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=
(
κA2 + (1− κ)B2

)
︸ ︷︷ ︸
Inflator flow-correlated

return variance

×
(
σv2 + γσ2

v3σzκ
)2

︸ ︷︷ ︸
Flow-correlated
return variance

+

+ (κA+ (1− κ)B)︸ ︷︷ ︸
Inflator flow-uncorrelated

return variance

× σ2
v3︸︷︷︸

Flow-uncorrelated
return variance

, (16)

with

A = 1
1− γ2σ2

v3σ
2
z (2− κ)κ ≥ 1 (17)

and

B = 1
1 + γ2σ2

v3σ
2
zκ

2 ≤ 1. (18)

The following inequality characterizes the two inflators:

κA2 + (1− κ)B2 ≥ κA+ (1− κ)B ≥ 1. (19)

Proposition 1 presents the closed-form expression for the price of the variance swap in Period 1.

The first line of (16) merely states that, for an agent in Period 1, it is equal to his expected

utility, whereby with probability κ he will receive an endowment shock and his expected

utility of being long the swap is ys1, and with probability (1 − κ) he does not receive such

shock and endogenously becomes liquidity supplier whose expected utility of being long the

swap is yd1 .

[Figure 5 about here.]

The next two lines in (16) express the value of the swap in terms of the model parameters.

The expression is intuitive in the sense that implied variance is equal to expected realized

variance, whereby the two components of the latter are inflated by well-defined factors. The

two components are one that is correlated with net volume, i.e., with z, and one that is

orthogonal to it. The inflators for these components look similar. The only difference is that
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the inflator for the flow-correlated term involves squared factors. The proposition states that

both inflators are weakly larger than one, and therefore true inflators. It further states that

the flow-correlated inflator weakly dominates the flow-uncorrelated one. Figure 5 illustrates

this finding.

The intuition for the flow-correlated inflator being the strongest one is that the positive

correlation between return11 and flow amplifies the utility cost of being shocked. These

shocked agents not only have to stomach the additional risk associated with the endowment

shock, they also receive the wrong shock at the wrong time in the following sense. They need

to sell in a bear market and buy in a bull market. That is, hedging the endowment shock

makes them sell after a negative v2 realization, and makes them buy after a positive one.

Selling after the negative shock is particularly costly to them. This is why the flow-correlated

inflator is stronger than the noncorrelated one.

The results in Proposition 1 imply that the variance risk premium cannot be negative.

The model therefore delivers nonnegativity of the VRP, which is a nontrivial result as it

does not follow from first principles. As argued in the introduction, Jensen’s inequality

cannot be invoked to sign the premium that risk-averse investors require for holding squared

dividend. The nonnegativity result that immediately follows from Proposition 1 is therefore

an important result in explaining why empirical studies consistently find a positive variance

risk premium. To emphasize its importance, the result is stated in the following corollary:

Corollary 1 (Variance risk premium nonnegative.) The variance risk premium is

nonnegative:

y1 − x1 ≥ 0. (20)

To develop more insight into what drives the price of the variance swap, it is worth exploring

whether partial derivatives can be signed. The next proposition develops three useful results
11More precisely, the positive correlation between v2 and net volume, which is the immediate result of the

perfectly negative correlation between v2 and z (see (9) and the discussion following it).

18



in this respect.

Proposition 2 (Variance risk premium monotonicity.) The variance risk premium,

y1 − x1, increases monotonically in

• the fraction of agents who receive the endowment shock (κ),

• the level of risk aversion (γ), and

• the size of the endowment shock (σ2
z).

Proposition 2 finds that the variance risk premium increases monotonically in κ, in γ, and

in σ2
z . The latter two are intuitive in the sense that more risk to be hedged, or a higher

risk aversion, make the variance swap more valuable in terms of hedging against endowment

shock uncertainty, and the VRP therefore rises.

[Figure 6 about here.]

The result that the VRP increases in κ is a nontrivial one. Figure 6 illustrates why this

is the case. It plots the value of the variance swap as a function of κ. It plots this value

unconditionally, and conditional on agent type, i.e., liquidity demander (shocked agent) or

liquidity supplier. The unconditional value is a weighted average of both conditional values

(see (16)). The graph further plots expected realized variance, which is equal to:

x1 =
(
σv2 + γσ2

v3σzκ
)2

︸ ︷︷ ︸
Flow-correlated
return variance

+ σ2
v3︸︷︷︸

Flow-uncorrelated
return variance

. (21)

Note that x1 increases in κ due to an increase in the (transitory) price pressure which pays

liquidity suppliers for their supply.

The graph shows that liquidity demanders value the swap more than expected realized

variance: yd1 ≥ x1. Liquidity suppliers value it less: ys1 ≤ x1. The reason is that the payoff
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of the swap correlates positively with the cost liquidity demanders experience due to the

nontraded risk shock. The states of the world in which realized variance is high Period 3

are the states in which liquidity demanders pay a lot to hedge their nontraded risk. At the

same time, it is in these states where liquidity suppliers earn most. The payoff of the swap

therefore serves as a hedge for demanders, but as an amplifier for suppliers. This explains

why yd1 ≥ x1 ≥ ys1. The net effect of these two forces on y1 is nontrivial. To prove that the

net effect is positive is, therefore, a substantial result.

4 Calibration

To illustrate how the model offers an explanation for otherwise puzzling patterns, I apply it

to pre- and post-crisis trading. Doing so allows me to address the two remaining overarching

questions. Can the model rationalize a jump in the VRP post-crisis? And, can it rationalize

more trading on less liquidity post-crisis? And, more importantly, what are the economic

channels that cause these patterns?

To calibrate the model to the observed patterns, the parameters are picked to match the

following four key moments in the data:

1. Pre-crisis VRP,

2. Post-crisis VRP,

3. Relative change in illiquidity from pre- to post-crisis,

4. Relative change in volume from pre- to post-crisis.

These four moments are used to infer the nature of nontraded risk pre- and post-crisis.

More specifically, they are used to calibrate the pre- and post-crisis fraction of agents who

experience the shock (κ) and the pre- and post-crisis size of the shock (σz). In sum, these
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four parameters are calibrated to match the four moments. Note that a perfect match is not

guaranteed, because the four empirical moments might lie outside of the space generated by

the model-implied moments.

The calibration further needs to the following information: the pre- and post-crisis realized

variance, decomposed in a flow-correlated and a flow-uncorrelated part, and the level of risk

aversion. The latter is often assumed to be in the range from one to five, so I pick γ = 3.

This level implies a reasonable risk premium for holding the market portfolio.12

The calibration relies critically on the monotonicity results of Proposition 2. Monotonicity

ensures that, if there is a match, then there is a unique set of parameters that delivers this

match. The details of the calibration procedure are in Appendix E.

[Table 2 about here.]

Table 2 presents the results of the calibration. Panel (a) quantifies the pattern to be

matched, as depicted in Figure 3. The VRP jumps by a factor of 16 from the pre- to the

post-crisis period, from 13.9 to 314.5 percentage squared. The NBBO spread increases by

18% and volume increases by 86%.

The calibration further takes as input the level of the two components of realized variance:

the flow-correlated and the flow-uncorrelated component. This additional information is in

panel (c). Realized variance increases from 364 to 964 percentage squared, an increase of 165%.

The VRP increases, because implied variance increases by a larger factor: 1278/378−1 = 238%.

The flow-correlated component accounts for 33% of the total variance pre-crisis. It drops

slightly to 30% post-crisis. Finally, panel (a) shows that the model is indeed able to match

the empirical patterns perfectly.

Panel (b) presents the parameter values that create the perfect match. The fraction of

agents who experience a nontraded risk shock drops from 78% pre-crisis to 48% post-crisis, a
12A CARA investor requires a risk premium of 0.5× 3× 0.202 = 6% for holding a market portfolio with

a volatility of 20%. These values are in line with the risk and return on the US equity portfolio in recent
decades.
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drop of 38%. Therefore, there are fewer agents who experience a shock, but the shock they

experience increases in size. This is evident from the standard deviation of z, which increases

from 1.55 to 2.01, an increase of 29%.

The calibration yields the following insights. First, all else equal, an observed (realized)

variance increase of 177% implies an illiquidity increase of 177% as per (13).13 Against this

benchmark, an actual increase of only 18% in the bid-ask spread suggests that other factors

must have caused the market to become more liquid. The model achieves this by reducing κ

(see, again, (13)). This means that the mass of liquidity demanders drops, but it also means

that the mass of liquidity suppliers increases (as they sum to one). Less demand and more

supply result in the observed relative decline in illiquidity.

Second, fewer demanders would imply a volume decrease, but by increasing the shock

size the model is able to match the observed volume increase. Since volume is proportional

to the standard deviation of net demand, one might expect less volume post-crisis for the

following reason. All else equal, 38% fewer agents (κ) each experiencing a 29% larger shock

(σz) would imply a volume change of (1− 0.38)× (1 + 0.29)− 1 = −20%. The all-else-equal

clause, however, is violated when trading is endogenized, as it is in the model. The increase

in liquidity suppliers make the demanders demand more. On the extensive margin, fewer

agents are shocked, but on the intensive margin, their shock is larger and they demand more

liquidity because it is cheaper. These two effects result in an endogenous volume increase

that matches the observed increase of 86%.14

Third, the (transitory) price pressure that pays liquidity suppliers for their supply, increases

pre- to post-crisis. It increases both in an absolute and in a relative sense. Price pressure is
13More specifically, the equation shows that illiquidity increases proportionately in the flow-uncorrelated

return variance, which increases in the data by (0.70× 964)/(0.67× 364)− 1 = 177%.
14Note that the mass of liquidity suppliers, i.e., (1−κ) increases by a factor of (1−0.48)/(1−0.78)−1 = 136%.

Adding this to the earlier calculation yields ((1−0.20)× (1+1.36)−1 = +89%, which is closer to the observed
value of +86%. Note that this is a back-of-the-envelope calculation and, therefore, does not perfectly match
the endogenous volume increase of +86%.
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meaningfully defined as:

PricePressure = x1 −
(
σ2
v2 + σ2

v3

)
=
(
σv2 + γσ2

v3σzκ
)2

− σ2
v2, (22)

where the expression for x1 is in (21). Pre-crisis, the price pressure component of monthly

realized variance is 4.1 percentage squared. This increases to 13.3 post-crisis, which is an

increase of 324%. This component accounts for 14% of total realized variance pre-crisis, which

rises to 17% post-crisis.15 Liquidity therefore is a nonnegligible part of total variance and

deserves to be recognized when pricing variance. This is one of the ways in which my model

innovates over alternative models. These other models simply ignore this illiquidity-induced

component of realized variance.

5 Conclusion

Previous studies document that the variance risk premium is positive in the data, it jumps

after a crisis, and remains elevated for subsequent months. I replicate these findings based on

a relatively long time series: 1993-2024. I add to these findings by documenting that trading

the index by means of an ETF increases in the post-crisis months. This elevated volume

experiences higher costs as the market is less liquid in the months after the crisis.

These empirical findings are explained by a model where agents experience fire-sale risk.

The model has some attractive features. First, all results are relatively straightforward closed-

form expressions. Second, the model implies that the variance risk premium is nonnegative,

consistent with the data. The reason is that agents use it to hedge against fire sales. The

agents who experience an endowment shock and are forced to fire sell, these agents particularly

like to be paid the realized variance. Not only does it compensate for their elevated risk due

to the endowment shock, it also compensates for the higher liquidity premium that needs to
15The calculations that led to these results are in Appendix F.
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be paid to hedge part of it. Both are endogenous in the model. Third, the model can explain

increased volume on poorer liquidity.

These findings provide a novel perspective on VIX dynamics. The model prices variance

swaps and, therefore, it prices squared VIX. Regulators should become more vigilant at times

when VIX is high relative to real-world volatility. The model tells them that fire-sale risk

is high in these periods. This is either due to more agents experiencing such risk, or fewer

agents experiencing stronger fire sell demand. Trade data lets them differentiate the two.

The ten crisis experienced in 1993-2024 suggest that it is the latter. Future research should

identify policies that could mitigate these post-crisis patterns. If policies make those few

agents experience less fire-sale demand, then markets might recover more quickly after a

crisis. The extent to which such policies exist, and whether they are desirable from a welfare

perspective is left for future research.

Appendix

A Risk premia in CARA-normal case

Consider a CARA investor with wealth W in cash. His risk aversion coefficient is γ. To

find the risk premium this investor requires for holding θ units of risky assets, one needs to

compute the certainty equivalent (CE). It is defined as the amount of cash he needs to be

offered to become indifferent between holding these assets and receiving CE. Let dividend be

stochastic: v ∼ N (0, σ2
v).

Asset with linear payoff. The expected utility of letting the investor hold θ units of an

asset that pays off v is:

E (− exp (−γ (W + θv))) =
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∫
v
− 1√

2πσv

exp (−γ (W + θv)) exp
(
−1
2
v2

σ2
v

)
∂v =

− exp
(
−γW + 1

2γ
2θ2σ2

v

) ∫
v

1√
2πσv

exp
(
−1
2
(v + γθσ2

v)
2

σ2
v

)
∂v︸ ︷︷ ︸

=1 (integral over PDF)

=

− exp
(
−γ

(
W − 1

2γθ
2σ2

v

))
. (23)

The result in (23) shows that the CE for θ units of the risky asset is 1
2γθ

2σ2
v . The risk

premium per unit of the asset, therefore, is:

Risk premium per unit of linear payoff = 1
2γθσ

2
v . (24)

Asset with squared payoff. The expected utility of letting the investor hold θ units of

an asset that pays off v2 is:

E
(
− exp

(
−γ

(
W + θv2

)))
=∫

v
− 1√

2πσv

exp
(
−γ

(
W + θv2

))
exp

(
−1
2
v2

σ2
v

)
∂v =

− exp (−γW )
∫
v

1√
2πσv

exp
(
−1
2
v2 (1 + 2γθσ2

v)
σ2
v

)
∂v︸ ︷︷ ︸

=1 (integral over PDF)

=

− exp (−γW ) . (25)

The result in (25) shows that the CE for θ units of such asset is zero. The risk premium per

unit of the asset, therefore, is:

Risk premium per unit of squared payoff = 0. (26)
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B Sample construction

This appendix presents details on how the sample is constructed from the raw data sources.

The names of these variables in the raw daily files are in typewriter font. The following

variables are taken from the “Intraday Indicators” database, which is available in WRDS

TAQ:

• Daily net volume in SPY, which defined as the sum of Nasdaq net volume plus

NYSE-Arca net volume. Nasdaq and NYSE-Arca run limit order markets and trades

can therefore be signed reliably. The variables used to construct net volume are:

BuyVol_LR_Arca, SellVol_LR_Arca, BuyVol_LR_Nasd, and SellVol_LR_Nasd.

• The bid-ask spread and depth at the best quotes for SPY are based on

QuotedSpread_Percent_tw, BestBidDepth_Share_tw, and BestOfrDepth_Share_tw.

• Daily volume in SPY, which includes all trade volume during market hours total_vol_m

(i.e., more than Nasdaq and NYSE-Arca).

The S&P index level, SPX, is taken from daily WRDS CRSP spindx. VIX was obtained

from the historical daily VIX file available at the CBOE website (Close).

Proxy construction. For each month in the sample, proxies are constructed for the

variance of v2 and v3. To remove any transitory effects, these proxies are constructed as

follows. The proxy for the annualized variance of v2 is:

σ̂2
v2 = 250× cov(DailyNetVolumet,∆ log SPX t +∆ log SPX t+1), (27)
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where tomorrow’s return is added to today’s return to remove the transitory impact of net

volume. Following the same logic, the proxy for the annualized variance of v is:

σ̂2
v = 250× cov(∆ log SPX t,∆ log SPX t +∆ log SPX t+1). (28)

Therefore, the proxy for annualized variance of v3 is:

σ̂2
v3 = σ̂2

v − σ̂2
v2. (29)

C Noisy signal extension

Let agents receive a noisy signal on the dividend in Period 1:

v + η, η ∼ N
(
0, σ2

η

)
, η ⊥ v. (30)

Total dividend then becomes the sum of two orthogonal Gaussian components:

v = v2 + v3, (31)

where

v2 := Et=2 (v) , v2 ∼ N
(
µv, σ

2
v2

)
, σ2

v2 =
σ2
η

σ2
η + σ2σ

2
v (32)

and

v3 ∼ N
(
0, σ2

v3

)
, σ2

v3 = σ2
v − σ2

v2. (33)

The deep parameters σ2
v and σ2

η could then be backed out by (32) and (33).
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D Proofs

This appendix provides the proofs for all lemmas and propositions. Important variables or

expressions are emphasized by placing them inside a text box.

Proof of Lemma 1

The equilibrium quantities are taken from Section 2 of VW12. In particular, the demand

function for the risky asset of a liquidity demander is:

θd2 = v2 − p2
γσ2

v3
− z. (34)

For the liquidity supplier it is:

θs2 =
v2 − p2
γσ2

v3
. (35)

Market clearing implies that the Period 2 equilibrium price is:

p2 = v2 − γσ2
v3

(
θ̄ + κz

)
. (36)

Therefore:

θd2 = θ̄ − (1− κ) z (37)

and

θs2 = θ̄ + κz. (38)

This implies that (initiator) net volume is (see also VW12, Equation (2.15)):

q = ∆θd2 = κ
(
θd2 − θ̄

)
= −κ (1− κ) z. (39)
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Note that this net volume is the exact opposite of net volume of liquidity suppliers:

(1− κ)
(
θs2 − θ̄

)
= (1− κ)κz. (40)

Liquidity is defined as the price impact of net volume and, therefore, is equal to:

λ2 = Cov (p2 − (p1 + v2) , q)
Var (q) =

= Cov (−γσ2
v3κz,−κ (1− κ) z)

σ2
zκ

2 (1− κ)2
=

= γσ2
v3

1− κ
. (41)

Note that the price change in (41) is (p2 − (p1 + v2)), because v2 is learned before trading

and this is the reason why the pre-trade price is: (p1 + v2).

Proof of Lemma 2

This lemma presents the equilibrium price of the risky asset in Period 1, which, in the general

case, is:

p1 = µv − γσ2
v2θ̄ − γσ2

v3θ̄ −
κM

1− κ+ κM
∆2θ̄, (42)

where

M = exp
(1
2γ∆3θ̄

2
)√√√√ 1 + ∆1κ2

1 + ∆1 (1− κ)2 − γ2σ2
v3σ

2
z

,

∆1 = γ2σ2
v3σ

2
z ,

∆2 =
γσ2

v3∆1κ

1 + ∆1 (1− κ)2 − γ2σ2
v3σ

2
z

,

∆3 =
γσ2

v3∆1

1 + ∆1 (1− κ)2 − γ2σ2
v3σ

2
z

.
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The Period 1 price of the risky asset is equal to the expected dividend µv, minus three terms.

The first two terms are the familiar CARA-normal terms (i.e., γσ2
v2θ̄+ γσ2

v3θ̄). The final term

is nonstandard. It captures an additional discount due to excess price volatility caused by

Period 2 transitory price pressures, which are needed to clear the market. They compensate

liquidity suppliers for holding additional risk. Note that this term disappears when there

is no nontraded risk and, therefore, no trading, i.e., if σ2
z = 0, then ∆2 = 0. In a sense, it

represents a liquidity risk premium. This additional variance is endogenous to the model and

is, therefore, also accounted for when pricing the variance swap.

Proof of Proposition 1

The marginal utility of the swap is:

∂

∂θx

(
κEt=1 [− exp (−γ (wd + θxV )) |d] +

+ (1− κ)Et=1 [− exp (−γ (ws + θxV )) |s]
)∣∣∣

θx=0
, (43)

where the subscript d refers to the liquidity-demander type, the subscript s to the liquidity-

supplier type, and final-period wealth for type i is wi. Therefore, the price of the variance

swap, expressed in units of the Period 3 consumption good, is:

y1 = κγE [V exp (−γwd) |d] + (1− κ) γE [V exp (−γws) |s] . (44)

The price of the variance swap given in (44) contains expressions in the numerator and in

the denominator of the form:

Ea [(a′B2a+ b′3a+ b3) exp (−γ (a′B4a+ b′5a+ b6))] , (45)
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where

a =


v2

z

v3

 . (46)

The reason for the shape of (45) is:

1. The quadratic expression (a′B2a+ b′3a+ b3) is the result of realized variance in (15),

which is quadratic in price changes. These price changes are, in turn, affine in a.

2. The expression (a′B4a+ b′5a+ b6) corresponds to the wealth of the agent. It consists of

a risk-free position, long or short, due to payment in the Period 2 trading round. It

further consists of an exposure to v3 caused by the post-trade position in the risky asset.

This latter position is affine in a, which is increased by z for the liquidity demander

due to his endowment shock.

The distribution of the random variable a is:

a ∼ N (µ,Σ) , (47)

where

µ =
(
µv 0 0

)′
, (48)

Σ =


σ2
v2 −σv2σz 0

−σv2σz σ2
z 0

0 0 σ2
v3

 . (49)

We compute (45) as follows:

∫
R3

(a′B2a+ b′3a+ b3) exp (−γ (a′B4a+ b′5a+ b6))×
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× 1√
2κ|Σ|

exp
(
−1
2 (a− µ)′Σ−1 (a− µ)

)
da =

=

√√√√ |Σ∗|
|Σ| exp

(
−γb6 +

1
2µ

∗′Σ∗−1µ∗ − 1
2µ

′Σ−1µ
)
×

×
∫
R3

(a′B2a+ b′3a+ b3)
1√

2κ|Σ∗|
×

× exp
(
−1
2 (a− µ∗)′Σ∗−1 (a− µ∗)

)
da

=

√√√√ |Σ∗|
|Σ| exp

(
−γb6 +

1
2µ

∗′Σ∗−1µ∗ − 1
2µ

′Σ−1µ
)
×

×E (a∗′B2a
∗ + b′3a

∗ + b3) , (50)

where

a∗ ∼ N (µ∗,Σ∗) , (51)

and

µ∗ = Σ∗
(
Σ−1µ− γb5

)
, (52)

Σ∗ =
(
Σ−1 + 2γB4

)−1
. (53)

What remains is to compute the expectation in (50):

E (a∗′B2a
∗ + b′3a

∗ + b3) = E

∑
i

∑
j

(B2)ij a
∗
i a

∗
j

+ b′3µ
∗ + b3 =

=
∑
i

∑
j

(B2)ij
(
σ∗
ij + µiµj

)
+ b′3µ

∗ + b3 =

=
∑
i

∑
j

(B2)ij σ
∗
ji + µ∗′B2µ

∗ + b′3µ
∗ + b3 =

=
∑
i

(B2Σ∗)i,i + µ∗′B2µ
∗ + b′3µ

∗ + b3 =

= tr (B2Σ∗) + µ∗′B2µ
∗ + b′3µ

∗ + b3. (54)
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Putting it all together yields the following expressions for the numerator and the denominator

of (44):

y1 = E
[
(a′B2a+ b′3a+ b3)×

× exp (−γ (a′B4a+ b′5a+ b6))
]
=

=

√√√√ |Σ∗|
|Σ| exp

(
−γb6 +

1
2µ

∗′Σ∗−1µ∗ − 1
2µ

′Σ−1µ
)
×

× (tr (B2Σ∗) + µ∗′B2µ
∗ + b′3µ

∗ + b3) , (55)

with

µ∗ = Σ∗
(
Σ−1µ− γb5

)
and Σ∗ =

(
Σ−1 + 2γB4

)−1
. (56)

Expressions for B2, b3, b3, B4, b5 and b6 in (45). Now that the equilibrium price of the

variance swap has been derived analytically, what remains is some administrative work. The

expressions for B2, b3, b3, B4, b5, and b6 in (55) need to be written down explicitly. Since all

these quantities are affine in the state variables, we use subscripts to distinguish between the

coefficients of the state variable a and the constant. For example, the position in the risky

asset of the liquidity demander after trading in Period 1 is:

θd2 = θ̄ − (1− κ) z = θd1,aa+ θd1,c, (57)

where

θd1,a =
(
0 − (1− κ) 0

)′
, (58)

θd1,c = θ̄. (59)
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With this notation, we can express the constants for the liquidity demander in terms of

equilibrium quantities as follows:

B2 = (p1,a − p0,a) (p1,a − p0,a)′ + (p2,a − p1,a) (p2,a − p1,a)′ , (60)

b3 = 2 (p1,c − p0,c) (p1,a − p0,a) + 2 (p2,c − p1,c) (p2,a − p1,a) , (61)

b3 = (p1,c − p0,c)2 + (p2,c − p1,c)2 , (62)

B4 = − 1
2
(
∆θd1,ap

′
1,a + p1,a∆θd′1,a

)
︸ ︷︷ ︸

Payment made

+

+ 1
2



θ
d
1,a +


0

1

0




(
0 0 1

)
+


0

0

1


(
θd′1,a +

(
0 1 0

))


︸ ︷︷ ︸
Exposure

, (63)

b5 = −∆θd1,cp1,a − p1,c∆θd1,a + θd1,c


0

0

1

 , (64)

b6 = θd1,cp1,c. (65)

For a liquidity supplier, B1, b2, and b3 are the same, but the remaining ones need to be

changed to:

B4 =
1
2
(
∆θs1,ap

′
1,a + p1,a∆θs′1,a

)
︸ ︷︷ ︸

Payment received

+ 1
2

θ
s
1,a

(
0 0 1

)
+


0

0

1

 θs′1,a


︸ ︷︷ ︸

Exposure

, (66)

34



b5 = ∆θs1,cp1,a + p1,c∆θs1,a + θs1,c


0

0

1

 , (67)

b6 = θs1,cp1,c. (68)

Special case: θ̄ = µv = 0.

To develop further insight, we assume θ̄ = µv = 0 as per Assumption 1. That is, both the

supply of the risky asset and the mean dividend are set to zero, respectively. The expressions

in this subsection have been double-checked by means of a Mathematica notebook that is

available at https://bit.ly/3CM8lDZ.

Liquidity demander. For the liquidity demander, marginal utility for the component of

realized variance associated with the price change from Period 1 to 2 is equal to (55) with:

B2 =

−
(
σv2
σz

+ γσ2
v3κ

)
0

(− (σv2
σz

+ γσ2
v3κ

)
0
)
+

+

γσ2
v3κ

1

(γσ2
v3κ 1

)
=


σ2
v2
σ2
z
+ 2γσ2

v3κ
σv2
σz

+ 2γ2σ4
v3κ

2 γσ2
v3κ

γσ2
v3κ 1

 =

=


(
σv2
σz

+ γσ2
v3κ

)2
+ (γσ2

v3κ)
2

γσ2
v3κ

γσ2
v3κ 1

 , (69)

b3 =
(
0 0

)′
, (70)

b3 = 0, (71)

B4 =
1
2

1− κ

0

(−γσ2
v3κ 0

)
+ 1

2


1− κ

0

(−γσ2
v3κ 0

)
′

+
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+ 1
2

− (1− κ) + 1

0

(0 1
)
+ 1

2


− (1− κ) + 1

0

(0 1
)

′

=

=

−γσ2
v3κ (1− κ) κ

2

κ
2 0

 , (72)

b5 =
(
0 0

)′
, (73)

b6 = 0. (74)

Note that B2 in (69) features positive off-diagonal elements. The reason is that, although

price pressures mean-revert and thus do not create a wealth loss to the aggregate investor,

they do add to realized variance. As the payoff to the variance swap is this realized variance,

it adds to total variance and, therefore, the off-diagonals are positive.

The values in (69) through (74) for this special case environment imply (as per (56)):

Σ =

σ2
z 0

0 σ2
v3

 , (75)

µ =
(
0 0

)′
, (76)

Σ∗ =
(
Σ−1 + 2γB4

)−1

=

 1
σ2
z
− 2γ2σ2

v3κ (1− κ) γκ

γκ 1
σ2
v3


−1

,

= 1
1− γ2σ2

v3σ
2
zκ (2− κ)

 σ2
z −γσ2

v3σ
2
zκ

−γσ2
v3σ

2
zκ σ2

v3 (1− 2γ2σ2
v3σ

2
zκ (1− κ))

 , (77)

µ∗ = Σ∗
(
Σ−1µ− γb5

)
=
(
0 0

)′
. (78)

Note that to value the variance swap, the real-world probability measure, often referred to as
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the P-measure, is replaced by a “risk-neutral measure,” often known as the Q-measure. The

latter features a variance of Σ∗ and comparing its expression in (77), to the expression of

Σ in (75), shows that the Q-measure increases variance for both z and v3. The off-diagonal

is negative, because price pressures are transitory. These price pressures, therefore, add to

realized variance (as per our discussion about B2 above), but they do not affect wealth in

Period 3 for the aggregate investor.

Therefore, the marginal utility of the risky asset for d is:

yd1 = E [(a′B2a+ b′3a+ b3) exp (−γ (a′B4a+ b′5a+ b6))] =

=

√√√√ |Σ∗|
|Σ| tr (B2Σ∗) =

= 1
1− γ2σ2

v3σ
2
zκ (2− κ)

(
(σv2 + γσ2

v3σzκ)2

1− γ2σ2
v3σ

2
zκ (2− κ) + σ2

v3

)
. (79)

because16

|Σ∗|= σ2
v3σ

2
z

1− γ2σ2
v3σ

2
zκ (2− κ) , |Σ|= σ2

v3σ
2
z ,

tr (B2Σ∗) = (σv2 + γσ2
v3σzκ)2

1− γ2σ2
v3σ

2
zκ (2− κ) + σ2

v3. (80)

Liquidity supplier. For the liquidity supplier, all coefficients are the same except for:

B4 =
1
2

−κ

0

(−γσ2
v3κ 0

)
+ 1

2


−κ

0

(−γσ2
v3κ 0

)
′

+ 1
2

κ
0

(0 1
)
+ 1

2


κ
0

(0 1
)

′

=

16Note that the outcome is well defined given the condition in (10).
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=

γκ2σ2
v3

κ
2

κ
2 0

 . (81)

These values imply that the following objects change relative to the liquidity demander case:

Σ∗ =

 1
σ2
z
+ 2κ2γ2σ2

v3 γκ

γκ 1
σ2
v3


−1

= 1
1 + γ2σ2

v3σ
2
zκ

2

 σ2
z −γσ2

v3σ
2
zκ

−γσ2
v3σ

2
zκ σ2

v3 (1 + 2γ2σ2
v3σ

2
zκ

2)

 , (82)

therefore,

|Σ∗|= σ2
v3σ

2
z

1 + γ2σ2
v3σ

2
zκ

2 , tr (B2Σ∗) = (σv2 + γσ2
v3σ

2
zκ)

2

1 + γ2σ2
v3σ

2
zκ

2 + σ2
v3. (83)

The marginal utility of a variance swap to the liquidity supplier, therefore, is:

ys1 =

√√√√ |Σ∗|
|Σ| tr (B2Σ∗) = 1

1 + γ2σ2
v3σ

2
zκ

2

(
(σv2 + γσ2

v3σzκ)2

1 + γ2σ2
v3σ

2
zκ

2 + σ2
v3

)
. (84)

So, the marginal utility of the variance swap in Period 1 is obtained by taking the expected

marginal utility, i.e., multiplying (79) and (84) by κ and (1− κ), respectively:

y1 = κyd1 + (1− κ) ys1 =

= κ
(
A2
(
σv2 + γσ2

v3σzκ
)2

+ Aσ2
v3

)
︸ ︷︷ ︸

Valuation liquidity demander

+

+(1− κ)
(
B2

(
σv2 + γσ2

v3σzκ
)2

+Bσ2
v3

)
︸ ︷︷ ︸

Valuation liquidity supplier

=

=
(
κA2 + (1− κ)B2

)
︸ ︷︷ ︸

Inflator corr. return

×
(
σv2 + γσ2

v3σzκ
)2

︸ ︷︷ ︸
Variance corr. return

+
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+ (κA+ (1− κ)B)︸ ︷︷ ︸
Inflator noncorr. return

× σ2
v3︸︷︷︸

Variance noncorr. return

, (85)

with

A = 1
1− γ2σ2

v3σ
2
z (2− κ)κ (86)

and

B = 1
1 + γ2σ2

v3σ
2
zκ

2 . (87)

The proof for the final statement that both inflators are larger than one follows from a

result in the proof of Proposition 2. When proving that y1 increases in κ, it is shown that

both inflators increase in κ. This result, along with the observation that both inflators are

one for κ = 0, shows that both inflators are at least one. What remains to show is:

κA2 + (1− κ)B2 ≥ κA+ (1− κ)B. (88)

Applying Jensen’s inequality to the convex function f (x) = x2 with the stochastic variable:

X =


A with probability κ,

B with probability 1− κ,

(89)

yields

κA2 + (1− κ)B2 ≥ κA+ (1− κ)B. (90)

This completes the proof.

Proof of Proposition 2

The algebra in this subsection has been double-checked by means of a Mathematica notebook

that is available at https://bit.ly/3CM8lDZ. The engine of the monotonicity proof is the
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following lemma.

Lemma 3 Let

fc,n (κ) =
1

(1− (2− κ)κc)n − 1
(1 + cκ2)n , (91)

where

c ∈ [0, 1) , n ∈ {1, 2, 3, . . .} . (92)

Then fc,n (0) = 1 and fc,n (κ) increases monotonically in the interval κ ∈ [0, 1]. Therefore,

fc,n (κ) is positive in this interval.

To prove Lemma 3, first define

gc (κ) =
1

1− (2− κ)κc −
1

1 + cκ2 , (93)

then

g′c (κ) =
2c (c2(4− 3κ)κ3 − 2cκ2 + 1)
(1− c(2− κ)κ)2 (cκ2 + 1)2

, (94)

and the sign of this derivative therefore depends on the sign of

hc (κ) = c2(4− 3κ)κ3 − 2cκ2 + 1. (95)

Now, from

h′
c (κ) = −4cκ (3c (κ− 1)κ+ 1) < 0, (96)

c ∈ [0, 1), κ(1− κ) ≤ 1/4 for κ ∈ [0, 1], hc (0) = 1, hc (1) = 0, and hc(κ) being a continuous

differentiable function, it follows that hc(κ) is indeed strictly positive on the domain κ ∈ [0, 1),

based on the Intermediate Value Theorem applied to κ ∈ [0, 1 + ε] with ε > 0. This implies

that g′c (κ) > 0 and gc (κ) therefore increases monotonically in κ.

With the proof that gc (κ) increases monotonically in κ, what remains to be proven is
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that this implies that fc,n (κ) increases monotonically in κ. This follows from:

f ′
c,n (κ) = n

(
1

(1− (2− κ)κc)

)n−1
∂

∂κ

(
1

(1− (2− κ)κc)

)
+

− n
( 1
1 + cκ2

)n−1 ∂

∂κ

( 1
1 + cκ2

)
(97)

≥ n

(
1

(1− (2− κ)κc)

)n−1
∂

∂κ

(
1

(1− (2− κ)κc)

)
+

− n

(
1

(1− (2− κ)κc)

)n−1
∂

∂κ

( 1
1 + cκ2

)
(98)

= n

(
1

(1− (2− κ)κc)

)n−1

g′c (κ) . (99)

As g′c (κ) > 0, it follows that f ′
c (κ) > 0, which proves Lemma 3.

To prove a monotonic relationship for the VRP, i.e., y1 − x1, requires proving it for the

two inflators in (16). This is what is done in the remainder of the proof. I further define:

c := γ2σ2
v3σ

2
z , (100)

which, by condition (10), is in [0, 1), because σ2
v3 ≤ σ2

v .

Proof that y1 − x1 increases monotonically in κ. Let us first the derivative of the

flow-correlated inflator in (16):

∂

∂κ

(
κA2 + (1− κ)B2

)
= fc,1 (κ) + 4 (1− κ)κc× fc,3 (κ) > 0. (101)

The derivative for the flow-uncorrelated inflator in (16) is:

∂

∂κ
(κA+ (1− κ)B) = fc,2 (κ) + 2 (1− κ)κc× fc,2 (κ) > 0. (102)

Since both variance inflators increase monotonically in κ, y1 increases monotonically in κ.

41



Proof that y1 − x1 increases monotonically in γ. This proof follows the same steps as

the previous one:

∂

∂γ

(
κA2 (1− κ)B2

)
= 4κ2c

γ

(
2− κ

(1− (2− κ)κc)3
− 1− κ

(1 + κ2c)3

)

≥
(
4κ2 (1− κ) c

γ

)
fc,3 (κ) > 0 (103)

and

∂

∂γ
(κA (1− κ)B) = 2κ2c

γ

(
2− κ

(1− (2− κ)κc)2
− 1− κ

(1 + κ2c)2

)

≥
(
2κ2 (1− κ) c

γ

)
fc,2 (κ) > 0. (104)

Therefore both variance inflators increase monotonically in γ and thus y1 increases monotoni-

cally in γ.

Proof that y1 − x1 increases monotonically in σz. This proof follows the same steps as

the previous one:

∂

∂σz

(
κA2 (1− κ)B2

)
= 4κ2c

σz

(
2− κ

(1− (2− κ)κc)3
− 1− κ

(1 + κ2c)3

)

≥
(
4κ2 (1− κ) c

σz

)
fc,3 (κ) > 0 (105)

and

∂

∂σz
(κA (1− κ)B) = 2κ2c

σz

(
2− κ

(1− (2− κ)κc)2
− 1− κ

(1 + κ2c)2

)

≥
(
2κ2 (1− κ) c

σz

)
fc,2 (κ) > 0. (106)
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Therefore both variance inflators increase monotonically in σz and thus y1 increases mono-

tonically in σz.

E Details calibration procedure

The calibration involves the following steps. Fix an equidistant grid for the pre-crisis value of

κ. Iterate over this grid. For each value of κ, do the following:

1. Compute the nontraded shock size σ2
z that delivers the observed pre-crisis VRP using

(16).

2. Use the expression for illiquidity in (13), the pre-crisis κ, the observed pre- and post

flow-uncorrelated price variance (σ2
v3), and the observed relative change in illiquidity to

compute the implied post-crisis κ.

3. Use the expression for net volume in (12) to compute expected volume, which is the

expected absolute value of net volume. Expected volume, therefore, equals κ(1−κ)σz

√
2
κ
,

because z is Gaussian. The relative change in volume is used to compute post-crisis σ2
z .

4. Use these post-crisis values for κ and σ2
z and the observed post-crisis flow-correlated

and flow-uncorrelated price variance to compute the implied post-crisis VRP.

After all these computations are done, pick the pre-crisis value of κ that delivers a post-crisis

VRP that is closest to the observed post-crisis VRP.

F Price price calculations

The pre-crisis calculation is as follows. The monthly flow-uncorrelated realized variance is

σ2
v3 = 0.67 × 364/12 = 20.3 percentage squared. Therefore, γσ2

v3σzκ = 3 × (0.0244/12) ×
√
2.41×0.78 = 74 basis points (see (21)). This implies σv2 =

√
0.33× (0.0364/12)−0.0074 =
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242 basis points. Price pressure as defined in (22), therefore, is: 364/12− (2.422+(244/12)) =

4.1, which is 14% of total realized variance. Following the same steps for the post-crisis

period yields the following numbers. σ2
v3 = 0.70 × 964/12 = 56.2 percentage squared.

Therefore, γσ2
v3σzκ = 3 × (0.0675/12) ×

√
4.03 × 0.48 = 163 basis points. This implies

σv2 =
√
0.30× (0.0964/12)− 0.0163 = 328 basis points. Price pressure is: 964/12− (3.282 +

(675/12)) = 13.3, which is 17% of total realized variance.
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Table 1: Summary statistics. This table presents summary statistics for the monthly
data sample that runs from February 1993 through August 2024.

Mean SD Auto Skew Kurt N

Realized var SPX EOM (%2, ann.) 342 695 0.49 8.24 86.04 379
Implied var SPX BOM (%2, ann.) 447 419 0.76 3.40 16.73 379
Realized var risk premium EOM (%2, ann.) 104 560 0.15 -9.01 107.40 379
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Table 2: Model calibration to match crisis patterns. This table calibrates the model
to pre- and post-crisis trading. The patterns are based on ten crisis periods from 1993
through 2024. The pre-crisis period is the three-month period leading up to the crisis, and
the post-crisis period is the three-month period following a crisis (see Figure 3).

Data Model

Panel (a): Matched moments
Pre-crisis variance risk premium (%2, ann.) 14 14
Post-crisis variance risk premium (%2, ann.) 315 315
Change in NBBO quoted spread pre- to post-crisis +18% +18%
Change in share volume pre- to post-crisis +86% +86%

Panel (b): Calibrated parameters
Pre-crisis κ (fraction of agents experiencing shock) 0.78
Post-crisis κ 0.48
Change in κ pre- to post-crisis -38%

Pre-crisis σz (standard deviation nontraded risk shock) 1.55
Post-crisis σz 2.01
Change in σz pre- to post-crisis +29%

Panel (c): Further input calibration
Pre-crisis realized var SPX EOM (%2, ann.) 364
Pre-crisis implied var SPX BOM (%2, ann.) 378
Pre-crisis IV to RV ratio 1.04
Pre-crisis fraction of RV that is flow-correlated 0.33

Post-crisis realized var SPX EOM (%2, ann.) 964
Post-crisis implied var SPX BOM (%2, ann.) 1278
Post-crisis IV to RV ratio 1.33
Post-crisis fraction of RV that is flow-correlated 0.30

Risk-aversion parameter γ 3
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Figure 1: Time series S&P500 index returns and variances. This figure plots the
S&P 500 index and several series based on its return variance.
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Figure 2: Time series SPY trading. This figure plots various trade statistics for SPY
based on WRDS TAQ data: Volume, NBBO quoted spread, and NBBO depth.
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Figure 3: Crisis patterns. This figure plots various trade series evolve in crisis periods.
These periods correspond with realized variance spikes (see vertical lines in Figure 1). All
series are scaled by the pre-event level, which is set to 100. All plots show a 95% confidence
interval.
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t=2: Dividend signal + 
endowment shocks

• Dividend revealed 
partially:
𝑣2 = 𝐸𝑡=2  

(𝑣).

• Agent learns his type:  
Either he will experience 
an endowment shock 
and becomes a liquidity 
demander, or not.

• Liquidity demanders 
trade with others, who 
de facto become 
suppliers.

• Outcome is vector: 
(price, net volume, 
illiquidity) or, shorter, 
(𝑝, 𝑞 = Δ𝜗𝑑 , 𝜆).

𝑝3(𝑝2, 𝑞2, 𝜆2)

t=3: Dividend 
realized

• Dividend v revealed 
in full, i.e., agents 
learn remaining 
component:
𝑣3 = 𝑣 − 𝑣2.

• Risky asset price 
equal to dividend:
𝑝3 = 𝑣2 + 𝑣3.

• Long side of 
variance swap 
receives 𝑉.

(𝑝1, 𝑥1, 𝑦1)

t=1: Variance swap 
priced

• Agents homogenous
ex-ante.

• Risky asset price 
denoted 𝑝1.

• Expected realized 
variance:
𝑥1 = 𝐸𝑡=1(𝑉), where
𝑉 = σ𝜏=2

3 (𝑝𝜏 − 𝑝𝜏−1)2.

• Price variance swap: 
𝑦1 = 𝐸𝑡=1 (𝑉 × 𝑚3), 
where 𝑚3 is the agent’s 
marginal utility at
𝑡 = 3.

Figure 4: Model summary. This schematic summarizes the model by describing the events
in the three periods. The flow diagram at the bottom shows the key variables determined in
these periods.
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Figure 5: Variance inflators. This figure plots the variance inflators for the flow-correlated
and flow-uncorrelated returns. These inflators are used in the pricing of the variance swaps
for γ = 3 and σ2 = 400 percentage squared annually. The flow-correlated part is assumed
to be one fifth of the total variance, and the flow-uncorrelated part four fifths of it (i.e.,
σ2
v2 = 0.2σ2 and σ2

v3 = 0.8σ2). The variance of the nontraded risk shock is assumed to be
nine: σ2

z = 9.

52



0.0 0.2 0.4 0.6 0.8 1.0
 (fraction of agents experiencing nontraded risk shock)

400

500

600

700

800

Expected realized variance (x1)

Value variance swap to liq. demander (yd
1)

Value variance swap to liq. supplier (ys
1)

Value variance swap unconditionally (y1)

Figure 6: Pricing of the variance swap. This figure illustrates the pricing of the variance
swaps for γ = 3 and σ2 = 400 percentage squared annually. The flow-correlated part is
assumed to be one fifth of the total variance, and the flow-uncorrelated part four fifths of it
(i.e., σ2

v2 = 0.2σ2 and σ2
v3 = 0.8σ2). The variance of the nontraded risk shock is assumed to

be nine: σ2
z = 9. The graph plots the valuation of a variance swap by the two types. It also

plots the pricing of the variance swap as the weighted sum of the type-specific valuations.
The graph further plots expected realized variance.
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