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Abstract

The equity and variance risk premia at a given horizon T1 depend on the risks of

future intertemporal shifts in the economic environment, beyond T1. We derive novel

estimates of these risk premia, which account for intertemporal hedging and embed

information on the term structure of market return moments. We compute them using

options and find that intertemporal hedging drives up to 70% of the equity risk premium

and half of the variance risk premium. In particular, intertemporal hedging increases

the equity risk premium in times of market expansion, characterized by long investors’

horizons. Our estimates improve the out-of-sample R2 of market return prediction by

a factor of up to 2.

JEL classification: G11, G12, G13, G17.

Keywords: equity risk premium, intertemporal hedging, term structure.

∗We are grateful to Patrick Augustin, Martin Boyer, Jean-Édouard Colliard, Kevin Crotty (discussant),
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1 Introduction

The equity risk premium—the expected return on the equity market over the risk-free

rate—is a crucial input for corporate valuation and portfolio allocation. Unfortunately, it is

also notoriously hard to estimate ex ante. Martin (2017) shows how the risk-neutral market

variance discounted at the risk-free rate provides a lower bound for the equity risk premium,

in a one-period economy that ignores the higher-order moments of market returns. A major

benefit of his approach is that the risk-neutral variance can be easily computed from observed

option prices. Chabi-Yo and Loudis (2020) and Tetlock (2023) extend the approach of Mar-

tin (2017) and provide estimates for the equity risk premium that account for higher-order

risks, still in a one-period model.

Restricting the economy to a one-period economy allows simplifying the analysis, but at

the expense of strong assumptions. In particular, it ignores the risks of future intertemporal

shifts in the economic environment, e.g., changes in the expected returns or return volatility.

Consider, for example, forecast horizon T1 > t. A one-period model assumes that investors

choose their portfolio allocation at time t ignoring the risks beyond time T1. These risks,

however, impact future consumption. Merton (1973) shows that investors optimally seek to

hedge these risks by tilting their portfolio allocation towards assets that deliver higher returns

when consumption is negatively affected. Intertemporal hedging after time T1 therefore

affects demand, and thus equilibrium prices and returns at horizon T1.

We derive novel estimates for the equity risk premium, which take into account both

higher order risks and intertemporal hedging. Our model features a multi-period economy, in

which the representative investor chooses the optimal allocation to the market, to maximize

the expected utility of the wealth accumulated between time t and time TN ≥ T1. TN

represents the investment horizon of the investor. In this economy, we derive an estimate for

the equity risk premium with horizon T1, using a Taylor expansion of the inverse marginal

utility. The resulting equity risk premium depends on the conditional moments of the horizon

T1-market returns, but also on time-t expected conditional moments of returns over [T1, TN ].
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Whereas the bounds of Martin (2017) and Chabi-Yo and Loudis (2020) only need options

expiring at T1 to forecast the equity risk premium at horizon T1, our method uses options

at horizons T1 and TN .

Similarly, we derive an estimate for the conditional variance risk premium with horizon

T1, which also depends on time-t conditional moments of returns betweem T1 and TN . All

return moments can be readily estimated using available option prices.

We compute estimates for the equity risk premium and the variance risk premium on the

S&P 500 from 1996 to 2023, over horizons ranging from 10 days to 18 months. We show

that accounting for intertemporal hedging leads to an increase of the equity risk premium,

in particular during times of market calm. Intertemporal hedging accounts for up to 80%

of the total equity risk premium during these periods, and around 30% during NBER reces-

sions. Furthermore, our risk premium allows us to improve the out-of-sample R2 of return

prediction, compared to the bounds of Martin (2017) and Chabi-Yo and Loudis (2020). For

all forecast horizons T1 from 10 days to 18 months, the out-of-sample R2 increases with the

investors’ horizon TN , up to a given TN . For example, for T1 at 10 days, the maximum out-

of-sample R2 is achieved at 6 months. For T1 larger than two months, the maximum R2 is

obtained for the longest horizon for which we have available option maturities, namely TN =

2 years. We also construct market-timing strategies and compute realized mean-variance

certainty equivalents. These certainty equivalents indicate that our risk premium reaches

better forecasts of both the first and second return moments, and that the improvements

upon the forecasts of Chabi-Yo and Loudis (2020) are statistically significant.

We define the implied investors’ horizon T ∗
N,t, as the investment horizon which at each

time t maximizes the fit of our equity risk premium estimate to the data. Specifically, T ∗
N,t

is chosen so that it maximizes the in-sample R2 of returns over a window of three months

[t−3m, t]. We find that the implied investors’ horizon switches between the longest available

horizon TN , e.g., two years, and the shortest horizon TN > T1. When the probability of a

crash is high (above 10%), the implied investors’ horizon is short, and it is equal to two
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years otherwise. This result provides empirical evidence to the theory of Hirshleifer and

Subrahmanyam (1993), which predicts that investors’ time horizons shorten during periods

of uncertainty due to increased risk aversion and limited attention. It is also in line with

Campbell and Vuolteenaho (2004), who find that in volatile markets, investors become more

sensitive to ”bad beta” – short-term cash flow shocks–, than to ”good beta” – long-term

discount rate changes–.

Whenever the probability of a crash is low, the representative agent thus behaves as a

long-term investor, and intertemporal hedging shifts the equity risk premium upward.

Given these switches in the implied investors’ horizon, we further optimize our equity risk

premium by setting it, at each time t, equal to the risk premium at investment horizon T ∗
N,t

–the implied investors’ horizon at time t–. We thus obtain an equity risk premium estimate

which matches the estimate at TN = 2 years during most of the time series, and switches to

the estimate at the shortest available TN > T1 when the probability of a crash is high. The

resulting equity risk premium is higher than the one of Chabi-Yo and Loudis (2020) under

normal market conditions, and roughly at the same level during market stress.

Intertemporal hedging increases the equity risk premium at short horizons more than

it does at longer horizons. Therefore, it also impacts the term structure of equity risk

premium, which we define as the hold-to-maturity yield on the S&P 500 implied by our

estimates at various horizons. Where as the term structure of equity risk premium of Chabi-

Yo and Loudis (2020) is upward sloping under normal market conditions, we obtain a term

structure of equity risk premium which is essentially flat. During market stress, it is strongly

downward sloping.

These results are robust to changes in our main assumptions. Our main results are

based on preference parameters that are fixed. We estimate these parameters over the

period 1996-2023, as linear functions of past returns. We show that the resulting preference

parameters vary with market conditions, and generate larger out-of-sample R2. However,

estimating them over the full time period yields a look-ahead bias. We overcome this issue by
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estimating these parameters over a telescopic window of data, initially ranging from 1996 to

2006, and expanding with time. We show, however, that the resulting equity risk premium

estimates do not improve upon our main estimates in terms of out-of-sample R2, over the

period 2006-2023. We also study an extension of our setup that allows the representative

investor to rebalance her portfolio between times T1 and TN . Our conclusions survive this

change.

We contribute to different strands of literature. The first strand uses options prices to

infer information about the return distribution under the physical probability measure. The

risk-neutral leverage effect used in this paper is closely related to the asymmetric volatility

implied correlation studied by Jackwerth and Vilkov (2019). They use short- and long-term

options on the S&P 500 Index and options on VIX futures to calibrate the risk-neutral

correlation between returns and future volatility. As options on VIX futures are available

only starting in 2006, data availability prevents us from using their methodology.

Our work is also related to the vast literature on the importance of the variance risk

premium—the difference between the physical and risk-neutral variance—for predicting the

equity risk premium (see, Bollerslev, Tauchen, and Zhou, 2009). Hu, Jacobs, and Seo (2021)

show that the leverage effect, measured under the physical probability measure, has a strong

positive relation with the variance risk premium. We derive an expression that relates the

equity risk premium to the variance and leverage effect under the risk-neutral measure.

We contribute to the growing literature that constructs bounds on physical return mo-

ments. Building on Martin (2017), Martin and Wagner (2019), Kadan and Tang (2020),

and Chabi-Yo, Dim, and Vilkov (2021) build bounds for the expected return on individual

stocks and Kremens and Martin (2019) provide a bound for currency expected exchange rate

appreciation using Quanto index options. See Back, Crotty, and Kazempour (2022) for a

discussion and empirical tests of bounds for individual stocks and the stock market. Our

novel bound for the equity risk premium involves intertemporal terms implied from options

prices.

5



The Recovery Theorem of Ross (2015) shows how to disentangle the physical probability

distribution from the pricing kernel and risk-neutral probabilities, but has been challenged

on theoretical and empirical grounds.1 Instead of making assumptions about the pricing

kernel process, Schneider and Trojani (2019) impose sign restrictions on the risk premia of

return moments and find predictive power for future returns. Our approach differs in that we

express the equity risk premium as a function of risk-neutral moments of returns at different

horizons and preference parameters estimated from the data.

Finally, our paper is related to the literature on the equity term structure. van Bins-

bergen, Brandt, and Koijen (2012) show that the expected one-period return on claims on

dividends decreases in the maturity of the dividend. Gormsen (2020) shows that this slope is

countercyclical (see also, van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; van Binsbergen

and Koijen, 2017; Bansal, Miller, Song, and Yaron, 2021; Ulrich, Florig, and Seehuber, 2022;

Giglio, Kelly, and Kozak, 2024). While the main object in this literature is the expected

one-period return on claims on dividends several years in the future, we focus on the term

structure of expected total market return with maturity of up to one year.

Our paper proceeds as follows. Section 2 presents our theoretical results based on a

second-order approximation, Section 3 discusses our empirical framework to build equity

risk premium forecasts. Section 4 presents our main empirical results. In Section 5 we show

the results when estimating the preference parameters of our model. Sections 6 and 7 study

the robustness of our results to two extensions. Finally, Section 8 concludes.

1Borovička, Hansen, and Scheinkman (2016) show that Ross’ assumptions rule out realistic models. Bak-
shi, Chabi-Yo, and Gao (2018) do not find support for the implications of the Recovery Theorem using U.S.
Treasury bond futures. While Audrino, Huitema, and Ludwig (2019) find some forecasting power, Jensen,
Lando, and Pedersen (2019) generalize the assumptions of Ross’ (2015) model and find weak predictive power
for future realized returns.
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2 Theoretical framework

In this section, we provide our main theoretical results. We derive a lower bound on the

equity risk premium in a multi-period economy, accounting for the risks of future intertem-

poral shifts in the economic environment. We further use our methodology to derive the

probability of a crash under the physical measure. We highlight the new components of the

equity risk premium and crash probabilities, compared to estimates that do not account for

intertemporal hedging. These components capture conditional moments of market returns

beyond the forecast horizon. All proofs are provided in Appendix A.

2.1 Equity risk premium in a multi-period economy

We consider a three-date (two-period) economy with dates t, T1, and TN such that t < T1 <

TN .
2, and a representative agent. T1 is the forecast horizon at which we aim to build a lower

bound for the equity risk premium. TN is the representative agent’s investment horizon. We

assume that this economy is arbitrage-free, which guarantees the existence of a stochastic

discount factor (SDF) and of a risk-neutral measure. For simplicity, we assume no interest

rate risk.

At time t, the representative agent invests her wealthWt in an asset delivering the risk-free

gross return Rf,t→T1 , and in a set of risky assets delivering gross returns Rk,t→T1 , k = 1, ..., N .

Under no-arbitrage conditions, the expected excess return on each risky asset from time t

to time T1 can be expressed as the risk-neutral covariance between the asset return and the

inverse of the one-period SDF from t to T1, mt→T1 :

Et (Rk,t→T1 −Rf,t→T1) = COV∗
t

(
Rk,t→T1 ,

Etmt→T1

mt→T1

)
. (1)

See Appendix A.1 for the proof of this identity, also used by Chabi-Yo and Loudis (2019).

2We use the notation T0 = t for simplicity.
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Let us aggregate the gross returns on risky assets in the vector Rt→T1 . The intermediate

wealth of the representative agent at forecast horizon T1 is

WT1 = Wt (Rf,t→T1 + ω⊺
t (Rt→T1 −Rf,t→T1)) = Wt (ω

⊺
tRt→T1) , (2)

where ωt is the vector of portfolio weights in risky assets. At time T1, the representative

agent can rebalance her portfolio so that her terminal wealth at TN is

WTN
= Wt→T1

(
Rf,T1→TN

+ ω⊺
T1
(RT1→TN

−Rf,T1→TN
)
)
= WT1

(
ω⊺
T1
RT1→TN

)
, (3)

where ωT1 is the vector of portfolio weights in risky assets at time T1, Rf,T1→TN
is the risk-free

gross return from time T1 to time TN , and RT1→TN
is the gross return vector of risky assets.

The investor chooses the portfolio weights {ωt, ωT1} so as to maximize her expected utility

of terminal wealth3 over the period [t, TN ]:
4

max
ωt,ωT1

Etu [WTN
] . (4)

The main innovation of our approach is that the investor considers what happens beyond the

forecast horizon T1, up to the representative agent’s investment horizon TN , when solving

the portfolio allocation problem. In contrast, the bounds of Martin (2017); Chabi-Yo and

Loudis (2020) and Tetlock (2023) are derived in an economy in which the investor maximizes

the expected utility of wealth over [t, T1].

Provided that no-arbitrage conditions hold in this economy, and assuming that the gross

return on the market can be used as proxy for the return on aggregate wealth, we show in

Appendix A.2 that we can express the one-period stochastic discount factor (SDF) from t

3The utility function u[.] is well-defined, its derivatives up to order four exist, and their signs obey the

following economic theory restriction: sign
(
u(i) [·]

)
=sign(−1)

i+1
(Eeckhoudt and Schlesinger, 2006; Deck

and Schlesinger, 2014).
4We exclude consumption in (4) for simplicity. In the Internet Appendix E, we show that under minimal

assumptions regarding the sign of the correlation between the consumption wealth ratio and the market
return, the expected return derived in this section still holds.
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to T1, mt→T1 as,

Etmt→T1

mt→T1

=
υT1

E∗
t (υT1)

with υT1 = E∗
T1

(
u

′
[WtRf,t→TN

]

u′ [WtRM,t→TN
]

)
, (5)

where E∗
T1
(·) denotes the expected value at time T1 under the risk-neutral measure, Rf,t→TN

is the risk-free gross return from t to TN and RM,t→TN
is the gross market return between t

and TN .

The one-period SDF thus depends on the marginal utility of wealth at the representative

agent’s investment horizon TN . This result stands in contrast to the SDF of Martin (2017),

Chabi-Yo and Loudis (2020) and Tetlock (2023), which do not depend on any quantity

beyond the forecast horizon T1.

We do not assume that we know the functional form of the marginal utility function. We

use a Taylor expansion series of the inverse of the marginal utility to derive bounds on the

market risk premium as a function of risk-neutral moments of returns. Define the function

f [x, y] =
u

′
[Wtx0y0]

u′ [Wtxy]
,

with x = RM,t→T1 , y = RM,T1→TN
, x0 = Rf,t→T1 and y0 = Rf,T1→TN

. Since there is no interest

rate risk, RM,t→TN
= xy and Rf,t→TN

= x0y0. A second-order Taylor expansion of f [., .]

around (x, y) = (x0, y0) produces a one-period SDF of the form5

Etmt→T1

mt→T1

≈ (1 + zT1)

E∗
t (1 + zT1)

, (6)

where

zT1 =
a1,t

Rf,t→T1

(RM,t→T1 −Rf,t→T1) +
a2,t

R2
f,t→T1

(RM,t→T1 −Rf,t→T1)
2 +

a2,t
R2

f,T1→TN

M∗(2)
T1→TN

(7)

5In Section 6, we extend our framework to allow the representative agent to rebalance her portfolio at
discrete times t such as T1 ≤ t < TN .
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and M∗(2)
T1→TN

= E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2 is the risk-neutral variance at time T1. The

coefficients a1,t, a2,t and a3,t in the Taylor expansion series are functions of the investor’s

risk, skewness and kurtosis tolerance parameters τt, ρt and κt:

a1,t = 1
τt
, a2,t = (1−ρt)

τ2t
, a3,t = (κt+1−2ρt)

τ3t
, (8)

where

τt = − u(1) [WtRf,t→TN
]

WtRf,t→TN
u(2) [WtRf,t→TN

]
,

ρt =
1

2!

u(3) [WtRf,t→TN
]u(1) [WtRf,t→TN

]

(u(2) [WtRf,t→TN
])
2 ,

κt =
1

3!

u(4) [WtRf,t→TN
]
(
u(1) [WtRf,t→TN

]
)2

(u(2) [WtRf,t→TN
])
3 . (9)

The proof of Equation (6) is in Appendix A.3.6

Equations (6) and (7) show that the inverse of the SDF is a function of three terms:

the excess market return, the squared excess market return, and the market risk-neutral

variance M∗(2)
T1→TN

at time T1. This risk-neutral variance term is new and only arises in a

two-period economy.7 In contrast, the risk, skewness and kurtosis tolerance parameters in

(9) differ from those derived by Chabi-Yo and Loudis (2020) but we expect this difference to

be small. They indeed involve risk-free returns between t and TN , instead of these returns

between t and T1. Due to the shape of the yield curve, the risk-free returns from T1 to TN

tend to be close to 1 empirically.

6Our baseline results do not involve kurtosis preference, but we define the kurtosis preference parameter
together with the risk aversion and skewness preference parameters for completeness. We will use the kurtosis
preference parameter in Section 7, where we apply third-order Taylor expansion series.

7We know from Merton’s ICAPM that shocks to risk can generate hedging demand and so can be priced.
But Merton’s ICAPM shows that market physical volatility is determinant in explaining the expected excess
return on a stock. Merton’s model argument is not about risk neutral market volatility. Strong evidence of
time-varying volatility risk premium suggests that the risk neutral market variance and the physical market
variance are distinct and carry different sets of information. Thus, our theoretical results are distinct from
implications from Merton’s ICAPM model. Further, Merton’s ICAPM was not intended to derive closed-
form expression of the risk premium on the market as a function of risk neutral correlation between market
return and market risk neutral volatility.
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We present our main theoretical result in Proposition 1 below. In this proposition,

we combine the risk premium expression in Equation (1) with the SDF expression (6) to

provide a closed-form solution to the conditional expected excess market return in terms of

risk-neutral moments.

Proposition 1 Up to a second-order expansion-series, consistent with (6), under no-arbitrage

conditions, the equity risk premium is a function of risk neutral return moments:

RPt→T1,TN
≡ Et (RM,t→T1 −Rf,t→T1) =

a1,t
Rf,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,t→T1

M∗(3)
t→T1

+ a2,t
R2

f,T1→TN

LEV∗
t

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

,

(10)

where

LEV∗
t = COV∗

t

(
rM,t→T1 ,M

∗(2)
T1→TN

)
, (11)

and

M∗(n)
Ti→Tj

= E∗
Ti

(
RM,Ti→Tj

−Rf,Ti→Tj

)n
, with i < j, i = 0, 1, T0 = t, and n > 1. (12)

Proof. See Appendix A.4.

Two new terms contribute to the equity risk premium in a two-period economy, compared

to a one-period economy: the risk-neutral leverage effect LEV∗
t and the expected future

variance E∗
tM

∗(2)
T1→TN

. Our conjecture is that the risk-neutral leverage effect, LEV∗
t , is negative

and as a result increases the equity risk premium due to the compensation required by

investors for exposure to the future risk-neutral variance. There is a vast literature on

leverage under the physical measure. Still, to our knowledge, our paper is the first to

show how relevant leverage under the risk-neutral measure is for computing the one-period

conditional expected excess market return in a two-period economy. Provided that a2,t is

negative, a negative risk-neutral leverage contributes positively to the conditional equity risk

premium.
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We further show in the Internet Appendix E.3, that Eq. (10) remains a lower bound

to the expected excess market return provided that odd market risk neutral moments are

negative and conditions 1/τt ≥ 1 and ρt − 1 ≥ 1 hold. Finally, under these conditions, we

can further restrict bound (10):

RPt→T1,TN
≥

1
Rf,t→T1

M∗(2)
t→T1

− 1
R2

f,t→T1

M∗(3)
t→T1

− 1
R2

f,T1→TN

LEV∗
t

1− 1
R2

f,t→T1

M∗(2)
t→T1

− 1
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

. (13)

We further show in Appendix E.2 that, when consumption is introduced in the repre-

sentative agent problem, under minimal realistic assumptions, our measure of risk premium

remains a lower bound to the expected market return.

2.2 Comparison to existing bounds

The computation of the risk-neutral leverage effect LEV∗
t and of the expected future vari-

ance E∗
tM

∗(2)
T1→TN

relies on information from options of maturities T1 and TN . In contrast,

the existing bounds of Martin (2017) and Chabi-Yo and Loudis (2020) and the equity risk

premium estimate of Tetlock (2023) only rely on options with maturity T1. The bound in

Martin (2017) corresponds to the expected excess return when the representative agent is en-

dowed with a myopic log utility. The log utility assumption corresponds to τt = 1 (a1,t = 1)

and ρt = 1 (a2,t = 0), making higher-order moments and the leverage under the risk-neutral

measure irrelevant in a two-period economy. In case of a CRRA utility with relative risk

aversion α, an equivalent expression of (10) can be obtained by recognizing that (9) reduces

to 1
τt

= α, ρt =
1
2
(α+1)

α
, and κt =

1
6
(α+1)(α+2)

α2 . In case of a CARA utility with absolute risk

aversion α̃, an equivalent expression of (10) can be obtained by recognizing that (9) reduce

to 1
τt
= αt, ρt =

1
2
, and κt =

1
6
with αt = α̃WtRf,t→TN

.

To compare our measure to the one of Chabi-Yo and Loudis (2020), we first introduce

Corollary 2, which expresses the conditional expected excess market return as a weighted

average of two risk premia.
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Corollary 2 Up to a second-order expansion-series, consistent with (6), the expected excess

market return is a weighted average of two premia:

Et (RM,t→T1 −Rf,t→T1) = π∗
tRPt→T1 + (1− π∗

t )RP
υ
t→TN

, (14)

where

RPt→T1 =

a1,t
Rf,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,t→T1

M∗(3)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

, (15)

and

RPυ
t→TN

=
LEV∗

t

E∗
tM

∗(2)
T1→TN

, (16)

with

π∗
t =

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

. (17)

Proof. See Appendix A.5.

The first risk premium RPt→T1 in Equation (15), which corresponds to the measure

obtained by Chabi-Yo and Loudis (2020) in a one-period economy, involves the risk-neutral

variance and skewness of market returns.8 The novelty of decomposition is the contribution

of the risk-neutral leverage effect LEV∗
t and expected future variance E∗

tM
∗(2)
T1→TN

to the

conditional risk premium.

2.3 Intertemporal hedging demand premium

Building on Corollary 2, we define the intertemporal hedging demand premium as the differ-

ence between the equity risk premium from t to T1 a two-period (three-date) economy and

the premium in a one-period (two-date) economy.

8Chabi-Yo and Loudis (2020) derive their expression using a third-order expansion-series of the inverse
marginal utility. The expression provided in Equation (15) is the counterpart of the one given by Chabi-Yo
and Loudis (2020) when using a second-order expansion-series of the inverse marginal utility.
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Corollary 3 Up to a second-order expansion-series, the intertemporal hedging premium is

IHPt→T1,TN
= π∗

tRPt→T1 + (1− π∗
t )RP

υ
t→TN︸ ︷︷ ︸

One-period expected excess

return in a two-period economy

− RPt→T1 ,︸ ︷︷ ︸
One-period expected excess

return in a one-period economy

(18)

and can be alternatively written as

IHPt→T1,TN
= (π∗

t − 1)
(
RPt→T1 − RPυ

t→TN

)
, (19)

where RPt→T1, RPυ
t→TN

, π∗
t are defined in (15), (16) and (17), respectively.

positive. A positive value indicates that our risk premia, RPt→T1,TN
, will be higher than

RPt→T1 . The differences in the shape of the term structure of risk premia depend on how

IHPt→T1,TN
varies across T1.

2.4 Variance risk premium in a multi-period economy

We define the variance risk premium as the difference between the conditional variance

under the physical measure and under the risk-neutral measure. As the risk-neutral vari-

ance is computed directly from options, it does not depend on intertemporal hedging. The

proposition below gives the conditional variance under the physical measure, in a two-period

economy.

Proposition 4 Up to a second-order expansion-series, consistent with (6), under no-arbitrage

conditions, the conditional variance of returns under the physical measure is a function of

risk neutral return moments:

Et (RM,t→T1 − EtRM,t→T1)
2 = Et (RM,t→T1 −Rf,t→T1)

2 − (Et (RM,t→T1 −Rf,t→T1))
2
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where Et (RM,t→T1 −Rf,t→T1) is given by Equation (10),

Et (RM,t→T1 −Rf,t→T1)
2 =


M∗(2)

t→T1
+ a1,t

Rf,t→T1
M∗(3)

t→T1
+ a2,t

R2
f,t→T1

M∗(4)
t→T1

+ a2,t
R2

f,T1→TN

(
LEK∗

t +M∗(2)
t→T1

E∗
tM

∗(2)
T1→TN

)


1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

, (20)

and

LEK∗
t = COV∗

t

(
(RM,t→T1 −Rf,t→T1)

2 , (RM,T1→TN
−Rf,T1→TN

)2
)
.

Proof. See Appendix A.6.

Similar to the equity risk premium, the conditional variance can be written as a func-

tion of risk-neutral moments between t and the forecast horizon T1, but also intertemporal

hedging terms using information up to the representative agent’s investment horizon TN .

This estimate of the physical variance presents two major advantages. First, it is com-

putable readily from available options and does not require high-frequency data. Second, it

is model-free and relies on minimal assumptions, similar to our estimate of the equity risk

premium.

In a two-period economy (without intertemporal hedging), the conditional variance re-

duces to

Et (RM,t→T1 −Rf,t→T1)
2 =

{
M∗(2)

t→T1
+ a1,t

Rf,t→T1
M∗(3)

t→T1
+ a2,t

R2
f,t→T1

M∗(4)
t→T1

}
1 + a2,t

R2
f,t→T1

M∗(2)
t→T1

, (21)

2.5 Probability of a crash

We further use our methodology to obtain the probability of a crash under the physical

measure. We define the probability of a crash as Pt (RM,t→T1 < α) where α is given. For

example, α = 0.8 for a 20% crash. We then exploit the no-arbitrage assumption that allows

us to move from the physical measure to the risk-neutral measure. While the coefficient α

could be time-varying or constant, we remove the time subscript on α to ease notations.
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Proposition 5 Up to a second-order expansion-series of the inverse marginal utilities, the

conditional crash probability defined as Πt→T1,TN
[α] ≡ Pt (RM,t→T < α) can be expressed in

terms of risk neutral quantities

Πt→T1,TN
[α] =

M∗(0)
t→T1

[α] + a1,t
Rf,t→T1

M∗(1)
t→T1

[α] + a2,t
R2

f,t→T1

M∗(2)
t→T1

[α] + a2,t
R2

f,T1→TN

M∗
t,υ [α]

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

, (22)

where M∗(n)
t→T1

[α] = E∗
t

(
(RM,t→T1 −Rf,t→T1)

n
1RM,t→T1

<α

)
andM∗

t,υ [α] = E∗
t

(
M∗(2)

T1→TN
1RM,t→T1

<α

)
.

Proof. See Appendix A.7.

Proposition 5 shows that truncated market moments matter for extracting the probability

of the market crash. But more importantly, it shows that when the SDF is a function of

future risk-neutral volatility as in (7), the tail of the distribution of risk-neutral volatility,

captured by M∗
t,υ [α], has an impact on the probability of a crash. When the expected future

volatility is not present in the SDF (6), the probability of a market crash reduces to

Πt→T1 [α] ≡ Pt (RM,t→T < α) =
M∗(0)

t→T1
[α] + a1,t

Rf,t→T1
M∗(1)

t→T1
[α] + a2,t

R2
f,t→T1

M∗(2)
t→T1

[α]

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

. (23)
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3 Empirical framework

We show in this section how the theoretical expressions derived in Section 2 can be brought

to the data.

3.1 Leverage and future risk-neutral variance

The equity risk premium and crash probabilities are functions of risk-neutral moments,

including LEV∗
t and E∗

tM
∗(2)
T1→TN

which involve T1- and TN -horizon quantities. While closed-

form expressions of risk-neutral moments for a given maturity in terms of option prices

are directly available using the spanning formula of Carr and Madan (2001) and Bakshi and

Madan (2000), closed-form expressions of the risk-neutral leverage effect and expected future

moments are not directly available.

We propose a method to compute LEV∗
t and E∗

tM
∗(2)
T1→TN

using options with maturity T1

and TN . As the future variance is a function of the information set at T1, we assume that it

can be written as a nonlinear function f of RM,t→T1 −Rf,t→T1 :

M∗(2)
T1→TN

= θtf(RM,t→T1 −Rf,t→T1) + ϵt, (24)

with E∗
t (ϵt|RM,t→T1) = E∗

t (ϵt) = 0. Multiplying both sides of Equation (24) by R2
M,t→T1

and

taking the time-t risk-neutral expectation, we obtain

θt =
M∗(2)

t→TN
−R2

f,T1→TN
M∗(2)

t→T1

E∗
t

(
R2

M,t→T1
f(RM,t→T1 −Rf,t→T1)

) , (25)

and

M∗(2)
T1→TN

=
M∗(2)

t→TN
−R2

f,T1→TN
M∗(2)

t→T1

E∗
t

(
R2

M,t→T1
f(RM,t→T1 −Rf,t→T1)

)f(RM,t→T1 −Rf,t→T1) + ϵt. (26)

Note that (24) is distinct from the assumption that the risk neutral volatility follows a

GARCH process. The returns of interest in the left- and right-handsides of equation (24) are

different. The risk neutral quantity in the left-handside of (24) is obtained from the return
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from time T1 to TN while the quantity in the right-handside of Equation (24) is a function

of the realized return from t to T1. We further show in the Internet Appendix E.1, that

the key risk-neutral volatility dynamics implied by (24) is distinct from that of a GARCH

process. Hence, a direct comparison cannot be made with a GARCH process. To obtain

the expected future variance, E∗
tM

∗(2)
T1→TN

, and leverage, LEV∗
t , we compute the time-t risk-

neutral expected values of Equation (26) and the product of RM,t→T1 −Rf,t→T1 and Equation

(26), respectively.

The final step consists to choose the function f(·). We use (RM,t→T1 −Rf,t→T1)
2 for two

reasons. First, note that the numerator of θt is always positive in the data. Therefore,

our choice of function f(·) ensures that the expected future variance is a positive number.

Second, as (RM,t→T1 −Rf,t→T1)
2 is a proxy for the first period conditional variance, this

function captures the well-documented fact that conditional variances are highly positively

correlated over time.

With this choice for the function f(·), we have,

E∗
tM

∗(2)
T1→TN

=
M∗(2)

t→TN
−R2

f,T1→TN
M∗(2)

t→T1

M∗(4)
t→T1

+ 2Rf,t→T1M
∗(3)
t→T1

+R2
f,t→T1

M∗(2)
t→T1

M∗(2)
t→T1

, (27)

and,

LEV∗
t =

M∗(2)
t→TN

−R2
f,T1→TN

M∗(2)
t→T1

M∗(4)
t→T1

+ 2Rf,t→T1M
∗(3)
t→T1

+R2
f,t→T1

M∗(2)
t→T1

M∗(3)
t→T1

. (28)

Substituting Equations (27) and (28) in Equation (10) highlights that our expression for

the equity risk premium is a non-linear function of T1-return moments and the TN -return

variance.

3.2 Data

We use the S&P 500 index as the market portfolio. We obtain volatility surfaces, index

levels, and forward term structures for the S&P 500 Index and the zero-coupon rate term

structures from Ivy DB OptionMetrics. The data cover the period January 1996 to February
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2023. When computing the excess returns on the S&P 500 index before January 1996, we

use its level and the Fama term structures on U.S. Treasuries from the Center for Research

in Security Prices (CRSP).

Implementing our risk premia requires the evaluation of different functions of risk-neutral

expected values. We estimate these expected values at the end of each month and for each

maturity provided in OptionMetrics’ Volatility Surface File (10, 30, 60, 91, 122, 152, 182,

273, 365, 547, and 730 days). We refer to these maturities as one week, one month, two

months, one quarter, four, five, six, and nine months, one year, 18 months, and two years.

We import annualized continuously-compounded zero-coupon yields from Jing Cynthia

Wu’s website, Liu and Wu (2021). We interpolate the term structure of zero-coupon rates

using Nelson and Siegel (1987) model to find each maturity’s risk-free rate.

Following Chabi-Yo, Dim, and Vilkov (2021), we define a moneyness grid of 1,000 equally

spaced points from 1/3 to 3. We use a piecewise cubic Hermite polynomial to interpolate

the implied volatility surface to the moneyness grid. We extrapolate the implied volatility

using the closest value for moneyness points outside the implied volatility surface. Finally,

we use the Black-Scholes formula to convert implied volatilities to call and put prices for

each moneyness level.

3.3 Risk-neutral moments

We compute the risk-neutral moments of market returns and excess returns using the span-

ning formula of Carr and Madan (2001) and Bakshi and Madan (2000), as described in

Appendix B.1. We report in Figure 1 excess return moments over time for horizons of one

week to two years. To compare values across horizons, we report the annualized volatility

in the top graph

(√
(365/T1)M∗(2)

t→T1

)
, skewness in the middle graph

(
M∗(3)

t→T1
/
(
M∗(2)

t→T1

) 3
2

)
,

and kurtosis in the bottom graph

(
M∗(4)

t→T1
/
(
M∗(2)

t→T1

)2)
. We also report the expected future

second moments and leverage in Figure 2, using Equations (27) and (28).
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Risk-neutral volatilities and expected future volatilies vary over time, reaching a peak

during the financial crisis of 2008. Risk-neutral skewness values are almost always negative

and decrease over the sample period. Risk-neutral kurtosis values range between three and

eight and trend upward over the sample period. The risk-neutral leverage effect is always

negative and exhibits large time variations.

3.4 Preference parameters

The expressions for the one-period equity risk premium and crash probabilities provided in

Section 2 are all functions of the investor’s preference parameters τt and ρt.

Following Chabi-Yo and Loudis (2020), we first set these parameters to τt = 1 and ρt = 2

for all t, which is equivalent to a1,t = 1 and a2,t = −1. Setting these parameters to constants

yields tractable equity and variance risk premia, which can be computed instantaneously

using readily available options. We derive our main results in Section 4 based on these values.

In Section 5, we attempt to estimate the preference parameters but find little improvement

in out-of-sample results. We further show that our main findings do not change.
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4 Results

In this section, we describe our estimates of equity risk premium RPt→T1,TN
and discuss

their ability to capture future returns. We show that RPt→T1,TN
outperforms the existing

premia for most horizons TN , and underline the existence of an implied investors’ horizon,

which corresponds to the value of TN that best matches the data. This horizon is long in

quiet times, when the probability of crash is low, and short during market turmoil, when

the probability of crash is high.

4.1 Estimated equity risk premium

We report in Figure 3 the time series of equity risk premia for horizons of T1 equal to one

and six months, using investment horizons TN of one and two years. RPt→T1,TN
is larger than

RPt→T1 over the entire sample period, for both forecast horizons T1. Furthermore, RPt→T1,2y

is always larger than RPt→T1,1y. The summary statistics in Table 1 confirm that these results

hold across forecast horizons. They suggest that that the equity risk premium increases in

the investment horizon TN . Hence, the risks of future shifts in the economic environment

yield a positive intertemporal hedging premium, resulting in an increase of the equity risk

premium.

We further compare our equity risk premium estimate to the Implied Equity Risk Pre-

mium (IERP) of Tetlock (2023) in Figure 4.9 The investment horizons are chosen such that

the two time series be as close to each other as possible. This results in TN equal to one

year for T1 = one month, and TN equal to two years for T1 = six months. Using these

values of TN , the two risk premium estimates are close during quiet times. During NBER

recessions, the IERP is larger than our premium. The summary statistics in Table 1 con-

firm and complement these results. For short forecast horizons T1, the IERP is on average

9We thank Paul Tetlock for providing us with the growth optimal weights needed to calculate the IERP,
from January 1997 to December 2021. Based on these weights, we computed the IERP for all forecast
horizons over this time period. For comparability, all tables and graphs with the IERP are from January
1997 to December 2021.
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close to our premium with TN = one year, and smaller than our premium with TN = two

years. As our estimate is a lower bound for the equity risk premium, whereas the IERP

is a point estimate, the gap between the IERP and our premium is a lower bound to the

intertemporal hedging premium. When the forecast horizon increases, the gap reduces and

then disappears. This disappearance can be due to two reasons. Either the intertemporal

hedging premium becomes smaller for longer forecast horizons, or we only capture part of

it because of our maximum TN of two years. For forecast horizons of six months and more,

longer-maturity options would be needed to make sure we fully capture the intertemporal

hedging premium.

Figure 5, Panel A, displays the intertemporal hedging premium, estimated by the dif-

ference between our risk premium RPt→T1,TN
and RPt→T1 , for a forecast horizon of one

month. Intertemporal hedging accounts for about half of the total equity risk premium us-

ing an investment horizon of one year, and up to 70% of the equity risk premium using an

investment horizon of two years. These ratios are higher outside NBER recessions. During

these recessions, intertemporal hedging is about a third of the total premium. Given the

counter-cyclicality of the equity risk premium, the magnitude of the intertemporal hedging

premium during recessions is however of the order of ten times the one outside recessions.

Panel B shows that with for longer forecast horizons (six months), intertemporal hedging

accounts for less than half of the total risk premium. The large difference between this

fraction with TN = 1 year and with TN = 2 years however suggests that we would need

longer-maturity options to fully capture intertemporal hedging.

4.2 Conditional variance and variance risk premium

Figure 7, Panel A, compares the conditional physical variance obtained when ignoring in-

tertemporal hedging, to the its analogue with intertemporal hedging. For both forecast

horizons at one and six months, the physical variance is lower with intertemporal hedging

throughout the time period. We observe large differences in times of market turmoil.

22



Figure 7 displays the corresponding variance risk premium, computed as the difference

between the conditional variance under the physical measure, and under the risk-neutral

measure. As the risk-neutral variance is computed from options, it does not depend on the

investment horizon. Therefore, the lower physical variance with intertemporal hedging trans-

lates directly into a variance risk premium that is larger in magnitude, and more negative

than without intertemporal hedging. The effect is large: during recessions, the variance risk

premium with intertemporal hedging is up to four times the premium without intertemporal

hedging.

We conclude that intertemporal hedging yields large increases both in the equity and in

the variance risk premium.

4.3 Out-of-sample performance

We study whether accounting for intertemporal hedging improves the out-of-sample perfor-

mance of the equity risk premium. To assess the change in performance, we use two different

metrics.

First, we follow Welch and Goyal (2008) and Campbell and Thompson (2008) in com-

puting the out-of-sample R2 measure as,

R2
OOS = 1−

∑
t (rM,t→T1 − r̃M,t→T1)

2∑
t (rM,t→T1 − r̄M,t→T1)

2 , (29)

where r̄M,t→T1 is the sample average of returns at horizon T1 prior to week t and r̃M,t→T1

is a risk premium forecast. A positive R2
OOS indicates that the prediction r̃M,t→T1 is more

accurate than the past average realized returns, while a negative R2
OOS would favour the

past average realized returns.
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We report in Panel A of Table 2 the R2
OOS, in percent, for r̃M,t→T1 =RPLog

t→T1
, RPt→T1 ,

and RPt→T1,TN
over the period 1997 to 2021.10 Forecast horizons T1 range from one month

to 18 months and all available investment horizons TN > T1 up to two years are considered.

For all forecast horizons T1, RPt→T1 outperforms RPLog
t→T1

, and RPt→T1,TN
outperforms

RPt→T1 for almost all investment horizons TN . In particular, for the 10-day forecast horizon,

RPt→T1and RPLog
t→T1

both perform worse, out-of-sample, than a forecast based on the past

average realized returns, as they have negative R2
OOS. In contrast, RPt→T1,TN

exhibits pos-

itive R2
OOS for TN between three months and one year. We test whether the differences in

performance between RPt→T1and RPt→T1,TN
are statistically significant, using the Diebold

and Mariano (1995) test. The outperformance of RPt→T1,TN
is significant for forecast hori-

zons T1 between three and nine months, and for most TN . Therefore, our results indicate

that accounting for intertemporal hedging in the equity risk premium leads to a large and

significant increase in out-of-sample forecast performance.

Inspection of the R2
OOS achieved by RPt→T1,TN

in Table 2 reveals the importance of TN on

the performance of our risk premium. For all forecast horizons T1, the R2
OOS increases with

TN , up to a given TN . For T1 = 10 days, it reaches its maximum at TN = 6 months, for T1 =

1 month at TN = 9 months, and for TN = 2 months at TN = 18 months. For all T1 equal

to 10 days, 1 month and 2 months, the R2
OOS drops after reaching it maximum value, when

increasing TN . For T1 larger than two months, the R2
OOS increases up to TN = 24 months.

The pattern of R2
OOS that we observe for T1 ≤ 2 months suggests that for T1 > 2 months,

there exists an optimal TN beyond 24 months. Overall, the R2
OOS suggests the existence of

an optimal TN > T1. The past column indicates the performance of a prediction based on

the average prediction across investment horizons TN . Such prediction achieves R2
OOS that

are all larger than those of RPt→T1 .

10The results are reported over the period 1997 to 2021 as this is the period over which we have the IERP.
Out-of-sample R2 have been computed for RPLog

t→T1
, RPt→T1

and RPt→T1,TN
over the full period from 1996

fo February 2023. They are comparable to those reported in Table 2.
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The comparison of our risk premium estimates to the IERP of Tetlock (2023) is less

straightforward. For short forecast horizons, RPt→T1,TN
outperforms the IERP but the results

become less clear as the forecast horizon increases. For T1 at 10 days, the IERP yields a

negative R2. Our estimate is the only one to yield a positive R2. For forecast maturities up

to 4 months, RPt→T1,TN
reaches higher R2 values than the IERP for most TN . For all forecast

horizons except 12 months, RPt→T1,TN
performs better than the IERP for some TN . The

IERP’s forecast at 12 months however outperforms our forecast. These results confirm the

need for options with maturity longer than 2 years, to accurately estimate the intertemporal

hedging premium at forecast horizons of more than 6 months.

Second, we construct market-timing strategies and compute realized mean-variance cer-

tainty equivalents. While the R2
OOS reported in Panel A of Table 2 show that our method-

ology captures the expected excess market return, results in Panel B combine both first and

second moment predictions. For each forecasting method, we compute the weight of the

market portfolio in the optimal portfolio at time t as,

ωt→T1 =
r̃M,t→T1

γσ̃2
t→T1

(30)

where γ is a risk aversion parameter and σ̃2
t→T1

is the physical variance of returns computed

for each method, as described in Section 4.2. Then, we compute the realized mean-variance

certainty equivalent as,

CE = E(rp,t→T1)−
γ

2
Var(rp,t→T1), (31)

where rp,t = rf,t→T1+ωt→T1rM,t→T1 are portfolio returns. The certainty equivalent is estimated

using the sample return average and variance using non-overlapping returns over horizon T1.

We report realized certainty equivalents annualized in percent for γ = 3. We find better

performance of RPt→T1,TN
, compared to RPt→T1 and RPLog

t→T1
, for investment horizons TN up

to one year. In line with the results reported in Panel A, the certainty equivalents increase

with TN , reaching a maximum for TN between 9 months and 24 months. Negative values
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are not displayed. They are obtained for TN = 18 and 24 months due to estimates of

the physical variance that are close to zero. We block-bootstrap the time-series of realized

portfolio returns to compute the significance of the certainty equivalent differences for each

strategy, compared to the one based on RPt→T1 (see Politis and Romano, 1994).11 We

find that almost all differences between RPt→T1,TN
-based and RPt→T1-based strategies are

statistically significant at the 5% level, when TN is less or equal to a year.

Both out-of-sample performance metrics –out-of-sampleR2 and realized certainty equivalents–

thus indicate that accounting for intertemporal hedging in the construction of the equity risk

premium allows reaching better forecasts of the first and second return moments. Most dif-

ferences are statistically significant.

4.4 Implied investors’ horizon

We have shown that the out-of-sample performance of the equity risk premium depends on

the choice of the investment horizon TN , for all forecast horizons T1. Increasing TN , up

to a threshold, improves the out-of-sample performance of our risk premium. The forecast

however deteriorates when increasing TN beyond that threshold. We study whether the

optimal threshold is time-dependent, by optimizing the investment horizon TN used to make

the prediction at each time t.

We select the optimal TN at each time t in sample, by maximizing the R2 of the forecast

over a window of 90 days. This window covers the interval t − T1 − 90 days, up to t − T1,

ensuring that there is no look-ahead bias. We denote this optimal time-varying horizon by

T ∗
N,t.

Table 3 reports the out-of-sample R2
OOS achieved with T ∗

N,t, and compares them to the

R2
OOS achieved with TN at one and two years, and with the one obtained with the prediction

averaged across TN . Comparing the first two columns (RPLog
t→T1

and RPt→T1 ) to the next

two columns (TN = 1 year and TN = 2 years) confirms that RPt→T1 outperforms RPLog
t→T1

11We use 10,000 bootstrap samples and a mean block length equivalent to three years.
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for most T1, but that none of the two RPt→T1,TN
outperforms the other systematically. The

TN = 1 year estimate tends to perform better for shorter maturities, whereas the TN = 2

years tends to outperform for longer maturities. The average prediction in column 5 yields

a more stable outperformance across forecast horizons. The largest gain, for all T1 except 10

days, is achieved when optimizing upon TN (last column). The R2 is around twice that of

Chabi-Yo and Loudis (2020) and 1.25 to 2 times that of Tetlock (2023) for maturities up to

five months. This increase is statistically significant. Similarly, the largest realized certainty

equivalents are obtained when optimizing TN , for most forecast horizons.

Figure 8 displays in Panel A the estimated risk premium obtained with T ∗
N,t, for T1 at four

months. Panel B depicts the time series of T ∗
N,t. It oscillates between the smallest possible

value of TN (five months) and its largest value (two years). In particular, it is at five months

during the two NBER recession periods, and tends to be at two years at most other times.

This result is robust to varying the forecast horizon T1. We thus conclude that in quiet times,

the implied investors’ horizon is long (here, at its maximum of two years). In contrast, in

turbulent times, the implied investors’ horizon is short. This conclusion provides empirical

evidence in line with the asset pricing model of Hirshleifer and Subrahmanyam (1993), in

which investors’ time horizon decreases in periods of high uncertainty, due to heightened risk

aversion and liquidity needs. It also echoes the results of Campbell and Vuolteenaho (2004),

who use a VAR approach to show that investors’ horizons shorten in volatile or declining

markets because they become more sensitive to ”bad beta”, i.e., short-term negative cash

flow news.

In turbulent times, the short-term horizon implies that intertemporal hedging has a small

effect. As a result, the equity risk premium remains close to the one of RPt→T1 . In contrast,

it is important in calm times, and pushes the equity risk premium up, since RPt→T1,TN

increases with TN . To better understand these punctual switches between long and short

implied investors’ horizon, we investigate the crash probabilities implied by our methodology.
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4.5 Crash probabilities

Figure 9, Panel A, displays the conditional probabilities of a 1−α = 10% crash over a horizon

of four months. We present the probabilities without intertemporal hedging (Πt→T1 [α]), and

those obtained with our methodology (Πt→T1,TN
[α]), with an investment horizon TN of one

and two years. Crash probabilities obtained with our method are lower than those without

intertemporal hedging. The longer the investment horizon, the lower the crash probabilities.

In Panel B, we compare the crash probabilities from Martin (2017) (ΠLog
t→T1

[α]) to ours

using the implied investors’ horizon TN = T ∗
N . As the implied investment horizon is short

during recessions and long outside, our crash probabilities remain unchanged during reces-

sions, and are lower otherwise.

To determine whether these lower probabilities are more accurate, we assess in Table 4

out-of-sample prediction performances. For each horizon, we compute the loss function of

our prediction as the negative of the log-likelihood function as,

lt→T1,TN
= −

(
1RM,t→T1

<α log (Πt→T1,TN
[α]) + (1− 1RM,t→T1

<α)(1− log (Πt→T1,TN
[α]))

)
.

Similarly, we compute the loss function for Πt→T1 [α] and ΠLog
t→T1

[α] , which we respectively

denote lt→T1 and lLogt→T1
. Next, we test the significance of the average difference in loss functions

using the Diebold and Mariano (1995) test. We find that our probabilities for a 10% crash,

reported in the third column, lead to significantly lower losses (i.e., higher realized log-

likelihoods) than other benchmark probabilities for most horizons. Finally, we similarly find

significantly superior predictions for a crash size of 20% for all horizons except one week.

4.6 Term structure of equity risk premium

As in Chabi-Yo and Loudis (2020), we define the term structure of equity risk premium to

be the hold-to-maturity yield on the S&P 500 implied by our equity risk premium estimates
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at various horizons.12 Figure 10 compares the term structure of equity risk premium without

(RPt→T1 , Panel A) and with (RPt→T1,TN
, Panel B) intertemporal hedging. Without intertem-

poral hedging, the equity risk premium tends to slightly increase in T1 in quiet times, and

to strongly decrease in T1 during turbulent times, as documented by Chabi-Yo and Loudis

(2020).13

With intertemporal hedging, the investors’ implied horizon TN is long in quiet times,

pulling the equity risk premium up, and short in turbulent times, leaving it almost un-

changed. As a result, the term structure of equity risk premium is most of the time decreas-

ing in T1. In times of market calm, it is nearly flat, and it is strongly decreasing in times of

market stress.

12This definition differs from the literature studying the term structure of equity yields, which are defined
in analogy to bond yields and extracted from dividend strips data. See van Binsbergen, Brandt, and Koijen
(2012); van Binsbergen, Hueskes, Koijen, and Vrugt (2013) and van Binsbergen and Koijen (2017). Bansal,
Miller, Song, and Yaron (2021) raise the potential criticism that traded dividend strips may be illiquid, and
that their results on the term structure of equity yields may be artefacts of this illiquidity. Giglio, Kelly,
and Kozak (2024) do not use dividend strips and instead use equity returns to estimate an affine model and
make inference on the term structure of equity yields.

13Ait-Sahalia, Karaman, and Mancini (2020) found similar dynamics of the term structure by estimating
an affine model on variance swaps with maturities ranging from 2 to 24 months.
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5 Estimating preference parameters

In this section, we study the robustness of our results to the assumptions we have made on

the preference parameters. in Section 4.

5.1 Methodology

We estimate the preference parameters ρt and τt using a two-stage non-linear least squares

approach, similar to Chabi-Yo and Loudis (2020). Specifically, we estimate the coefficients

τt, ρt, β
(1)
0 , and β

(2)
0 by minimizing the weighted sum of squared errors w1ϵ

(1)⊺
t→T1

ϵ
(1)
t→T1

+

w2ϵ
(2)⊺
t→T1

ϵ
(2)
t→T1

in the following equations,

RM,t→T1 −Rf,t→T1 = β
(1)
0 +RPt→T1,TN

+ ϵ
(1)
t→T1

,

(RM,t→T1 −Rf,t→T1)
2 = β

(2)
0 + Et (RM,t→T1 −Rf,t→T1)

2 + ϵ
(2)
t→T1

. (32)

In the first stage, we set w1 = w2 = 1. In the second stage, we weigh each sum of squared

errors by the inverse of the standard deviations of first-stage errors. Note that parameters

τt and ρt enter the above equations through RPt→T1,TN
and Et (RM,t→T1 −Rf,t→T1)

2. We

estimate parameters separately for each horizon T1 and TN . We restrict the parameter space

such that the resulting risk premiums be positive.

5.2 Performance with in-sample estimation

We first estimate the preference parameters over our time sample from 1996 to 2023.14

We find estimates of τ that are between 0.86 and 0.88 for all forecast horizons T1 and

investment horizons TN . There is therefore very little variation in the estimated τ coefficient,

when estimated over the whole period of data. In contrast, the estimates of ρ vary more.

14As in Chabi-Yo and Loudis (2020), this estimation introduces a look-ahead bias when computing the
out-of-sample performance measures. The main goal of this exercise is not to provide an estimation method
for the preference parameters, but to question whether the results we obtained in Section 4 still hold with
optimal preference parameters. We eliminate this bias in Section 5.3.
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Specifically, the estimated ρ for the bound RPt→T1 decreases sharply with T1, from 5.06 to

1.20. The estimate of ρ also decreases with TN . The estimate for TN = 2 years is quite

stable, between 1.20 and 1.60 for all T1.

Figure 11 displays the equity risk premium estimate with these values of τ and ρ. It

shows that the resulting risk premium (dotted line) overlaps with the risk premium with τ

and ρ set to 1 and 2 (dashed line), for most dates in the time series.

Table 5 compares the out-of-sample R2 achieved when setting τ = 1 and ρ = 2, as in

Section 4, to those obtained when estimating these parameters. Column (4) contains the R2

for our new bound, with TN optimized, using estimated preference parameters. Estimating

these parameters yields R2 that are still larger than those of RPt→T1 for all forecast horizons,

but they are smaller than those obtained when setting τ = 1 and ρ = 2. This lack of forecast

performance indicates that setting τ and ρ free leads to overfitting.

Second, we model τ and ρ as linear functions of past three-month returns, and estimate

the loadings on these returns and on a constant term over the whole data period. The

estimated time series of τt are displayed in Panel A of Figure 12, for a forecast horizon T1

of 1 month. τt increases and gets closer to 1 when the investor horizon TN increases. For

TN = 2 months, it is estimated equal to 1. For smaller values of TN , in times of market

stress, τt decreases, in line with investors’ risk aversion being higher. In quiet times τt is

closer to 1, indicating that investors are less risk averse. The estimated time series of ρt are

displayed in Panel B. ρt exhibits time series variation, and oscillates around 2. It is close to

2 in calm markets but increases during the financial crisis and the Covid period.

Column (5) of Table 5 report the out-of-sample prediction results obtained when mod-

elling τ and ρ as linear functions of past three-month returns. This additional degree of

flexibility improves the performance of our bound. This is however at the expense of volatil-

ity. Certainty equivalents are all negative, because of increased volatility. These results show

that a more precise estimation of the preference parameters, using a time series as large as
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possible, leads to mixed results in terms of out-of-sample performance of the equity risk

premium.

5.3 Telescopic and rolling window estimations

In order to avoid a look-ahead bias, we now estimate a set of parameters using a telescopic

window of past observations. We start in 2006 and use the past ten years of data to ensure

we have enough stability in our estimated parameters.

Figure 13 displays the estimated time series of preference parameters, when assuming

them constant over the estimation period. These time series make it clear that the values

achieved in Section 5.2 result from realized returns during the Financial Crisis. From 2010,

the preference parameter estimates stabilize, to only change slightly during the Covid period.

Table 6 reports the results when the parameters τ and ρ are assumed constant and

estimated on window that at each time t does not include any data further to t. The first

striking results is that for forecast horizons that are shorter than five months, estimating the

preference parameters without look-ahead bias produces poor results for both RPt→T1and

our bound. The values that are left blank in the table are negative and smaller than -1,

indicating that the prediction is far worse than the long-term mean. For forecast horizons of

6 months and more, the best results are obtained with our bound, and a telescopic estimation

of the preference parameters. Inspection of the certainty equivalents however shows that the

estimation of the second moment is poor for all estimations except the one which sets τ = 1

and ρ = 2.

These results illustrate the challenge of achieving good out-of-sample performance when

estimating the preference parameters. The time series of estimated τt and ρt suggest that

the instabilities in the telescopic estimation may be linked to the high values achieved during

the 2006-2009 period. We now re-assess the out-of-sample performance of the different risk

premia, excluding this time period from the evaluation. Table ?? provides the results.
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Excluding the 2006-2009 period, the R2
OOS achieved by RPt→T1with both telescopic and

rolling window estimations of τt and ρt are higher than those with ρ fixed, for all forecast

horizons, except for T1 at ten days in the rolling window estimation. Furthermore, the rolling

window estimation fails at delivering high R2
OOS, but the telescopic estimation achieves R2

OOS

for RPt→T1,TN
that further improve upon RPt→T1 . Our results therefore illustrate the need

for an estimation window that includes large negative returns (as in 2008).

6 Portfolio rebalancing

The results derived so far were under the assumption that the representative agent could

only rebalance her portfolio at time T1. In this section, we relax this assumption and let the

representative agent rebalance her portfolio at any time t such that T1 < t < TN . We assess

whether this extension changes our main results.

As before, we use a second-order Taylor expansion-series of the inverse marginal utility

(term inside the conditional expectation in (5). The novelty is that the Taylor-expansion uses

the information that the agent re-balances her portfolio at any time t such that T1 < t < TN .

We denote

RM,t→TN
=

N∏
j=1

RM,TQj−1
→TQj

and Rf,t→TN
=

N∏
j=1

Rf,TQj−1
→TQj

with T0 = t and

xj = RM,TQj−1
→TQj

and x0,j = Rf,TQj−1
→TQj

where Qj−1 ∈ {0, 1, ..., N − 1} and Qj ∈ {1, ..., N} with Qj−1 < Qj . A second-order Taylor

expansion-series of the inverse marginal utility (term inside the conditional expectation in

(5)) around (x1, ..., xN) = (x0.1,, ..., x0.N) and taking the expectation under the risk neutral
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measure at time T1 allows us to write (5) as

υT1 = 1 +
1

τtx0,1

(x1 − x0.1) +
1

x2
0,1

(1− ρt)

τ 2t
(x1 − x0,1)

2 +
(1− ρt)

τ 2t

N∑
j>1

1

x2
0,j

E∗
T1
(xj − x0.j)

2 .

We replace this expression in (1) and derive the expected excess return on the market:

RPt→T1,TN
=

1
τtRf,t→T1

M∗(2)
t→T1

+ 1
R2

f,t→T1

(1−ρt)

τ2t
M∗(3)

t→T1
+ (1−ρt)

τ2t
LEV∗

t

1 + 1
R2

f,t→T1

(1−ρt)

τ2t
M∗(2)

t→T1
+ (1−ρt)

τ2t
E∗

tM
∗(2)
t,TN

. (33)

where

LEV∗
t = COV∗

t

(
RM,t→T1 ,M

∗(2)
t,TN

)
,

M∗(2)
t,TN

=
N∑
j>1

1

R2
f,TQj−1

→TQj

M∗(2)
TQj−1

→TQj
.

Provided that preference parameters are estimated, expression (33) enables us to extract the

risk premium from option prices if the risk neutral quantities M∗(2)
TQj−1

→TQj
can be recovered

from option prices with various maturities. We discuss the implementation of this approach

in section C.

6.1 Empirical results

Table 8 summarizes the results when portfolio rebalancing is allowed. The new bound is very

close to the bound obtained without rebalancing, for all forecast horizons T1. Therefore, it

still outperforms the bound RPt→T1and our results do not change.

7 Higher-order approximation implications

When using a second-order Taylor series-expansion, our theoretical results in the previous

section show that LEV∗
t is a key contributor to the conditional expected excess market return.
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In this section, we investigate how higher-order leverage measures theoretically contribute to

the conditional equity risk premium. We show that increasing the order of the approximation,

therefore allowing for kurtosis preference, generates additional terms that contribute to the

equity risk premium.

We show in Appendix D.3 that, under no-arbitrage assumptions, a third-order Taylor

expansion-series produces a one-period SDF in a three-date (two-period) economy of the

form

Etmt→T1

mt→T1

≈
1 + zT1 + zυT1

E∗
t

(
1 + zT1 + zυT1

) , (34)

where

zT1 =
a1,t

Rf,t→T1

(RM,t→T1−Rf,t→T1)+
a2,t

R2
f,t→T1

(RM,t→T1−Rf,t→T1)
2+

a3,t
R3

f,t→T1

(RM,t→T1−Rf,t→T1)
3,

zυT1
=

a2,t
R2

f,T1→TN

M∗(2)
T1→TN

+
a3,t

R3
f,T1→TN

M∗(3)
T1→TN

+
a2,3,t

Rf,t→T1R
2
f,T1→TN

(RM,t→T1 −Rf,t→T1)M
∗(2)
T1→TN

,

(35)

where a2,3,t = 2a2,t + 3a3,t. Using this third-order expansion, we next derive the conditional

expected excess market return and the probability of a crash.

7.1 Equity risk premium

With the third-order Taylor expansion-series approach, Equation (34) depends on, in addi-

tion to risk-neutral variance, new terms such as risk-neutral skewness and cross-term between

risk-neutral volatility and market excess return. These additional terms, as shown below,

introduce additional high-order leverage effects in the expected excess return decomposi-

tion. To find a closed-form expression for the equity risk premium in terms of risk-neutral

moments and high-order leverages, we first define high-order leverage effects under the risk-
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neutral measure as:

LES∗
t = COV∗

t

(
rM,t→T1 ,M

∗(3)
T1→TN

)
, (36)

LEK∗
t = COV∗

t

(
r2M,t→T1

,M∗(2)
T1→TN

)
. (37)

We then show how the equity risk premium depends on these terms in the following Propo-

sition.

When (35) is removed from the SDF specification (34), which corresponds to a static SDF

in a one-period economy, the equity risk premium reduces to the expected excess return in

Chabi-Yo and Loudis. We refer to the Chabi-Yo and Loudis bounds to as RP 3rd
t→T1

.

Proposition 6 Up to the third-order Taylor expansion-series of the inverse marginal utility,

the one-period expected excess market return obeys the following decomposition

Et (RM,t→T1 −Rf,t→T1) = πo
tRP 3rd

t→T1
+ (1− πo

t )RP
υ,s
t , (38)

with

RP 3rd
t→T1

=

a1,t
Rf,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,t→T1

M∗(3)
t→T1

+ a3,t
R3

f,t→T1

M∗(4)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a3
R3

f,t→T1

M∗(3)
t→T1

, (39)

RPυ,s
t =

a2,t
R2

f,T1→TN

LEV∗
t +

a3,t
R3

f,T1→TN

LES∗
t +

a2,3,t
Rf,t→T1

R2
f,T1→TN

(
LEK∗

t +M∗(2)
t→T1

E∗
tM

∗(2)
T1→TN

)
a2,t

R2
f,T1→TN

E∗
tM

∗(2)
T1→TN

+ a3
R3

f,T1→TN

E∗
tM

∗(3)
T1→TN

+ a2,3,t
Rf,t→T1

R2
f,T1→TN

LEV∗
t

,

(40)

and

πo
t =

1 +
3∑

k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

1 +
3∑

k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

+
3∑

k=2

ak,t
Rk

f,T1→TN

E∗
tM

∗(k)
T1→TN

+ a2,3,t
Rf,t→T1

R2
f,T1→TN

LEV∗
t

. (41)
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where a2,3,t = 2a2,t + 3a3,t and the risk-neutral quantities LEV∗
t , M

∗(k)
Ti→Tj

, LES∗
t and LEK∗

t

are defined in Equations (11), (12), (36), and (37), respectively.

Proof. See the proof of Proposition 8 in Appendix D.

7.2 Conditional crash probability

We next express the conditional probability of a crash using a third-order Taylor expan-

sion series for the inverse marginal utility. To derive this probability, we define additional

truncated moments as

M∗
t,s [α] = E∗

t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
, (42)

M∗
t,sυ [α] = E∗

t

(
rM,t→T1M

∗(2)
T1→TN

1RM,t→T1
<α

)
. (43)

Proposition 7 Up to the third-order expansion-series of the inverse marginal utility, the

conditional crash probability in a two-period (three-date) economy is a weighted average of

two probabilities:

Pt (RM,t→T1 < α) = πo
tΠ

3rd
t→T1

[α] + (1− πo
t )Π

υ,s
t→T1

[α] , (44)

with

Π3rd
t→T1

[α] =
M∗(0)

t→T1
[α] + a1,t

Rf,t→T1
M∗(1)

t→T1
[α] + a2,t

R2
f,t→T1

M∗(2)
t→T1

[α] + a3,t
R3

f,t→T1

M∗(3)
t→T1

[α]

1 +
3∑

k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

, (45)

Πυ,s
t→T1

[α] =

a2,t

R
2
f,T1→TN

M∗
t,υ [α] +

a3,t
R3

f,T1→TN

M∗
t,s [α] +

a2,3,t

Rf,t→T1
R

2
f,T1→TN

M∗
t,sυ [α]

1 +
3∑

k=2

ak,t
Rk

f,T1→TN

E∗
tM

∗(k)
T1→TN

+ a2,3,t
Rf,t→T1

R2
f,T1→TN

LEV∗
t

, (46)

where a2,3,t = 2a2,t + 3a3,t and πo
t is defined in Equation (41)

Proof. The proof of Proposition 7 is given in Appendix D.2.
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When zυT1
is absent in the SDF expression (34), the SDF corresponds to the SDF in a

one-period static economy. Under this scenario, the probability of crash reduces to

Π3rd
t→T1

[α] =

M∗(0)
t→T1

[α] +
3∑

k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

[α]

1 +
3∑

k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

We refer to our crash probability in (44) as Π3rd
t→T1,TN

[α].

7.3 Empirical results with fixed preference parameters

Table A3 reports the out-of-sample performance of our bound using the third-order Taylor

expansion-series for the inverse SDF. We find that the predictions are overall not better than

those of the second-order case. They are slightly worse for long investment horizons TN , il-

lustrating the challenge of accurately estimating higher order moments for long maturities,

and slightly better for short maturities. While these results are in favour of our simpler

second-order bounds, they are likely to improve should the liquidity of longer-maturity op-

tions improve with time, yielding better estimations of risk-neutral moments.

8 Conclusion

Given its importance in financial applications, there is considerable interest in improving our

measurement of the conditional expected return on the market portfolio. Several methods

using forward-looking information embedded in option prices have been proposed in recent

years. Martin (2017), Chabi-Yo and Loudis (2020) and Tetlock (2023) measure a one-period

expected excess return in a one-period, two-date economy. We contribute to the literature

by deriving an expression accounting for intertemporal hedging.

We, theoretically and empirically, show a significant difference between a static and a

dynamic estimation. In a dynamic economy, the SDF is a nonlinear function of the market
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return as in a one-period economy. But it also depends on novel risk-neutral quantities such

as the expected future variance and skewness and the covariances between market returns

and future variance and skewness, namely the leverage effects. We show how these quantities

significantly impact the one-period conditional expected excess return on the market from

the perspective of an investor who holds the market portfolio in a multi-period economy. We

also derive expressions for the one-period conditional probability of a crash, in a multi-period

economy, in terms of risk-neutral quantities.

Our methodology provides significantly better risk premium and crash predictions and

market-timing allocations in empirical tests. We further use our measure to shed light on

the shape and time variations of the term structure of equity risk premia, which we define as

the expected excess market return as a function of the investment horizon. In a one-period

economy, Chabi-Yo and Loudis (2020) find that the term structure is upward sloping on

average and downward sloping during recessions. Our term structure slope is essentially flat

during normal market conditions and downward sloping during recessions.

While we have used the S&P 500 index to proxy for the market portfolio, our methodology

can be extended to individual assets and international markets. We leave these endeavors

for future research.
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Figure 1: Risk-neutral moments.
We report option-implied risk-neutral volatility, skewness, and kurtosis for the S&P 500
index at a horizon of one week, one month, one year, and two years. Data are weekly from
January 1996 to February 2023. Gray areas are NBER recessions.
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Figure 2: Risk-neutral expected future variance and leverage.
We report in the top graph the risk-neutral expected future volatility for the S&P 500 index.
We report in the bottom graph the risk-neutral covariance between market returns and future
variances in Equation (9). We use horizons T1 of one week, one month, one quarter, and one
year, and TN = two years. We annualize each measure by multiplying by 365

TN−T1
. Data are

weekly from January 1996 to February 2023. Gray areas are NBER recessions.
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Figure 3: Equity risk premium.
This graph represents the different equity risk premium estimates, for a forecast horizon of
1 month (Panel A) and 6 months (Panel B). The following estimates are compared: the
bound of Chabi-Yo and Loudis (2020), RPt→T1 , and our bound RPt→T1,TN

in Equation (10),
for TN = 1 year and 2 years.
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Figure 4: Comparison with IERPt→T1

This graph compares our estimate of the equity risk premium, RPt→T1,TN
, to the Implied

Equity Risk Premium of Tetlock (2023), IERPt→T1 , for a forecast horizon of 1 month (Panel
A) and 6 months (Panel B). In our bound, the investment horizon TN is 1 year in Panel A,
and 2 years in Panel B, chosen to match the IERP as closely as possible.
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Figure 5: Intertemporal hedging premium IHPt→T1,TN

This graph represents the intertemporal hedging premium, IHPt→T1,TN
, as defined in Equa-

tion (18), for different equity risk premium estimates RPt→T1,TN
. IHPt→T1,TN

is displayed
in percentages of RPt→T1,TN

. The forecast horizon is of 1 month (Panel A) and 6 months
(Panel B).
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Figure 6: Conditional variance under the physical measure.
This graph represents the conditional physical variance as defined in Equation (20), for
T1 = 1 month (Panel A) and T1 = 6 months (Panel B). The conditional variance without
intertemporal hedging (TN = T1) is compared to the variance with intertemporal hedging,
using TN = 1 year and TN = 2 years.
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Figure 7: Variance risk premium.
This graph represents the variance risk premium for T1 = 1 month (Panel A) and T1 = 6
months (Panel B) without intertemporal hedging (TN = 1 and 6 months, respectively) and
with intertemporal hedging. The variance risk premium is defined as the difference between
the conditional variance under the physical measure and under the risk-neutral measure.
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Figure 8: Implied investors’ horizon for T1 = 4 months.
This graph represents, in Panel A, the 4-month ERP obtained with an optimized investors’
horizon. Panel B displays the implied investors’ horizon T ∗

N,t, which maximizes the in-sample
fit of our bound to the realized returns, as measured by the R2 over a window of 90 days.
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Figure 9: Probability of a 10% market crash
We report the time-varying probability of a 10% stock market crash from Proposition 5,
for T1 = 4 months. Panel A reports the crash probabilities for different values of TN .
Panel B compares our estimate of the crash probability with the optimal TN , to the crash
probabilities without intertemporal hedging and the one of Martin (2017). Gray areas are
NBER recessions.
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Figure 10: Term structure of equity risk premium
This graph represents the term structure of the equity risk premium bounds RPt→T1 , Chabi-
Yo and Loudis (2020) (Panel A) and of our bound RPt→T1,TN

(Panel B). The forecast horizons
are T1 = 1 month, 6 months and 1 year, and TN is set equal to T ∗

N,t.
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Figure 11: Equity risk premium with estimated preference parameters.
This graph compares the equity risk premium without intertemporal hedging RPt→T1 , to two
estimates of the equity risk premium with intertemporal hedging. The dotted line, RP τ=1,ρ=2

t=T1,T ∗
N

has the preference parameters set to their default values. The dashed line, RP τ,ρ est.
t=T1,T ∗

N
, has

them estimated. In Panel A, the forecast horizon is T1 = 1 month and in Panel B it is T1 = 6
months.
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Figure 12: Estimated preference parameters τt and ρt over the period 1996-2023.
This graph represents the estimated time series of risk aversion parameter τt and skewness
tolerance parameter ρt, for T1 = 1 month and varying TN . Estimates are obtained by letting
the preference parameters be linear functions of past 3-month returns, and applying the
estimation methodology described in Section 5.1 on the whole dataset.
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Figure 13: Estimated preference parameters τt and ρt in telescopic estimation.
This graph represents the estimated time series of risk aversion parameter τt and skewness
tolerance parameter ρt, for T1 = 1 month and varying TN . Estimates are obtained using
the estimation methodology described in Section 5.1 on an expanding window of time. The
initial window starts in 1996 until 2006.
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Table 3: Out-of-sample prediction and allocation performance with TN optimized

We report the out-of-sample performance of different risk premium prediction methods, from January
1997 to December 2021. RPLog

t→T1
is the lower bound of Martin (2017). IERPt→T1

is the Implied Eq-
uity Risk Premium of Tetlock (2023). RPt→T1

is the second-order lower bound of Chabi-Yo and Loudis
(2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). We report in Panel
A the out-of-sample prediction R2

OOS in percent (see Equation (29)). For each prediction method, we
test for the significance of the R2

OOS difference relative to RPt→T1 using a Diebold and Mariano (1995)
test. We estimate the variance of the differences using a Newey-West correction with 12 lags. We report
in Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices (see Appendix A.6). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RPt→T1 using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively.

Horizon T1 TN = 1y TN = 2y Av. across TN TN opt.

(in months) RPLog
t→T1

IERPt→T1
RPt→T1

RPt→T1,TN
RPt→T1,TN

RPt→T1,TN
RPt→T1,TN

Panel A: Out-of-sample R2

10d −0.40 −0.59 −0.37 0.12 −0.69 0.19 0.16
1 0.93 1.40 1.08 1.85 1.00 1.86 1.86
2 1.52 2.18 1.97 3.66 3.89 3.59∗ 4.15∗∗

3 1.43 2.73 2.23 4.39∗ 5.58 4.43∗∗ 5.39∗∗∗

4 2.18 5.22 3.36 5.57∗∗ 7.38∗ 5.82∗∗ 6.54∗∗∗

5 3.08 8.01 4.67 6.73∗∗ 8.94∗∗ 7.29∗∗∗ 7.71∗∗∗

6 3.43 9.44 5.31 7.08∗∗ 9.56∗∗ 8.11∗∗∗ 8.40∗∗∗

12 2.69 10.39 5.61 - 8.15∗∗∗ 7.66∗∗∗ 7.84∗∗∗

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 5.45 - 5.62 12.36∗ - 11.54∗∗ -
1 4.78 - 5.00 7.10 - 7.14∗ 3.43
2 4.90 - 5.30 7.95∗∗ - 7.71∗∗ 2.99
3 5.25 - 5.79 8.29∗∗ - 8.37∗∗∗ 10.22∗∗

4 5.47 - 6.13 8.16∗∗ - 8.64∗∗∗ 10.63∗∗∗

5 5.19 - 5.87 7.38∗∗∗ 9.49∗ 8.08∗∗∗ 8.77∗∗

6 5.21 - 5.99 7.16∗∗ 8.47 8.27∗∗ 8.71∗

12 5.28 - 6.33 - 8.09∗ 7.82∗∗ -
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Table 4: Out-of-sample crash prediction with TN optimized

We report the out-of-sample performance of different crash prediction methods. Each month, we use the
crash probability from Martin (2017) (ΠLog

t→T1
[α]), the one from Chabi-Yo and Loudis (2020) (Πt→T1

[α] in
Equation (23)), and the one from our methodology, Πt→T1,TN

[α], defined in Equation (22) of Proposition
5. TN is set equal to the implied investors’ horizon T ∗

N,t at each time t. We compute the loss function
for Πt→T1,TN

[α] as lt→T1,TN
= −(1RM,t→T1

<α log(Πt→T1,TN
[α]) + (1 − 1RM,t→T1

<α)(1 − log(Πt→T1,TN
[α]))).

Similarly, we compute a loss function for other methods. For each method in rows, we test whether the
average loss functions are significantly larger than those of the method in columns using the Diebold and
Mariano (1995) test. A significantly positive test statistic indicates that the column-method outperforms
the row-method. We estimate the variance of the difference in loss functions using a Newey-West correction
with 12 lags. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively. We report
on a 90% (α = 0.10), and 80% (α = 0.20) crash size. Data are from January 1996 to February 2023.

10% crash 20% crash
Πt→T1 [α] Πt→T1,TN

[α] Πt→T1 [α] Πt→T1,TN
[α]

Panel A: One week

ΠLog
t→T1

[α] 1.56∗ 1.92∗∗ 1.29∗ −0.92
Πt→T1

[α] - 2.06∗∗ - −0.92

Panel B: One month

ΠLog
t→T1

[α] 1.76∗∗ −0.97 5.71∗∗∗ 6.58∗∗∗

Πt→T1
[α] - −0.98 - 6.42∗∗∗

Panel C: One quarter

ΠLog
t→T1

[α] 4.42∗∗∗ 7.14∗∗∗ 2.67∗∗∗ 2.58∗∗∗

Πt→T1 [α] - 6.75∗∗∗ - 2.40∗∗∗

Panel D: Six months

ΠLog
t→T1

[α] 3.91∗∗∗ 8.21∗∗∗ 3.36∗∗∗ 3.71∗∗∗

Πt→T1 [α] - 10.54∗∗∗ - 3.45∗∗∗

Panel E: Nine months

ΠLog
t→T1

[α] 2.66∗∗∗ 5.10∗∗∗ 1.48∗ 2.18∗∗

Πt→T1
[α] - 7.18∗∗∗ - 2.36∗∗∗

Panel F: One year

ΠLog
t→T1

[α] 2.18∗∗ 2.79∗∗∗ 1.25 2.02∗∗

Πt→T1
[α] - 3.34∗∗∗ - 2.51∗∗∗

59



Table 5: Out-of-sample prediction and allocation performance with τ and ρ esti-
mated in-sample

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to December 2021. RPLog

t→T1
is the lower bound of Martin (2017). RPt→T1

is the second-order lower bound
of Chabi-Yo and Loudis (2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10).
In columns (2) and (3), results are reported setting the preference parameters to τ = 1 and ρ = 2 (bench-
mark). In column (4), they are kept constant over the time series of data, but the constants are esti-
mated. In column (5), they are modelled as linear functions of past 3-month returns. We report in Panel
A the out-of-sample prediction R2

OOS in percent (see Equation (29)). For each prediction method, we
test for the significance of the R2

OOS difference relative to RPt→T1
using a Diebold and Mariano (1995)

test. We estimate the variance of the differences using a Newey-West correction with 12 lags. We report
in Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices, using Equation (20). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RPt→T1

using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively.

T1 τ = 1 and ρ = 2 ρ, τ est. constant ρ, τ est. linear in past returns

(months) RPLog
t→T1

RPt→T1
RPt→T1,T∗

N
RPt→T1,T∗

N
RPt→T1,T∗

N

(1) (2) (3) (4) (5)

Panel A: Out-of-sample R2

10d −0.40 −0.37 0.16 0.04 0.10
1 0.93 1.08 1.86 1.58 2.28
2 1.52 1.97 4.15∗∗ 3.79∗ 5.50∗

3 1.43 2.23 5.39∗∗∗ 4.67∗∗ 7.83∗

4 2.18 3.36 6.54∗∗∗ 6.42∗∗ 10.31∗∗

5 3.08 4.67 7.71∗∗∗ 8.28∗∗ 11.01∗

6 3.43 5.31 8.40∗∗∗ 9.48∗ 11.34
12 2.69 5.61 7.84∗∗∗ 8.36∗∗∗ 9.92∗∗

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 5.45 5.62 - - -
1 4.78 5.00 3.43 6.08 -
2 4.90 5.30 2.99 8.80∗ -
3 5.25 5.79 10.22∗∗ 10.23∗∗∗ -
4 5.47 6.13 10.63∗∗∗ 10.28∗∗ -
5 5.19 5.87 8.77∗∗ 5.64 -
6 5.21 5.99 8.71∗ - -
12 5.28 6.33 - - -
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Table 6: Out-of-sample prediction and allocation performance with τ and ρ esti-
mated as linear function of past 3m returns

We report the out-of-sample performance of different risk premium prediction methods, from January
2006 to February 2023. RPLog

t→T1
is the lower bound of Martin (2017). RPt→T1

is the second-order lower
bound of Chabi-Yo and Loudis (2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equa-
tion (10). In columns (2) and (3), results are reported setting the preference parameters to τ = 1 and
ρ = 2 (benchmark). In columns (4) and (5), they are modelled constant and estimated on a telescopic
window of time. In columns (6) and (7), they are modelled constant and estimated on a rolling win-
dow of five years. We report in Panel A the out-of-sample prediction R2

OOS in percent (see Equation
(29)). Values smaller than -1 are not reported and left blank. For each prediction method, we test
for the significance of the R2

OOS difference relative to RPt→T1 using a Diebold and Mariano (1995) test.
We estimate the variance of the differences using a Newey-West correction with 12 lags. We report in
Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices (see Appendix A.6). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RPt→T1

using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively.

T1 τ = 1 and ρ = 2 ρ, τ est. on telescopic window ρ, τ est. on rolling window

RPLog
t→T1

IERPt→T1 RPt→T1 RPt→T1,T∗
N

RPt→T1 RPt→T1,T∗
N

RPt→T1 RPt→T1,T∗
N

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Out-of-sample R2

10d −0.41 −0.60 −0.38 0.15 - −0.09∗ - -
1 0.40 0.65 0.57 2.21 - 0.91 - -
2 0.76 0.77 1.25 4.92∗∗ −0.94 1.37 - -
3 −0.14 0.47 0.73 5.64∗∗∗ 0.12 6.21∗ - -
4 1.11 4.62 2.52 7.04∗∗∗ 5.40 9.47∗ - 7.97
5 2.47 9.13 4.48 8.35∗∗∗ 12.68 13.00 −0.49 10.93
6 2.76 11.47 5.27 9.12∗∗∗ 13.59 15.10 - 12.45
9 2.79 15.49 6.57 10.76∗∗∗ 16.50 14.80 - 7.46
12 2.02 16.28 6.66 10.13∗∗∗ 12.83 10.24 8.27 14.42
18 −0.94 17.65∗ 5.96 8.38∗∗∗ 15.95 14.97 28.20 -

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 5.42 - 5.59 - 7.52 - - -
1 4.62 - 4.89 3.14 - - - -
2 4.60 - 5.05 10.74∗ - - - -
3 5.15 - 5.83 12.62∗∗ - - 2.52 -
4 4.85 - 5.61 9.70∗ - - - -
5 5.21 - 6.13 10.02∗ - - - -
6 5.03 - 6.08 10.30∗∗ - - - -
9 5.28 - 6.68 8.70 6.46 4.13 - -
12 5.32 - 6.95 9.28∗∗ - - - -
18 5.42 - 7.61 8.35 - 2.63 - -
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Table 7: Out-of-sample prediction and allocation performance with τ = 1 and
ρ = 2, setting TN as a function of the probability of crash

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values τ = 1 and ρ = 2.
RPLog

t→T1
is the lower bound of Martin (2017). RPt→T1

is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to τ = 1 and ρ = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R2

OOS in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R2

OOS difference relative
to RPt→T1 using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RPt→T1 using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the
10%, 5%, and 1% level, respectively.

T1 Optimizing TN Setting TN = f(Proba. of crash)

RPLog
t→T1

RPt→T1 RPt→T1,T∗
N

RPt→T1 RPt→T1,TN

(1) (2) (3) (4) (5)

Panel A: Out-of-sample R2

10d −0.09 −0.07 0.08 −0.07 -
1 1.09 1.18 1.73 1.18 0.55
2 1.34 1.59 3.84∗∗ 1.59 2.33
3 1.18 1.61 4.71∗∗∗ 1.61 2.87
4 2.16 2.86 5.47∗∗ 2.86 4.66∗

5 3.12 4.19 6.44∗∗ 4.19 6.09∗∗

6 3.61 4.97 7.26∗∗ 4.97 6.79∗

9 4.32 6.37 8.76∗∗ 6.37 8.11∗

12 4.00 6.54 8.44 6.54 8.26
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 4.56 4.69 5.81 4.69 8.81
1 3.55 3.68 3.52 3.68 1.51
2 3.69 3.96 6.41 3.96 6.37
3 4.14 4.54 9.50∗∗∗ 4.54 7.71∗

4 4.27 4.75 8.46∗∗ 4.75 6.91
5 4.01 4.50 6.85 4.50 5.85
6 4.26 4.89 7.24 4.89 6.41
9 4.18 4.88 6.19 4.88 6.01
12 4.52 5.45 6.85∗∗ 5.45 6.71∗∗

18 4.59 5.62 6.11∗∗ 5.62 6.11∗∗
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Table 8: Out-of-sample prediction and allocation performance with τ = 1 and
ρ = 2, with rebalancing

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values τ = 1 and ρ = 2.
RPLog

t→T1
is the lower bound of Martin (2017). RPt→T1

is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to τ = 1 and ρ = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R2

OOS in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R2

OOS difference relative
to RPt→T1 using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RPt→T1 using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the
10%, 5%, and 1% level, respectively.

T1 No rebalancing With rebalancing

RPLog
t→T1

RPt→T1 RPt→T1,T∗
N

RPt→T1 RPt→T1,T∗
N

(1) (2) (3) (4) (5)

Panel A: Out-of-sample R2

10d −0.09 −0.07 0.06 −0.07 0.16
1 1.09 1.18 1.73 1.18 1.65
2 1.34 1.59 3.84∗∗ 1.59 3.16
3 1.18 1.61 4.71∗∗∗ 1.61 3.76
4 2.16 2.86 5.47∗∗ 2.86 4.81
5 3.12 4.19 6.45∗∗ 4.19 5.94
6 3.61 4.97 7.26∗∗ 4.97 7.00
9 4.32 6.37 8.76∗∗ 6.37 8.75
12 4.00 6.54 8.44 6.54 8.89
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 4.56 4.69 5.75 4.69 5.34
1 3.55 3.68 3.52 3.68 2.78
2 3.69 3.96 6.40 3.96 6.51
3 4.14 4.54 9.50∗∗∗ 4.54 8.48
4 4.27 4.75 8.46∗∗ 4.75 7.96
5 4.01 4.50 6.85 4.50 6.69
6 4.26 4.89 7.24 4.89 7.23
9 4.18 4.88 6.19 4.88 6.18
12 4.52 5.45 6.85∗∗ 5.45 6.98
18 4.59 5.62 6.11∗∗ 5.62 6.11
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Table 9: Out-of-sample prediction and allocation performance of the third-order
bound with τ = 1, ρ = 2 and κ = 4

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values τ = 1, ρ = 2 and
κ = 4. RPLog

t→T1
is the lower bound of Martin (2017). RPt→T1

is the second-order lower bound of Chabi-Yo
and Loudis (2020) in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to τ = 1 and ρ = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R2

OOS in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R2

OOS difference relative
to RPt→T1 using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RPt→T1 using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the
10%, 5%, and 1% level, respectively.

T1 2nd order 3rd order

RPLog
t→T1

RPt→T1 RPt→T1,T∗
N

RPt→T1 RPt→T1,T∗
N

(1) (2) (3) (4) (5)

Panel A: Out-of-sample R2

10d −0.10 −0.08 0.06 −0.08 -
1 0.74 0.87 1.97 0.91 -
2 1.03 1.41 4.56∗∗ 1.44 -
3 0.29 0.97 5.16∗∗∗ 0.92 -
4 1.43 2.57 6.14∗∗ 2.80 -
5 2.65 4.35 7.40∗∗ 5.14 -
6 2.95 5.13 8.29∗∗ 6.41 -
9 3.11 6.55 10.01∗∗ 9.23 -
12 2.29 6.71 9.83 10.51 -
18 −0.67 6.08 8.44 11.55 -

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 4.54 4.67 5.77 4.68 3.81
1 4.08 4.29 4.89 4.35 −0.99
2 4.10 4.45 9.72∗ 4.56 2.75
3 4.71 5.28 11.90∗∗∗ 5.48 2.29
4 4.38 4.99 8.42 5.23 1.15
5 4.96 5.76 8.92 6.08 1.21
6 4.77 5.69 8.73∗ 6.17 2.56
9 5.01 6.21 6.85 6.81 1.32
12 5.19 6.68 8.45 7.41 0.57
18 5.31 7.41 8.08∗∗ 4.59∗ −12.76
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A Proofs and derivations

This section contains the proofs and derivations of the main results presented in Section 2.

A.1 Proof of Equation (1)

Let Rk,t→T1 be the return of risky asset k from time t to time T1 and mt→T1 be the one-period

SDF. We show that the conditional expected return of risky assets can be expressed as the

risk-neutral covariance between the asset return and the inverse of the SDF mt→T1 . This

result is not new, and was derived in Equation (2) of Chabi-Yo and Loudis (2019).

The conditional expected return of asset k can be expressed using the identity

Et (Rk,t→T1) = Et

(
Rk,t→T1

Etmt→T1

mt→T1

mt→T1

Etmt→T1

)
. (A1)

The ratio
mt→T1

Etmt→T1
defines the risk-neutral distribution. Hence, the Radon-Nykodym theorem

allows us to express the conditional expected return of asset k as a function of moments

under the risk-neutral measure:

Et (Rk,t→T1) = E∗
t

(
Rk,t→T1

Etmt→T1

mt→T1

)
= COV∗

t

(
Etmt→T1

mt→T1

, Rk,t→T1

)
+ E∗

t

(
Etmt→T1

mt→T1

)
E∗

t (Rk,t→T1)

= COV∗
t

(
Etmt→T1

mt→T1

, Rk,t→T1

)
+Rf,t→T1 . (A2)

We use E∗
t

(
Etmt→T1

mt→T1

)
= 1 and E∗

t (Rk,t→T1) = Rf,t→T1 . This identity is reminiscent of the

well-known asset pricing equation in which the expected excess return is negatively related

to the covariance between the return and the SDF under the physical measure.
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A.2 Proof of Equation (5)

We show that the inverse of the one-period SDF mt→T1 can be expressed as a function of

the marginal utility of wealth and expectations under the risk-neutral measure.

The representative agent’s optimization problem (4) can be re-written as

max
ωt

Et

(
max
ωT1

ET1 (u [WTN
])

)
. (A3)

Solving Problem (A3) backward, the first step is to solve

max
ωT1

ET1 (u [WTN
]) . (A4)

Equation (A4) produces an optimal weight ω∗
T1
, and the terminal wealth achieved with this

weight is W ∗
TN

= WT1

(
ω∗⊺
T1
RT1→TN

)
. The corresponding one-period SDF from time T1 to

time TN , mT1→TN
, has the form

mT1→TN
= δT1u

′ [
W ∗

TN

]
. (A5)

Given the optimal value, ω∗
T1
, the second step solves

max
ωt

Et

(
ET1

(
u
[
W ∗

TN

]))
. (A6)

This produces a one-period SDF from time t to time T1 of the form

mt→T1 = δtET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
. (A7)

From (A7), the constant δt can alternatively be written as

δt = mt→T1

(
ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

)))−1

. (A8)

66



Because parameter δt is a constant, we have δt = Etδt. We exploit the no-arbitrage conditions

that allow us to move from the physical measure to the risk-neutral measure to obtain,

δt = Et

(
mt→T1

(
ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

)))−1
)

= Et (mt→T1)Et

(
mt→T1

Et (mt→T1)

(
ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

)))−1
)

= Et (mt→T1)E∗
t

((
ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

)))−1
)
. (A9)

Next, we replace δt by its expression in (A7) and show that

Etmt→T1

mt→T1

=
1/ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
E∗

t

(
1/ET1

(
u′ [W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))) . (A10)

Similarly, we can use the SDF (A5) and show that

ET1mT1→TN

mT1→TN

=
1/u

′ [
W ∗

TN

]
E∗

T1

(
1/u′ [W ∗

TN

]) . (A11)

Next, we write ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
in (A10) as a function of risk-neutral quantities:

ET1

(
u

′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
= ET1

(
mT1→TN

ET1mT1→TN

ET1mT1→TN

mT1→TN

u
′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
= E∗

T1

(
ET1mT1→TN

mT1→TN

u
′ [
W ∗

TN

] (
ω∗⊺
T1
RT1→TN

))
=

ω∗⊺
T1
E∗

T1
RT1→TN

E∗
T1

(
1/u′ [W ∗

TN

]) ,
=

Rf,T1→TN

E∗
T1

(
1/u′ [W ∗

TN

]) , (A12)

where we have used the no-arbitrage conditions to move from the physical measure to the risk-

neutral measure in the second equation, and Equation (A11) to obtain the third equation.
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We replace (A12) in (A10) to obtain

Etmt→T1

mt→T1

=

E∗
T1

 1

u
′
[
W∗

TN

]


Rf,T1→TN

E∗
t

E∗
T1

 1

u
′
[
W∗

TN

]


Rf,T1→TN



=

((1/Rf,T1→TN
) /Et (1/Rf,T1→TN

))E∗
T1

(
u
′
[WtRf,t→TN ]
u′

[
W ∗

TN

]
)

E∗
t

(
((1/Rf,T1→TN

) /Et (1/Rf,T1→TN
))E∗

T1

(
u′ [WtRf,t→TN ]

u′
[
W ∗

TN

]
)) .

Since there is no interest rate risk, 1/Rf,T1→TN
= Et (1/Rf,T1→TN

), this last expression sim-

plifies to

Etmt→T1

mt→T1

=

E∗
T1

(
u
′
[WtRf,t→TN ]
u′

[
W ∗

TN

]
)

E∗
t

(
E∗

T1

(
u′ [WtRf,t→TN ]

u′
[
W ∗

TN

]
)) . (A13)

Assume that the gross return on the market can be used as proxy for the return on

aggregate wealth:

RM,t→TN
=

W ∗
TN

Wt

and RM,T1→TN
=

W ∗
TN

WT1

(A14)

Equation (A13) can be rewritten as

Etmt→T1

mt→T1

=

E∗
T1

(
u
′
[WtRf,t→TN ]

u′ [WtRM,t→TN ]

)
E∗

t

(
E∗

T1

(
u′ [WtRf,t→TN ]
u′ [WtRM,t→TN ]

)) . (A15)

This ends the proof.
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A.3 Proof of Equation (6)

In this Section we detail the second-order expansion of the inverse of the marginal utility,

which we use to derive Proposition 1.

Let us write the inverse of the SDF as

Etmt→T1

mt→T1

=
E∗

T1
(f [x, y])

E∗
t

(
E∗

T1
(f [x, y])

) , (A16)

where the function f is defined as

f [x, y] =
u

′
[Wtx0y0]

u′ [Wtxy]

and x = RM,t→T1 , x0 = Rf,t→T1 , y = RM,T1→TN
, and y0 = Rf,t→TN

/Rf,t→T1 = Rf,T1→TN
.

We adopt the following short notations. First, we use fx and fy to denote the first partial

derivatives of the function f , fxx and fyy the second partial derivatives, and fxy the cross-

derivative, all evaluated at (x0, y0). Second, we denote as u
′
, u

′′
, and u

′′′
the first, second, and

third derivatives of u [·] evaluated at (x0, y0). We perform a second-order Taylor expansion

series of f [x, y] around (x, y) = (x0, y0):

f [x, y] ≈ 1 +
1

1!
(x− x0) fx +

1

1!
(y − y0) fy +

1

2!
(x− x0)

2 fxx

+
1

2!
(y − y0)

2 fyy +
2

2!
(x− x0) (y − y0) fxy,

69



where:

fx =
y0
x0

fy =
1

x0

(
−(Wtx0y0)u

′′

u′

)
,

fxy =
1

x0y0

(
−Wtx0y0u

′′

u′

)
+

1

x0y0

(
Wtx0y0u

′′)2
(u′)2

(
2− u

′′′
u

′

(u′′)2

)
,

fxx =
y20
x2
0

fyy =
1

(x0)
2

(
Wtx0y0u

′′)2
(u′)2

(
2− u

′′′
u

′(
u

′′)2
)
.

Note that fxy = fyx. Thus, we obtain,

f [x, y] ≈ 1 +
1

x0

1

τt
(x− x0) +

1

y0

1

τt
(y − y0)

+
1

(x0)
2

(1− ρt)

τ 2t
(x− x0)

2 +
1

(y0)
2

(1− ρt)

τ 2t
(y − y0)

2

+
1

x0y0

(
1

τt
+

2 (1− ρt)

τ 2t

)
(x− x0) (y − y0) , (A17)

where τt and ρt are defined in Equation (9). Replacing x, x0, y, and y0 by their expressions

and using preference parameters a1,t and a2,t defined in Equation (8), we obtain,

E∗
T1
(f [x, y]) = 1 +

a1,t
Rf,t→T1

(RM,t→T1 −Rf,t→T1) +
a1,t

Rf,T1→TN

(Rf,T1→TN
−Rf,T1→TN

)

+
a2,t

(Rf,t→T1)
2 (RM,t→T1 −Rf,t→T1)

2 +
a2,t

(Rf,T1→TN
)2
E∗

T1

(
(RM,T1→TN

−Rf,T1→TN
)2
)

+
a1,t + 2a2,t
Rf,t→T2

(RM,t→T1 −Rf,t→T1) (Rf,T1→TN
−Rf,T1→TN

) . (A18)

Thus, E∗
T1
f [x, y] simplifies to

E∗
T1
f [x, y] = E∗

T1

(
u

′
[WtRf,t→T1Rf,T1→TN

]

u′ [WtRM,t→T1RM,T1→TN
]

)
= 1 + zT1 , (A19)
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where

zT1 =
a1,t (RM,t→T1 −Rf,t→T1)

Rf,t→T1

+
a2,t

R2
f,t→T1

(RM,t→T1 −Rf,t→T1)
2 +

a2,t
R2

f,T1→TN

M∗(2)
T1→TN

(A20)

We then replace Equation (A19) in (A16) to obtain Equation (6).

A.4 Proof of Proposition 1

We use the expression for the SDF (6) derived in Section A.3, and plug it in the expected

return expression identity (1). We obtain

Et (RM,t→T1 −Rf,t→T1) = COV∗
t

(
RM,t→T1 ,

1 + zT1

1 + E∗
t zT1

)
.

We then replace (A20) in this expression and expand the covariance term. We obtain the

estimate for the market risk premium in Equation (10).

A.5 Proof of Corollary 2

The expected excess return can be decomposed into

Et (RM,t→T1 −Rf,t→T1) =
1 + a2,t

R2
f,t→T1

M∗(2)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

 a1,t
Rf,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,t→T1

M∗(3)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1


+

a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

 a2,t
R2

f,T1→TN

LEV∗
t

a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

 .

Setting

π∗
t =

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
t→T1

ends the proof.
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A.6 Physical variance

In this section, we provide expressions for the option-implied physical variance

Et (RM,t→T1 − EtRM,t→T1)
2 = Et (RM,t→T1 −Rf,t→T1)

2 − (Et (RM,t→T1 −Rf,t→T1))
2 .

We already have an expression for Et (RM,t→T1 −Rf,t→T1). Note that

Et (RM,t→T1 −Rf,t→T1)
2 = E∗

t

{
Etmt→T1

mt→T1

(RM,t→T1 −Rf,t→T1)
2

}
.

Using the second-order approximation in Equation (6), we obtain

Et (RM,t→T1 −Rf,t→T1)
2 =


M∗(2)

t→T1
+ a1,t

Rf,t→T1
M∗(3)

t→T1
+ a2,t

R2
f,t→T1

M∗(4)
t→T1

+ a2,t
R2

f,T1→TN

(
LEK∗

t +M∗(2)
t→T1

E∗
tM

∗(2)
T1→TN

)


1 + a2,t
R2

f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

(A21)

where

LEK∗
t = COV∗

t

(
(RM,t→T1 −Rf,t→T1)

2 , (RM,T1→TN
−Rf,T1→TN

)2
)
.

A.7 Proof of Proposition 5

Under no-arbitrage conditions, we use the Radon-Nikodym theorem. It allows us to move

from the physical to the risk neutral measures and express the conditional crash probability

as

Pt (RM,t→T1 < α) = Et

(
mt→T1

Etmt→T1

Etmt→T1

mt→T1

1RM,t→T1
<α

)
= E∗

t

(
Etmt→T1

mt→T1

1RM,t→T1
<α

)
. (A22)
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We then replace the inverse of the SDF by Equation (6) in the conditional crash probability

to obtain,

Pt (RM,t→T1 < α) =
E∗

t

(
1RM,t→T1

<α

)
+ E∗

t

(
zT11RM,t→T1

<α

)
+ E∗

t

(
zυT1

1RM,t→T1
<α

)
1 + a2,t

R2
f,t→T1

M∗(2)
t→T1

+ a2,t
R2

f,T1→TN

E∗
tM

∗(2)
T1→TN

,

(A23)

where

E∗
t

(
zT11RM,t→T1

<α

)
=

a1,t
Rf,t→T1

E∗
t

(
(RM,t→T1 −Rf,t→T1)1RM,t→T1

<α

)
+

a2,t
R2

f,t→T1

E∗
t

(
(RM,t→T1 −Rf,t→T1)

2
1RM,t→T1

<α

)
,

E∗
t

(
zυT1

1RM,t→T1
<α

)
=

a2,t
R2

f,T1→TN

E∗
t

(
M∗(2)

T1→TN
1RM,t→T1

<α

)
. (A24)
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B Estimation of moments

We provide closed-form solutions to the risk-neutral and physical moments used in our anal-

ysis. In many cases, we use the spanning formula of Carr and Madan (2001) and Bakshi and

Madan (2000) to evaluate the risk-neutral expected value of a twice-differentiable function

of the underlying asset price, H (ST1) as

E∗
tH [ST1 ] = H [StRf,t→T1 ] + E∗

tHS [StRf,t→T1 ]St (RM,t→T1 −Rf,t→T1)

+Rf,t→T1

[∫ ∞

StRf,t→T1

HSS [K]Ct [K] dK +

∫ StRf,t→T1

0

HSS [K]Pt [K] dK

]
,

(B1)

where HS and HSS are the first and second derivative of function H(·), respectively. We

evaluate the integral terms via numerical integration using the 1,000-point moneyness grid

described in Section 3.2.

B.1 Closed-form expressions for M∗(k)
t→Tj

and E∗
t

(
Rk

M,t→Tj

)
To evaluate the risk-neutral moments of order k, M∗(k)

t→Tj
and E∗

t

(
Rk

M,t→Tj

)
, we set H

(
STj

)
=(

STj

St
−Rf,t→Tj

)k
andH

(
STj

)
=
(

STj

St

)k
in Equation (B1), respectively. Then, we use options

with maturity Tj to evaluate Equation (B1).

B.2 Closed-form expression of LEK∗
t

Notice that

LEK∗
t = COV∗

t

(
(RM,t→T1 −Rf,t→T1)

2 , (RM,T1→TN
−Rf,T1→TN

)2
)

= E∗
t

(
(RM,t→T1 −Rf,t→T1)

2 E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2
)

−M∗(2)
t→T1

E∗
tE∗

T1
(RM,T1→TN

−Rf,T1→TN
)2

= θtVAR∗
t

(
(RM,t→T1 −Rf,t→T1)

2)
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because

E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2 = θt (RM,t→T1 −Rf,t→T1)

2

Hence

LEK∗
t = θt

(
M∗(4)

t→T1
−
(
M∗(2)

t→T1

)2)

B.3 Closed-form expression of E∗
tM

∗(3)
T1→TN

and LES∗t

We can write E∗
tM

∗(3)
T1→TN

and LES∗
t respectively as,

E∗
tM

∗(3)
T1→TN

= E∗
t

(
(RM,T1→TN

−Rf,T1→TN
)3
)

= E∗
t

(
R3

M,T1→TN

)
−R3

f,T1→TN
− 3Rf,T1→TN

E∗
tM

∗(2)
T1→TN

, (B2)

and

LES∗
t = COV∗

t

(
rM,t→T1 ,M

∗(3)
T1→TN

)
= E∗

t

(
rM,t→T1 (RM,T1→TN

−Rf,T1→TN
)3
)

= −Rf,t→T1R
3
f,T1→TN

−Rf,t→T1E∗
tM

∗(3)
T1→TN

− 3Rf,t→T1Rf,T1→TN
E∗

tM
∗(2)
T1→TN

−3Rf,T1→TN
LEV∗

t + E∗
t

(
RM,t→T1R

3
M,T1→TN

)
. (B3)

To obtain LES∗
t , we need to evaluate the terms E∗

t

(
RM,t→T1R

3
M,T1→TN

)
and E∗

tM
∗(3)
T1→TN

(The

terms M∗(2)
T1→TN

and LEV∗
t have been derived in the main text). To do so, we assume that the

term E∗
T1

(
R3

M,T1→TN

)
−R3

f,T1→TN
is a nonlinear function of a function g of RM,t→T1 −Rf,t→T1

as

E∗
T1

(
R3

M,T1→TN

)
−R3

f,T1→TN
= γtg(RM,t→T1 −Rf,t→T1) + υt, (B4)
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with E∗
t (υt|RM,t→T1) = E∗

t (υt) = 0. Multiplying both sides of Equation (B4) by R3
M,t→T1

and taking the time-t risk-neutral expectation, we obtain,

γt =
M∗(3)

t→TN
+ 3Rf,t→TN

M∗(2)
t→TN

−R3
f,T1→TN

(
M∗(3)

t→T1
+ 3Rf,t→T1M

∗(2)
t→T1

)
E∗

t

(
R3

M,t→T1
g(RM,t→T1 −Rf,t→T1)

) . (B5)

If we use g(RM,t→T1 −Rf,t→T1) = R3
M,t→T1

, we obtain

γt =
M∗(3)

t→TN
+ 3Rf,t→TN

M∗(2)
t→TN

−R3
f,T1→TN

(
M∗(3)

t→T1
+ 3Rf,t→T1M

∗(2)
t→T1

)
E∗

t

(
R6

M,t→T1

) , (B6)

Taking the expectation of (B4) under the risk neutral measure,

E∗
t

(
R3

M,T1→TN

)
−R3

f,T1→TN
= γtE∗

t

(
R3

M,t→T1

)
, (B7)

Multiplying both sides of Equation (B4) by RM,t→T1 and taking the time-t risk-neutral ex-

pectation

E∗
t

(
RM,t→T1R

3
M,T1→TN

)
= Rf,t→T1R

3
f,T1→TN

+ γtE∗
t

(
R4

M,t→T1

)
. (B8)

Therefore, using Equations (B2) and (B3) we obtain E∗
tM

∗(3)
T1→TN

and LES∗
t as,

E∗
tM

∗(3)
T1→TN

= γtE∗
t

(
R3

M,t→T1

)
− 3Rf,T1→TN

E∗
tM

∗(2)
T1→TN

,

and

LES∗
t = γtE∗

t

(
R4

M,t→T1

)
−Rf,t→T1E∗

tM
∗(3)
T1→TN

− 3Rf,t→T1Rf,T1→TN
E∗

tM
∗(2)
T1→TN

− 3Rf,T1→TN
LEV∗

t

To compute the physical variance, we also need the following moments which we obtain using

a similar approach:

E∗
t (RM,t→T1 −Rf,t→T1)

3 (RM,T1→TN
−Rf,T1→TN

)2 = E∗
t (RM,t→T1 −Rf,t→T1)

3 E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2
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Using expression (24)

E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2 = θt (RM,t→T1 −Rf,t→T1)

2 + ϵT1 ,

it follows that

E∗
t (RM,t→T1 −Rf,t→T1)

3 (RM,T1→TN
−Rf,T1→TN

)2 = θtE∗
t (RM,t→T1 −Rf,t→T1)

5

In addition, let’s provide a closed-form expression of another risk neutral quantity:

E∗
t (RM,t→T1 −Rf,t→T1)

2 (RM,T1→TN
−Rf,T1→TN

)3

= E∗
t (RM,t→T1 −Rf,t→T1)

2R3
M,T1→TN

−R3
f,T1→TN

E∗
t (RM,t→T1 −Rf,t→T1)

2

+3R2
f,T1→TN

E∗
t (RM,t→T1 −Rf,t→T1)

2RM,T1→TN

−3Rf,T1→TN
E∗

t (RM,t→T1 −Rf,t→T1)
2R2

M,T1→TN

This expression simplifies to

E∗
t (RM,t→T1 −Rf,t→T1)

2 (RM,T1→TN
−Rf,T1→TN

)3

= E∗
t (RM,t→T1 −Rf,t→T1)

2 E∗
T1
R3

M,T1→TN

+R3
f,T1→TN

M∗(2)
t→T1

−3Rf,T1→TN
E∗

t (RM,t→T1 −Rf,t→T1)
2M∗(2)

T1→TN

Since

E∗
T1
R3

M,T1→TN
= γtR

3
M,t→T1
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It follows that

E∗
t (RM,t→T1 −Rf,t→T1)

2 (RM,T1→TN
−Rf,T1→TN

)3

= γtE∗
t

(
(RM,t→T1 −Rf,t→T1)

2R3
M,t→T1

)
+R3

f,T1→TN
M∗(2)

t→T1

−3Rf,T1→TN
E∗

t

(
(RM,t→T1 −Rf,t→T1)

2M∗(2)
T1→TN

)

where expression E∗
t

(
(RM,t→T1 −Rf,t→T1)

2M∗(2)
T1→TN

)
can be derived as follows:

(RM,t→T1 −Rf,t→T1)
2M∗(2)

T1→TN
= θt (RM,t→T1 −Rf,t→T1)

4 + (RM,t→T1 −Rf,t→T1)
2 εT1

and

E∗
t

(
(RM,t→T1 −Rf,t→T1)

2M∗(2)
T1→TN

)
= θtE∗

t (RM,t→T1 −Rf,t→T1)
4 + E∗

t (RM,t→T1 −Rf,t→T1)
2 εT1

= θtE∗
t (RM,t→T1 −Rf,t→T1)

4

B.4 Closed-form expression of M∗(k)
t→T1

[α]

Recall that M∗(k)
t→T1

[α] = E∗
t

{
(RM,t→T1 −Rf,t→T1)

k
1ST1

<αSt

}
. Therefore, we set H [x] =(

x
St

−Rf,t→T1

)k
in Equation (B1) and obtain,

M∗(k)
t→T1

[α] = H [αSt]P∗
t [ST1 < αSt]−HS [αSt]Rf,t→T1Pt [αSt] +Rf,t→T1

∫ αSt

0

HSS [K]Pt [K] dK.

B.5 Closed-form expression of E∗
t

(
rjM,t→T1

M∗(k)
T1→TN

1RM,t→T1
<α

)
We use Equation (26) to obtain the required expressions when k = 2. First, we have

M∗
t,υ [α] ≡ E∗

t

(
M∗(2)

T1→TN
1RM,t→T1

<α

)
= θtM∗(2)

t→T1
[α] , (B9)
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and

M∗
t,sυ [α] ≡ E∗

t

(
(RM,t→T1 −Rf,t→T1)M

∗(2)
T1→TN

1RM,t→T1
<α

)
= θtM∗(3)

t→T1
[α] . (B10)

Next, we can write the future third central moment as,

M∗(3)
T1→TN

= E∗
T1

(
R3

M,T1→TN

)
−R3

f,T1→TN
− 3Rf,T1→TN

E∗
T1

(
R2

M,T1→TN

)
+ 3R3

f,T1→TN
.(B11)

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= E∗

t

(
R3

M,T1→TN
1RM,t→T1

<α

)
−3Rf,T1→TN

E∗
t

(
E∗

T1
R2

M,T1→TN
1RM,t→T1

<α

)
+2R3

f,T1→TN
E∗

t1RM,t→T1
<α

which simplifies to

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= E∗

t

(
R3

M,T1→TN
1RM,t→T1

<α

)
−3Rf,T1→TN

E∗
t

((
M∗(2)

T1→TN
+R2

f,T1→TN

)
1RM,t→T1

<α

)
+2R3

f,T1→TN
E∗

t1RM,t→T1
<α

and

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= E∗

t

(
1RM,t→T1

<αE∗
T1
R3

M,T1→TN

)
−3Rf,T1→TN

E∗
t

(
M∗(2)

T1→TN
1RM,t→T1

<α

)
−R3

f,T1→TN
E∗

t1RM,t→T1
<α

79



Since

E∗
T1
R3

M,T1→TN
= γtR

3
M,t→T1

+ εT1

M∗(2)
T1→TN

= θt (RM,t→T1 −RM,t→T1)
2 + ηT1

with

E∗
t [εT1|RM,t→T1 ] = 0 and E∗

t [ηT1 |RM,t→T1 ] = 0

Hence

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= γtE∗

t

(
1RM,t→T1

<αR
3
M,t→T1

)
−3Rf,T1→TN

θtE∗
t

(
(RM,t→T1 −RM,t→T1)

2 1RM,t→T1
<α

)
−R3

f,T1→TN
E∗

t1RM,t→T1
<α (B12)

Recall that

(RM,t→T1 −Rf,t→T1)
3 = R3

M,t→T1
−R3

f,t→T1
− 3R2

M,t→T1
Rf,t→T1 + 3R2

f,t→T1
RM,t→T1

= R3
M,t→T1

−R3
f,t→T1

− 3

 (RM,t→T1 −Rf,t→T1)
2

+2RM,t→T1Rf,t→T1 −R2
f,t→T1

Rf,t→T1 + 3R2
f,t→T1

RM,t→T1

= R3
M,t→T1

−R3
f,t→T1

− 3 (RM,t→T1 −Rf,t→T1)
2Rf,t→T1

−6RM,t→T1R
2
f,t→T1

+ 3R3
f,t→T1

+ 3R2
f,t→T1

RM,t→T1

and

(RM,t→T1 −Rf,t→T1)
3 = R3

M,t→T1
−3 (RM,t→T1 −Rf,t→T1)

2Rf,t→T1−3RM,t→T1R
2
f,t→T1

+2R3
f,t→T1

That is

R3
M,t→T1

= (RM,t→T1 −Rf,t→T1)
3+3 (RM,t→T1 −Rf,t→T1)

2Rf,t→T1+3RM,t→T1R
2
f,t→T1

−2R3
f,t→T1
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We can then simplify (B12) as

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= γtE∗

t

1RM,t→T1
<α


(RM,t→T1 −Rf,t→T1)

3

+3 (RM,t→T1 −Rf,t→T1)
2Rf,t→T1

+3RM,t→T1R
2
f,t→T1

− 2R3
f,t→T1




−3Rf,T1→TN
θtE∗

t

(
(RM,t→T1 −RM,t→T1)

2 1RM,t→T1
<α

)
−R3

f,T1→TN
E∗

t1RM,t→T1
<α

Finally

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= γt



E∗
t

(
(RM,t→T1 −Rf,t→T1)

3 1RM,t→T1
<α

)
+3Rf,t→T1E∗

t

(
(RM,t→T1 −Rf,t→T1)

2 1RM,t→T1
<α

)
+3R2

f,t→T1
E∗

t

(
RM,t→T11RM,t→T1

<α

)
−2R3

f,t→T1
E∗

t

(
1RM,t→T1

<α

)


−3Rf,T1→TN

θtE∗
t

(
(RM,t→T1 −RM,t→T1)

2 1RM,t→T1
<α

)
−R3

f,T1→TN
E∗

t1RM,t→T1
<α

and

E∗
t

(
M∗(3)

T1→TN
1RM,t→T1

<α

)
= γt

 M∗(3)
t→T1

[α] + 3Rf,t→T1M
∗(2)
t→T1

[α]

+3R2
f,t→T1

M∗(1)
t→T1

[α] +R3
f,t→T1

M∗(0)
t→T1

[α]


−3Rf,T1→TN

M∗
t,υ [α]−R3

f,T1→TN
M∗(0)

t→T1
[α]

C Portfolio Rebalancing: Implementation

To compute the risk neutral quantities, we use an approach similar to (24) by considering

the decomposition:

M∗(2)
TQj−1

→TQj
= θTQj−1

→TQj

(
RM,t→TQj−1

−Rf,t→TQj−1

)2
+ ηTQj−1

(C1)
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with E∗
(
ηTQj−1

|RM,t→TQ−1

)
= 0. We then show:

θTQj−1
→TQj

=
M∗(2)

t→TQj
−R2

f,TQj−1
→TQj

M∗(2)
t→TQj−1

E∗
t

(
R2

M,t→TQj−1

(
RM,t→TQj−1

−Rf,t→TQj−1

)2) .

and

LEV∗
t =

J∑
j>1

1

R2
f,TQj−1

→TQj

COV∗
t

(
RM,t→T1 ,M

∗(2)
TQj−1

→TQj

)
. (C2)

with

COV∗
t

(
RM,t→T1 ,M

∗(2)
TQj−1

→TQj

)
= E∗

t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
−Rf,t→T1E∗

tM
∗(2)
TQj−1

→TQj
(C3)

Taking the expectation, under the risk neutral measure, of (C1) at time t leads to

E∗
tM

∗(2)
TQj−1

→TQj
= θTQj−1

→TQj
M∗(2)

t→TQj−1

If TQj−1
= T1, (C3) simplifies to

E∗
t

(
RM,t→T1M

∗(2)
T1→TQj

)
= θT1→TQj

(
M∗(3)

t→T1
+Rf,t→T1M

∗(2)
t→T1

)

Now, assume that TQj−1
> T1. We then replace M∗(2)

TQj−1→TQj

by its decomposition and show

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= E∗

t

(
RM,t→T1θTQj−1

→TQj

(
RM,t→TQj−1

−Rf,t→TQj−1

)2)
+E∗

t

(
RM,t→T1ηTQj−1

)

Since TQj−1
> T1, it follows that

E∗
t

(
RM,t→T1ηTQj−1

)
= E∗

t

(
RM,t→T1E∗

T1
ηTQj−1

)
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Given that E∗
T1
ηTQj−1

= 0, it follows that

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= E∗

t

(
RM,t→T1θTQj−1

→TQj

(
RM,t→TQj−1

−Rf,t→TQj−1

)2)
= θTQj−1

→TQj
E∗

t

(
RM,t→T1

(
RM,t→TQj−1

−Rf,t→TQj−1

)2)

Observe that

(
RM,t→TQj−1

−Rf,t→TQj−1

)2
= R2

M,t→TQj−1
− 2RM,t→TQj−1

Rf,t→TQj−1
+R2

f,t→TQj−1

Thus

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj
E∗

t

(
RM,t→T1

(
R2

M,t→TQj−1
− 2RM,t→TQj−1

Rf,t→TQj−1
+R2

f,t→TQj−1

))

= θTQj−1
→TQj


E∗

t

(
RM,t→T1R

2
M,t→TQj−1

)
−2Rf,t→TQj−1

E∗
t

(
RM,t→T1RM,t→TQj−1

)
+E∗

t

(
RM,t→T1R

2
f,t→TQj−1

)


Since RM,t→TQj−1
= RM,t→T1RM,T1→TQj−1

, the above expression simplifies to

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj


E∗

t

(
R3

M,t→T1
R2

M,T1→TQj−1

)
−2Rf,t→TQj−1

E∗
t

(
R2

M,t→T1
RM,T1→TQj−1

)
+Rf,t→T1R

2
f,t→TQj−1


and

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj


E∗

t

(
R3

M,t→T1
R2

M,T1→TQj−1

)
−2Rf,t→TQj−1

Rf,T1→TQj−1
E∗

t

(
R2

M,t→T1

)
+Rf,t→T1R

2
f,t→TQj−1


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We further expand this expression to

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj


E∗

t

(
R3

M,t→T1

(
R2

M,T1→TQj−1
−R2

f,T1→TQj−1
+R2

f,T1→TQj−1

))
−2Rf,t→TQj−1

Rf,T1→TQj−1
E∗

t

(
R2

M,t→T1

)
+Rf,t→T1R

2
f,t→TQj−1


which simplifies to

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj



E∗
t

(
R3

M,t→T1
M∗(2)

T1→TQj−1

)
+R2

f,T1→TQj−1
E∗

t

(
R3

M,t→T1

)
−2Rf,t→TQj−1

Rf,T1→TQj−1
M∗(2)

t→T1

−2Rf,t→TQj−1
Rf,T1→TQj−1

R2
f,t→T1

+Rf,t→T1R
2
f,t→TQj−1


(C4)

Recall that

M∗(2)
T1→TQj−1

= θT1→TQj−1
(RM,t→T1 −Rf,t→T1)

2 + ηT1 with E∗
t (ηT1|RM,t→T1)

Hence, (C4)

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj



θT1→TQj−1
E∗

t

(
R3

M,t→T1
(RM,t→T1 −Rf,t→T1)

2)
+R2

f,T1→TQj−1
E∗

t

(
R3

M,t→T1

)
−2Rf,t→TQj−1

Rf,T1→TQj−1
M∗(2)

t→T1

−2Rf,t→TQj−1
Rf,T1→TQj−1

R2
f,t→T1

+Rf,t→T1R
2
f,t→TQj−1


(C5)

Thus

E∗
t

(
RM,t→T1M

∗(2)
TQj−1

→TQj

)
= θTQj−1

→TQj


θT1→TQj−1

E∗
t

(
R3

M,t→T1
(RM,t→T1 −Rf,t→T1)

2)
+R2

f,T1→TQj−1
E∗

t

(
R3

M,t→T1

)
− 2Rf,t→TQj−1

Rf,T1→TQj−1
M∗(2)

t→T1

−2Rf,t→TQj−1
Rf,T1→TQj−1

R2
f,t→T1

+R2
f,t→TQj−1

Rf,t→T1


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Provided that odd market risk neutral moments and the risk neutral leverage LEV∗
t are

negative and conditions 1/τt ≥ 1and ρt − 1 ≥ 1 hold, we can further bound (33) as follows:

RPt→T1,TN
≥

1
Rf,t→T1

M∗(2)
t→T1

− 1
R2

f,t→T1

M∗(3)
t→T1

− LEV∗
t

1− 1
R2

f,t→T1

M∗(2)
t→T1

− E∗
tM

∗(2)
TQj−1

→TQj

.

We then use option prices to recover the expected excess market return.

D Implications of high-order leverage terms

D.1 Conditional expected return with high-order leverages

Proposition 8 Up to a third-order expansion-series, the one-period expected excess market

return is

RP 3rd
t→T1,TN

=
D1,t +D2,t

D3,t +D4,t

(D1)

with

D1,t =
3∑

k=1

ak,t
Rk

f,t→T1

M∗(k+1)
t→T1

D2,t =
a2,t

R2
f,T1→TN

LEV∗
t +

a3,t
R3

f,T1→TN

LES∗
t +

a2,3,t
Rf,t→T1R

2
f,T1→TN

(
LEK∗

t +M∗(2)
t→T1

E∗
tM

∗(2)
T1→TN

)
D3,t = 1 +

3∑
k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

D4,t =
3∑

k=2

ak,t
Rk

f,T1→TN

E∗
tM

∗(k)
T1→TN

+
a2,3,t

Rf,t→T1R
2
f,T1→TN

LEV∗
t

where a2,3,t = 2a2,t + 3a3,t and the risk-neutral quantities LEV∗
t , M

∗(k)
Ti→Tj

, LES∗
t and LEK∗

t

are defined in Equations (11), (12), (36), and (37), respectively.

The proof of Proposition 8 is given in Appendix D.1.
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Proof. The expected excess market return is

Et (Rt→T1 −Rf,t→T1) = COV∗
t

(
Etmt→T1

mt→T1

, (Rt→T1 −Rf,t→T1)

)
.

We then replace the inverse SDF by its expression and obtain

Et (Rt→T1 −Rf,t→T1) = COV∗
t

(
1 + zT1 + zυT1

1 + E∗
t zT1 + E∗

t z
υ
T1

, (RM,t→T1 −Rf,t→T1)

)
=

COV∗
t (zT1 , rM,t→T1) + COV∗

t

(
zυT1

, rM,t→T1

)
1 + E∗

t zT1 + E∗
t z

υ
T1

Setting rM,t→T1 = RM,t→T1 −Rf,t→T1 and using the definitions of zT1 and zυT1
, it follows that

E∗
t zT1 =

a2,t
R2

f,t→T1

E∗
t r

2
M,t→T1

+
a3,t

R3
f,t→T1

E∗
t r

3
M,t→T1

E∗
t z

υ
T1

=
a2,t

R2
f,T1→TN

E∗
tM

∗(2)
T1→TN

+
a3,t

R3
f,T1→TN

E∗
tM

∗(3)
T1→TN

+
a2,3,t

Rf,t→T1R
2
f,T1→TN

E∗
t rM,t→T1M

∗(2)
T1→TN

and

E∗
t zT1 (RM,t→T1 −Rf,t→T1) =

a1,t
Rf,t→T1

E∗
t r

2
M,t→T1

+
a2,t

R2
f,t→T

E∗
t r

3
M,t→T1

+
a3,t

R3
f,t→T

E∗
t r

4
M,t→T1

=
a1,t

Rf,t→T

M∗(2)
t→T1

+
a2,t

R2
f,t→T1

M∗(3)
t→T1

+
a3,t

R3
f,t→T

M∗(4)
t→T1

and

E∗
t z

υ
T1
(RM,t→T −Rf,t→T1) =

a2,t
R2

f,T1→TN

COV∗
t

(
rM,t→T1 ,M

∗(2)
T1→TN

)
+

a3,t
R3

f,T1→TN

COV∗
t

(
rM,t→T1 ,M

∗(3)
T1→TN

)
+

a2,3,t
Rf,t→T1R

2
f,T1→TN

(
COV∗

t

(
r2M,t→T1

,M∗(2)
T1→TN

)
+M∗(2)

t→T1
E∗

tM
∗(2)
T1→TN

)

This ends the proof.

86



D.2 Conditional crash probability with high-order leverages

Proposition 9 Up to a third-order approximation, the conditional probability of a crash,

Π3rd
t→T1

[α] = Pt (RM,t→T < α), is

Π3rd
t→T1

[α] =


M∗(0)

t→T1
[α] +

3∑
k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

[α]

+ a2,t
R2

f,T1→TN

M∗
t,υ [α] +

a3,t
R3

f,T1→TN

M∗
t,s [α] +

a2,3,t
Rf,t→T1

R2
f,T1→TN

M∗
t,sυ [α]


1 +

3∑
k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

+
3∑

k=2

ak,t
Rk

f,T1→TN

E∗
tM

∗(k)
T1→TN

+ a2,3,t
Rf,t→T1

R2
f,T1→TN

E∗
t rM,t→T1M

∗(2)
T1→TN

(D2)

where a2,3,t = 2a2,t + 3a3,t.

Proof. The probability of crash is

Π3rd
t→T1

[α] = E∗
t

(
Etmt→T1

mt→T1

1RM,t→T<α

)

We then replace the inverse SDF by its expression and obtain

Π3rd
t→T1

[α] =
E∗

t

((
1 + zT1 + zυT1

)
1RM,t→T<α

)
1 + E∗

t zT1 + E∗
t z

υ
T1

=
E∗

t

(
1RM,t→T<α

)
+ E∗

t

(
zT11RM,t→T<α

)
+ E∗

t

(
zυT1

1RM,t→T<α

)
1 + E∗

t zT1 + E∗
t z

υ
T1

=


M∗(0)

t→T1
[α] +

3∑
k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

[α] +

a2,t
R2

f,T1→TN

M∗
t,υ [α] +

a3,t
R3

f,T1→TN

M∗
t,s [α] +

a2,3,t
Rf,t→T1

R2
f,T1→TN

M∗
t,sυ [α]


1 +

3∑
k=2

ak,t
Rk

f,t→T1

M∗(k)
t→T1

+
3∑

k=2

ak,t
Rk

f,T1→TN

E∗
tM

∗(k)
T1→TN

+ a2,3,t
Rf,t→T1

R2
f,T1→TN

E∗
t rM,t→T1M

∗(2)
T1→TN

This ends the proof
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D.3 Proof of Equation (34)

Consider the partial derivatives

fxxy =
2

(x0)
2 y0

(
Wtx0y0u

′′)2
(u′)2

(
2− u

′′′
u

′

(u′′)2

)
+

1

(x0)
2 y0

{
6
(Wtx0y0)

3 u
′′
u

′
u

′′′

(u′)3
− (Wtx0y0)

3 u
′′′′

u′ − 6

(
Wtx0y0u

′′)3
(u′)3

}
,

fxxx =
y30
x3
0

fyyy =
1

(x0)
3

(
6
(Wtx0y0)

3 u
′′
u

′′′

(u′)2
− (Wtx0y0)

3 u
′′′′

u′ − 6
(Wtx0y0)

3 (u′′)3
(u′)3

)
.

Thus, a third order Taylor expansion-series yields

f [x, y] = f [x, y]2nd

+
1

(x0)
3

(κt + 1− 2ρt)

τ 3t
(x− x0)

3 +
1

(y0)
3

(κt + 1− 2ρt)

τ 3t
(y − y0)

3

+
1

(x0)
2 y0

(
2 (1− ρt)

τ 2t
+

3 (κt + 1− 2ρt)

τ 3t

)
(x− x0)

2 (y − y0)

+
1

x0 (y0)
2

(
2 (1− ρt)

τ 2t
+

3 (κt + 1− 2ρt)

τ 3t

)
(y − y0)

2 (x− x0) , (D3)

where f [x, y]2nd is the second order Taylor expansion-series in Equation (A17).

Replacing x, x0, y, and y0 by their expressions and using preference parameters a1, a2,

and a3 defined in Equation (8), we obtain,

E∗
T1
(f [x, y]) = 1 +

a1,t
Rf,t→T1

(RM,t→T1 −Rf,t→T1) +
a1,t

Rf,T1→TN

(Rf,T1→TN
−Rf,T1→TN

)

+
a2,t

(Rf,t→T1)
2 (RM,t→T1 −Rf,t→T1)

2 +
a2,t

(Rf,T1→TN
)2
E∗

T1

(
(RM,T1→TN

−Rf,T1→TN
)2
)

+
a1,t + 2a2,t
Rf,t→T2

(RM,t→T1 −Rf,t→T1) (Rf,T1→TN
−Rf,T1→TN

)

+
a3,t

(Rf,t→T1)
3 (RM,t→T1 −Rf,t→T1)

3 +
a3,t

(Rf,T1→TN
)3
E∗

T1

(
(RM,T1→TN

−Rf,T1→TN
)3
)

+
2a2,t + 3a3,t

(Rf,t→T1)
2Rf,T1→TN

(RM,t→T1 −Rf,t→T1)
2 (Rf,T1→TN

−Rf,T1→TN
)

+
2a2,t + 3a3,t

Rf,t→T1 (Rf,T1→TN
)2
E∗

T1

(
(RM,T1→TN

−Rf,T1→TN
)2
)
(RM,t→T1 −Rf,t→T1) (D4)
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which gives the desired result when interest rates are deterministic.

E Online Appendix

E.1 Volatility Dynamic Implied by (24)

To further show that our formulation (24) is different from the GARCH (1,1), we use the

closed-form expression of θt displayed in (25) and show that

M∗(2)
t→TN

= θtE∗
tR

2
M,t→T1

(RM,t→T1 −Rf,t→T1)
2 +R2

f,T1→T2
M∗(2)

t→T1
. (E1)

Since R2
M,t→T1

= (RM,t→T1 −Rf,t→T1)
2 + 2RM,t→T1Rf,t→T1 −R2

f,t→T1
, it follows that

E∗
tR

2
M,t→T1

(RM,t→T1 −Rf,t→T1)
2 = M∗(4)

t→T1
+ 2Rf,t→T1M

∗(3)
t→T1

+R2
f,t→T1

M∗(2)
t→T1

.

We then replace this expression in the RHS of (E1) and obtain

M∗(2)
t→TN

= θtM∗(4)
t→T1

+ 2Rf,t→T1θtM
∗(3)
t→T1

+R2
f,T1→TN

(θt + 1)M∗(2)
t→T1

.

This shows that the process of M∗(2)
t→TN

is different from a GARCH dynamic. To check

similarities with the GARCH process, let’s assume for illustration purpose that M∗(3)
t→T1

= 0

and M∗(4)
t→T1

= 3
(
M∗(2)

t→T1

)2
then

M∗(2)
t→TN

= 3θt

(
M∗(2)

t→T1

)2
+R2

f,T1→TN
(θt + 1)M∗(2)

t→T1
. (E2)

Expression (E2) is reminiscent but distinct from the GARCH process.
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E.2 The case with consumption

In this section, we introduce consumption in the representative agent problem. Under the

minimal assumption that (i) odd risk neutral moments are negative, (ii) preference parame-

ters satisfy the restrictions a2,t > 0, a2,t ≤ 0, a3,t ≥ 0, a2,3,t ≥ 0 (see Eq), (iii) consumption-

wealth ratio is positively related to the market return and (iv) the correlation of the square

of the consumption wealth ratio and market return is negative (condition reminiscent of

market coskewness), our measure of expected excess return remains a lower bound to the

true measure of market expected excess return.

To proceed, we start by having the representative agent solve the problem

max
ωt,ct

Et

{
max
ωT1

,cT1

{ET1u [Wt→TN
]}
}
,

where the terminal wealth is

Wt→TN
= (1− cT1)WT1

(
ω⊺
T1
RT1→TN

)
with WT1 = (1− ct)Wt (ω

⊺
tRt→T1)

and ct is the consumption wealth ratio. The terminal wealth can alternatively be written as

Wt→TN
= (1− cT1) (1− ct)Wt (ω

⊺
tRt→T1)

(
ω⊺
T1
RT1→TN

)
.

For simplicity, we assume no interest rate risk. Notice that the SDF is given by the identity:

Etmt→T1

mt→T1

=
υT1

E∗
t (υT1)

,

where

υT1 = E∗
T1

(
u

′ [
W t→TN

]
u′ [Wt→TN

]

)
with W t→TN

= WtRf,t→T1Rf,T1→TN
. (E3)
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We set

RM,t→T1 = ω⊺
tRt→T1 , RM,T1→TN

= ω⊺
T1
RT1→TN

, cctT1 = (1− cT1) (1− ct) . (E4)

Next, we define

x = cctT1 , y = ω⊺
tRt→T1 , z = ω⊺

T1
RT1→TN

(E5)

x0 = 1, y0 = Rf,t→T1 , z0 = Rf,T1→TN
(E6)

and set

X = (x,y, z) and X0 = (x0,y0, z0) .

Notice that 0 < cctT1 ≤ 1 since 0 < cT1 ≤ 1 and 0 < ct ≤ 1. Now, assume that the utility

function is well-behaved and admits high-order derivatives that exist. Denote

G =
u

′ [
W t→TN

]
u′ [Wt→TN

]
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E.2.1 Second-order Taylor expansion-series

A second-order Taylor expansion of G around X = X0 gives

G = 1− (x− x0)
Wty0z0u

′′ [
W t→TN

]
u′ [W t→TN

] − (y − y0)
Wtz0u

′′ [
W t→TN

]
u′ [W t→TN

]
− (z− z0)

Wty0u
′′ [

W t→TN

]
u′ [W t→TN

] +
1

2
W 2

t y
2
0z

2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(x− x0)

2

+
1

2
W 2

t z
2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(y − y0)

2

+
1

2
W 2

t y
2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(z− z0)

2

+W 2
t y0x0z

2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(x− x0) (y − y0)

+

(
∂2G

∂x∂z

)
X=X0

(x− x0) (z− z0) +

(
∂2G

∂y∂z

)
X=X0

(z− z0) (y − y0) .

Notice that

E∗
T1
(z− z0) = 0

and

E∗
T1
(x− x0) (z− z0) = (x− x0)E∗

T1
(z− z0) = 0,

E∗
T1
(z− z0) (y − y0) = (y − y0)E∗

T1
(z− z0) = 0.
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We use these expressions to simplify (E3) as

υT1 = 1−
Wty0z0u

′′ [
W t→TN

]
u′ [W t→TN

] (x− x0)− (y − y0)
Wtz0u

′′ [
W t→TN

]
u′ [W t→TN

]
+
1

2
W 2

t y
2
0z

2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(x− x0)

2

+
1

2
W 2

t z
2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(y − y0)

2

+
1

2
W 2

t y
2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
E∗

T1
(z− z0)

2

+W 2
t y0x0z

2
0

(
−
u

′′′ [
W t→TN

]
u′ [W t→TN

] +
2
(
u

′′ [
W t→TN

])2(
u′ [W t→TN

])2
)
(x− x0) (y − y0)

which simplifies to

υT1 = 1 +
1

τt
E∗

T1
(cctT1 − 1) +

1

τtRf,t→T1

(ω⊺
tRt→T1 −Rf,t→T1) +

(1− ρt)

τ 2t
(cctT1 − 1)2

+
(1− ρt)

τ 2t R
2
f,t→T1

(ω⊺
tRt→T1 −Rf,t→T1)

2 +
(1− ρt)

τ 2t R
2
f,T1→T2

E∗
T1

(
ω⊺
T1
RT1→T2 −Rf,T1→TN

)2
+
2 (1− ρt)

τ 2t Rf,t→T1

E∗
T1
(cctT1 − 1) (ω⊺

tRt→T1 −Rf,t→T1) .

We then exploit the notation RM,t→T1 = ω⊺
tRt→T1 , RM,T1→TN

= ω⊺
T1
RT1→TN

and express the

expected value of υT1 under the risk neutral measure as

E∗
tυT1 = 1 +

1

τt
E∗

t (cctT1 − 1) +
(1− ρt)

τ 2t
E∗

t (cctT1 − 1)2

+
(1− ρt)

τ 2t R
2
f,t→T1

M∗(2)
t→T1

+
(1− ρt)

τ 2t R
2
f,T1→TN

E∗
tM

∗(2)
T1→TN

+
2 (1− ρt)

τ 2t Rf,t→T1

COV∗
t (cctT1 , RM,t→T1) . (E7)
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where

M∗(n)
t→T1

= E∗
t (RM,t→T1 −Rf,t→T1)

n

M∗(2)
T1→TN

= E∗
T1
(RM,T1→TN

−Rf,T1→TN
)2

The expected excess market return is

Et (RM,t→T1 −Rf,t→T1) = Et

[
Etmt→T1

mt→T1

mt→T1

Etmt→T1

(RM,t→T1 −Rf,t→T1)

]
= E∗

t

[
Etmt→T1

mt→T1

(RM,t→T1 −Rf,t→T1)

]
=

COV∗
t [υT1 , RM,t→T1 ]

E∗
tυT1

.

Observe that

COV∗
t [υT1 , RM,t→T1 ] = 1 +

1

τt
COV∗

t (cctT1 , RM,t→T1) +
1

τtRf,t→T1

M∗(2)
t→T1

+
(1− ρt)

τ 2t
COV∗

t

(
(cctT1 − 1)2 , RM,t→T1

)
+

(1− ρt)

τ 2t R
2
f,t→T1

M∗(3)
t→T1

+
(1− ρt)

τ 2t R
2
f,T1→TN

LEV∗
t

+
2 (1− ρt)

τ 2t R
2
f,t→T1

E∗
t

(
(cctT1 − 1) (RM,t→T1 −Rf,t→T1)

2) . (E8)

Notice that E∗
t

(
(cctT1 − 1) (ω⊺

tRt→T1 −Rf,t→T1)
2
)
< 0 because cctT1 − 1 < 0. In addition,

M∗(3)
t→T1

≤ 0, LEV∗
t ≤ 0, and COV∗

t (RM,t→T1 ,LEV∗
t ) ≤ 0. Recall that

1

τt
> 0 and 1− ρt ≤ 0. (E9)

In theory, each factor risk factor in υT1 positively contributes to the risk premium. Thus

each term in (E8) is positive. Assuming (E9) is satisfied, one should expect

COV∗
t (cctT1 , RM,t→T1) > 0 and COV∗

t

(
(cctT1 − 1)2 , RM,t→T1

)
≤ 0. (E10)
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Since 1− cT1 =
WT1

−CT1

WT1
is the fraction of wealth WT1 invested at T1, it follows that

COV∗
t (cctT1 , RM,t→T1) = (1− ct)COV∗

t

(
WT1 − CT1

WT1

, RM,t→T1

)
and

COV∗
t

(
(cctT1 − 1)2 , RM,t→T1

)
= (1− ct)

2COV∗
t

((
WT1 − CT1

WT1

)2

, RM,t→T1

)
.

The positive sign of COV∗
t (cctT1 , RM,t→T1) is motivated by the positive impact of wealth-

consumption ratio on the market expected excess return. Conditions (E10) are reminiscent

of the dependence between the wealth-consumption ratio and the return on the market

under the physical measure. Under the physical measure, the wealth-consumption ratio

is positively correlated to the market. Under conditions (E9) and (E10), the covariance

COV∗
t [υT1 , RM,t→T1 ] is bounded:

COV∗
t [υT1 , RM,t→T1 ] ≥

1

Rf,t→T1

1

τt
M∗(2)

t→T1
+

(1− ρt)

R2
f,t→T1

τ 2t
M∗(3)

t→T1
+

(1− ρt)

R2
f,T1→TN

τ 2t
LEV∗

t . (E11)

Next, since cctT1 ≤ 1, we use (E7) and exploit (E9) and (E10) to obtain

E∗
tυT1 ≤ 1 +

(1− ρt)

R2
f,t→T1

τ 2t
M∗(2)

t→T1
+

(1− ρt)

R2
f,T1→TN

τ 2t
E∗

tM
∗(2)
T1→TN

.

Therefore,

1

E∗
tυT1

≥ 1

1 + (1−ρt)

R2
f,t→T1

τ2t
M∗(2)

t→T1
+ (1−ρt)

R2
f,T1→TN

τ2t
E∗

tM
∗(2)
T1→TN

. (E12)

Combining (E11) and (E12), the expected excess return is bounded

Et [RM,t→T1 −Rf,t→T1 ] ≥
1

Rf,t→T1

1
τt
M∗(2)

t→T1
+ (1−ρt)

R2
f,t→T1

τ2t
M∗(3)

t→T1
+ (1−ρt)

R2
f,T1→TN

τ2t
LEV∗

t

1 + (1−ρt)

R2
f,t→T1

τ2t
M∗(2)

t→T1
+ (1−ρt)

R2
f,T1→TN

τ2t
E∗

tM
∗(2)
T1→TN︸ ︷︷ ︸

This is our measure of expected excess return

This shows that under minimal conditions, our measure of expected excess return is a bound

on the true expected excess return when consumption is taken into account.

95



Next, we focus on the third-order Taylor expansion-series of the inverse marginal utility

function.

E.2.2 Third-order Taylor expansion-series

A Third-order Taylor expansion of
u
′
[W t→T2 ]

u′ [Wt→T2 ]
arround X = X0 gives

G = 1 + (x− x0)
1

x0

1

τt
+ (y − y0)

1
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2
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(
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3
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z20x0

(
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τ 2t
+
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τ 3t
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3
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1

z20y0

(
4 (1− ρt)

τ 2t
+

6 (κt − 2ρt + 1)

τ 3t

)
(z− z0)

2 (y − y0)

+6
1

3!

(
∂3G

∂x∂y∂z

)
X=X0

(z− z0) (y − y0) (x− x0)

+3
1

3!

(
∂3G

∂2x∂z

)
X=X0

(x− x0)
2 (z− z0)

+3
1

3!

(
∂3G

∂2y∂z

)
X=X0

(y − y0)
2 (z− z0)
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Therefore,

υT1 = E∗
T1
G

= 1 + (x− x0)
1

x0

1

τt
+ (y − y0)

1

y0

1

τt
+

1

x2
0

(1− ρt)

τ 2t
(x− x0)

2

+
1

y2
0

(1− ρt)

τ 2t
(y − y0)

2 +
1

z20

(1− ρt)

τ 2t
E∗

T1
(z− z0)

2 +
1

x0y0

(
2 (1− ρt)

τ 2t

)
(x− x0) (y − y0)

+
1

x3
0

(κt − 2ρt + 1)

τ 3t
(x− x0)

3 +
1

z30

(κt − 2ρt + 1)

τ 3t
E∗

T1
(z− z0)

3 +
1

y3
0

(κt − 2ρt + 1)

τ 3t
(y − y0)

3

+
3

3!

1

x2
0y0

(
4 (1− ρt)

τ 2t
+

6 (κt − 2ρt + 1)

τ 3t

)
(x− x0)

2 (y − y0)

+
3

3!

1

y2
0x0

(
4 (1− ρt)

τ 2t
+

6 (κt − 2ρt + 1)

τ 3t

)
(y − y0)

2 (x− x0)

+
3

3!

1

z20x0

(
4 (1− ρt)

τ 2t
+

6 (κt − 2ρt + 1)

τ 3t

)
(x− x0)E∗

T1
(z− z0)

2

+
3

3!

1

z20y0

(
4 (1− ρt)

τ 2t
+

6 (κt − 2ρt + 1)

τ 3t

)
(y − y0)E∗

T1
(z− z0)

2

Using Eq (8) in the main text of the paper, it follows that

υT1 = E∗
T1
G

= 1 + (x− x0)
1

x0

a1,t + (y − y0)
1

y0

1

τt
+

1

x2
0

a2,t (x− x0)
2

+
1

y2
0

a2,t (y − y0)
2 +

1

z20
a2,tE∗

T1
(z− z0)

2 +
2

x0y0

a2,t (x− x0) (y − y0)

+
1

x3
0

a3,t (x− x0)
3 +

1

z30
a3,tE∗

T1
(z− z0)

3 +
1

y3
0

a3,t (y − y0)
3

+
6

3!

1

x2
0y0

a2,3,t (x− x0)
2 (y − y0) +

6

3!

1

y2
0x0

a2,3,t (y − y0)
2 (x− x0)

+
6

3!

1

z20x0

a2,3,t (x− x0)E∗
T1
(z− z0)

2

+
6

3!

1

z20y0

a2,3,t (y − y0)E∗
T1
(z− z0)

2 (E13)
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We then compute the expected value E∗
tυT1 to obtain

E∗
tυT1 = 1 + (x− x0)

1

x0

a1,t +
1

x2
0

a2,tE∗
t (x− x0)

2

+
1

y2
0

a2,tE∗
t (y − y0)

2 +
1

z20
a2,tE∗

tE∗
T1
(z− z0)

2 +
2

x0y0

a2,tE∗
t (x− x0) (y − y0)

+
1

x3
0

a3,tE∗
t (x− x0)

3 +
1

z30
a3,tE∗

tE∗
T1
(z− z0)

3 +
1

y3
0

a3,tE∗
t (y − y0)

3

+
1

y2
0x0

a2,3,tE∗
t (y − y0)

2 (x− x0) +
1

z20x0

a2,3,tE∗
t (x− x0)E∗

T1
(z− z0)

2

+
1

z20y0

a2,3,tCOV∗
t

(
y,E∗

T1
(z− z0)

2)
Notice that

x− x0 ≤ 0,

and the following inequalities hold:

a2,t > 0, a2,t ≤ 0, a3,t ≥ 0, a2,3,t ≥ 0, (E14)

and

E∗
t (x− x0)

3 ≤ 0, E∗
t (y − y0)

3 ≤ 0, E∗
t (x− x0)

3 ≤ 0,

and

E∗
t (x− x0) (y − y0) = COV∗

t (x− x0,y) ≥ 0

and

E∗
t (y − y0)

2 (x− x0) ≤ 0 (because (x− x0) ≤ 0)

E∗
t (x− x0)E∗

T1
(z− z0)

2 ≤ 0 (because (x− x0) ≤ 0)

COV∗
t

(
y,E∗

T1
(z− z0)

2) = LEV∗
t ≤ 0.
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This allows us to bound E∗
tυT1 as

E∗
tυT1 ≤ 1 +

1

y2
0

a2,tE∗
t (y − y0)

2 +
1

z20
a2,tE∗

tE∗
T1
(z− z0)

2

+
1

z30
a3,tE∗

tE∗
T1
(z− z0)

3 +
1

y3
0

a3,tE∗
t (y − y0)

3

+
1

z20y0

a2,3,tCOV∗
t

(
y,E∗

T1
(z− z0)

2) .
As a result,

1

E∗
tυT1

≥ 1
1 + 1

y2
0
a2,tE∗

t (y − y0)
2 + 1

z20
a2,tE∗

tE∗
T1
(z− z0)

2

+ 1
z30
a3,tE∗

tE∗
T1
(z− z0)

3 + 1
y3
0
a3,tE∗

t (y − y0)
3

+ 1
z20y0

a2,3,tCOV∗
t

(
y,E∗

T1
(z− z0)

2)


(E15)
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Next, our goal is to bound COV∗
t (υT1 ,y − y0) = COV∗

t (υT1 , RM,t→T1 −Rf,t→T1). We then

use (E13) to compute this covariance as

COV∗
t (υT1 ,y − y0)

=
1

y0

1

τt
VAR∗

t (y) +
1

x2
0

a2,tCOV∗
t

(
(x− x0)

2 ,y − y0

)
+

1

y2
0

a2,tCOV∗
t

(
(y − y0)

2 ,y − y0

)
+

1

z20
a2,tCOV∗

t

(
E∗

T1
(z− z0)

2 ,y − y0

)
+

2

x0y0

a2,tCOV∗
t ((x− x0) (y − y0) ,y − y0)

+
1

x3
0

a3,tCOV∗
t

(
(x− x0)

3 ,y − y0

)
+

1

z30
a3,tCOV∗

t

(
E∗

T1
(z− z0)

3 ,y − y0

)
+

1

y3
0

a3,tCOV∗
t

(
(y − y0)

3 ,y − y0

)
+
6

3!

1

x2
0y0

a2,3,tCOV∗
t

(
(x− x0)

2 (y − y0) ,y − y0

)
+
6

3!

1

y2
0x0

a2,3,tCOV∗
t

(
(y − y0)

2 (x− x0) ,y − y0

)
+
6

3!

1

z20x0

a2,3,tCOV∗
t

(
(x− x0)E∗

T1
(z− z0)

2 ,y − y0

)
+
6

3!

1

z20y0

a2,3,tCOV∗
t

(
(y − y0)E∗

T1
(z− z0)

2 ,y − y0

)
.

Notice that

COV∗
t ((x− x0) (y − y0) ,y − y0) = E∗

t (x− x0) (y − y0)
2 ≤ 0 (since x ≤ x0),

and

COV∗
t

(
(x− x0)

2 (y − y0) ,y − y0

)
= E∗

t (x− x0)
2 (y − y0)

2 ≥ 0.

We assume

COV∗
t

(
(x− x0)

2 ,y − y0

)
≤ 0 (E16)
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and

COV∗
t

(
(x− x0)

3 ,y − y0

)
≥ 0, (E17)

COV∗
t

(
(y − y0)

2 (x− x0) ,y − y0

)
≥ 0, (E18)

COV∗
t

(
(x− x0)E∗

T1
(z− z0)

2 ,y − y0

)
≥ 0. (E19)

These conditions are reminiscent of the sign of coskewness and cokurtosis when random

variables of interest are return. While y−y0 and z−z0 are realized excess returns, x−x0 is

a function of wealth-consumption ratio (See (E4)-(E6)). Because coskewness is negative (see

Harvey and Siddique (2000)) and cokurtosis is positive (Dittmar (2002)) and the wealth-

consumption ratio is positively correlated to the market return, one should expect (E17)-

(E19) to hold.

Under conditions (E16)-(E19), it follows that

COV∗
t (υT1 ,y − y0) ≥ 1

y0

1

τt
VAR∗

t (y) +
1

y2
0

a2,tE∗
t (y − y0)

3 +
1

z20
a2,tCOV∗

t

(
E∗

T1
(z− z0)

2 ,y − y0

)
+

1

z30
a3,tCOV∗

t

(
E∗

T1
(z− z0)

3 ,y − y0

)
+

1

y3
0

a3,tCOV∗
t

(
(y − y0)

3 ,y − y0

)
+

1

z20y0

a2,3,tCOV∗
t

(
(y − y0)E∗

T1
(z− z0)

2 ,y − y0

)
(E20)

101



Combining (E15) and (E20) leads to

Et (RM,t→T1 −Rf,t→T1) =
COV∗

t [υT1 , RM,t→T1 ]

E∗
tυT1

≥



1
y0

1
τt
VAR∗

t (y) +
1
y2
0
a2,tE∗

t (y − y0)
3

1
z20
a2,tCOV∗

t

(
E∗

T1
(z− z0)

2 ,y − y0

)
+ 1

z30
a3,tCOV∗

t

(
E∗

T1
(z− z0)

3 ,y − y0

)
+ 1

y3
0
a3,tCOV∗

t

(
(y − y0)

3 ,y − y0

)


1 + 1

y2
0
a2,tE∗

t (y − y0)
2 + 1

z20
a2,tE∗

tE∗
T1
(z− z0)

2

+ 1
z30
a3,tE∗

tE∗
T1
(z− z0)

3 + 1
y3
0
a3,tE∗

t (y − y0)
3

+ 1
z20y0

a2,3,tCOV∗
t

(
y,E∗

T1
(z− z0)

2)


which simplifies to

Et (RM,t→T1 −Rf,t→T1) ≥

 1
y0

1
τt
M∗(2)

t→T1
+ 1

y2
0
a2,tM∗(3)

t→T1
+ 1

y3
0
a3,tM∗(4)

t→T1

+ 1
z20
a2,tLEV∗

t +
1
z30
a3,tLES∗

t


 1 + 1

y2
0
a2,tM∗(2)

t→T1
+ 1

z20
a2,tE∗

tM
∗(2)
T1→TN

+ 1
y3
0
a3,tM∗(3)

t→T1

+ 1
z30
a3,tE∗

tM
∗(3)
T1→TN

+ 1
z20y0

a2,3,tLEV∗
t


We, thereafter, replace y0 and z0 by their expressions

Et (RM,t→T1 −Rf,t→T1) ≥

 1
Rf,t→T1

1
τt
M∗(2)

t→T1
+ 1

R2
f,t→T1

a2,tM∗(3)
t→T1

+ 1
R3

f,t→T1

a3,tM∗(4)
t→T1

+ 1
R2

f,T1→TN

a2,tLEV∗
t +

1
R3

f,T1→TN

a3,tLES∗
t


 1 + 1

R2
f,t→T1

a2,tM∗(2)
t→T1

+ 1
R2

f,T1→T2

a2,tE∗
tM

∗(2)
T1→TN

+ 1
R3

f,t→T1

a3,tM∗(3)
t→T1

+ 1
R3

f,T1→TN

a3,tE∗
tM

∗(3)
T1→TN

+ 1
R2

f,T1→TN
Rf,t→T1

a2,3,tLEV∗
t


︸ ︷︷ ︸
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E.3 Is our Market Expected Return a Lower Bound to the Ex-

pected Return?

Setting consumption-wealth ratio to 1 in Section E.2 and using reasonable minimal assump-

tions that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the

restrictions (E9) proves that our measure of expected excess market return (10) remains a

lower bound to the true expected excess market return.

Setting consumption-wealth ratio to 1 in Section E.2 and using reasonable assumptions

that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the restric-

tions (E14) proves that our measure of expected excess market return (D1) remains a lower

bound to the true expected excess market return.

F Additional performance tests
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Table A1: Out-of-sample prediction and allocation performance reached by fixing
τ and ρ and estimating it, from 2000 (using 1-month returns as determinant for
preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. RPLog
t→T1

is
the lower bound of Martin (2017). RPt→T1 is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). We report in Panel A the
out-of-sample prediction R2

OOS in percent (see Equation (29)). For each prediction method, we test for
the significance of the R2

OOS difference relative to RPt→T1
using a Diebold and Mariano (1995) test. We

estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (31)). The physical variances are computed using
option prices (see Appendix A.6). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RPt→T1

using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. ∗,
∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

T1 τ = 1 and ρ = 2 ρ = 2 ρ, τ estimated

RPLog
t→T1

RPt→T1
RPt→T1,T∗

N
RPt→T1

RPt→T1,T∗
N

RPt→T1
RPt→T1,T∗

N

Panel A: Out-of-sample R2

10d −0.09 −0.07 0.08 0.37 −1.44 0.11 0.12
1 1.09 1.18 1.73 1.15 −0.39 1.15 1.46
2 1.34 1.59 3.84∗∗ 1.30 2.09 1.42 1.98
3 1.18 1.61 4.71∗∗∗ 1.76 4.05 2.09 3.59∗

4 2.16 2.86 5.47∗∗ 3.85 5.38 4.01 6.18∗∗

5 3.12 4.19 6.44∗∗ 5.92 6.38 6.10 8.08∗∗

6 3.61 4.97 7.26∗∗ 6.89 6.79 7.17 7.92
9 4.32 6.37 8.76∗∗ 8.98 10.35 8.59 9.35
12 4.00 6.54 8.44 9.23 9.09 8.27 9.24
18 2.29 6.17 7.66 9.70 10.65 7.72 9.29

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 4.56 4.69 5.81 8.50 −8.88 7.96 6.79
1 3.55 3.68 3.52 4.91 −13.24 4.40 2.94
2 3.69 3.96 6.41 4.39 −6.90 2.96 4.49
3 4.14 4.54 9.50∗∗ 4.93 1.44 5.23 7.88∗

4 4.27 4.75 8.46∗∗ 5.71 1.05 5.39 6.75
5 4.01 4.50 6.85 5.80 5.17 5.66 4.41
6 4.26 4.89 7.24 4.91 1.95 4.92 2.50
9 4.18 4.88 6.19 3.58 3.91 5.48 5.03
12 4.52 5.45∗∗∗ 6.85∗∗ −2.50∗∗∗ −17.46 5.91∗∗∗ 6.45∗

18 4.59 5.62∗∗∗ 6.11∗∗ −27.26∗∗∗ −30.67 3.86∗∗∗ 5.30∗∗
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Table A2: Out-of-sample prediction and allocation performance reached by fixing
τ and ρ and estimating it, from 2000 (using 12-month returns as determinant
for preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. RPLog
t→T1

is
the lower bound of Martin (2017). RPt→T1 is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (15). RPt→T1,TN

is the risk premia measure in Equation (10). We report in Panel A the
out-of-sample prediction R2

OOS in percent (see Equation (29)). For each prediction method, we test for
the significance of the R2

OOS difference relative to RPt→T1
using a Diebold and Mariano (1995) test. We

estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (31)). The physical variances are computed using
option prices (see Appendix A.6). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RPt→T1

using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. ∗,
∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

T1 τ = 1 and ρ = 2 ρ = 2 ρ, τ estimated

RPLog
t→T1

RPt→T1
RPt→T1,T∗

N
RPt→T1

RPt→T1,T∗
N

RPt→T1
RPt→T1,T∗

N

Panel A: Out-of-sample R2

10d −0.09 −0.07 0.08 0.60 0.33 0.52 −0.02
1 1.09 1.18 1.73 2.24 2.13 1.91 2.01
2 1.34 1.59 3.84∗∗ 2.45 2.69 2.05 2.75∗

3 1.18 1.61 4.71∗∗∗ 2.78 3.20 2.57 3.66∗

4 2.16 2.86 5.47∗∗ 4.47 5.26 3.81 5.39∗∗

5 3.12 4.19 6.44∗∗ 6.27 7.37∗∗ 6.07 7.45∗∗

6 3.61 4.97 7.26∗∗ 6.94 5.06 6.83 8.30∗

9 4.32 6.37 8.76∗∗ 8.71 9.10 8.85 9.29
12 4.00 6.54 8.44 8.44 9.16 8.43 9.21
18 2.29 6.17 7.66 7.36 9.85 8.47 10.51

Panel B: Out-of-sample mean-variance certainty equivalent with γ = 3

10d 4.56 4.69 5.81 9.33 4.50 8.40 6.65
1 3.55 3.68 3.52 3.10 1.72 2.51 −0.10
2 3.69 3.96 6.41 3.69 4.27 3.36 2.85
3 4.14 4.54 9.50∗∗∗ 6.49 5.74 6.38 6.45
4 4.27 4.75 8.46∗∗ 7.03 5.96 5.47 5.88
5 4.01 4.50 6.85 4.57 3.77 4.03 3.05
6 4.26 4.89 7.24 −1.76 −4.24 −2.67 −1.10
9 4.18 4.88 6.19 1.15 4.65 0.57 6.57∗

12 4.52 5.45∗∗∗ 6.85∗∗ 3.74∗∗∗ 1.80 3.34∗∗∗ 0.20
18 4.59 5.62∗∗∗ 6.11∗∗ 5.36∗∗∗ −25.16 2.29∗∗∗ −5.67
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