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Abstract

The equity and variance risk premia at a given horizon 77 depend on the risks of
future intertemporal shifts in the economic environment, beyond 77. We derive novel
estimates of these risk premia, which account for intertemporal hedging and embed
information on the term structure of market return moments. We compute them using
options and find that intertemporal hedging drives up to 70% of the equity risk premium
and half of the variance risk premium. In particular, intertemporal hedging increases
the equity risk premium in times of market expansion, characterized by long investors’
horizons. Our estimates improve the out-of-sample R? of market return prediction by

a factor of up to 2.
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1 Introduction

The equity risk premium—the expected return on the equity market over the risk-free
rate—is a crucial input for corporate valuation and portfolio allocation. Unfortunately, it is
also notoriously hard to estimate ez ante. Martin (2017) shows how the risk-neutral market
variance discounted at the risk-free rate provides a lower bound for the equity risk premium,
in a one-period economy that ignores the higher-order moments of market returns. A major
benefit of his approach is that the risk-neutral variance can be easily computed from observed
option prices. Chabi-Yo and Loudis (2020) and Tetlock (2023) extend the approach of Mar-
tin (2017) and provide estimates for the equity risk premium that account for higher-order
risks, still in a one-period model.

Restricting the economy to a one-period economy allows simplifying the analysis, but at
the expense of strong assumptions. In particular, it ignores the risks of future intertemporal
shifts in the economic environment, e.g., changes in the expected returns or return volatility.
Consider, for example, forecast horizon 17 > t. A one-period model assumes that investors
choose their portfolio allocation at time ¢ ignoring the risks beyond time T;. These risks,
however, impact future consumption. Merton (1973) shows that investors optimally seek to
hedge these risks by tilting their portfolio allocation towards assets that deliver higher returns
when consumption is negatively affected. Intertemporal hedging after time 77 therefore
affects demand, and thus equilibrium prices and returns at horizon 7.

We derive novel estimates for the equity risk premium, which take into account both
higher order risks and intertemporal hedging. Our model features a multi-period economy, in
which the representative investor chooses the optimal allocation to the market, to maximize
the expected utility of the wealth accumulated between time ¢ and time T > Ti. Ty
represents the investment horizon of the investor. In this economy, we derive an estimate for
the equity risk premium with horizon T}, using a Taylor expansion of the inverse marginal
utility. The resulting equity risk premium depends on the conditional moments of the horizon

Ti-market returns, but also on time-t expected conditional moments of returns over [17, Ty].



Whereas the bounds of Martin (2017) and Chabi-Yo and Loudis (2020) only need options
expiring at T; to forecast the equity risk premium at horizon T}, our method uses options
at horizons 17 and Ty.

Similarly, we derive an estimate for the conditional variance risk premium with horizon
T1, which also depends on time-t conditional moments of returns betweem 77 and Ty. All
return moments can be readily estimated using available option prices.

We compute estimates for the equity risk premium and the variance risk premium on the
S&P 500 from 1996 to 2023, over horizons ranging from 10 days to 18 months. We show
that accounting for intertemporal hedging leads to an increase of the equity risk premium,
in particular during times of market calm. Intertemporal hedging accounts for up to 80%
of the total equity risk premium during these periods, and around 30% during NBER reces-
sions. Furthermore, our risk premium allows us to improve the out-of-sample R? of return
prediction, compared to the bounds of Martin (2017) and Chabi-Yo and Loudis (2020). For
all forecast horizons T} from 10 days to 18 months, the out-of-sample R? increases with the
investors’ horizon Ty, up to a given Ty. For example, for 77 at 10 days, the maximum out-
of-sample R? is achieved at 6 months. For T} larger than two months, the maximum R? is
obtained for the longest horizon for which we have available option maturities, namely Tx =
2 years. We also construct market-timing strategies and compute realized mean-variance
certainty equivalents. These certainty equivalents indicate that our risk premium reaches
better forecasts of both the first and second return moments, and that the improvements
upon the forecasts of Chabi-Yo and Loudis (2020) are statistically significant.

We define the implied investors’ horizon T ,, as the investment horizon which at each
time ¢ maximizes the fit of our equity risk premium estimate to the data. Specifically, Ty,
is chosen so that it maximizes the in-sample R? of returns over a window of three months
[t—3m,t]. We find that the implied investors’ horizon switches between the longest available
horizon Ty, e.g., two years, and the shortest horizon Ty > T;. When the probability of a

crash is high (above 10%), the implied investors’ horizon is short, and it is equal to two



years otherwise. This result provides empirical evidence to the theory of Hirshleifer and
Subrahmanyam (1993), which predicts that investors’ time horizons shorten during periods
of uncertainty due to increased risk aversion and limited attention. It is also in line with
Campbell and Vuolteenaho (2004), who find that in volatile markets, investors become more
sensitive to "bad beta” — short-term cash flow shocks—, than to "good beta” — long-term
discount rate changes—.

Whenever the probability of a crash is low, the representative agent thus behaves as a
long-term investor, and intertemporal hedging shifts the equity risk premium upward.

Given these switches in the implied investors’ horizon, we further optimize our equity risk
premium by setting it, at each time ¢, equal to the risk premium at investment horizon 7%,
—the implied investors’ horizon at time t—. We thus obtain an equity risk premium estimate
which matches the estimate at Ty = 2 years during most of the time series, and switches to
the estimate at the shortest available Ty > T; when the probability of a crash is high. The
resulting equity risk premium is higher than the one of Chabi-Yo and Loudis (2020) under
normal market conditions, and roughly at the same level during market stress.

Intertemporal hedging increases the equity risk premium at short horizons more than
it does at longer horizons. Therefore, it also impacts the term structure of equity risk
premium, which we define as the hold-to-maturity yield on the S&P 500 implied by our
estimates at various horizons. Where as the term structure of equity risk premium of Chabi-
Yo and Loudis (2020) is upward sloping under normal market conditions, we obtain a term
structure of equity risk premium which is essentially flat. During market stress, it is strongly
downward sloping.

These results are robust to changes in our main assumptions. Our main results are
based on preference parameters that are fixed. We estimate these parameters over the
period 1996-2023, as linear functions of past returns. We show that the resulting preference
parameters vary with market conditions, and generate larger out-of-sample R?. However,

estimating them over the full time period yields a look-ahead bias. We overcome this issue by



estimating these parameters over a telescopic window of data, initially ranging from 1996 to
2006, and expanding with time. We show, however, that the resulting equity risk premium
estimates do not improve upon our main estimates in terms of out-of-sample R?, over the
period 2006-2023. We also study an extension of our setup that allows the representative
investor to rebalance her portfolio between times 77 and Ty. Our conclusions survive this
change.

We contribute to different strands of literature. The first strand uses options prices to
infer information about the return distribution under the physical probability measure. The
risk-neutral leverage effect used in this paper is closely related to the asymmetric volatility
implied correlation studied by Jackwerth and Vilkov (2019). They use short- and long-term
options on the S&P 500 Index and options on VIX futures to calibrate the risk-neutral
correlation between returns and future volatility. As options on VIX futures are available
only starting in 2006, data availability prevents us from using their methodology.

Our work is also related to the vast literature on the importance of the variance risk
premium—the difference between the physical and risk-neutral variance—for predicting the
equity risk premium (see, Bollerslev, Tauchen, and Zhou, 2009). Hu, Jacobs, and Seo (2021)
show that the leverage effect, measured under the physical probability measure, has a strong
positive relation with the variance risk premium. We derive an expression that relates the
equity risk premium to the variance and leverage effect under the risk-neutral measure.

We contribute to the growing literature that constructs bounds on physical return mo-
ments. Building on Martin (2017), Martin and Wagner (2019), Kadan and Tang (2020),
and Chabi-Yo, Dim, and Vilkov (2021) build bounds for the expected return on individual
stocks and Kremens and Martin (2019) provide a bound for currency expected exchange rate
appreciation using Quanto index options. See Back, Crotty, and Kazempour (2022) for a
discussion and empirical tests of bounds for individual stocks and the stock market. Our
novel bound for the equity risk premium involves intertemporal terms implied from options

prices.



The Recovery Theorem of Ross (2015) shows how to disentangle the physical probability
distribution from the pricing kernel and risk-neutral probabilities, but has been challenged
on theoretical and empirical grounds.! Instead of making assumptions about the pricing
kernel process, Schneider and Trojani (2019) impose sign restrictions on the risk premia of
return moments and find predictive power for future returns. Our approach differs in that we
express the equity risk premium as a function of risk-neutral moments of returns at different
horizons and preference parameters estimated from the data.

Finally, our paper is related to the literature on the equity term structure. van Bins-
bergen, Brandt, and Koijen (2012) show that the expected one-period return on claims on
dividends decreases in the maturity of the dividend. Gormsen (2020) shows that this slope is
countercyclical (see also, van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; van Binsbergen
and Koijen, 2017; Bansal, Miller, Song, and Yaron, 2021; Ulrich, Florig, and Seehuber, 2022;
Giglio, Kelly, and Kozak, 2024). While the main object in this literature is the expected
one-period return on claims on dividends several years in the future, we focus on the term
structure of expected total market return with maturity of up to one year.

Our paper proceeds as follows. Section 2 presents our theoretical results based on a
second-order approximation, Section 3 discusses our empirical framework to build equity
risk premium forecasts. Section 4 presents our main empirical results. In Section 5 we show
the results when estimating the preference parameters of our model. Sections 6 and 7 study

the robustness of our results to two extensions. Finally, Section 8 concludes.

!Borovicka, Hansen, and Scheinkman (2016) show that Ross’ assumptions rule out realistic models. Bak-
shi, Chabi-Yo, and Gao (2018) do not find support for the implications of the Recovery Theorem using U.S.
Treasury bond futures. While Audrino, Huitema, and Ludwig (2019) find some forecasting power, Jensen,
Lando, and Pedersen (2019) generalize the assumptions of Ross’ (2015) model and find weak predictive power
for future realized returns.



2 Theoretical framework

In this section, we provide our main theoretical results. We derive a lower bound on the
equity risk premium in a multi-period economy, accounting for the risks of future intertem-
poral shifts in the economic environment. We further use our methodology to derive the
probability of a crash under the physical measure. We highlight the new components of the
equity risk premium and crash probabilities, compared to estimates that do not account for
intertemporal hedging. These components capture conditional moments of market returns

beyond the forecast horizon. All proofs are provided in Appendix A.

2.1 Equity risk premium in a multi-period economy

We consider a three-date (two-period) economy with dates ¢, T7, and Tl such that t < T} <
Ty.2, and a representative agent. 7T} is the forecast horizon at which we aim to build a lower
bound for the equity risk premium. T is the representative agent’s investment horizon. We
assume that this economy is arbitrage-free, which guarantees the existence of a stochastic
discount factor (SDF) and of a risk-neutral measure. For simplicity, we assume no interest
rate risk.

At time ¢, the representative agent invests her wealth W, in an asset delivering the risk-free
gross return Ry, .7, and in a set of risky assets delivering gross returns Ry ;7 , k= 1,..., N.
Under no-arbitrage conditions, the expected excess return on each risky asset from time ¢
to time 7} can be expressed as the risk-neutral covariance between the asset return and the

inverse of the one-period SDF from ¢ to 711, ms_p:

(1)

* E m )
Et (Rk7t_>Tl - Rfﬂf—}Tl) - C@Vt <Rl€,t—>T17 t—t_)T) .

t—T1

See Appendix A.1 for the proof of this identity, also used by Chabi-Yo and Loudis (2019).

2We use the notation Ty = t for simplicity.



Let us aggregate the gross returns on risky assets in the vector R;,7,. The intermediate

wealth of the representative agent at forecast horizon 77 is

WTl =W, (Rfﬂf%Tl + wg(RtﬁTl - Rf,t%T1)> =W (ngt%Tl) ) (2>

where w; is the vector of portfolio weights in risky assets. At time 77, the representative

agent can rebalance her portfolio so that her terminal wealth at Ty is

WTN = Wt%Tl (RﬁTlﬁ‘TN + w-Yr‘l (RTI*)TN - RﬁTl%TN)) = WTI (w}} RTlﬁTN) ) (3)

where wr, is the vector of portfolio weights in risky assets at time T, R 7,7, is the risk-free
gross return from time 7} to time T, and Ry 7, is the gross return vector of risky assets.
The investor chooses the portfolio weights {w;, wr, } so as to maximize her expected utility

of terminal wealth® over the period [t, T]:*

max E,u [Wr,]. (4)

Wt,wWTy

The main innovation of our approach is that the investor considers what happens beyond the
forecast horizon 717, up to the representative agent’s investment horizon Ty, when solving
the portfolio allocation problem. In contrast, the bounds of Martin (2017); Chabi-Yo and
Loudis (2020) and Tetlock (2023) are derived in an economy in which the investor maximizes
the expected utility of wealth over [t, T7].

Provided that no-arbitrage conditions hold in this economy, and assuming that the gross
return on the market can be used as proxy for the return on aggregate wealth, we show in

Appendix A.2 that we can express the one-period stochastic discount factor (SDF) from ¢

3The utility function u[.] is well-defined, its derivatives up to order four exist, and their signs obey the
following economic theory restriction: sign(u(i) [1) =sign(—1)""! (Eeckhoudt and Schlesinger, 2006; Deck
and Schlesinger, 2014).

4We exclude consumption in (4) for simplicity. In the Internet Appendix E, we show that under minimal
assumptions regarding the sign of the correlation between the consumption wealth ratio and the market
return, the expected return derived in this section still holds.
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where [E7. (-) denotes the expected value at time T} under the risk-neutral measure, Ry 1,
is the risk-free gross return from ¢ to T and Ry -7, is the gross market return between ¢
and Tly.

The one-period SDF thus depends on the marginal utility of wealth at the representative
agent’s investment horizon T). This result stands in contrast to the SDF of Martin (2017),
Chabi-Yo and Loudis (2020) and Tetlock (2023), which do not depend on any quantity
beyond the forecast horizon T7.

We do not assume that we know the functional form of the marginal utility function. We
use a Taylor expansion series of the inverse of the marginal utility to derive bounds on the

market risk premium as a function of risk-neutral moments of returns. Define the function

_ u' [(Wizoyo]
f [‘7:73/] - U/ [th_y] ’

with © = Rarimy, ¥ = Ry 1y, o = Ry and yo = Ry 7, . Since there is no interest
rate risk, Ry i1y = 2y and Ryi vy = ZoYo. A second-order Taylor expansion of f[.,.]

around (x,y) = (o, yo) produces a one-period SDF of the form®

]EtmtA)Tl ~ (1 + le)
mi—1y ]E? (1 + ZTI) 7

where

ay.t
T = g—=Tr T ;=T
2T (RM T Rf T)
Rf,tA)T1

a2 ¢ 2 a2t *(2
+ RQ—(RMJ—>T1 - Rf7t—>T1) + R2 MTSLT,&,?)
f7t—>T1 f:Tl —>TN

5In Section 6, we extend our framework to allow the representative agent to rebalance her portfolio at
discrete times t such as T7 <t < Ty.



*(2) . 2 . . . .
and M~ = E} (Ruz o1y — Rymory)” is the risk-neutral variance at time 77. The
coefficients a1+, as; and as; in the Taylor expansion series are functions of the investor’s

risk, skewness and kurtosis tolerance parameters 7;, p; and k;:

- 1 _ (I—ps) _ (s+1-2pp)
1t = = Qa2 = 2 azt = T3, (8)

Tt Tt
where

uV) WiRj i1y

"= _WtRf,tﬁTNU(z) [WtRf7t—>TN]7
b~ L u® WiRpr ] u) [WiRs 1]
21 (u® [W,R; o1y ) ’
Ky = lu(‘l) (WiRyeory] (u(l) [WtRf’HTN])Q, (9)

3l (u® [WiRpi1y))”

The proof of Equation (6) is in Appendix A.3.°
Equations (6) and (7) show that the inverse of the SDF is a function of three terms:
the excess market return, the squared excess market return, and the market risk-neutral

. x(2)
variance Mp ™,

7, ab time Tj. This risk-neutral variance term is new and only arises in a
two-period economy.” In contrast, the risk, skewness and kurtosis tolerance parameters in
(9) differ from those derived by Chabi-Yo and Loudis (2020) but we expect this difference to
be small. They indeed involve risk-free returns between ¢ and T, instead of these returns

between t and T;. Due to the shape of the yield curve, the risk-free returns from 7 to Ty

tend to be close to 1 empirically.

5Qur baseline results do not involve kurtosis preference, but we define the kurtosis preference parameter
together with the risk aversion and skewness preference parameters for completeness. We will use the kurtosis
preference parameter in Section 7, where we apply third-order Taylor expansion series.

"We know from Merton’s ICAPM that shocks to risk can generate hedging demand and so can be priced.
But Merton’s ICAPM shows that market physical volatility is determinant in explaining the expected excess
return on a stock. Merton’s model argument is not about risk neutral market volatility. Strong evidence of
time-varying volatility risk premium suggests that the risk neutral market variance and the physical market
variance are distinct and carry different sets of information. Thus, our theoretical results are distinct from
implications from Merton’s ICAPM model. Further, Merton’s ICAPM was not intended to derive closed-
form expression of the risk premium on the market as a function of risk neutral correlation between market
return and market risk neutral volatility.

10



We present our main theoretical result in Proposition 1 below. In this proposition,
we combine the risk premium expression in Equation (1) with the SDF expression (6) to
provide a closed-form solution to the conditional expected excess market return in terms of

risk-neutral moments.

Proposition 1 Up to a second-order expansion-series, consistent with (6), under no-arbitrage

conditions, the equity risk premium is a function of risk neutral return moments:

a1, *(2) as, ¢ *(3) as,t *
Rf,t—)Tl t—T + R2 Mt—)Tl + R2 L]Evt

RPtHTl Ty = Et (RMJﬁ\Tl o Rf’t%Tl) - a2t *l(f;)_)Tl a2t l:TIZ(q;;[ ’
1 + ?,t;Tl Mt—>T1 + R%Tl L’TN Et MTl—)TN
(10)
where
LEV; = COV; (rarer, Mihr, ) (11)
and

M;EH—ZTj = E% (RM,TZ'HT]' — RﬁTi%Tj)n 5 with 1 < j, 1= 0, 1, Ty = t, and n > 1. (12)

Proof. See Appendix A.4. m

Two new terms contribute to the equity risk premium in a two-period economy, compared
to a one-period economy: the risk-neutral leverage effect LEV; and the expected future
variance E;‘M*T(IQTN. Our conjecture is that the risk-neutral leverage effect, LEV}, is negative
and as a result increases the equity risk premium due to the compensation required by
investors for exposure to the future risk-neutral variance. There is a vast literature on
leverage under the physical measure. Still, to our knowledge, our paper is the first to
show how relevant leverage under the risk-neutral measure is for computing the one-period
conditional expected excess market return in a two-period economy. Provided that as; is

negative, a negative risk-neutral leverage contributes positively to the conditional equity risk

premium.

11



We further show in the Internet Appendix E.3, that Eq. (10) remains a lower bound
to the expected excess market return provided that odd market risk neutral moments are
negative and conditions 1/7; > 1 and p, — 1 > 1 hold. Finally, under these conditions, we

can further restrict bound (10):

1 *(2) 1 *(3) 1 *
Ryt Mt—>Tl T R2 Mt—>Tl T R2 LEVt
RP > f 1 fit—Ty f,T1—TN (13)
=TIy = 1— 1 M*(Q) o 1 E*M*(Q) ’
R; Ty t—T R; Ty 5Ty t T —TN

We further show in Appendix E.2 that, when consumption is introduced in the repre-
sentative agent problem, under minimal realistic assumptions, our measure of risk premium

remains a lower bound to the expected market return.

2.2 Comparison to existing bounds

The computation of the risk-neutral leverage effect LEV; and of the expected future vari-
ance EjMi}(flTN relies on information from options of maturities 77 and Ty. In contrast,
the existing bounds of Martin (2017) and Chabi-Yo and Loudis (2020) and the equity risk
premium estimate of Tetlock (2023) only rely on options with maturity 7. The bound in
Martin (2017) corresponds to the expected excess return when the representative agent is en-
dowed with a myopic log utility. The log utility assumption corresponds to 7 =1 (a1 = 1)
and p; = 1 (ag; = 0), making higher-order moments and the leverage under the risk-neutral
measure irrelevant in a two-period economy. In case of a CRRA utility with relative risk

aversion «, an equivalent expression of (10) can be obtained by recognizing that (9) reduces

(a+1)

67

, and k; = %w In case of a CARA utility with absolute risk

to % =, pr = %
aversion @, an equivalent expression of (10) can be obtained by recognizing that (9) reduce
to Tit =y, py = %, and k; = % with oy = aWi Ry 41y, -

To compare our measure to the one of Chabi-Yo and Loudis (2020), we first introduce

Corollary 2, which expresses the conditional expected excess market return as a weighted

average of two risk premia.

12



Corollary 2 Up to a second-order expansion-series, consistent with (6), the expected excess

market return is a weighted average of two premia:

E, (RM,t‘)Tl - Rf,tHT1> = W:RR‘)TI + (1 )RptaT]\ﬂ (14>
where ) )
a a *
R“liTl IMIzt—>T + R?:tT Mt—>T1
RPt%Tl — 2 y (15)
1 + a2t M*( )
R?‘ t—Tq t_>T1
and
} LEV;
R]P)t—>TN = nrk(2) ) (16)
E MT1—>TN
with @
N 1 + f t2 tT Mt—>T1
Trt az ¢ *(2) azt * ’ (17)
1+ 3 Mt—)ﬂ W]E MR

Proof. See Appendix A.5. =

The first risk premium RP, .7, in Equation (15), which corresponds to the measure
obtained by Chabi-Yo and Loudis (2020) in a one-period economy, involves the risk-neutral
variance and skewness of market returns.® The novelty of decomposition is the contribution
of the risk-neutral leverage effect LEV; and expected future variance EIM;&%TN to the

conditional risk premium.

2.3 Intertemporal hedging demand premium

Building on Corollary 2, we define the intertemporal hedging demand premium as the differ-
ence between the equity risk premium from ¢ to 7} a two-period (three-date) economy and

the premium in a one-period (two-date) economy.

8Chabi-Yo and Loudis (2020) derive their expression using a third-order expansion-series of the inverse
marginal utility. The expression provided in Equation (15) is the counterpart of the one given by Chabi-Yo
and Loudis (2020) when using a second-order expansion-series of the inverse marginal utility.

13



Corollary 3 Up to a second-order expansion-series, the intertemporal hedging premium is

IHP gy = mRPor +(1—m)RPLp RP oy, (18)
One-period expected excess One-period expected excess
return in a two-period economy return in a one-period economy

and can be alternatively written as
[HPt‘)TLTN = (ﬂ-; - 1) (Rpt%ﬂ - RP?%TN) ) (19)

where RP,_,1,, RP} 7} are defined in (15), (16) and (17), respectively.

t—TN>

positive. A positive value indicates that our risk premia, RP; 7, r, will be higher than
RP,_,1,. The differences in the shape of the term structure of risk premia depend on how

IHP, 1, 1, varies across T}.

2.4 Variance risk premium in a multi-period economy

We define the variance risk premium as the difference between the conditional variance
under the physical measure and under the risk-neutral measure. As the risk-neutral vari-
ance is computed directly from options, it does not depend on intertemporal hedging. The
proposition below gives the conditional variance under the physical measure, in a two-period

economy.

Proposition 4 Up to a second-order expansion-series, consistent with (6), under no-arbitrage
conditions, the conditional variance of returns under the physical measure is a function of

risk neutral return moments:

]E’t (RM,t—>T1 - ]E‘tRM,t—)Tl)z - Et (RM,t—>T1 - Rf,t—>T1)2 - (Et (RM,t—>T1 - Rf,t—>T1)>2

14



where By (Ry -1, — Rpimy) s given by Equation (10),

M*(z) _|_ LM*(?)) + 2(12,15 M*(4)
R

t—T1 Rf,t—>T1 t—T1 FaoTy t—T1

t—T1

2 (LEK; +M; 3, My 1 )

2 £, T1—TN
Ei (Ryisn — Rpgsr)” = 7 (20)
1+ az,t M*(Q) + azt E*M*(Q)
R?yt*ﬂﬁ t—T1 R?chl STy t Ty —TnN

and

LEK; = COV; ((Rarism, — Rpaosm)’ s (Rum—ty — Remiory)?) -

Proof. See Appendix A.6. m

Similar to the equity risk premium, the conditional variance can be written as a func-
tion of risk-neutral moments between ¢ and the forecast horizon 77, but also intertemporal
hedging terms using information up to the representative agent’s investment horizon Ty.
This estimate of the physical variance presents two major advantages. First, it is com-
putable readily from available options and does not require high-frequency data. Second, it
is model-free and relies on minimal assumptions, similar to our estimate of the equity risk
premium.

In a two-period economy (without intertemporal hedging), the conditional variance re-

duces to

*(2 a *(3 a *(4
{Mt(—>;“1 + ¢Mt(—>%} + 7 - Mt(—>)Tl}

Ry tsmy ft—Ty

Et (RM,t—>T1 - Rf,t—)T1)2 - ) (21)

2
1+ M
Rf,t—>T1 t—T,

2.5 Probability of a crash

We further use our methodology to obtain the probability of a crash under the physical
measure. We define the probability of a crash as P; (Ry1m < ) where « is given. For
example, & = 0.8 for a 20% crash. We then exploit the no-arbitrage assumption that allows
us to move from the physical measure to the risk-neutral measure. While the coefficient «

could be time-varying or constant, we remove the time subscript on « to ease notations.

15



Proposition 5 Up to a second-order expansion-series of the inverse marginal utilities, the
conditional crash probability defined as I;q, ry[a] = P (Rarisr < @) can be expressed in

terms of risk neutral quantities

*(0) ai, *(1) as, «(2) as, .
M, Sry [a] + —Rf,tlel M, [a] + 2 :T M, 2 [a] + ﬁMt’v [
— Tty (22)
1 _'_ az ;¢ M*(2) + R2 az ¢ EIM;_‘(I?)TN 9

p)
Rf,t—>T1 t=Th T TN

Ht‘)Tl I'n [O‘] =

*n * n * * *(2
where Mt(—ﬂ)“l [Oz] = IEt ((RM,t%Tl - Rf,tﬁT1) ]lRJW,taTl <a) and Mt,v [a] = ]Et <MT(12>TN]]‘R1VI¢~>T1 <a)'

Proof. See Appendix A.7. =

Proposition 5 shows that truncated market moments matter for extracting the probability
of the market crash. But more importantly, it shows that when the SDF is a function of
future risk-neutral volatility as in (7), the tail of the distribution of risk-neutral volatility,
captured by M, [a], has an impact on the probability of a crash. When the expected future

volatility is not present in the SDF (6), the probability of a market crash reduces to

*(0 a *(1 a *(2
MO (o + 72 My o] + MG, o )

isnla] = P (Rypsr < ) =

2)
1+ 2 M
Rf‘,t%Tl t—T1

16



3 Empirical framework

We show in this section how the theoretical expressions derived in Section 2 can be brought

to the data.

3.1 Leverage and future risk-neutral variance

The equity risk premium and crash probabilities are functions of risk-neutral moments,
including LEV; and E;M;\”, . which involve Ti- and Ty-horizon quantities. While closed-
form expressions of risk-neutral moments for a given maturity in terms of option prices
are directly available using the spanning formula of Carr and Madan (2001) and Bakshi and
Madan (2000), closed-form expressions of the risk-neutral leverage effect and expected future
moments are not directly available.

We propose a method to compute LEV; and IEZ‘M;(IQLTN using options with maturity T}
and Ty. As the future variance is a function of the information set at 77, we assume that it

can be written as a nonlinear function f of Ry — Ry

M*T(12—)>TN =0 f (R — Rysom) + €, (24)

with E} (€|Rui—1) = Ef (¢;) = 0. Multiplying both sides of Equation (24) by R}, ,,, and
taking the time-t¢ risk-neutral expectation, we obtain

*(2 *(2

M (2) _ R?,T1—>TNM (2)

0, = t—=TN t—T ’ 95
"TE (R g S (Rarom, — Byaom) (25)

and

*(2 *(2
M*(Q) Mt(—)’_)_p]\) - R2,T1—)TNMt(—>’.)TI

Ti—»TN — Tox
TN Er (R [ (R — Ry

)f(RM7t—>T1 - Rf,t—)T1) + €. <26)

Note that (24) is distinct from the assumption that the risk neutral volatility follows a
GARCH process. The returns of interest in the left- and right-handsides of equation (24) are

different. The risk neutral quantity in the left-handside of (24) is obtained from the return
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from time T3 to Ty while the quantity in the right-handside of Equation (24) is a function
of the realized return from t to 7. We further show in the Internet Appendix E.1, that
the key risk-neutral volatility dynamics implied by (24) is distinct from that of a GARCH
process. Hence, a direct comparison cannot be made with a GARCH process. To obtain
the expected future variance, E;‘M*T(IQLTN, and leverage, LEV}, we compute the time-t risk-
neutral expected values of Equation (26) and the product of Ry, — Ryi—r and Equation
(26), respectively.

The final step consists to choose the function f(-). We use (R -1 — Rﬁt_)Tl)Q for two
reasons. First, note that the numerator of 6, is always positive in the data. Therefore,
our choice of function f(-) ensures that the expected future variance is a positive number.
Second, as (Rari—m — Rf7t_,T1)2 is a proxy for the first period conditional variance, this
function captures the well-documented fact that conditional variances are highly positively
correlated over time.

With this choice for the function f(-), we have,

*(2) *(2)
BV _ Mt%TN — R?,T1—>TNM1‘/HT1 M@ (27)
t Th—TNn — (4 (3 *(2 t—T1)
o Mti%ﬁ + 2Rf,lt—>T1 Mti%ﬁ + R?‘,taTl Mt(—>2f1 1
and,
M*(Q) R2 M*(Q)
LEV? _ t—TN - f,T1—TN t—T1 M:((‘i,‘)—p (28)
*(4 *(3 *(2 —11”
Mt(—>)T1 + 2Rf,t—>T1Mt(—>2f1 + R%t*)Tl Mt(—>’,)r1 '

Substituting Equations (27) and (28) in Equation (10) highlights that our expression for
the equity risk premium is a non-linear function of 7Ti-return moments and the T-return

variance.

3.2 Data

We use the S&P 500 index as the market portfolio. We obtain volatility surfaces, index
levels, and forward term structures for the S&P 500 Index and the zero-coupon rate term

structures from Ivy DB OptionMetrics. The data cover the period January 1996 to February
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2023. When computing the excess returns on the S&P 500 index before January 1996, we
use its level and the Fama term structures on U.S. Treasuries from the Center for Research
in Security Prices (CRSP).

Implementing our risk premia requires the evaluation of different functions of risk-neutral
expected values. We estimate these expected values at the end of each month and for each
maturity provided in OptionMetrics” Volatility Surface File (10, 30, 60, 91, 122, 152, 182,
273, 365, 547, and 730 days). We refer to these maturities as one week, one month, two
months, one quarter, four, five, six, and nine months, one year, 18 months, and two years.

We import annualized continuously-compounded zero-coupon yields from Jing Cynthia
Wu'’s website, Liu and Wu (2021). We interpolate the term structure of zero-coupon rates
using Nelson and Siegel (1987) model to find each maturity’s risk-free rate.

Following Chabi-Yo, Dim, and Vilkov (2021), we define a moneyness grid of 1,000 equally
spaced points from 1/3 to 3. We use a piecewise cubic Hermite polynomial to interpolate
the implied volatility surface to the moneyness grid. We extrapolate the implied volatility
using the closest value for moneyness points outside the implied volatility surface. Finally,
we use the Black-Scholes formula to convert implied volatilities to call and put prices for

each moneyness level.

3.3 Risk-neutral moments

We compute the risk-neutral moments of market returns and excess returns using the span-
ning formula of Carr and Madan (2001) and Bakshi and Madan (2000), as described in
Appendix B.1. We report in Figure 1 excess return moments over time for horizons of one

week to two years. To compare values across horizons, we report the annualized volatility

3
in the top graph <\/(365/T1) M:(j)ﬂ), skewness in the middle graph <M*(3) / <M*(2) )2>’

t—Th t—T1

2
and kurtosis in the bottom graph (MI@TI / (MI&%&) ) . We also report the expected future

second moments and leverage in Figure 2, using Equations (27) and (28).
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Risk-neutral volatilities and expected future volatilies vary over time, reaching a peak
during the financial crisis of 2008. Risk-neutral skewness values are almost always negative
and decrease over the sample period. Risk-neutral kurtosis values range between three and
eight and trend upward over the sample period. The risk-neutral leverage effect is always

negative and exhibits large time variations.

3.4 Preference parameters

The expressions for the one-period equity risk premium and crash probabilities provided in
Section 2 are all functions of the investor’s preference parameters 7, and p;.

Following Chabi-Yo and Loudis (2020), we first set these parameters to 7; = 1 and p; = 2
for all ¢, which is equivalent to a;, = 1 and as; = —1. Setting these parameters to constants
yields tractable equity and variance risk premia, which can be computed instantaneously
using readily available options. We derive our main results in Section 4 based on these values.
In Section 5, we attempt to estimate the preference parameters but find little improvement

in out-of-sample results. We further show that our main findings do not change.
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4 Results

In this section, we describe our estimates of equity risk premium RP,_,7, 7, and discuss
their ability to capture future returns. We show that RFP, .1, 1, outperforms the existing
premia for most horizons T, and underline the existence of an implied investors’ horizon,
which corresponds to the value of T that best matches the data. This horizon is long in
quiet times, when the probability of crash is low, and short during market turmoil, when

the probability of crash is high.

4.1 Estimated equity risk premium

We report in Figure 3 the time series of equity risk premia for horizons of T} equal to one
and six months, using investment horizons 7’y of one and two years. RP;_,1, 1, is larger than
RP,_,7, over the entire sample period, for both forecast horizons 7. Furthermore, RP; 1, 2,
is always larger than RP;_,p, 1,. The summary statistics in Table 1 confirm that these results
hold across forecast horizons. They suggest that that the equity risk premium increases in
the investment horizon Ty. Hence, the risks of future shifts in the economic environment
yield a positive intertemporal hedging premium, resulting in an increase of the equity risk
premium.

We further compare our equity risk premium estimate to the Implied Equity Risk Pre-
mium (IERP) of Tetlock (2023) in Figure 4.° The investment horizons are chosen such that
the two time series be as close to each other as possible. This results in T equal to one
year for 77 = one month, and Ty equal to two years for 7} = six months. Using these
values of Ty, the two risk premium estimates are close during quiet times. During NBER
recessions, the IERP is larger than our premium. The summary statistics in Table 1 con-

firm and complement these results. For short forecast horizons 77, the IERP is on average

9We thank Paul Tetlock for providing us with the growth optimal weights needed to calculate the IERP,
from January 1997 to December 2021. Based on these weights, we computed the IERP for all forecast
horizons over this time period. For comparability, all tables and graphs with the IERP are from January
1997 to December 2021.
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close to our premium with 7% = one year, and smaller than our premium with Ty = two
years. As our estimate is a lower bound for the equity risk premium, whereas the IERP
is a point estimate, the gap between the IERP and our premium is a lower bound to the
intertemporal hedging premium. When the forecast horizon increases, the gap reduces and
then disappears. This disappearance can be due to two reasons. Either the intertemporal
hedging premium becomes smaller for longer forecast horizons, or we only capture part of
it because of our maximum 7y of two years. For forecast horizons of six months and more,
longer-maturity options would be needed to make sure we fully capture the intertemporal
hedging premium.

Figure 5, Panel A, displays the intertemporal hedging premium, estimated by the dif-
ference between our risk premium RP,_,p, r, and RP,_,p, , for a forecast horizon of one
month. Intertemporal hedging accounts for about half of the total equity risk premium us-
ing an investment horizon of one year, and up to 70% of the equity risk premium using an
investment horizon of two years. These ratios are higher outside NBER recessions. During
these recessions, intertemporal hedging is about a third of the total premium. Given the
counter-cyclicality of the equity risk premium, the magnitude of the intertemporal hedging
premium during recessions is however of the order of ten times the one outside recessions.

Panel B shows that with for longer forecast horizons (six months), intertemporal hedging
accounts for less than half of the total risk premium. The large difference between this
fraction with Ty = 1 year and with Ty = 2 years however suggests that we would need

longer-maturity options to fully capture intertemporal hedging.

4.2 Conditional variance and variance risk premium

Figure 7, Panel A, compares the conditional physical variance obtained when ignoring in-
tertemporal hedging, to the its analogue with intertemporal hedging. For both forecast
horizons at one and six months, the physical variance is lower with intertemporal hedging

throughout the time period. We observe large differences in times of market turmoil.
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Figure 7 displays the corresponding variance risk premium, computed as the difference
between the conditional variance under the physical measure, and under the risk-neutral
measure. As the risk-neutral variance is computed from options, it does not depend on the
investment horizon. Therefore, the lower physical variance with intertemporal hedging trans-
lates directly into a variance risk premium that is larger in magnitude, and more negative
than without intertemporal hedging. The effect is large: during recessions, the variance risk
premium with intertemporal hedging is up to four times the premium without intertemporal
hedging.

We conclude that intertemporal hedging yields large increases both in the equity and in

the variance risk premium.

4.3 Out-of-sample performance

We study whether accounting for intertemporal hedging improves the out-of-sample perfor-
mance of the equity risk premium. To assess the change in performance, we use two different
metrics.

First, we follow Welch and Goyal (2008) and Campbell and Thompson (2008) in com-

puting the out-of-sample R? measure as,

~ 2
R2OOS -1 _ Zt (TM,t—>T1 - 7"M,t—>T1)

(29)

_ 27
t (?" Mt—>T, — T M,HTl)

where 7pr,7, is the sample average of returns at horizon 7 prior to week ¢ and 7Tari—m
is a risk premium forecast. A positive R?,¢ indicates that the prediction 77,7, is more
accurate than the past average realized returns, while a negative R%,q would favour the

past average realized returns.
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We report in Panel A of Table 2 the R2,q, in percent, for 7as;r :RPf_‘:%l, RP, .,
and RP,_,7, 1, over the period 1997 to 2021.1° Forecast horizons T} range from one month
to 18 months and all available investment horizons T > T3 up to two years are considered.

For all forecast horizons 71, RP;,p, outperforms RPtL_‘:%l, and RP,_,1, 1, outperforms
RP,_,7, for almost all investment horizons 7. In particular, for the 10-day forecast horizon,
RP, ,pand Rﬂi’%lboth perform worse, out-of-sample, than a forecast based on the past
average realized returns, as they have negative R%¢. In contrast, RP;, 1, 1, exhibits pos-
itive R% ¢ for Ty between three months and one year. We test whether the differences in
performance between RP,_,p,and RP,_,p, 1, are statistically significant, using the Diebold
and Mariano (1995) test. The outperformance of RP,_ 1, 7, is significant for forecast hori-
zons 17 between three and nine months, and for most 1. Therefore, our results indicate
that accounting for intertemporal hedging in the equity risk premium leads to a large and
significant increase in out-of-sample forecast performance.

Inspection of the R%,,¢ achieved by RP,_,7, 7, in Table 2 reveals the importance of Ty on
the performance of our risk premium. For all forecast horizons Ty, the R%¢ increases with
Tn, up to a given Tyy. For T = 10 days, it reaches its maximum at Ty = 6 months, for T} =
1 month at Ty = 9 months, and for Ty = 2 months at Ty = 18 months. For all 77 equal
to 10 days, 1 month and 2 months, the R%,4 drops after reaching it maximum value, when
increasing Ty. For T; larger than two months, the R3¢ increases up to Ty = 24 months.
The pattern of R%,¢ that we observe for 77 < 2 months suggests that for 7} > 2 months,
there exists an optimal Ty beyond 24 months. Overall, the R, suggests the existence of
an optimal Ty > T}. The past column indicates the performance of a prediction based on
the average prediction across investment horizons Ty. Such prediction achieves R34 that

are all larger than those of RP; 1.

10The results are reported over the period 1997 to 2021 as this is the period over which we have the IERP.
Out-of-sample R? have been computed for RPtngT1 , RP,_,7, and RP;_,1, 1, over the full period from 1996

fo February 2023. They are comparable to those reported in Table 2.
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The comparison of our risk premium estimates to the IERP of Tetlock (2023) is less
straightforward. For short forecast horizons, RP,_,r, r,, outperforms the IERP but the results
become less clear as the forecast horizon increases. For 77 at 10 days, the IERP yields a
negative R2. Our estimate is the only one to yield a positive k2. For forecast maturities up
to 4 months, RP,_,7, 1, reaches higher R? values than the IERP for most Tly. For all forecast
horizons except 12 months, RP,_,7, 1, performs better than the IERP for some T. The
IERP’s forecast at 12 months however outperforms our forecast. These results confirm the
need for options with maturity longer than 2 years, to accurately estimate the intertemporal
hedging premium at forecast horizons of more than 6 months.

Second, we construct market-timing strategies and compute realized mean-variance cer-
tainty equivalents. While the R%¢ reported in Panel A of Table 2 show that our method-
ology captures the expected excess market return, results in Panel B combine both first and
second moment predictions. For each forecasting method, we compute the weight of the

market portfolio in the optimal portfolio at time ¢ as,

TMt—T
wt—)Tl = ~9 (30)
O-t—>T1

where 7 is a risk aversion parameter and 57 7, 18 the physical variance of returns computed
for each method, as described in Section 4.2. Then, we compute the realized mean-variance
certainty equivalent as,

O = B(ryem) = 3 Var(rypn), (31)

where 1, = 771, +Wimsn, "ar—, are portfolio returns. The certainty equivalent is estimated
using the sample return average and variance using non-overlapping returns over horizon 77.

We report realized certainty equivalents annualized in percent for v = 3. We find better
performance of RP,_,7, 1, , compared to RP;,_,1, and Rﬂi"f}l, for investment horizons T up
to one year. In line with the results reported in Panel A, the certainty equivalents increase

with Ty, reaching a maximum for Ty between 9 months and 24 months. Negative values
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are not displayed. They are obtained for Ty = 18 and 24 months due to estimates of
the physical variance that are close to zero. We block-bootstrap the time-series of realized
portfolio returns to compute the significance of the certainty equivalent differences for each
strategy, compared to the one based on RP, ,p, (see Politis and Romano, 1994).!!  We
find that almost all differences between RP, 1, 1,-based and RP,_.r,-based strategies are
statistically significant at the 5% level, when Ty is less or equal to a year.
Both out-of-sample performance metrics —out-of-sample R? and realized certainty equivalents—

thus indicate that accounting for intertemporal hedging in the construction of the equity risk
premium allows reaching better forecasts of the first and second return moments. Most dif-

ferences are statistically significant.

4.4 Implied investors’ horizon

We have shown that the out-of-sample performance of the equity risk premium depends on
the choice of the investment horizon T, for all forecast horizons 7. Increasing Ty, up
to a threshold, improves the out-of-sample performance of our risk premium. The forecast
however deteriorates when increasing 7T beyond that threshold. We study whether the
optimal threshold is time-dependent, by optimizing the investment horizon 7T used to make
the prediction at each time t.

We select the optimal T at each time ¢ in sample, by maximizing the R? of the forecast
over a window of 90 days. This window covers the interval ¢t — 77 — 90 days, up to t — T,
ensuring that there is no look-ahead bias. We denote this optimal time-varying horizon by
Tx 4

Table 3 reports the out-of-sample R, achieved with T, and compares them to the
R?% ¢ achieved with Tl at one and two years, and with the one obtained with the prediction
averaged across 1. Comparing the first two columns (RPtL_‘:%l and RP,_,r, ) to the next

two columns (T = 1 year and Ty = 2 years) confirms that RP, 7, outperforms RPtL_?ng

1We use 10,000 bootstrap samples and a mean block length equivalent to three years.
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for most 77, but that none of the two RP,_,p, 1, outperforms the other systematically. The
T = 1 year estimate tends to perform better for shorter maturities, whereas the Ty = 2
years tends to outperform for longer maturities. The average prediction in column 5 yields
a more stable outperformance across forecast horizons. The largest gain, for all T} except 10
days, is achieved when optimizing upon Ty (last column). The R? is around twice that of
Chabi-Yo and Loudis (2020) and 1.25 to 2 times that of Tetlock (2023) for maturities up to
five months. This increase is statistically significant. Similarly, the largest realized certainty
equivalents are obtained when optimizing T, for most forecast horizons.

Figure 8 displays in Panel A the estimated risk premium obtained with 7%, for T3 at four
months. Panel B depicts the time series of T ;. It oscillates between the smallest possible
value of Ty (five months) and its largest value (two years). In particular, it is at five months
during the two NBER recession periods, and tends to be at two years at most other times.
This result is robust to varying the forecast horizon T;. We thus conclude that in quiet times,
the implied investors’ horizon is long (here, at its maximum of two years). In contrast, in
turbulent times, the implied investors’ horizon is short. This conclusion provides empirical
evidence in line with the asset pricing model of Hirshleifer and Subrahmanyam (1993), in
which investors’ time horizon decreases in periods of high uncertainty, due to heightened risk
aversion and liquidity needs. It also echoes the results of Campbell and Vuolteenaho (2004),
who use a VAR approach to show that investors’ horizons shorten in volatile or declining
markets because they become more sensitive to "bad beta”, i.e., short-term negative cash
flow news.

In turbulent times, the short-term horizon implies that intertemporal hedging has a small
effect. As a result, the equity risk premium remains close to the one of RP,_,7, . In contrast,
it is important in calm times, and pushes the equity risk premium up, since RP,_,7, 1,
increases with Tx. To better understand these punctual switches between long and short

implied investors’ horizon, we investigate the crash probabilities implied by our methodology.
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4.5 Crash probabilities

Figure 9, Panel A, displays the conditional probabilities of a 1 —a = 10% crash over a horizon
of four months. We present the probabilities without intertemporal hedging (I1;_1, [a]), and
those obtained with our methodology (II;—r 7 [a]), with an investment horizon T of one
and two years. Crash probabilities obtained with our method are lower than those without
intertemporal hedging. The longer the investment horizon, the lower the crash probabilities.

In Panel B, we compare the crash probabilities from Martin (2017) (Hf_"f’T1 [a]) to ours
using the implied investors’ horizon Ty = 1. As the implied investment horizon is short
during recessions and long outside, our crash probabilities remain unchanged during reces-
sions, and are lower otherwise.

To determine whether these lower probabilities are more accurate, we assess in Table 4
out-of-sample prediction performances. For each horizon, we compute the loss function of

our prediction as the negative of the log-likelihood function as,

ltHT1 Iy — — (]lRM,taTl <a log (Htﬁﬂ TN [a]) + (1 - ]lRJW,tHTl <Ct)(1 - log (Htﬁﬂ I'n [a]))> :

Similarly, we compute the loss function for I, 1, [@] and Hf_ole [a] , which we respectively
denote l;_,1, and lf_ole. Next, we test the significance of the average difference in loss functions
using the Diebold and Mariano (1995) test. We find that our probabilities for a 10% crash,
reported in the third column, lead to significantly lower losses (i.e., higher realized log-

likelihoods) than other benchmark probabilities for most horizons. Finally, we similarly find

significantly superior predictions for a crash size of 20% for all horizons except one week.

4.6 Term structure of equity risk premium

As in Chabi-Yo and Loudis (2020), we define the term structure of equity risk premium to

be the hold-to-maturity yield on the S&P 500 implied by our equity risk premium estimates
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at various horizons.'? Figure 10 compares the term structure of equity risk premium without
(RP,—1,, Panel A) and with (RP,_,1, 1, Panel B) intertemporal hedging. Without intertem-
poral hedging, the equity risk premium tends to slightly increase in 7 in quiet times, and
to strongly decrease in 7T} during turbulent times, as documented by Chabi-Yo and Loudis
(2020).13

With intertemporal hedging, the investors’ implied horizon T is long in quiet times,
pulling the equity risk premium up, and short in turbulent times, leaving it almost un-
changed. As a result, the term structure of equity risk premium is most of the time decreas-
ing in 77. In times of market calm, it is nearly flat, and it is strongly decreasing in times of

market stress.

12This definition differs from the literature studying the term structure of equity yields, which are defined
in analogy to bond yields and extracted from dividend strips data. See van Binsbergen, Brandt, and Koijen
(2012); van Binsbergen, Hueskes, Koijen, and Vrugt (2013) and van Binsbergen and Koijen (2017). Bansal,
Miller, Song, and Yaron (2021) raise the potential criticism that traded dividend strips may be illiquid, and
that their results on the term structure of equity yields may be artefacts of this illiquidity. Giglio, Kelly,
and Kozak (2024) do not use dividend strips and instead use equity returns to estimate an affine model and
make inference on the term structure of equity yields.

13 Ait-Sahalia, Karaman, and Mancini (2020) found similar dynamics of the term structure by estimating
an affine model on variance swaps with maturities ranging from 2 to 24 months.
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5 Estimating preference parameters

In this section, we study the robustness of our results to the assumptions we have made on

the preference parameters. in Section 4.

5.1 Methodology

We estimate the preference parameters p; and 7, using a two-stage non-linear least squares
approach, similar to Chabi-Yo and Loudis (2020). Specifically, we estimate the coefficients

Tty Pt 6((]1), and ﬁ((]Q) by minimizing the weighted sum of squared errors wleil_)leeng +

wgegTTl eng in the following equations,

Ry — Ry = ﬁ(()l) + RP_r 1y + Eng’

(Raisry — Rf,HTl)Q = ﬁ(()z) + E (Ravom, — Rf,HTl)Q + GQTI- (32)

In the first stage, we set w; = we = 1. In the second stage, we weigh each sum of squared
errors by the inverse of the standard deviations of first-stage errors. Note that parameters
7. and p; enter the above equations through RP; .7, 7, and E; (Rarir — Rfyt_m)z. We
estimate parameters separately for each horizon T} and Ty. We restrict the parameter space

such that the resulting risk premiums be positive.

5.2 Performance with in-sample estimation

We first estimate the preference parameters over our time sample from 1996 to 2023.'
We find estimates of 7 that are between 0.86 and 0.88 for all forecast horizons 7 and
investment horizons T. There is therefore very little variation in the estimated 7 coefficient,

when estimated over the whole period of data. In contrast, the estimates of p vary more.

4 As in Chabi-Yo and Loudis (2020), this estimation introduces a look-ahead bias when computing the
out-of-sample performance measures. The main goal of this exercise is not to provide an estimation method
for the preference parameters, but to question whether the results we obtained in Section 4 still hold with
optimal preference parameters. We eliminate this bias in Section 5.3.
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Specifically, the estimated p for the bound RPFP; ,7, decreases sharply with 7}, from 5.06 to
1.20. The estimate of p also decreases with Ty. The estimate for Ty = 2 years is quite
stable, between 1.20 and 1.60 for all T}.

Figure 11 displays the equity risk premium estimate with these values of 7 and p. It
shows that the resulting risk premium (dotted line) overlaps with the risk premium with 7
and p set to 1 and 2 (dashed line), for most dates in the time series.

Table 5 compares the out-of-sample R? achieved when setting 7 = 1 and p = 2, as in
Section 4, to those obtained when estimating these parameters. Column (4) contains the R?
for our new bound, with Ty optimized, using estimated preference parameters. Estimating
these parameters yields R? that are still larger than those of RP;_,p, for all forecast horizons,
but they are smaller than those obtained when setting 7 = 1 and p = 2. This lack of forecast
performance indicates that setting 7 and p free leads to overfitting.

Second, we model 7 and p as linear functions of past three-month returns, and estimate
the loadings on these returns and on a constant term over the whole data period. The
estimated time series of 7; are displayed in Panel A of Figure 12, for a forecast horizon T}
of 1 month. 7; increases and gets closer to 1 when the investor horizon 7T} increases. For
Tx = 2 months, it is estimated equal to 1. For smaller values of T, in times of market
stress, 7; decreases, in line with investors’ risk aversion being higher. In quiet times 7; is
closer to 1, indicating that investors are less risk averse. The estimated time series of p; are
displayed in Panel B. p; exhibits time series variation, and oscillates around 2. It is close to
2 in calm markets but increases during the financial crisis and the Covid period.

Column (5) of Table 5 report the out-of-sample prediction results obtained when mod-
elling 7 and p as linear functions of past three-month returns. This additional degree of
flexibility improves the performance of our bound. This is however at the expense of volatil-
ity. Certainty equivalents are all negative, because of increased volatility. These results show

that a more precise estimation of the preference parameters, using a time series as large as
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possible, leads to mixed results in terms of out-of-sample performance of the equity risk

premium.

5.3 Telescopic and rolling window estimations

In order to avoid a look-ahead bias, we now estimate a set of parameters using a telescopic
window of past observations. We start in 2006 and use the past ten years of data to ensure
we have enough stability in our estimated parameters.

Figure 13 displays the estimated time series of preference parameters, when assuming
them constant over the estimation period. These time series make it clear that the values
achieved in Section 5.2 result from realized returns during the Financial Crisis. From 2010,
the preference parameter estimates stabilize, to only change slightly during the Covid period.

Table 6 reports the results when the parameters 7 and p are assumed constant and
estimated on window that at each time ¢ does not include any data further to ¢. The first
striking results is that for forecast horizons that are shorter than five months, estimating the
preference parameters without look-ahead bias produces poor results for both RP; 1 and
our bound. The values that are left blank in the table are negative and smaller than -1,
indicating that the prediction is far worse than the long-term mean. For forecast horizons of
6 months and more, the best results are obtained with our bound, and a telescopic estimation
of the preference parameters. Inspection of the certainty equivalents however shows that the
estimation of the second moment is poor for all estimations except the one which sets 7 =1
and p = 2.

These results illustrate the challenge of achieving good out-of-sample performance when
estimating the preference parameters. The time series of estimated 7; and p; suggest that
the instabilities in the telescopic estimation may be linked to the high values achieved during
the 2006-2009 period. We now re-assess the out-of-sample performance of the different risk

premia, excluding this time period from the evaluation. Table 7?7 provides the results.
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Excluding the 2006-2009 period, the R%,¢ achieved by RP,_,r, with both telescopic and
rolling window estimations of 7, and p; are higher than those with p fixed, for all forecast
horizons, except for T at ten days in the rolling window estimation. Furthermore, the rolling
window estimation fails at delivering high R% ¢, but the telescopic estimation achieves R% ¢
for RP,_1, 1, that further improve upon RP,_,p,. Our results therefore illustrate the need

for an estimation window that includes large negative returns (as in 2008).

6 Portfolio rebalancing

The results derived so far were under the assumption that the representative agent could
only rebalance her portfolio at time 77. In this section, we relax this assumption and let the
representative agent rebalance her portfolio at any time ¢ such that T} <t < Tx. We assess
whether this extension changes our main results.

As before, we use a second-order Taylor expansion-series of the inverse marginal utility
(term inside the conditional expectation in (5). The novelty is that the Taylor-expansion uses
the information that the agent re-balances her portfolio at any time ¢ such that T} <t < Ty.

We denote
N N
RM,HTN = H RM,TQj_IaTQJ. and Rf,HTN = H Rf,TQj_laTQj
J=1 J=1

with Ty = t and

Tj = RM,TQ]._I*)TQJ. and xg; = Rf,TQj_laTQj

where Q;—; € {0,1,..., N — 1} and Q; € {1,..., N} with Q;_; < Q; . A second-order Taylor
expansion-series of the inverse marginal utility (term inside the conditional expectation in

(5)) around (x1,...,xn) = (201, .., To.n) and taking the expectation under the risk neutral
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measure at time 73 allows us to write (5) as

N
L 1 (A=p) 2, (1—py) 1 )
=1 - - — E B (s — 20 )2
vy + o~ (21 — o) + 2, (1 —20,1)" + 2 2. s B (xj — x0,5)

We replace this expression in (1) and derive the expected excess return on the market:

1 M*(2) + 1 (1—2%%)M*(3) + (1;2Pt)£(c/’vz<

TtRf,t—>T1 t—Th faory i t—T

RPt—)T TN — — * — * (33)
o L MG, + CPEME
fit—=Tq t t
where

cev; = CoV; (Ruer, Mi3).

N 1
“2) “(2)
MtyTN _ 2 MTQj—l *}TQ] *

i>1 " hTe; 1 —To;

Provided that preference parameters are estimated, expression (33) enables us to extract the

risk premium from option prices if the risk neutral quantities Mi}(? T, Can be recovered
J— J

from option prices with various maturities. We discuss the implementation of this approach

in section C.

6.1 Empirical results

Table 8 summarizes the results when portfolio rebalancing is allowed. The new bound is very
close to the bound obtained without rebalancing, for all forecast horizons T7. Therefore, it

still outperforms the bound RP,_,7,and our results do not change.

7 Higher-order approximation implications

When using a second-order Taylor series-expansion, our theoretical results in the previous

section show that LEV7 is a key contributor to the conditional expected excess market return.
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In this section, we investigate how higher-order leverage measures theoretically contribute to
the conditional equity risk premium. We show that increasing the order of the approximation,
therefore allowing for kurtosis preference, generates additional terms that contribute to the
equity risk premium.

We show in Appendix D.3 that, under no-arbitrage assumptions, a third-order Taylor

expansion-series produces a one-period SDF in a three-date (two-period) economy of the

form
]Etmt*yfl - 14 2Ty + Z%l (34)
My, E; (1 + 27 + Z%) 7
where
ai Qg ast
= R (RM,HTl—Rf,HTl)ﬂLRQ—(RM,HTl —RJC,HTl)2+ R3 (RM,HT1 _Rf,HTl)?’a
fit—=T1 t—T =T
o a2t #(2) a3t #(3) a3t *(2)
Z;—’l - R2 MT1—>TN + RB MT1—>TN + R R2 (RM,t—>T1 - Rf,t—>T1>MT1_>TN7
fT1—TN fT1—TN ft=Tiily Ty
(35)

where ag 3, = 2as+ + 3as;. Using this third-order expansion, we next derive the conditional

expected excess market return and the probability of a crash.

7.1 Equity risk premium

With the third-order Taylor expansion-series approach, Equation (34) depends on, in addi-
tion to risk-neutral variance, new terms such as risk-neutral skewness and cross-term between
risk-neutral volatility and market excess return. These additional terms, as shown below,
introduce additional high-order leverage effects in the expected excess return decomposi-
tion. To find a closed-form expression for the equity risk premium in terms of risk-neutral

moments and high-order leverages, we first define high-order leverage effects under the risk-
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neutral measure as:

LES;

LEK:

— C@V: (TM,t%TlaM;“(l?iTN> ) <36)
— COV! <7“M MTI,M}SZTN) . (37)

We then show how the equity risk premium depends on these terms in the following Propo-
sition.

When (35) is removed from the SDF specification (34), which corresponds to a static SDF
in a one-period economy, the equity risk premium reduces to the expected excess return in

Chabi-Yo and Loudis. We refer to the Chabi-Yo and Loudis bounds to as RP"4. .

Proposition 6 Up to the third-order Taylor expansion-series of the inverse marginal utility,

the one-period expected excess market return obeys the following decomposition

E; (R, — Rppom) = 1) RPYG + (1 — 7)) RPY, (38)
with (2) (3) (4)
3rd Rfytle t—T1 + R2 : tT Mt—)Tl + R3 S’tT Mt—)T1
RPY. = ; y : (39)
az ¢
1+ Mt—>T1 + ?“—TMH:Q
az¢ * az * a2.3.t * #(2) manr*(2)
e T A LEV] + g LES + gt (IL]EKt + M2, E; MTﬁTN)
t ast *art(2) s (3) a2,3,t * !
Rf, T1—>TNE MTlHTN + R?} T1—>TNE MTl%TN + Rf,t—>T1R?‘,T1—>TN LEVt
(40)
and
a *(k)
1 + Z Rf f—jTl t—Th
Ty = . (41
ag, *(k ag, *(k) a3, *
1+ Z R t t_)Tl T Z leiTN MTl_)TN T Rf,tﬂTlRf‘,tTlaTN ]LEVt
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where as 3¢ = 2a24 + 3as, and the risk-neutral quantities LEV} MT k) LES; and LEK}

=T}y

are defined in Equations (11), (12), (36), and (37), respectively.

Proof. See the proof of Proposition 8 in Appendix D. m

7.2 Conditional crash probability

We next express the conditional probability of a crash using a third-order Taylor expan-
sion series for the inverse marginal utility. To derive this probability, we define additional

truncated moments as

* * *3

M fo) = Ef (M0 Ly r <) (42)
* * *(2

i, lo] = B (raem M2, Lny, i <a) (43)

Proposition 7 Up to the third-order expansion-series of the inverse marginal utility, the
conditional crash probability in a two-period (three-date) economy is a weighted average of

two probabilities:

Py (Ruposm < @) =7y H?:jTI [a] + (1 - )H}f}—iTl ], (44)
with
*(0 a *(1 a *(2 a *(3
3rd Mt(_}%wl [Oé] + ﬁMtL?ﬁ [Oé] + RZ - Mt(—ﬂ)rl [Oé] + Rz} ::T Mt(_)?n [CY]
I [o] = " ., (45)
ak ¢ *
1 + Z f 1y t—)T1
az ¢ M* [Oé] + ag,t M* [Oé] _'_ aiﬁ,t M* [Oé]
R2 N t,v R3 IR t,s Rr,, Rz N t,sv
Mg, o] = === . TN(k) P , o (46)
_ Okt * a2,3,t *
L+ Z leaTN MTlﬁTN * Rf,taTlRfr Ty 5Ty LEV;

where ag 3 = 2as4 + 3asy and 7y is defined in Equation (41)

Proof. The proof of Proposition 7 is given in Appendix D.2. =
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When 27, is absent in the SDF expression (34), the SDF corresponds to the SDF in a

one-period static economy. Under this scenario, the probability of crash reduces to

ag t k
Mt%Tl [ ] + 2 RE = ti%“l [a]

fit—=Tq

H?Slﬂ[ ] = (k)
1 + Z et t—>T1

f t—Tq

We refer to our crash probability in (44) as I, 1 [a].

7.3 Empirical results with fixed preference parameters

Table A3 reports the out-of-sample performance of our bound using the third-order Taylor
expansion-series for the inverse SDF. We find that the predictions are overall not better than
those of the second-order case. They are slightly worse for long investment horizons T, il-
lustrating the challenge of accurately estimating higher order moments for long maturities,
and slightly better for short maturities. While these results are in favour of our simpler
second-order bounds, they are likely to improve should the liquidity of longer-maturity op-

tions improve with time, yielding better estimations of risk-neutral moments.

8 Conclusion

Given its importance in financial applications, there is considerable interest in improving our
measurement of the conditional expected return on the market portfolio. Several methods
using forward-looking information embedded in option prices have been proposed in recent
years. Martin (2017), Chabi-Yo and Loudis (2020) and Tetlock (2023) measure a one-period
expected excess return in a one-period, two-date economy. We contribute to the literature
by deriving an expression accounting for intertemporal hedging.

We, theoretically and empirically, show a significant difference between a static and a

dynamic estimation. In a dynamic economy, the SDF is a nonlinear function of the market
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return as in a one-period economy. But it also depends on novel risk-neutral quantities such
as the expected future variance and skewness and the covariances between market returns
and future variance and skewness, namely the leverage effects. We show how these quantities
significantly impact the one-period conditional expected excess return on the market from
the perspective of an investor who holds the market portfolio in a multi-period economy. We
also derive expressions for the one-period conditional probability of a crash, in a multi-period
economy, in terms of risk-neutral quantities.

Our methodology provides significantly better risk premium and crash predictions and
market-timing allocations in empirical tests. We further use our measure to shed light on
the shape and time variations of the term structure of equity risk premia, which we define as
the expected excess market return as a function of the investment horizon. In a one-period
economy, Chabi-Yo and Loudis (2020) find that the term structure is upward sloping on
average and downward sloping during recessions. Our term structure slope is essentially flat
during normal market conditions and downward sloping during recessions.

While we have used the S&P 500 index to proxy for the market portfolio, our methodology
can be extended to individual assets and international markets. We leave these endeavors

for future research.
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Figure 1: Risk-neutral moments.

We report option-implied risk-neutral volatility, skewness, and kurtosis for the S&P 500
index at a horizon of one week, one month, one year, and two years. Data are weekly from
January 1996 to February 2023. Gray areas are NBER recessions.
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Figure 2: Risk-neutral expected future variance and leverage.

We report in the top graph the risk-neutral expected future volatility for the S&P 500 index.
We report in the bottom graph the risk-neutral covariance between market returns and future
variances in Equation (9). We use horizons 77 of one week, one month, one quarter, and one
year, and T = two years. We annualize each measure by multiplying by 365 . Data are

Tn
weekly from January 1996 to February 2023. Gray areas are NBER recessmns
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Panel A: 77 = 1 month
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Figure 3: Equity risk premium.

This graph represents the different equity risk premium estimates, for a forecast horizon of
1 month (Panel A) and 6 months (Panel B). The following estimates are compared: the
bound of Chabi-Yo and Loudis (2020), RP,_,1,, and our bound RP, 7, r,, in Equation (10),
for Ty = 1 year and 2 years.
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Panel A: 77 = 1 month
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Figure 4: Comparison with /ERP, .,

This graph compares our estimate of the equity risk premium, RP,_,7, 7, to the Implied
Equity Risk Premium of Tetlock (2023), I ERP,_,,, for a forecast horizon of 1 month (Panel
A) and 6 months (Panel B). In our bound, the investment horizon Ty is 1 year in Panel A,
and 2 years in Panel B, chosen to match the IERP as closely as possible.
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Figure 5: Intertemporal hedging premium IHPFP, .1, 1,

This graph represents the intertemporal hedging premium, I H P, ,p, 1, as defined in Equa-
tion (18), for different equity risk premium estimates RP,_p 7. [HP, 7, 1, is displayed
in percentages of RP,_,1, 7y. The forecast horizon is of 1 month (Panel A) and 6 months

(Panel B).
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Figure 6: Conditional variance under the physical measure.

This graph represents the conditional physical variance as defined in Equation (20), for
Ty, = 1 month (Panel A) and 77 = 6 months (Panel B). The conditional variance without
intertemporal hedging (Ty = 77) is compared to the variance with intertemporal hedging,
using Ty = 1 year and Ty = 2 years.
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Figure 7: Variance risk premium.

This graph represents the variance risk premium for 77 = 1 month (Panel A) and 7} = 6
months (Panel B) without intertemporal hedging (Ty = 1 and 6 months, respectively) and
with intertemporal hedging. The variance risk premium is defined as the difference between
the conditional variance under the physical measure and under the risk-neutral measure.
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Panel A: Equity market risk premium
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Figure 8: Implied investors’ horizon for 77 = 4 months.

This graph represents, in Panel A, the 4-month ERP obtained with an optimized investors’

horizon. Panel B displays the implied investors’ horizon T} ,, which maximizes the in-sample
fit of our bound to the realized returns, as measured by the R? over a window of 90 days.
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Panel A: Crash probability as a function of Ty
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Figure 9: Probability of a 10% market crash

We report the time-varying probability of a 10% stock market crash from Proposition 5,
for T} = 4 months. Panel A reports the crash probabilities for different values of Tly.
Panel B compares our estimate of the crash probability with the optimal Ty, to the crash
probabilities without intertemporal hedging and the one of Martin (2017). Gray areas are
NBER recessions.
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Panel A: RP, .,
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Figure 10: Term structure of equity risk premium

This graph represents the term structure of the equity risk premium bounds RF;_,1,, Chabi-
Yo and Loudis (2020) (Panel A) and of our bound RP,_,7, 1, (Panel B). The forecast horizons
are 71 = 1 month, 6 months and 1 year, and Ty is set equal to T ,.
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Panel A: 77 = 1 month
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Figure 11: Equity risk premium with estimated preference parameters.
This graph compares the equity risk premium without intertemporal hedging RP,_,7, , to two
estimates of the equity risk premium with intertemporal hedging. The dotted line, RP;ZTl1 ””TT;

has the preference parameters set to their default values. The dashed line, RR;”’Tfo];v, has

them estimated. In Panel A, the forecast horizon is 77 = 1 month and in Panel Bitis 17 =6
months.
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Panel A: 7,
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Figure 12: Estimated preference parameters 7; and p; over the period 1996-2023.
This graph represents the estimated time series of risk aversion parameter 7; and skewness
tolerance parameter p;, for 77 = 1 month and varying Tl . Estimates are obtained by letting
the preference parameters be linear functions of past 3-month returns, and applying the
estimation methodology described in Section 5.1 on the whole dataset.
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Panel A: 7,
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Figure 13: Estimated preference parameters 7; and p; in telescopic estimation.
This graph represents the estimated time series of risk aversion parameter 7; and skewness
tolerance parameter p;, for 7) = 1 month and varying 7). Estimates are obtained using
the estimation methodology described in Section 5.1 on an expanding window of time. The
initial window starts in 1996 until 2006.
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Table 3: Out-of-sample prediction and allocation performance with 7y optimized

We report the out-of-sample performance of different risk premium prediction methods, from January
1997 to December 2021. RPtL_f%l is the lower bound of Martin (2017). IERP;_,, is the Implied Eq-
uity Risk Premium of Tetlock (2023). RP,_,p, is the second-order lower bound of Chabi-Yo and Loudis
(2020) in Equation (15). RP,_p, 7 is the risk premia measure in Equation (10). We report in Panel
A the out-of-sample prediction R%,¢ in percent (see Equation (29)). For each prediction method, we
test for the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995)
test. We estimate the variance of the differences using a Newey-West correction with 12 lags. We report
in Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices (see Appendix A.6). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RP,_,1, using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. x, *x, and * * *x denote significance at the 10%, 5%, and 1% level, respectively.

Horizon T} Ty =1y Ty =2y Av. across Ty Tn opt.
(in months) RPtI;O'g«I IERPtHTl RPt%Tl RPt%Tl,TN RPt—)Tl,TN RPt%Tl,TN RPt%Tl,TN

Panel A: Out-of-sample R?

10d —0.40 -0.59 -0.37 0.12 —0.69 0.19

1 0.93 1.40 1.08 1.85 1.00 1.86

2 1.52 2.18 1.97 3.66 3.89 3.59*
3 1.43 2.73 2.23 4.39* 5.58 4.43*
4 2.18 5.22 3.36 5.57** 7.38% 5.82**
) 3.08 8.01 4.67 6.73%* 8.94** 7.29%**
6 3.43 9.44 5.31 7.08** 9.56** 8.11%**
12 2.69 10.39 5.61 - 8.15%** 7.66%**

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 5.45 - 5.62 12.36 - 11.54**
1 4.78 - 5.00 7.10 - 7.14%

2 4.90 - 5.30 7.95%* - 771
3 5.25 - 5.79 8.29** - 8.37**
4 5.47 - 6.13 8.16™* - 8.64***
) 5.19 - 5.87 7.38%** 9.49* 8.08***
6 5.21 - 5.99 7.16** 8.47 8.27**
12 5.28 - 6.33 - 8.09* 7.82%*
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0.16
1.86
4.15%*
5.39***
6.54***
7.7
8.40***
7.84%**

3.43
2.99
10.22**
10.63***
8.77**
8.71*



Table 4: Out-of-sample crash prediction with Ty optimized

We report the out-of-sample performance of different crash prediction methods. Each month, we use the
crash probability from Martin (2017) (Hf_o)ng [a]), the one from Chabi-Yo and Loudis (2020) (IT;—,7, [] in
Equation (23)), and the one from our methodology, II;_.1, 1y [a], defined in Equation (22) of Proposition
5. T'n is set equal to the implied investors’ horizon Ty, at each time ¢. We compute the loss function
for Ht%leTN [a] as lt%Tl,TN = 7(]‘RNI,t—>T1 <a log(Ht‘}Tl,TN [a]) + (1 - ]]-RM,f,—»Tl <Oé)(1 - log(Ht‘}Tl,TN [a]>))
Similarly, we compute a loss function for other methods. For each method in rows, we test whether the
average loss functions are significantly larger than those of the method in columns using the Diebold and
Mariano (1995) test. A significantly positive test statistic indicates that the column-method outperforms
the row-method. We estimate the variance of the difference in loss functions using a Newey-West correction
with 12 lags. *, *x, and * * * denote significance at the 10%, 5%, and 1% level, respectively. We report

on a 90% (a = 0.10), and 80% (« = 0.20) crash size. Data are from January 1996 to February 2023.

10% crash 20% crash
Ht*}Tl [a] Ht*}Tl TN [Oé] Ht*}Tl [a] Ht*}Tl TN [a]
Panel A: One week
I1,%%. [a] 1.56* 1.92%* 1.29% —0.92
I, (o] - 2.06™* - —0.92
Panel B: One month
I1,%%. [a] 1.76%* —0.97 5.71%%* 6.58***
O, @] - —0.98 - 6.42%*
Panel C: One quarter
1%, [a] 442 7147 2,67 2.58%**
i, [ - 6.75*** - 2.40%**
Panel D: Siz months
HtLjﬂ]’l [a] 3.91%** 8.21*** 3.36%** 3.71H**
;7 [of - 10.54*** - 3.45%**
Panel E: Nine months
%%, [a] 2.66** 5.10°* 1.48* 2.18**
I @] - 7.18%** - 2.36%**
Panel F: One year
11,%%. [a] 2.18* 2.79*** 1.25 2.02**
i, [ - 3.34%* - 2.51%**
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Table 5: Out-of-sample prediction and allocation performance with 7 and p esti-
mated in-sample

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to December 2021. RPtngT1 is the lower bound of Martin (2017). RP,_,p, is the second-order lower bound
of Chabi-Yo and Loudis (2020) in Equation (15). RP,_,1, 1, is the risk premia measure in Equation (10).
In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and p = 2 (bench-
mark). In column (4), they are kept constant over the time series of data, but the constants are esti-
mated. In column (5), they are modelled as linear functions of past 3-month returns. We report in Panel
A the out-of-sample prediction R% g in percent (see Equation (29)). For each prediction method, we
test for the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995)
test. We estimate the variance of the differences using a Newey-West correction with 12 lags. We report
in Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices, using Equation (20). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RP,_,1, using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. #*, %%, and * % * denote significance at the 10%, 5%, and 1% level, respectively.

Ty T=1and p=2 p, T est. constant p, T est. linear in past returns
L
(months) RP o9 RPt%Tl RPt%Tl,T;, RPt%Tl,TI’{, RPt%Tl,T;\}

t—T

(1) 2) 3) (4) ()

Panel A: Out-of-sample R?

10d —0.40 -0.37 0.16 0.04 0.10
1 0.93 1.08 1.86 1.58 2.28
2 1.52 1.97 4.15%* 3.79* 5.50*
3 1.43 2.23 5.39** 4.67* 7.83%
4 2.18 3.36 6.54*** 6.42** 10.31*
) 3.08 4.67 7.7 8.28** 11.01*
6 3.43 5.31 8.40%** 9.48* 11.34
12 2.69 5.61 7.84%** 8.36™** 9.92**

Panel B: Out-of-sample mean-variance certainty equivalent with v = 3

10d 5.45 5.62 - - -
1 4.78 5.00 3.43 6.08 -
2 4.90 5.30 2.99 8.80" -
3 5.25 5.79 10.22** 10.23*** -
4 5.47 6.13 10.63*** 10.28** -
) 5.19 5.87 8.77** 5.64 -
6 5.21 5.99 8.71* - -
12 5.28 6.33 - - -
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Table 6: Out-of-sample prediction and allocation performance with 7 and p esti-
mated as linear function of past 3m returns

We report the out-of-sample performance of different risk premium prediction methods, from January
2006 to February 2023. RPtLj%l is the lower bound of Martin (2017). RP,_,p, is the second-order lower
bound of Chabi-Yo and Loudis (2020) in Equation (15). RP;_, 1y is the risk premia measure in Equa-
tion (10). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In columns (4) and (5), they are modelled constant and estimated on a telescopic
window of time. In columns (6) and (7), they are modelled constant and estimated on a rolling win-
dow of five years. We report in Panel A the out-of-sample prediction RZOOS in percent (see Equation
(29)). Values smaller than -1 are not reported and left blank. For each prediction method, we test
for the significance of the R%,g difference relative to RP;_,7, using a Diebold and Mariano (1995) test.
We estimate the variance of the differences using a Newey-West correction with 12 lags. We report in
Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (31)). The physical variances are
computed using option prices (see Appendix A.6). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RP,_,1, using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. #*, %%, and * % * denote significance at the 10%, 5%, and 1% level, respectively.

Ty 7=1and p=2 p, T est. on telescopic window p, 7 est. on rolling window
RPtLj%l IERP, 1, RPisr, RP71; RPoT RP; 1, 1%, RP, 1, RP, 1 17,
(1) (2) (3) (4) () (6) (7) (8)

Panel A: Out-of-sample R?

10d  —-0.41 —0.60 —0.38 0.15 - —0.09* - -
1 0.40 0.65 0.57 2.21 - 0.91 - -
2 0.76 0.77 1.25 4.92** —-0.94 1.37 - -
3 —0.14 0.47 0.73 5.64*** 0.12 6.21% - -
4 1.11 4.62 2.52 7.047** 5.40 9.47* - 7.97
5 2.47 9.13 4.48 8.35%** 12.68 13.00 -0.49 10.93
6 2.76 11.47 5.27 9.12%** 13.59 15.10 - 12.45
9 2.79 15.49 6.57 10.76*** 16.50 14.80 - 7.46
12 2.02 16.28 6.66 10.13*** 12.83 10.24 8.27 14.42
18 —-0.94 17.65* 5.96 8.38*** 15.95 14.97 28.20 -

Panel B: Out-of-sample mean-variance certainty equivalent with v = 3

10d 5.42 - 5.59 - 7.52 - - -
1 4.62 - 4.89 3.14 - - - -
2 4.60 - 5.05 10.74 - - - -
3 5.15 - 5.83 12.62** - - 2.52 -
4 4.85 - 5.61 9.70* - - - -
5 5.21 - 6.13 10.02* - - - -
6 5.03 - 6.08 10.30** - - - -
9 5.28 - 6.68 8.70 6.46 4.13 - -
12 9.32 - 6.95 9.28** - - - -
18 5.42 - 7.61 8.35 - 2.63 - -
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Table 7: Out-of-sample prediction and allocation performance with 7 = 1 and
p =2, setting T as a function of the probability of crash

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1 and p = 2.
RPtL_‘:gwl is the lower bound of Martin (2017). RP;_,p, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RP,_,1, 7 is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R%OS difference relative
to RP,_,1, using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RP,_,7, using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. *, x*, and * % * denote significance at the
10%, 5%, and 1% level, respectively.

Ty Optimizing Ty Setting Ty = f(Proba. of crash)
RPtL—ngl RP 1, RP; 7 3, RP 1, RP 7 1y
(1) (2) (3) (4) ()

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.08 —0.07 -

1 1.09 1.18 1.73 1.18 0.55
2 1.34 1.59 3.84** 1.59 2.33
3 1.18 1.61 4.717%* 1.61 2.87
4 2.16 2.86 5.47** 2.86 4.66*
5 3.12 4.19 6.44** 4.19 6.09**
6 3.61 4.97 7.26** 4.97 6.79*
9 4.32 6.37 8.76™* 6.37 8.11%
12 4.00 6.54 8.44 6.54 8.26
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 5.81 4.69 8.81
1 3.55 3.68 3.52 3.68 1.51
2 3.69 3.96 6.41 3.96 6.37
3 4.14 4.54 9.50*** 4.54 7.71*
4 4.27 4.75 8.46** 4.75 6.91
5 4.01 4.50 6.85 4.50 5.85
6 4.26 4.89 7.24 4.89 6.41
9 4.18 4.88 6.19 4.88 6.01
12 4.52 5.45 6.85"* 5.45 6.71**
18 4.59 5.62 6.11** 5.62 6.11%*
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Table 8: Out-of-sample prediction and allocation performance with 7 = 1 and
p = 2, with rebalancing

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1 and p = 2.
RPtL_‘:gwl is the lower bound of Martin (2017). RP;_,p, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RP,_,1, 7 is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R%OS difference relative
to RP,_,1, using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RP,_,7, using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. *, x*, and * % * denote significance at the
10%, 5%, and 1% level, respectively.

Ty No rebalancing With rebalancing
RPtL—ngl RP 1, RP; 7 3, RP 1, RP; 1 13,
(1) (2) (3) 4) (5)

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.06 —0.07 0.16
1 1.09 1.18 1.73 1.18 1.65
2 1.34 1.59 3.84** 1.59 3.16
3 1.18 1.61 4.717%* 1.61 3.76
4 2.16 2.86 5.47%* 2.86 4.81
5 3.12 4.19 6.45%* 4.19 5.94
6 3.61 4.97 7.26** 4.97 7.00
9 4.32 6.37 8.76** 6.37 8.75
12 4.00 6.54 8.44 6.54 8.89
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 9.75 4.69 5.34
1 3.55 3.68 3.52 3.68 2.78
2 3.69 3.96 6.40 3.96 6.51
3 4.14 4.54 9.50*** 4.54 8.48
4 4.27 4.75 8.46** 4.75 7.96
5 4.01 4.50 6.85 4.50 6.69
6 4.26 4.89 7.24 4.89 7.23
9 4.18 4.88 6.19 4.88 6.18
12 4.52 5.45 6.85** 5.45 6.98
18 4.59 5.62 6.11** 5.62 6.11
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Table 9: Out-of-sample prediction and allocation performance of the third-order
bound with 7 =1, p=2 and Kk =4

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1, p = 2 and
k=4 RPtL_?ng is the lower bound of Martin (2017). RP,_,1, is the second-order lower bound of Chabi-Yo
and Loudis (2020) in Equation (15). RP,_,, 1y is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (29)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R%OS difference relative
to RP,_,1, using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (31)). The physical variances are computed using option prices (see Appendix A.6). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RP,_,7, using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. *, %, and * % * denote significance at the
10%, 5%, and 1% level, respectively.

T 2nd order 3rd order
RPtL—ngl RP 1, RP; 1, 3, RP 1, RP; 1 13,

(1) (2) (3) 4) ()

Panel A: Out-of-sample R?

10d —0.10 —0.08 0.06 —0.08 -
1 0.74 0.87 1.97 0.91 -
2 1.03 1.41 4.56* 1.44 -
3 0.29 0.97 5.16™** 0.92 -
4 1.43 2.57 6.14** 2.80 -
5 2.65 4.35 7.40** 5.14 -
6 2.95 5.13 8.29** 6.41 -
9 3.11 6.55 10.01** 9.23 -
12 2.29 6.71 9.83 10.51 -
18 —0.67 6.08 8.44 11.55 -

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.54 4.67 5.77 4.68 3.81
1 4.08 4.29 4.89 4.35 —0.99
2 4.10 4.45 9.72% 4.56 2.75
3 4.71 5.28 11.90*** 5.48 2.29
4 4.38 4.99 8.42 5.23 1.15
) 4.96 5.76 8.92 6.08 1.21
6 4.77 5.69 8.73* 6.17 2.56
9 5.01 6.21 6.85 6.81 1.32
12 5.19 6.68 8.45 7.41 0.57
18 5.31 7.41 8.08** 4.59* —12.76
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A Proofs and derivations

This section contains the proofs and derivations of the main results presented in Section 2.

A.1 Proof of Equation (1)

Let Ry 7, be the return of risky asset k from time ¢ to time 7 and m,_,, be the one-period
SDF. We show that the conditional expected return of risky assets can be expressed as the
risk-neutral covariance between the asset return and the inverse of the SDF m;_,p,. This
result is not new, and was derived in Equation (2) of Chabi-Yo and Loudis (2019).

The conditional expected return of asset k& can be expressed using the identity

E.m m
By (Risosr,) = By (Rk,HTl e ) (A1)

miy—m Etmt—>Tl

The ratio ]EZ’;%T; defines the risk-neutral distribution. Hence, the Radon-Nykodym theorem
—11

allows us to express the conditional expected return of asset k as a function of moments

under the risk-neutral measure:

E, (Rk,tﬁTl) = E: <Rk,t%T1

E E
= COV; (M7 Rk,t—)Tl) +E (M) E (Ryr,)

Etmt—>T1 )

mt—}Tl

mym my—m
E.m

— COV! | == Ry | + Rpsosry. (A2)
mt—)Tl

We use Ef (%—;Tl) = 1 and E} (Rx—1) = Ry, This identity is reminiscent of the
—17

well-known asset pricing equation in which the expected excess return is negatively related

to the covariance between the return and the SDF under the physical measure.
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A.2 Proof of Equation (5)

We show that the inverse of the one-period SDF m;_,p, can be expressed as a function of
the marginal utility of wealth and expectations under the risk-neutral measure.

The representative agent’s optimization problem (4) can be re-written as
max E; (IB%X Er (u [WTND) : (A3)
Solving Problem (A3) backward, the first step is to solve
max Er, (u[Wr,]). (A4)

w T1

Equation (A4) produces an optimal weight w7, , and the terminal wealth achieved with this
weight is Wz, = Wn (w;IRTl_}TN). The corresponding one-period SDF from time 7} to

time T, mq 7y, has the form
mr, sy = oy (Wi ] (A5)
Given the optimal value, wy, , the second step solves
max E (Er, (u [W5,]))- (A6)
This produces a one-period SDF from time ¢ to time 77 of the form
Moty = 0K, <u (Wi ] (w3 RTHTN)) . (A7)
From (A7), the constant J; can alternatively be written as

8y = Mior, (ETl <u Wi] (w;]RTHTN)))_l . (A8)
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Because parameter ¢; is a constant, we have §; = [E;0;. We exploit the no-arbitrage conditions

that allow us to move from the physical measure to the risk-neutral measure to obtain,

s oo ) )
= B B (s (B (4 093] (tn-)) )

E, (mt—>T1

— E (men,) EF ( (ETl <u (Wi ] (w37 Rey ) ) ) 1) . (A9)

Next, we replace d; by its expression in (A7) and show that

EtmtA)T1 _ 1/ETI (U’, [W’;N] (w;{RTl‘)TN)) (Alo)
M=y E; (1/Ez, (v [Wi,] (Wi Brioy)))
Similarly, we can use the SDF (A5) and show that
Er,mrp 1y _ 1/ [W%N} (A1)

mr Ty E;} (1/ul [W;N}>

Next, we write Ep, (ul (Wi ] (Wil Rry—1y)) in (A10) as a function of risk-neutral quantities:

, . E / . .
Er (u (Wi, ] (WTIRTI—)TN)> = Ep ( mr 1y Enmnory Wi ] (wiT RT1—>TN))

ET1 mTl *)TN mT1 HTN

ET mr,
_ * 1 12Ty ! * *T
= By (PRI 3] ] B
mTlg)TN
*T

le Eé—‘l RTI %TN
Er, (1/u [Wi,])
Ryrory
= — — — (A12)
IET1 (1/U [WTN]>

where we have used the no-arbitrage conditions to move from the physical measure to the risk-

neutral measure in the second equation, and Equation (A11) to obtain the third equation.
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We replace (A12) in (A10) to obtain

* 1
]ETl (u, {W* ] )
N N R 8 A
Emy_m, . Bym-ry
mt%Tl Ex 1
O\ wiy |
E N

t Rfr 1y

((1/Ryr—1y) /B (1/ Ry ) Efy <M)

) o Wiy | .
E; (((1/Rf,TﬁTN) /B¢ (1 Rymisry)) By (W»

Since there is no interest rate risk, 1/Rs 1y = E¢ (1/Rf 11y ), this last expression sim-

plifies to

E: (_u/ [WtRf’t—’TN])
Eymy _ n u' {W%N] .
my—m E: <]E,?1 (ul [V[ft[?;i,*tﬁ]TN] ) )
w Wi,

Assume that the gross return on the market can be used as proxy for the return on

(A13)

aggregate wealth:

Wr Wr
RM,t—>TN = I/VtN and RM,T1—>TN = WTT (A14)
Equation (A13) can be rewritten as
Eé“ (—u/’ [WtRf’t—’TN] )
Etmt_gl _ L\ u [WtRM,tHTN] (A15)
mi—m £ Ex u [WtRf,tHTN] .
EA\TT N\ W [WeRag ety

This ends the proof.
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A.3 Proof of Equation (6)

In this Section we detail the second-order expansion of the inverse of the marginal utility,
which we use to derive Proposition 1.

Let us write the inverse of the SDF as

EtmtﬁTl _ E;"l (f [x7y])
My Ef (Ei}l (f [z, y]))’

(A16)

where the function f is defined as

_ u [Wizoyo]
fleyl = o [Wory]

and © = Ruyisr, o = Rpsor, ¥ = Rumnory, and yo = Ryory/Riisn = Rernomy-
We adopt the following short notations. First, we use f, and f, to denote the first partial
derivatives of the function f, f,, and f,, the second partial derivatives, and f,, the cross-
derivative, all evaluated at (g, yo). Second, we denote as v, v, and v the first, second, and
third derivatives of u [-] evaluated at (x¢,yo). We perform a second-order Taylor expansion
series of f [z, y] around (z,y) = (zo, yo):

Flrl & V(= a0) fot g7 (= w0) fy + o (2 = 20)

1

_’_5 (y . y0>2 fyy + ; (I — 1'0) (y - yO) f;tya
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where:

’

fac — @fy — i <_ (Wt$oyo) UH)

Zo ZTo u
= 1 ( Wt:toyou"> N 1 (thoyou”)Q (2 umul>
xy ToYo u Z0Yo (u')? W')?)’
7\ 2
£ = y_g _ 1 (VVtxoyou ) . oy
TT x% yy ($0)2 (ul)Q (UII)Q

Note that f,, = fy. Thus, we obtain,

fle,yl =~ 1+%%($—I0)+i%(y—%)
1 (1—p) )2 1 1=p), )2
(x0>2 TtQ ( D) + (y0)2 th ( Y )
L1 20 p)
+M <;t + T—E) ( —0) (¥ — v0), (A17)

where 7; and p; are defined in Equation (9). Replacing z, z¢, y, and yy by their expressions

and using preference parameters a;; and as; defined in Equation (8), we obtain,

* a ) a 9
En (fley]) = 1+ R, :T (Baraom — Ryppsry) + RJCT% (Bpri»1y — Bynioy)
) 1 41 N
a a *
+$2 (RM,t—)Tl - Rf,t—)T1)2 + 2 QETI ((RM,T1—>TN - Rf,T1—>TN)2)
(Rptor) (Ryms1y)
a1 + 2a
+% (Rarisn — Rpeom) (Rpmomy — Rymsry) - (A18)
f7t—>T2
Thus, E7, f [z, y] simplifies to
U [WiRsoyr Ry 7y] )
E: flz,y] = E: ) : =) =1+ 2, A19
Tlf[ y] n (U [V[/tRM,t—)TlRM,TI—)TN] n ( )
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where

Ayt (RM,HTl - R ft—Ty ) a2t a2t

2
+ B} (RM,t—)Tl - Rf,t—)Tl ) 2
Rf,t—>T1 Rf,tﬁTl R T —TN

M, £420)

ZT1

We then replace Equation (A19) in (A16) to obtain Equation (6).

A.4 Proof of Proposition 1

We use the expression for the SDF (6) derived in Section A.3, and plug it in the expected

return expression identity (1). We obtain

. 1+ 2p
E: (Ry st — Ryioy) = COV, (RM,t—>T17 [N E*Z ) -
t ~T

We then replace (A20) in this expression and expand the covariance term. We obtain the

estimate for the market risk premium in Equation (10).

A.5 Proof of Corollary 2

The expected excess return can be decomposed into

a2 t *(2) al,t *(2) a,g t *(3)
E, (R R L+ R} or, Misr, . M r + RY o, M, 5,
t( Mit—Ty — f,t—>T1) 14 az.t M*(g) N as.t E*M #(2) 14 as.t M*(g)
R?p Ty t—T1 R? TiTy T —Tn R? T t—T
a2t *nr*(2) az ¢ *
2t EM, 2t RV
+ f T —TN f T TN
2) az ¢ * ( a ¢ * *(2)
14 2t M + m——EM KM
R? Ty t—T1 R?c T =Ty Ty —TnN R? T, =Ty Ty —Tn

Settin
& 1 + a.¢ M*(Q)
" R?c toTy t—T1
Trt - 1 _|_ a Jt M*(2) + ag ,t E*M
R? =Ty t=Th R? T —>Ty t_>T1

ends the proof.
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A.6 Physical variance

In this section, we provide expressions for the option-implied physical variance

Et (RM,t—>T1 - ]E’tRM,t—>T1)2 - Et (RM,t—>T1 - Rf,t—}Tl)z - (Et (RM,t—>T1 - Rf,t—}Tl))2 .

We already have an expression for E; (Rys—1, — Rft—1 ). Note that

Eimym
E, (RM,t—>T1 - Rf,t—>T1)2 = ]E: {t—HT

mt—>T1

Using the second-order approximation in Equation (6), we obtain

M*(Q) + ai,t M*(3) + as, ¢ M*(4)

t—Th Rf,tHTl t—T1 R?‘,t%Tl t—T1

2t (LEK; + M) My, )

(RM,t—>T1 - Rf,t—>T1>2} .

9 J— t—T) T TN
E (R, — Rygom)” = 2 2
1 + 2a2,t M*( ) + = az,t E*M*( )

Rf,t—>T1 t—T1 Rf,Tl TN t T —TN

where

H“]EK: = CQV: ((RM,t%Tl - Rf,t%Tl)Q ) (RM,Tl%TN - Rf,TlﬁTN)2) .

A.7 Proof of Proposition 5

(A21)

Under no-arbitrage conditions, we use the Radon-Nikodym theorem. It allows us to move

from the physical to the risk neutral measures and express the conditional crash probability

as

My Etmt—>T1
]P)t (RM,t—>T1 < a) - ]Et (]E ]]'R]M,t%Tl <o
tMy—y M1y

— E* (EtmtaTl 1 )
- t Ry <a -
mt—)T1 !
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We then replace the inverse of the SDF by Equation (6) in the conditional crash probability

to obtain,

EI (]]‘RM,taTl <Ot) + EZ‘ (ZTIILRM,tHTl <0f) + E;ﬁk (2%1]]‘RM,15%T1 <Oé)

a .t *(2 a t * *(2
1 + R2 = Mti%—‘l + R2 . EtMT(ll)TN

P, (RM,taTl < Oé) =

)

fit—T £,T1—=TN
(A23)
where
E; (21,1 ) Dt g (R — Rpir) 1 )
t \*Th LRyt <o Rf T t M t—T ft=T1) LRyt <
) 1
a2 ¢ * 2
+R§t . Et ((RM,t—>T1 - Rf,t—)Tl) :H'RM,tHTl <a) 9
=11
]Et (Z% :[]‘RM,t—>T1 <a> RQ—Et (MT(l—)>TN]]‘RM,t—>T1 <04> : (A24)
f7Tl —>TN
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B Estimation of moments

We provide closed-form solutions to the risk-neutral and physical moments used in our anal-
ysis. In many cases, we use the spanning formula of Carr and Madan (2001) and Bakshi and
Madan (2000) to evaluate the risk-neutral expected value of a twice-differentiable function

of the underlying asset price, H (Sz,) as

EiH [St,] = H[SiRpin] +E{Hs [SiRper] St (Raisty — Rpaory)
Ryt

00 St Ry 11y
+Rf,taT1 [/ Hgg [K] C, [K]dK—i—/ Hgg [K]Pt[K]dK ,
S, 0

(B1)

where Hg and Hgg are the first and second derivative of function H(-), respectively. We
evaluate the integral terms via numerical integration using the 1,000-point moneyness grid

described in Section 3.2.

B.1 Closed-form expressions for Mfﬁfgpj and Ef <R§€\/l,t _)Tj>

To evaluate the risk-neutral moments of order k, I\\/JI:(_IT)TJ and Ef <Rﬁ4¢ _)Tj), we set H (STj) =

Sp, k Sr.\ k
<Si: —R f,t_gj) and H (STj) = (si:) in Equation (B1), respectively. Then, we use options

with maturity 7; to evaluate Equation (B1).

B.2 Closed-form expression of LEK}

Notice that

LEK; = COV; ((Rayom — Rpoon)? s (Rumomy — Rymory)?)
= E; (Rugor — Rpesr) By (Rumony — Remoty)?)
~M; L BB (Rt — Rpiory)
= O, VAR, ((Raom — Rpeom)?)
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because

E;’l (RM,T:[A)TN - Rf,T1~>T1\]>2 == et (RM,tHTl - Rf,tﬁT1>2

Hence

2
Lex; -0, (M, - (1:%,)°)

B.3 Closed-form expression of Ef M*(?’)T and LES;
N

T1—>

We can write [E; M*T(3) and LES; respectively as,

1—TN

EtMT(llTN = E; (Run—my — Renisry)”)
* * *(2
- Et <R§\4,Tl—>TN) - R?,T1—>TN - 3Rf,T1—>TNEt MT(llTJ\ﬂ

and

LES; = COV; (ruem,Mi2s, )
= E; (rmion (Rur—ry — Rf7T1—>TN)3)
- _Rf,t—>T1 R?‘,T1—>TN - Rf7t—>T1]E:M;“(1 :

3Ry 11y LEV; + Ef (Raresn Ry oy ) -

3 * *(2)
STy T 3Rf,t—)T1 Rf,Tl —TN ]Et MT1 —TN

(B2)

(B3)

To obtain LES}, we need to evaluate the terms E; (Rasy—n Ry 7,1, ) and EIM;(I:&TN (The

terms M;(IQ_))TN and LEV} have been derived in the main text). To do so, we assume that the

* 3 3 . . . .
term K7, (R M —>TN) — R} 7,7, 1s a nonlinear function of a function g of Rasir — Ryimy

as

E*Tl (R%J,T1—>TN) - R?‘,T1—>TN = %9<RM,t—>T1 - Rf,t—>T1) + Uy,

1)

(B4)



with E} (v¢|Raemry) = Ef (v) = 0. Multiplying both sides of Equation (B4) by R}/, ,r,

and taking the time-t risk-neutral expectation, we obtain,

M*(g) _I_ 3Rf,t—>TNM*(2) - R?‘,TlﬁTN (M*(S’,)Tl + 3Rf,t—>TlM*(2) >

t—TN t—TN t— t—T1 (B5)
M= "
Et (R%J,t_ﬂ“lg(RM,t—)Tl - Rf,t—>T1))
If we use g(Rare—r, — Rpisry) = Ry, p,, we obtain
%(3 x(2 *(3 *(2
Mt(—f}WN + 3Rfat_>TNMt(—>%ﬂN - R‘?;',T14>TN (Mt(—)')Tl + SRﬁt_)TlMt(—)%“l)
Tt = ¥ 6 ) <B6)
Et (RM,t%Tl)
Taking the expectation of (B4) under the risk neutral measure,
Ey (R?\4,T1—>TN) - R?‘,T1—>TN = &y (R?\/[,t—>T1) ) (B7)

Multiplying both sides of Equation (B4) by Ry 7, and taking the time-t risk-neutral ex-

pectation

]E;fk (RMﬂf—)Tl R?M,']&—)T}v) = Rfﬂf_)Tl R?,T1—>TN + /YtE;k (R%/I,t—ﬁl) ° (B8)

Therefore, using Equations (B2) and (B3) we obtain IE;‘I\\/JI*T(I?iTN and LES; as,
E:M;(l?iTN = ’yt]E;tk (R?\/[,t—)ﬂ) - 3Rf7T1%TNE:M*(2)

Ty —TN>

and
LES: = %E: (R?\/l,taTl) - Rf:t‘)Tl E:M;(l?iTN - 3Rf7t%T1 Rf,TlﬂTNE:M;(flTN - SRf,TlﬁTNLEV:

To compute the physical variance, we also need the following moments which we obtain using

a similar approach:

E: (RM,t—>T1 - Rf,t—)T1>3 (RM,T1—)TN - Rf,Tl—)TN)2 = E;k (RM,t—>T1 - Rf,t—)Tl)g E;‘l (RM,Tl—)TN - Rf,Tl—)TN)
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Using expression (24)

. 2 2
ET (Rur-ry — Rymisry)” = 0 (R, — Rygsm)” +eny,

it follows that

E; (Ryoosr, — Rpvor) (Rumory — Rimiory)” = 0B (Ryreor, — Rpssn)”

In addition, let’s provide a closed-form expression of another risk neutral quantity:

E; (Rurion — Rpom) (Rumsny — Rpnory)’
= E; (Ruor — Rpaon)” Riymomy

—R} o B (Raresny, — Rpeory)?

+3R5 1o Bl (Rargsn — Rpeor)” Rumioy

2
_3Rf,T1 —TN ]E: (RM,t%Tl - RfiﬁTl) R?M,Tl —TN

This expression simplifies to

2 3
Ef (Raisn — Rpiosn)” (Rum -1y — Rymiory)
* 2 ok 3
- Et (RM,t—>T1 - Rf,t—>T1) En RM,TlaTN
3 *(2)
+R o M

_3Rf»T1_>TN]E: (RM,t—>T1 — Rf,t_g“l)? M*(Q)

Tr—TnN

Since

* 3 _ 3
ETl RM,T1 STy — N RM,HTI

7



It follows that

E;ﬁk (RM,t—>T1 - Rf,t—>T1)2 (RM,T1—>TN - Rf,T1—>TN)3

= %E; ((RM,t—>T1 - Rf,t—>T1)2 R%/I,t—>T1)

*(2
+R} L M e

t—T1

3Ry 1,1y ((Rageor, — Rpaom) My, )

*(2)

. 2
where expression E; <(RM¢_>T1 — Rysr )" My g,

) can be derived as follows:

(Rmysr — R f,HTl)Q M*T(IZLTN =0, (Ryysr — Rf,HTl)4 + (Rvysry — R f,HTl)2 ETy

and

Ef <(RM,HT1 — Rpomy)’? M?ﬁﬂm) = OE; (Raem — Rpeor)' + Ef (Rarus, — Rpuom ) ey

= OF; (Ruyor, — Rpeomy)’

B.4 Closed-form expression of M:f)ﬂ [a]

Recall that MZ@TI [a] = Ef {(RM,HT1 — RfyHTl)k HST1<aSt}- Therefore, we set H [z] =

k
<S% — Rf,t_>T1> in Equation (B1) and obtain,
X oSt
M) (o] = H[aS)P; [Sn < aS)] — Hs [aS)] Rypom P [aSi] + Rysom, / Hes [K] P, [K] dK.
0

B.5 Closed-form expression of Ef (r{w —>T1M;(1]€—)>TN 1 RM,t—>T1<a)

We use Equation (26) to obtain the required expressions when k = 2. First, we have

* Tk *(2 *(2
M;, o] = Ef (M2, T n<a) = 0, o], (B9)
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and
* Tk *(2 *(3
Mt sU [ ] = Et ((RM,t—>T1 - Rf»t—>T1) M'T(l—{TN]]'RM,t%TI <O¢> = etMtL’zﬁ [Oz] : (BlO)

Next, we can write the future third central moment as,

* 3 *
MCZ“(l—)>TN = ETI (RMT1—>TN) RfT1—>TN 3RfT1—>TNET1 (RMT1—>TN) +3RfT1—>TJ\(B11)

E* (M;ELTN 1RM ;=T <a> = E;tk (RM T —Tn 1RM,t—>T1 <Oé)
_3Rf TlﬁTN]E* (]E;l RM T —TN 1RM,t—>T1 <a)

+2Rf T1—)TNE* 1RM,t—>T1 <o

which simplifies to

]E* (M;—SLTN 1R1\/I =Ty <a) = E: (RM T —Tn 1RM,t—>T1 <C‘f)
* *(2
_3Rf,T1HTNEt ((MTELTN + R?,TlﬁTN) 1RM,HT1<a>

+2Rf Ty —TnN E: 1RM,t~>T1 <o

and

E* (M;l lTN ]‘RM ATy <Oé) - ]E* (1RM t—Ty <aET1 RM 1 *)TN)
* *(2
_3Rf Ty —>TNE <MT1 lTN 1RM Ty <Oé>

*
Rf T —>TNJE 1RM,t~>T1 <a
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Since

with

Hence

* 3 o 3
Er Rymory = %Ruiorm +en
*(2) 2
Mp" 0, = 0 (Rymisn — Raesny)” +0my

E: [ng |RM,t—>T1] =0 and E: [nT1 ’RM,t%Tl] =0

% *(3 * 3
Et (MTSLTN]‘RM,tﬁTl <O¢> = ’YtEt (1RM,t~>T1 <aRM,t—>T1)

Recall that

(RM,tA)Tl - Rf,t~>T1):3

and

—3Rs 110} (Rarisr, — Ruor)” 1Ry sz, <a)

3 *
- Rf,Tl —TN IE:t 1RIM,t—>T1 <a

3 3 2 2
RM7t—>T1 - Rf,t—)Tl - 3RM7t—>T1 RfvtﬁTl + 3Rf,t—)T1 RMytHTl

2

R3 iy _3 (Rartsr — Rypismy)
Mt—T, Fit—Ty )
2Ry Ry — Rf,t%Tl

3 3 2
RM,t—>T1 - Rf,t—>T1 -3 (RM,t—>T1 - Rf7t—>T1) Rf7t—>T1

—6Rnr4m R o, + 3R}y + 3R%,p Ruaomy

(B12)

Rf7t—>T1 + SRi,tﬁTl RM,

3 2
(Ratesm, — Rpesn)” = Riypon =3 (Rargosty — Rpaory)” Rpssn—3Ruun Ry o 2R L,

That is

R?V[,t—)Tl = (RMﬂf‘)Tl - Rf:tHT1>3+3 (RMﬂf‘)Tl - RfytHT1)2 Rf»t%T1 +3RM¢%T1 R?,t—)Tl _2R3,t—>T1
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We can then simplify (B12) as

(Rargor — Rf,t—>T1)3
* *(3) ¥
Et <MT(1—)TN]'RJ\/I,1$~>T1 <Oé> - %ﬁEt 1RAI,t~>T1 <a +3 (RM,t%T1 - RﬁtHTl)Q Rfvt%Tl
+3 R - R?‘,t%Tl - QR?J;,t%Tl

_3Rf,T1—>TN QtE: ((RM,t—>T1 - RM7t—>T1>2 1RM,t4>T1 <a)

3 *
_Rf,Tl TN Et 1RM,t—>T1 <«
Finally

E; (Ryor, — Riior)’ 1RM,t_,T1<a)
* 2
E <M*(3) 1 ) _ 3R By ((RM,t%Tl — Ryiom) 1RM,1HT1<&)
¢ T =Ty Rumi—m <o Tt ) .
+3Rf,t—>T1Et (RM,t%Tl 1RJ\/I,t—>T1 <a)
_QR?JHTHEI (1RM,t~>T1<OC)

—3Rs1 o1y 0 E; ((RM,t—>T1 — RM,t—>T1)2 LRarsom, <a>

\ /

3 *
_Rf,T1—>TNEt 1RM,t—>T1 <a

and

*(3 *(2
) M; S o] + 3Ry M2, [of
B (MTﬁTwlRMvHﬂ <“> - 2 +(1) 3 *(0)
+3Rf,t—)T1Mt—)T1 [Oé] + Rf,t—}TlMt—)Tl [O{]

* *(0
3Ry oy M, (o] — RS _p M) [0

C Portfolio Rebalancing: Implementation

To compute the risk neutral quantities, we use an approach similar to (24) by considering

the decomposition:

2
*(2) _
Mr,, o1, = Orq, ,—T0, (RM,HTQJ._1 - Rf,HTQj_I) + g, (C1)
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with E* (nTQj_l ‘RM,HTQ,l) = 0. We then show:

*(2) *(2)
Mt—}TQ - Rf,TQJ 1 Q Mt—}TjSl
QTQj71—>TQj = 2\
E; (RM g, (Rviomy, = R, ) )

and

. 1 )

LEV; =3 —r——COV; (Rupom M2 g ). (C2)
i>1 " FTq; =T,

with

" *(2 * *(2 *
C@Vt (RM,tHTl?MT(Q:_I%TQj) = Et <RM¢HTIMT(Q3_IATQ].> Rf tHTl]E M Qj *)TQ(C3
Taking the expectation, under the risk neutral measure, of (C1) at time ¢ leads to

s (2) _ *(2)
K MTQ —Tq; GTQJ—I*}TQth*}Tijl

If Ty, , = T1, (C3) simplifies to
E; <RM¢—>T1M;(12—)>TQ].> = Ono1y, (M*(ST + Rf,taTlM:(j)Tl)

Now, assume that Ty, , > T1. We then replace M;(QZ? . by its decomposition and show
i- j

2
* *(2 *
E; (RM»HTlMT(QjA —>TQj> = E; (RM,t—>T19TQj1—>TQj (RM,t—ﬁ%1 - Rf,t—>TQj71> )

+E: <RM,t—)T1 T’Tijl )

Since Tg,., > T, it follows that

]E;k (RM7t—>T177TQj_1) = ]E;k (RM7t_>T1E;—:1T]TQj_1>
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Given that E*TlnTjSl = 0, it follows that

2
* *(2) . * -
E; (RuonMiy) gy ) = E (RM,HTleTQjﬁTQj (Rariorre, , = Rreore, )

2
- QTjSl—)TQj ]E’;k (RM,t%Tl <RM,t—>TQj71 - Rf7t—>TQj71> )

Observe that

— R2 _ 2
(RMvt_)TQj_l R.ﬂt_)TQj_l ) - RM,t—)TQj71 2RM7t_>TQ]'_1 RfvtﬁTQj_l + Rf,t—)TjSl

Thus
% %(2) _ * 2 2 \
Et <RM7t4)T1MTQ]._1~>TQj> - eTQj_lﬂTQjEt (RMat‘)Tl (RM,t—YTQj_l - QRMvtg)TQ]'_lRfthTQ]‘_l + R ,t—)TQj_l/
. 2
IE:t <RM7t—>T1RM,t—>TQj_1>
*
Oy, »10, ¢ —2R fi-Tg, B (RM,t—>T1 Ry, )

+IE; (RM t=Th R?‘,taTjSl )

Since }%J\/Lt_gpQF1 = Ryiom, RM7T1_>TQJ,71, the above expression simplifies to

* 3 2
Et (RM7t—>T1 RM,Tl —)TQ].71 )
E; ( Rageor M = 07, T, —2R E: ( R? R
t A= L1 T 1ﬁ\TQJ. Qj_171Q; f,t—>TQj71 t M t—T M,T1—>TQ];1

j—

2
+Rpn R ft=To;

and

E;fk (‘R%ﬂf—)’]—i R?M,Tl —)TQJ. 1 )
E; (Ryon My

— * 2
TQj—l —)TQj > QTijl _>TQj _2Rf,t—>TQj71 Rf,T1 _>TQj—1 Et (RM,t—>T1 )

2
+Ryim R ft-Tg,
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We further expand this expression to

* 3 2 2 2
]Et <RM,t—>T1 (RM,T1—>TQ].71 - Rf,T1—)TQ]._1 + Rf,T1—)TQ]._1>>

* *(2) _ 2
Et (RMi_)Tl MTijl _>TQ]' > - HTijl _>TQj _QRfvt%TQ]’71 RfleﬁTijl E;fk (RM,t—>T1)

2
+Rf,t—>T1 Rf,t—)TjS 1

which simplifies to

3 +(2) )
E: (RM,t—>T1 MTl —)TQj_l >
+R?,T1 —>TQ].71 E: (R?\/[,t%’fﬁ )

* *(2) _
E; (RM’t_)TlM 1_>TQ1> N QTQJ'*_)TQJ' *(2)
_2Rf,t%TQ]-_1 Rf7T1 —Tg; Mt%Tl

TQ]‘,

2 2
L _QRf7t—>TQj,1Rf,T1—>TQj,1Rf,HT1 + Rf,t—>T1Rf,HTQ]._1

(C4)

/

Recall that

M;EZATQ].A = 01,515, | (Raeor — Rpaom)” + nry with Ef (7, | Ragesm)
Hence, (C4)

* 2
QTHTQj_lEt (R?M,HTl (Bt — Rpom) )
+R?,T1 *)TQj—l E: (R}O)WJ—)Tl )

* *(2) _
= <RM oMy sz, > = Or, -1, «(2)
_2Rf7t—)TQ771 Rf7T1 _>TQj71 Mt—>T1

T,

2 2
_2Rf,t%TQj_1Rf,TlﬁTQj_lRf,t—)Tl + RfiﬁTl Rf,t—)TjS1 )

(C5)

\

Thus

* 2
0T1—>TQj_1Et (R%J,tHTl (RM,t—>T1 - Rf7t—>T1) )

* *(2) . *(2)

K (RM:HTlMTQj,lﬁTQj) - QTijl_yTQj +R?‘,T1HTQ]._1E: (R%,HTI) - 2Rf,t—>TQj,1Rf,TlﬁTQj,lMtaTl

2 2
_2}%‘%—@@].,1 Rf,T1—>TQj,1 Rf,HTl + Rf,HTQj_1 Ryiom
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Provided that odd market risk neutral moments and the risk neutral leverage LEV; are

negative and conditions 1/7 > land p, — 1 > 1 hold, we can further bound (33) as follows:

1 *(2) 1 *
M), — R? G, — LEV]
onay 2 S T e®
Rf o1y t—>T1 TQJ 1 —>TQ]

We then use option prices to recover the expected excess market return.

D Implications of high-order leverage terms

D.1 Conditional expected return with high-order leverages

Proposition 8 Up to a third-order expansion-series, the one-period expected excess market

return 1s
D1+ Doy
RPSrd L1t T P2 D1
t—)Tl,TN D3’t + ’D47t ( )
with
3 a
kit *(k+1)
DLt - Z Rk Mt—)Tl
k=1~ fit—=T
D = @2 LEV* %, LES* 2,3 <L]EK* +M*(2) E*M*(Q) )
YRR g R . T T 5T
R?’TI_}TN R?c Ti—=Tn Rpim R?‘,T1—>TN ' RN
3
D = 143
k=2 = fit—=Th
- a
D4,t = —E MT( )T + 2,3,t LEV:
kz:; ]}T1—>TN T Rf,t—)TlR?TlﬁTN

where a3, = 2as; + 3as, and the risk-neutral quantities LEVY, I\\/JI*TEk_)}Tj, LES; and LEK}

are defined in Equations (11), (12), (36), and (37), respectively.

The proof of Proposition 8 is given in Appendix D.1.
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Proof. The expected excess market return is

Eimym
E, (Rir, — Rpsry) = COV? (—”

mt—>T1

) (Rt—>T1 - Rf,t—>T1)) .

We then replace the inverse SDF by its expression and obtain

. 1+ 2 + 27
E, (Rt—>T1 - Rf,t—>T1) = (C@Vt ( - X v >(RM t—T, — Rf,t—>T1))

1+ E;ZTI + E*ZTl
COV; (21, ramp—r ) + COVY (Z%,TM,HTl)
1+ Efzp, + E;‘Z%l

Setting rasi—1 = Rarisr — Ry and using the definitions of 2y, and z7,, it follows that

Et 2Ty 2 =5 —E TM =Ty + 3 —5 K TM =Ty
R R
fit—=T f, t—>T1
o Azt * a3t * *(2)
]E*ZTl - R E MTlﬁTN + R3 ]E*MTlﬁTN + R R2 Et TMat‘)TlMTlﬁTN
fTi—TN Ty —TN fA=Titbe T Ty
and
* aizt * 2 * asz *
K 27y (RM,t—>T1 - Rf,t—>T1) = R E; M- T R2 ——E TM Py R3—]E TM t—Th
ft—T1 =T t—=T
A1t #(2) a2 ¢ #(3) as. ¢ *(4)
= Mt—>T + 2 Mt—)T + M
3 t—T
Rf7t—>T ' Rf,taTl ' Rf,t%T '
and
* a2,t *(2 *(3
Eizq (Ragsr — Rpsn) = = COVvy (7” M,t—>T17MT(1_)>TN> + —R3 Cov; <7” M7t—>T17MT(11>TN>
fTi—TN fT1—TN
+ th T R2 (C(O)Vt (TMJ_)Tl ’ MTI —TN + MtﬁTl]E*MTl —TN
A= L2V T =T

This ends the proof. =
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D.2 Conditional crash probability with high-order leverages

Proposition 9 Up to a third-order approximation, the conditional probability of a crash
2% (o] = P (Ryrsr < ), is

t~>T1

*0 Qg ¢ k?
M; ), [a 1+2 S VMY

Rj Ty t—)Tl
az,t * as.t * a2,3,t *
+ My + M |a] + 2, «
H3T‘d . R; T —=TN [ ] R; T1 TN t,s [ ] Rf,t—)Tl R?Tl_’TN t,sv [ ]
t—Th [O{] - (k) ( )
2
1+ — + Y et M 25 B ar,—m M
Z Rf t—Tq t%Tl Z fT1~>TN Th—Tn Rf7t‘>T1R?’T1*>TN t =11 Th—TN
(D2)
where az 3 = 2a2,; + 3a3 ;.
Proof. The probability of crash is
E:m
3rd * t t—>T1
i o] = B (S,
mt%Tl
We then replace the inverse SDF by its expression and obtain
* v
I3 [ ] _ Ef ((1 +2n + ZT1> 1RM,t—>T<Oé)
t—T -
! 1+ Efzn + Ef2p,
* * * v
Et (1RM,HT<0) + Et (ZTllRM,HT<a) + Et (ZTl]-RM HT<a)
* * LU
1+ Efzp +E le
k)
M + At *( Q +
S lal + 3 ot o
a2t M* as,t * a2 3.t *
o al + z——M, |a] + M o
Rf, T STy t,v [ ] Rf, T Ty t,s [ ] Rf,t_,TlRf,,Tl_)TN t,50 [ ]
k) a2,3,t #(2)
1 + Akt + _ Okt M*( + 3, E*r M
Z Rf Ty —>T1 Z leaTN T —TN Rf’tA)TlR?,TlﬁTN t ! Mt—=T1 Y4 T

This ends the proof m
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D.3 Proof of Equation (34)

Consider the partial derivatives

2 (th‘oyoun)g u///u/
fzzy 2 N2 2 - 11\ 2
(o)  (u) (u")
12 ! " " 1" 3
1 W,zoyo)? W,
+ 2 6( txoyO), g - (Wtono)S u_/ - 6—( tCEO;yggu )‘ )
(0)” Yo (u) u (u')
3 3 " m 3 W, 3 1\ 3
frw = Dogp 1 6(VVtﬂﬁoyo) uu  (Wiroyo) u —6( iwoyo)” () ‘
TTT xg yyy (CCO)S (ul)2 ul (ul)3

Thus, a third order Taylor expansion-series yields

f[x,y] = f[x’y]Qnd
1 (ke +1—2p,) 3 1 (ke+1-—2p) 3
(;[‘0)3 Ttg (x — )" + (y0)3 Ttg (Y —yo)
1 2 1 — Pt 3 t + 1 - 2 t
+($0)2yo ( ( 7} . - . 7 - )> (== x0)2 =)
1 2(1—pi) | 3(ke+1—2p

]2"d is the second order Taylor expansion-series in Equation (A17).

where f[z,y
Replacing z, xg, y, and yo by their expressions and using preference parameters a;, as,

and ag defined in Equation (8), we obtain,

aig alg

E;l (f [(E, y]) = 1+ R (RM,tﬁTl - Rfytﬁﬂ) + R— (Rf»TIHTN - RfyTlﬁTN>
fit—=T1 f,T1—TN
a a .
+$2 (RM,tHTl - Rf,tA)T1)2 + 21 QETI ((RM,Tl%TN - Rf,TlﬂTN)2)
(RfytHTl ) (RfyTlﬁTN )
ai: + 2a
M (RM,t—>T1 - Rf,t—)Tl) (Rf,T1—>TN - Rf,T1—)TN)
Rf,t—)Tg
a a
> 5 (Rar—r — Rf,HTl)g + 2 sET, ((RM,TlaTN — Rf,TlaTN)g)
(Rf o) (Rf1—1y)
2@2’15 + 3@3,,5

2
R 7R (Rt — Rpoosm)” (Rensmy — Rymo1y)
fit—=T1 T —TN

2a9; + 3a .
20 B (Rumoty — Rpmory)?) (Raresn — Ryesm)  (D4)

Ryior (Rymoy)
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which gives the desired result when interest rates are deterministic.

E Online Appendix

E.1 Volatility Dynamic Implied by (24)

To further show that our formulation (24) is different from the GARCH (1,1), we use the

closed-form expression of ¢, displayed in (25) and show that
M:(j)TN = etE: R?M,Hﬂ (RM,HTl - Rf,HTl)2 + R?‘,TlﬁTgM:(j%“l‘ (El)
Since R%;, 7, = (Rarest, — Rpgosmy)’ + 2Raresny Rpvry — B3y, it follows that
E; Ry om (Rarion, — Rpeon)® = MG + 2R M), + RS, MG
We then replace this expression in the RHS of (E1) and obtain

*(2 *(4 *(3 *(2
M 2 = QtMt(—y}l + 2Rf7t_>T1 HtMt(—Y}'l + R?,T1—>TN (et + 1) Mt(—>%“1'

t—Tn

This shows that the process of M:® s different from a GARCH dynamic. To check

t—TN

*(3) =0

similarities with the GARCH process, let’s assume for illustration purpose that M, 7,

t—T1

2
and M?ﬁ‘gﬁ =3 <M*(2) ) then
*(2 *(2 2 *(2
M; %), =30 (M0}, )+ B gy (0 + MG, (E2)

t—Tn

Expression (E2) is reminiscent but distinct from the GARCH process.
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E.2 The case with consumption

In this section, we introduce consumption in the representative agent problem. Under the
minimal assumption that (i) odd risk neutral moments are negative, (ii) preference parame-
ters satisfy the restrictions as; > 0, asy <0, agy > 0, azs; > 0 (see Eq), (iii) consumption-
wealth ratio is positively related to the market return and (iv) the correlation of the square
of the consumption wealth ratio and market return is negative (condition reminiscent of
market coskewness), our measure of expected excess return remains a lower bound to the
true measure of market expected excess return.

To proceed, we start by having the representative agent solve the problem

max [, { max {Er,u [W,HTN]}} :
Wt,Ct Wy ,CTy
where the terminal wealth is
Wt—>TN = (1 — CTl) VVT1 ((JJr}l RT1—>TN) with VVT1 = (1 — Ct) Wt (W;Rt%ﬂ)
and ¢; is the consumption wealth ratio. The terminal wealth can alternatively be written as

Wt%TN = (1 - CTl) (1 - Ct) Wi (ngt*)Tl) (w;} RTlﬂTN) :

For simplicity, we assume no interest rate risk. Notice that the SDF is given by the identity:

Etmt%Tl _ UTl
M-y ]EZK (UTI) ’
where
% U/ W T . —
U, = ETl M Wlth Wt—)TN = WtRf,t—>T1 Rf,T1—>TN' (E3)
Uu [Wt—>TN]
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We set

Ryror = Wi Risry, Rumsry = wi Ry oy, cony = (1 —cry) (1 —¢) (E4)

Next, we define

X = G, Y= ngt—)Tn z = w;"l RT1—>TN (E5)
xo = 1,y0=Rsim, 2o = Rymory (E6)

and set

X = (X7Y7Z) and XO - (X07y07Z0) .

Notice that 0 < ceyy < 1since 0 < ey <1 and 0 < ¢ < 1. Now, assume that the utility

function is well-behaved and admits high-order derivatives that exist. Denote

n [Wt—)TN]
G- L IN]
u [Wisry]
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E.2.1 Second-order Taylor expansion-series

A second-order Taylor expansion of G around X = X, gives

WtZOUN [Wt—mv]
W Wy

WtYOZOUH [Wt—mv}
o Woor]

G = 1—(x—x0) —(y = o)

= m N 2
(- ) Wty/(]'U/_[WtﬁTN} n EWE g g [WtﬁTN] n 2 (lf BVIHTN]Z (x — XO)Q
U [Wisry ] 2 u [Wisry ] (v [Wisty])
/// " 2
_|_1Wt2zg _ [Wt%TN] + 2 ( [WtﬁTN}) (y Vo )
2 [W'HTN} ( [Wt—>TN
_i_th yO rt%TN} + Wt—)TN
2 u Wt—>TN] u WHTN
" WtaT ] ( [WtHT )2
+Wiyoxoz] <_ T p (x —x0) (¥ — o)
t ’ [Wt_VTN] ( [Wt—>TN] )2
’G ’G
+ (aXaZ)X:XO (X - XO) (Z - ZO) + <8yaz XX, (Z - ZO) (y _ YO) .
Notice that
E7 (z —29) =0
and
E7 (x —X¢) (z—20) = (x—x0)E7 (z—120) =0,

E% (z—20)(y —yo) = (y—Yo)Ep, (z—12) =0.
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We use these expressions to simplify (E3) as

WtYOIZOU” [WHTN} (% — %0) — (¥ — Yo I/Vtz?u” [WHTN}
u WHTN} U WHTN}

v [Wiory] | (” THTNQ) (x — %)’

+=-W¢yozs | ——

)
" ” 2
g (—u Wer] | 2 [Weory]) )
2

Uy, = 1-—

u Wt—)TN} (u WHTN
1Wt2 2 <_ " [Wt—>TN] + ( Wt—>TN

_'_ —
2 [W'HTN} ( WtHTN

—l—W y0X0Z0 (_ rtﬁTN} + ( rtHTN)Z ) x — XO) <y yo)

u' Wt—>TN} (u WHTN}

E _ZO

Yo Ty

which simplifies to

1 (L—p1)

1
v, = 14 —E% (CCtT1 — 1) + (ngt‘)Tl — Rf,taTl) + 3 (CCtT1 — 1)2
Tt TtRf,t—>T1 Ty
(1—pe) 2 (I—p) _, 2
toom (wi Ry, — Ryysmy)” + oy E%, (wl, Rry»1 — Rpn—1y)
Ty e oy F T —Ts
2(1— py) .
+ 2P g (e, — 1) (@I Ruor, — Rpaoom)
T Rym

We then exploit the notation Razy 7 = w{ Riry, Ry 1y = Wi, Ry 1y and express the

expected value of vy, under the risk neutral measure as

1 1-—
E:UTl = 1 —+ —E: (CCtTl — 1) + ( 2pt>E: (CctT1 — 1)2
(L—pt) (@ (1 —pr) )
—M —]E*M
+Tt2R?f t—Ty ~n T TQR?C T —Ty Ty
+—C@V (CCtT17 RM t~>T1) . (E?)
T Rf t—T
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where

MI&% = E; (Ryvisr, — Rpsom)”

*(2) _ * 2
M7, = En (Runory — Renory)

The expected excess market return is

Emyr, musr
]E’t (RM,t—>T1 - Rf,t—)Tl) = Et |: —1 meb (RM7t—>T1 - Rf,t—)Tl)
mymy EtmtaTl

t

* Emyr
E [# (Rari—r, — Ryismy)
mt%Tl

COV; [vry, Rurism]
]E;tk Ury

Observe that

1 ¥
M (2)
TtRf,t%Tl

t—Th

1
C@V: [’UTl, RM,t%Tl] = 1+ ;C@Vz (CCtT17 RM,t%TJ —+
t

1 —
+( 210t) C@V: ((cctT1 — 1)2 s RM7t—>T1)

T

1— N 1—

7} R?”,t—>T1 oh T} R?”,T1—>TN

2(1—py) .

20 Py ((ceer, — 1) (Rusaon, — Ryom ) - (B9)
t SV ft—Ty

Notice that Ef ((cct;p1 — 1) (W Resry, — Rf,t—>T1)2> < 0 because ccyy, — 1 < 0. In addition,

M ®). <0, LEV! <0, and COV? (Ryssr,, LEV?) < 0. Recall that

t—T1 —

1
—>0and1—p, <O0. (E9)
Tt

In theory, each factor risk factor in vy, positively contributes to the risk premium. Thus

each term in (E8) is positive. Assuming (E9) is satisfied, one should expect

(C@V: (CCtTl, RM,t—)Tl) > (0 and C@VI ((CCtTl — 1)2 7RM,t—>T1> < 0. (ElO)
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Since 1 — ¢y, = WTI}V—;CTl is the fraction of wealth Wy, invested at 77, it follows that
1

COV; (ceiry, Raposr) = (1—ct)<c<o>v;*(

* 2 o 2 * WT1 - OTl 2
(C@Vt (<CCtT1 - 1> ’RM’t*)Tl) - (1 - Ct) C©Vt - i 7RM,7§4)T1 .

The positive sign of COV} (cciry, Ry, ) is motivated by the positive impact of wealth-
consumption ratio on the market expected excess return. Conditions (E10) are reminiscent
of the dependence between the wealth-consumption ratio and the return on the market
under the physical measure. Under the physical measure, the wealth-consumption ratio
is positively correlated to the market. Under conditions (E9) and (E10), the covariance

COV; [ury, Ryt is bounded:

11 1 , 1-
COV; [vry, Rargry] > ~M;% MM ® +MLEV*. (E11)

—>T1 t—T1
Rt T R Fi-1 T Rf TioTn T

Next, since cor, < 1, we use (E7) and exploit (E9) and (E10) to obtain

(1—py) M*(Q) (1—py) ;M (2)

Efvp <1
t U > + Rf t*}Tl t—T1 + Rf Tl*)TN T —TN"
Therefore,
1 1
> : (E12)
* 1 *(2 1— %
Ervr, ~ 1+ ;H_p;)Mt O+ ﬁE M2

Combining (E11) and (E12), the expected excess return is bounded

1 1) (1—pt) *(3) (- *
7 TEMHTld"R? ptTMHleLRZ ptTLEV
E, (R R > fit=Ty fit—T1 7t f,T1—=TN "t
el Byriom = Bpaom] 2 14 =pt) Pt) M*(Q) (1—pt) E*M*(z)
+ R?c . t—T1 + R?B T Tt Ty —Tn
N —T 1—~14N P

This is our measure of expected excess return

This shows that under minimal conditions, our measure of expected excess return is a bound

on the true expected excess return when consumption is taken into account.
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Next, we focus on the third-order Taylor expansion-series of the inverse marginal utility

function.

E.2.2 Third-order Taylor expansion-series

[Wt—%]

A Third-order Taylor expansion of u,[ ] arround X = X, gives
u t—To

11 11 11 1 (1—py) 2
G =1 —xy) —— — ) —— 7)) —— + — _
X0 o (7 =) o (B ) e T ()

1 (1—p) 2 1 (1—py) 2 1 2(1—p)
+yg 77 (¥ —yo)" + Z% = (z —20)" + Xo¥o 2 (x — o) (y — ¥o)

(o) w55 -,

_,_X%W (x — x0)* + %W (z — 20)° + ig(ﬂt - 72-§t +1) (v — yo)°
%X%lyo <4 (17_:2 o) + (s _T?»,pt i 1)) (x —x0)" (¥ — ¥o)
%yglx() <4 (17; ) + 6l —;,Ot * 1)) (v — YO)2 (x — o)
%zglxo (4 (1Tt_2 o) + s _T?),pt i 1)> (z — 20)” (x — x0)
%z%lyo (4 (1Tt_2 o) + 6l —;pt i 1>) (z —20)" (y — ¥o)
+6% (%)XXO (z — 20) (¥ — ¥o) (x — Xo)
+3% <%§Z)xxo (x —x0)* (z — 20)
"‘3% <%) X, (y — y0)* (z— 20)
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Therefore,

v = E*TIG
R

yi%(l ;2/%) (y — yo)? + Zlg(l Tt2pt)E* (2 — 70) + Xolyo (2 (1%—2 Pt)) (x — %o0) (¥ — ¥o)

b g e 2 e (o S

+%X%1yo (4 <th_2 p) , 6(r —;pt + 1)) (x— %02 (5 — v0)
%yglx() <4 (17—; ) " 6 (£ —T?)Pt + 1)) (y — y0>2 (% — %)
%zglxo (4(17; p) |, (e —Tépt + 1)) (x — x0) By (2 — 70)
%Zgyo (4(17; Pt) N 6 (ki —ngpt + 1)) 5 — o) Ex (2 2)

Using Eq (8) in the main text of the paper, it follows that

UTl = ]E;le
1 11 1
= 1+ (xX—x0) —ai +(y —yo) —— + =502, (x — x0)’
X0 Yo7 Xo
s (v — ¥0)’ + sy (7~ 20) + ——az (x — X0) (¥ — o)
— —a Z—7 ass (X — X —
y% Y —Yo zg 2, ¢l 0 — 2,t 0)\Y — Yo
1 1 1
+—3 34 (X — X0)3 + —<a3,E7 (z — 20)3 + —as, (y — YO)3
X0 Z Yo
6 1 6 1 9
3, a23t (x — Xo) (y —yo) + ﬁﬂaz’?”t (y —yo)" (x —xo)
6 1 * 2
+3' aggt(X—Xo)ETI (Z—Z(])
o1 v~y By (5 — )" (13)
——a — 7 — 7
3l Z%yo 2,3t \Y —Yo) Lp, 0
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We then compute the expected value Ejvz, to obtain

Ejvp, = 14 (x—xo) x_oal’t + ;agvtEt (x —xq)°
0
L ( P+ L EIES, ( )+
o202, Yy —Yo 502, Z— 2
Yo o z; e XoYo

ag By (X - Xo) (y - YO)

1 * 1 Tk 1 *
+Fa’37t]Et (X — X0)3 + ;a;g’tEt ETl (Z — Z())3 + —3(13,25Et (y — y0)3

0 0 Yo
1 * 1 * *

+y§Xo as,3,E; (y — yo)? (x — %) + %02,3,@5 (x — x0) B}, (2 — 20)*
1 * E3

+— as 3, COV; (y,IEJT1 (z — z0)2)

ZpYo

Notice that

X—Xoﬁoa

and the following inequalities hold:

azy >0, a2, <0, azy >0, az3; > 0, (E14)

and
E; (x — %)’ <0, Ej (y —y0)* <0, E} (x —x0)* <0,
and
E; (x = xo) (¥ — ¥0) = COV; (x — X0, ) = 0
and

E; (y - }’0)2 (x —xp) < 0 (because (x —xp) <0)
E; (x —xo) E}, (z —29)° < 0 (because (x —xg) < 0)

COV; (y,Er (z—29)°) = LEV; <0.
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This allows us to bound Efvy, as

1 1
E:UTl S 1 + —QCLQJEI (y — y0)2 + —QCLQ,JEZ(E;I (Z — Z0)2
Yo Zj
1 * Tk 1 *
+—as, BBy (2 — 20)” + —a3.E; (y — yo)°
Z Yo
+——a33,COV; (y, B, (2 —20)”) .
ZpYo
As a result,
1 1
" >
Et Uy 2

1+ ngGQ,tE: (y - YO)2 + %GQ,tEIE;} (Z - ZO)
+%a3,tE?]EEH (z —20)° + yigas,tEZ‘ (y — yo)*

+—Oa2,37tC@V: (y, E;}l (Z — ZD)Z)

1
zgy
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Next, our goal is to bound COVy (vp,,y —yo) = COV;} (vry, Ry, — Ry ). We then

use (E13) to compute this covariance as

COV; (vry,y — yo)
11

1 2
= ——VAR; A — —
Vo T (y) + X(Q)aZtC@) t((X Xo)",y YO)

1 * 1 * *
+5202:COVE (v = 0)" ¥ = ¥0) + 52,COV (Ef, (2~ 20)" ¥~ ¥0)
0 0

_|_

az,COV} ((x — x0) (¥ — ¥0),¥ — Yo)
XoYo

1 . 1 * (T
—i—gag,tC@Vt ((x — x0)3 Yy — yg) + ;ag,t(C@Vt (]ET1 (z — z0)3 Y — yo)
0 0

1 *
+}§a3,tC@Vt ((y - YO)3 Y — YO)
0

3!X0y0a23tC@V ((x —%0)* (¥ — ¥0) ,¥ — Yo)
1

3y7x a23tC@ ; ((y — y0) % (x — o), Y — ¥o)
Yox

6 1 2

3 a23t(C@ (X Xo ETl z — 7) Jy_YO)

6 1 9

+ o7 52,3, COV; (y yo) E7, (z — 2o) ay—}’o)-
3! z2yo

Notice that

COV; ((x —x0) (y = ¥0),¥ —Yo) = E} (x —x¢) (y — yo)2 < 0 (since x < xp),

and

COV; ((x — x0)? (¥ — ¥0),¥ — yo) =E; (x — x0)” (y — y0)* > 0.

We assume

COV; ((x —x0)*,y — o) <0 (E16)
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and

COV; ((x—x0)’,y —yo) > 0, (E17)
COV; ((y —yo)’ (x —%0),y —y0) = 0, (E18)
COV; ((x —x0) B, (2 —20)",y —yo) > 0 (E19)

These conditions are reminiscent of the sign of coskewness and cokurtosis when random
variables of interest are return. While y —yq and z — zy are realized excess returns, x — xg is
a function of wealth-consumption ratio (See (E4)-(E6)). Because coskewness is negative (see
Harvey and Siddique (2000)) and cokurtosis is positive (Dittmar (2002)) and the wealth-
consumption ratio is positively correlated to the market return, one should expect (E17)-
(E19) to hold.

Under conditions (E16)-(E19), it follows that

COV; (vr,,y —yo) = ——VAR; (y) + —asE; (y — o)’ + —502:COV; (Ef, (z — 20)”,y — ¥o)
Yo 7: Yo Zj
1 * * 1 *
+—503,COV; (E, (2 — 20)° .,y — yo) + Fa&tC@Vt ((y = y0)’.y — y0)
0 0
1 * *
+22y a2,3:.COV; ((y — yo) Ef, (z — 70)°,y — ¥o) (E20)
00
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Combining (E15) and (E20) leads to

COV; [vry, Rarios)
IE,’;UT1
( o LVAR! (y) + y%oaztE: (y — YO)3 \
%aZtC@VI (B, (z—20)",y — ¥o)
+%a3’tC@VI (E% (z - 20)° Y — Yo)
+5505,.COV; ((y = 0)* ¥ = ¥0)

1+ y—lgag,t]EI (y — yo)2 + %ag,tE;‘Ei}l (z — zo)2

Et (RM,t—>T1 - Rf,t—)Tl)

Vs

v

+%a3,tEfE*T1 (z —20)° + —15a3,tE%k (y —yo)*
+—=— 2 aggtC@V ( Tl ( — Z0)2)

which simplifies to

L% + Lo WS, + drag M)

Yo Tt t—Th t—Th t—T1

+Zi2a2’tL]EV: + z%a;),’tLESt
0
E: (Ryion, — Rpiomy) > >

L+ Jap M) + Bao ByMGD, o+ Jras M,

t%Tl t—T1

+%a3,tE;‘MTg?lTN+ 7033 LEV]

We, thereafter, replace yg and zg by their expressions

1 iM*(Q) + 1 ay tM*(g) + 1 as tM*(4)
fit=T fs

Ry tr Tt t—T1 R? ) t—T1 R3 oy t—Ty
1 1
+ R2 a27tLEVt + Rg a/3 tLES:
£ T1—=TN T —TN
E; (Rai— — Rypory) > o o
1 *(2 1 pa— *(3)
1 + R?‘,ta a27tMt_)Tl + R?,TI*;T a9 t]EtMT1—>TN + R?t ' a3,tMt—>T1
1 *r(3)
+——t—ay,E:M + LEV
R? Ty 3.t YA Ty R? T1—>TNth 7 2,3,t t

-~
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E.3 1Is our Market Expected Return a Lower Bound to the Ex-

pected Return?

Setting consumption-wealth ratio to 1 in Section E.2 and using reasonable minimal assump-
tions that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the
restrictions (E9) proves that our measure of expected excess market return (10) remains a
lower bound to the true expected excess market return.

Setting consumption-wealth ratio to 1 in Section E.2 and using reasonable assumptions
that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the restric-
tions (E14) proves that our measure of expected excess market return (D1) remains a lower

bound to the true expected excess market return.

F Additional performance tests
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Table A1l: Out-of-sample prediction and allocation performance reached by fixing
7 and p and estimating it, from 2000 (using 1-month returns as determinant for
preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. ]“EPtLj%1 is
the lower bound of Martin (2017). RP,_,, is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (15). RP,_,p, 1, is the risk premia measure in Equation (10). We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (29)). For each prediction method, we test for
the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995) test. We
estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (31)). The physical variances are computed using
option prices (see Appendix A.6). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RP;_,p, using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. *,
xx, and * * x denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

Ty T=1land p=2 p=2 p, T estimated
RPtngpl RP, 7, RP 1 13 RP, 7, RP 7, 12 RP, 7, RPy 1 13

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.08 0.37 —1.44 0.11 0.12
1 1.09 1.18 1.73 1.15 —0.39 1.15 1.46
2 1.34 1.59 3.84** 1.30 2.09 1.42 1.98
3 1.18 1.61 4717 1.76 4.05 2.09 3.59*
4 2.16 2.86 5.47** 3.85 5.38 4.01 6.18**
5 3.12 4.19 6.44** 5.92 6.38 6.10 8.08**
6 3.61 4.97 7.26** 6.89 6.79 7.17 7.92
9 4.32 6.37 8.76** 8.98 10.35 8.59 9.35
12 4.00 6.54 8.44 9.23 9.09 8.27 9.24
18 2.29 6.17 7.66 9.70 10.65 7.72 9.29

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 5.81 8.50 —8.88 7.96 6.79
1 3.55 3.68 3.52 4.91 —13.24 4.40 2.94
2 3.69 3.96 6.41 4.39 —6.90 2.96 4.49
3 4.14 4.54 9.50** 4.93 1.44 5.23 7.88*
4 4.27 4.75 8.46** 5.71 1.05 5.39 6.75
) 4.01 4.50 6.85 5.80 5.17 5.66 4.41
6 4.26 4.89 7.24 4.91 1.95 4.92 2.50
9 4.18 4.88 6.19 3.58 3.91 5.48 5.03
12 4.52 5.45%** 6.85** —2.50%** —17.46 5.91%** 6.45"
18 4.59 5.62%** 6.11** —27.26*** —30.67 3.86"** 5.30**
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Table A2: Out-of-sample prediction and allocation performance reached by fixing
7 and p and estimating it, from 2000 (using 12-month returns as determinant
for preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. ]“EPtLj%1 is
the lower bound of Martin (2017). RP,_,, is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (15). RP,_,p, 1, is the risk premia measure in Equation (10). We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (29)). For each prediction method, we test for
the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995) test. We
estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (31)). The physical variances are computed using
option prices (see Appendix A.6). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RP;_,p, using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. *,
xx, and * * x denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

Ty T=1land p=2 p=2 p, T estimated
RPtLji}l RP 7 RPy 1 13 RP 7 RPy 1 13 RP 7 RPym 13
Panel A: Out-of-sample R?
10d —0.09 —0.07 0.08 0.60 0.33 0.52 —0.02
1 1.09 1.18 1.73 2.24 2.13 1.91 2.01
2 1.34 1.59 3.84** 2.45 2.69 2.05 2.75*
3 1.18 1.61 4,71+ 2.78 3.20 2.57 3.66*
4 2.16 2.86 5.47** 4.47 5.26 3.81 5.39**
5 3.12 4.19 6.44** 6.27 7.37* 6.07 7.45**
6 3.61 4.97 7.26%* 6.94 5.06 6.83 8.30*
9 4.32 6.37 8.76** 8.71 9.10 8.85 9.29
12 4.00 6.54 8.44 8.44 9.16 8.43 9.21
18 2.29 6.17 7.66 7.36 9.85 8.47 10.51
Panel B: Out-of-sample mean-variance certainty equivalent with v =3
10d 4.56 4.69 5.81 9.33 4.50 8.40 6.65
1 3.55 3.68 3.52 3.10 1.72 2.51 —0.10
2 3.69 3.96 6.41 3.69 4.27 3.36 2.85
3 4.14 4.54 9.50*** 6.49 5.74 6.38 6.45
4 4.27 4.75 8.46** 7.03 5.96 5.47 5.88
5 4.01 4.50 6.85 4.57 3.77 4.03 3.05
6 4.26 4.89 7.24 —1.76 —4.24 —2.67 —1.10
9 4.18 4.88 6.19 1.15 4.65 0.57 6.57*
12 4.52 5.45%** 6.85%* 3.74%** 1.80 3.34%** 0.20
18 4.59 5.62%** 6.11** 5.36%** —25.16 2.29%** —5.67
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