Persistent Anomalies and Nonstandard Errors

Guillaume Coqueret” Christophe Pérignon®

October 19, 2025

Abstract

We develop a framework for rigorous inference when assessing asset pricing anoma-
lies and accounting for multiple methodological choices. We demonstrate that run-
ning multiple paths on the same dataset results in high correlation across outcomes,
biasing inference. Alternatively, path-specific resampling reduces outcome correla-
tions and tightens the confidence interval of the average return. Accounting for across
and within-path variability allows us to decompose the variance of the average re-
turn into a standard error, a nonstandard error, and a correlation term. Empirically,
we identify 29 persistent anomalies with statistically significant average returns and
show that, for most anomalies, nonstandard errors dominate standard errors.
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1 Introduction

The finance literature has recently shown increasing interest in multi-design studies (see
Table 1), building on emerging practices in other scientific disciplines." These empiri-
cal studies consider numerous variations of the baseline methodology, often referred to
as forking paths. They can be either conducted by multiple independent research teams
(multi-analyst studies, e.g., Menkveld et al. (2024)) or by a single research team consider-
ing various potential modeling decisions (multi-path studies, e.g., Soebhag et al. (2024)).

Multi-design studies provide two distinct advantages. First, by estimating a distribu-
tion of effects rather than a single point estimate, they provide a more comprehensive char-
acterization of the analyzed phenomenon and serve as a potential remedy for p-hacking
in empirical research (Chen, 2021).? Second, they quantify the uncertainty arising from ad
hoc methodological choices made by researchers, which Menkveld et al. (2024) coined as
nonstandard errors (NSE).

In the context of asset pricing, multi-design studies open up valuable opportunities.
Indeed, the debate surrounding the robustness of empirical findings and the uncertainty
stemming from methodological decisions is particularly intense regarding the so-called
asset-pricing anomalies (Fama and French, 1996; Hou et al., 2015; McLean and Pontiff,
2016). Given the proliferation of these return regularities—statistically significant, persis-
tent, and unexplained by standard risk-based models—and their practical importance in
the asset management industry, there is a pressing need for robust approaches to navigate
the “factor zoo” (Harvey et al., 2016; Feng et al., 2020; Bryzgalova et al., 2023).

Despite growing interest in multi-design studies, rigorous approaches for handling
the large number of resulting estimates remain underdeveloped. In this paper, we pro-
pose a framework that enables two methodological contributions to the literature. First,
we demonstrate how to formally test whether the average return of anomaly-based port-
folios differs from zero. We derive confidence intervals for identifying persistent anoma-
lies—those that are robust to multiple methodological variations and to data resampling.
Second, we decompose the total variance of the average return into two distinct sources:
the standard error (SE) capturing the variability arising from sampling and the NSE cap-
turing the variability attributable to differences across paths. In contrast to the existing
literature, (the square of) our estimates for the SE and NSE of the effect sums exactly to
the total variance of the effect.

The various steps of our analysis are the following. We start by showing that over-
lapping methodological paths applied to the same dataset inherently produce highly cor-
related estimates, with correlation coefficients exhibiting a skewed distribution. We then
show how this strong correlation structure across outcomes distorts inference, resulting in
wide intervals that hinder our ability to draw definitive conclusions about the sign and

Key references include Gelman and Loken (2014) in statistics, Silberzahn et al. (2018) in psychology,
Botvinik-Nezer et al. (2020) in machine learning, Huntington-Klein et al. (2021), Breznau et al. (2022, 2024)
and Huntington-Klein et al. (2025) in economics, Gould et al. (2023) in biology, and Huber et al. (2023) in
behavioral sciences.

2P-hacking corresponds to relentless analysis of data with an intent to obtain a statistically significant
result, usually to support the researcher’s hypothesis (Elliott et al., 2022; Brodeur et al., 2016).
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intensity of the effect. This shares similarities with the autocorrelation corrections (HAC)
that have been proposed in the time-series literature (Newey and West (1987)). In our
setting, however, the correlation arises not from temporal ordering but from the cross-
sectional dependence across paths. Consequently, we argue that the variance calibration
should be adjusted in a manner analogous to HAC estimators.

At first glance, the idea that highly correlated estimates could be problematic may seem
counterintuitive. After all, if a finding is truly robust, would not different paths naturally
become correlated as they are capturing the same effect? The benefits of low correlations
have long been documented in multiple testing (Benjamini and Hochberg (1995)) or in
model combination, e.g., bagging and ensembles (see Breiman (1996) or Zhou (2025)). Re-
cently, ensembles have been found to be a promising avenue in asset pricing, especially
when they aggregate complementary models that learn different perspectives from the
data (Kelly and Malamud (2025)). In our framework, each path functions like a separate
model that independently learns from the data. Ideally, all paths should reach the same
conclusion—but for different reasons. When such agreement emerges from diverse per-
spectives, it signals robustness. Conversely, if the paths agree for the same reason (i.e.,
they are highly correlated), they contribute little additional information, effectively acting
as a single path.

To mitigate the correlation effects, we demonstrate that randomly sampling data be-
fore running each path significantly reduces outcome correlations and symmetrizes their
distribution around zero, leading to tighter confidence intervals. To see why this happens,
we recall that the width of the confidence intervals around the mean, /i, increases with
the variance of the estimated mean, o, . We show that this variance is the product of two
important terms. The first one is the average of correlations across all outcomes and the
second one is the variance of the effect under study, 7. We rely on the law of total vari-
ance to decompose the variance of the effects into two components: o7 = SE* + NSE?.
This novel decomposition allows us to derive a canonical expression for the variance of
the mean effect: o5, = (SE* + NSE?) Y, ‘¢, where p,, denotes the correlation between
the outcomes of paths p and ¢, and P is the total number of paths.

In an empirical analysis of 33 asset pricing anomalies, we consider seven critical method-
ological choices (e.g., sample period, holding period, long-short quantiles) for a total of 576
methodological paths. For each anomaly and each path, we estimate the average return
of a long-short portfolio sorted on the corresponding firm characteristic. To compute the
correlations among outcomes, we contrast two resampling strategies: (1) all paths are run
on the same new samples (common resampling); and (2) new samples are drawn separately
for each individual path (specific resampling). Note that this second approach is similar in

spirit to the sampling of trees in random forests (Ho (1998); Breiman (2001)).

We show that the resulting average correlation across paths with common resampling
is around 30%, whereas it is below 0.25% with the specific resampling we recommend.
From the canonical decomposition of the variance, we directly see that the advantage of
resorting to specific resampling is to shrink the variance more than 100 times. Conse-
quently, the confidence interval for the mean effect, which is proportional to the standard
deviation, is reduced approximately by a factor of ten. Applying our strategy to a large



sample of asset pricing anomalies reveals 29 that can be classified as persistent, with the
strongest effects linked to trend-following and momentum strategies.

Our empirical study also provides some insights into the respective contributions of
the SE and NSE to the variance of the (mean) effect. A robust finding of our study is that
the NSE component dwarfs the SE component for most anomalies. This means that the
bulk of the uncertainty concerning the performance of anomaly-based portfolios is due
to methodological variation. In a set of extensions, we demonstrate that our framework
(1) can incorporate non-uniform weighting schemes across paths to reflect preferences
or theoretical guidance, (2) can be applied with alternative sampling methods, and (3)
enables richer robustness checks in empirical finance applications.

Our paper adds to the literature on the validity, robustness, and credibility of empir-
ical results in finance (Harvey, 2017). A first stream of the literature has focused on the
internal validity of empirical findings. To make causal claims, finance researchers have
exploited natural experiments and other sharp identification strategies, e.g., difference-
in-differences, instrumental variables, and regression discontinuity design (Roberts and
Whited, 2013; Heath et al., 2023). They have also accounted for multiple hypothesis test-
ing and false discoveries to ensure that statistically significant results are not merely due
to chance (Barras et al., 2010; Harvey and Liu, 2020; Chordia et al., 2020).

A second stream of the literature, more closely related to the present paper, has focused
on the external validity of empirical findings. In his AFA Presidential Address, Harvey
(2017) emphasizes the value of reanalysis studies in finance, arguing that they strengthen
the field’s scientific foundations and help build credibility (also see Nagel (2019)). Using
the original code and data provided by the authors, Pérignon et al. (2024) independently
verify the empirical results of a sample of finance research papers and report a repro-
ducibility success rate of 52%. Over the past decade, several replication studies have chal-
lenged the robustness of some classic empirical results in corporate finance (Mitton, 2022;
Cohn et al., 2023) and in asset pricing for equity returns (MclLean and Pontiff, 2016; Har-
vey et al., 2016; Hou et al., 2020) and bond returns (Dickerson et al., 2023; Dick-Nielsen
et al., 2023). In contrast, Jensen et al. (2023) and Chen and Zimmermann (2022b) suc-
cessfully replicated the findings of a large number of asset pricing anomaly papers. To
promote comparability and replicability, Hellum et al. (2025) design a collaborative and
competitive process that allows the future performance of many asset pricing models to
be evaluated on equal footing using a common, secret dataset.

The multi-design approach serves as a valuable complement to traditional reanalyses.
Instead of relying on subsequent studies, often published years later to reassess the va-
lidity of existing results by, for instance, altering the sample period, outlier management,
or the estimation method, multi-design studies aim to internalize methodological uncer-
tainty by systematically spanning a range of protocol choices. While multi-design analy-
ses focus on the role of methodological variability, we show in this paper that sampling
variability also matters. Indeed, one must keep in mind that any given sample is only a
single realization of the data-generating process. When running multiple protocols on a
single sample, the analyst tends to overlook the importance of sampling noise. In con-
trast, we demonstrate that allowing for shifts in the baseline dataset improves inference in
multi-design settings.



2 Multi-design methodologies

2.1 Current methodologies

We list in Table 1 recent studies that leverage multi-design analyses in the field of fi-
nance. These studies span topics such as portfolio strategy performance, market mi-
crostructure, and corporate finance, highlighting the broad relevance of multi-design ap-
proaches throughout the discipline. The table provides the number of methodological
decisions and the total number of paths considered. We see that the listed studies em-
ploy various tools to summarize the large number of generated results, including plots
of outcome distributions (e.g., boxplots) and sensitivity analyses with respect to specific
forks. The latter is carried out by computing the conditional average of outcomes when
one of the steps is fixed. For example, in Figure 1, this would involve averaging all returns
with financial firms included and comparing them to the average returns with financial
firms excluded, or averaging all equally weighted portfolio returns and comparing them
to the average value-weighted returns. This is done to evaluate whether a specific step
systematically produces notably different outcomes on average.

Study Forks Paths Outcomes Reported results SE NSE
Mitton (2022) 10 1,024 t-stat distributions - -
Beyer and Bauckloh (2024) 11 116,640 alpha, AR, t-stat distributions, sensitivity - IOR
Fieberg et al. (2024) 10 20,736 alpha, AR, SR distributions, sensitivity MSD SD
Menkveld et al. (2024) 7-9 12,384  microstructure (6) distributions, sensitivity, tests - IQR
Soebhag et al. (2024) 11 2,048 SR distributions, sensitivity MSD  SD
Walter et al. (2024) 14 69,120 AR, t-stat  distributions, sensitivity, tests MSD IQR
Cakici et al. (2025a) 10 69,120 alpha, AR, SR  distribution, sensitivity, tests MSD  SD
Cakici et al. (2025b) 9 19,440 alpha, SR, t-stat distributions, sensitivity - -
Chen et al. (2025) 9 1,056 AR distributions, sensitivity MSD SD
Cirulli et al. (2025) 7 9,720 SR distributions, sensitivity MSD SD

Table 1: Multi-design studies in finance. This table displays published articles and working papers
in finance that explicitly consider a large number of methodological choices or Forks and a large number
of Paths. Outcomes can be coefficients from regression models, ¢-statistics (¢-stat), confidence intervals (CI),
average returns (AR), Sharpe ratios (SR), or intercepts from factor models (alpha). For the nonstandard er-
rors (NSE), IQR denotes the interquartile range of outcomes and SD is their standard deviation. Standard
errors (SE) are taken to be the mean of standard deviations of outcomes (MSD), often obtained by bootstrap-
ping returns of portfolios after to spanning the paths. In Reported results, sensitivity refers to analyses that
investigate the impact of decisions and forks, while distributions encompass boxplots, densities, empirical
cumulative distribution functions or particular summary statistics of outcomes. Tests mostly pertain to hy-
potheses on the existence of NSE and on the significance of variations across paths or forks.

Moreover, since the pioneering work of Menkveld et al. (2024), it has become common
practice to report the so-called nonstandard errors. The latter aim to capture the impact of
analysts” ad hoc methodological choices and is measured by taking either the interquartile
range of outcomes or their cross-sectional standard deviation (see NSE column in Table
1). Menkveld et al. (2024) and Walter et al. (2024) are the only two studies formally test-
ing whether nonstandard errors are statistically significant or not. This is done by testing
whether individual-path outcomes differ from the overall median across paths. With re-



gard to the evaluation of SE, all the papers listed in Table 1 follow the same methodology.
Indeed, for each anomaly and for each path, they generate a time series of returns. Then,
they employ bootstrapping techniques on each series of anomaly returns to generate new
averages and compute the corresponding standard deviation across samples. Finally, the
SE is defined as the mean of these standard deviations across all paths. In contrast, we
propose in this paper to use resampling before running the paths.

2.2 An example in asset pricing

To further motivate and illustrate our study, we review common variations in protocols
in the asset pricing literature. Building on Chen and Zimmermann (2022a), we provide
a brief overview of the choices made in the most influential papers in the field. As of
January 2025, there are 331 anomalies in the dataset of the Open Source Asset Pricing
project. Common decisions concern:’

* Ad hoc filters: Excluding certain regulated sectors (e.g., banks, real estate invest-
ment trusts, utilities).

* Size filters: Whether or not very small stocks are removed (e.g., bottom 5% or 10%),
or based on the absolute price value (e.g., to exclude penny stocks). There is no
common practice and the authors list 17 strategies used in the literature.

¢ Imputation: Whether missing data handling is performed cross-sectionally (using
the mean or median), or chronologically (using the latest known value), or not per-
formed at all.

* Long-short quantile: The sorting threshold that decides where to go long versus
short. A majority of papers use quintiles (66 instances), deciles (61), but some au-
thors also use quantiles at the 0.25, 0.30, or 0.50 levels.

* Sample period: The starting month for accounting data is most often taken to be
June (190 instances) or December (54).

* Stock weight: The weighting scheme applied to sorted securities. Chen and Zim-
mermann (2022a) list 210 instances of equally-weighting, 32 of value-weighting, and
90 where this information is not disclosed.

* Holding period: How long the long-short portfolio is held before rebalancing. Monthly
(120 instances) and annual periods (110) are by far the most common choices. Other
options include quarterly (7) and biannual rebalancing (3).

This brief overview shows that the few commonly used options in the literature result
in a wide array of choices. As an illustration, we see in Figure 1 that seven decisions lead
to 576 possible paths. The full details of the construction of the long-short portfolios are
postponed to Appendix B. We highlight two paths (the blue and ones) which have
zero steps in common. Note that two different paths may share up to six steps in common.

30ther possible choices include leverage (Cirulli et al. (2025)), lookback window (Cirulli et al. (2025),
Walter et al. (2024)), exclusion of sectors (Beyer and Bauckloh (2024), Soebhag et al. (2024), Walter et al.
(2024)) or stocks with insufficient data (Walter et al. (2024)), multiple sorting (Beyer and Bauckloh (2024),
Soebhag et al. (2024), Walter et al. (2024)), industry neutralization (Soebhag et al. (2024)), and alternative
data vendors (Beyer and Bauckloh (2024)).
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Figure 1: Forking paths. This figure displays the seven steps of the protocol along with the
associated 576 paths. The ones in blue and follow entirely different steps.

2.3 Notations and definitions

We assume that the empirical part of any research process starts with a given dataset,
which we call D. A particular study is then modeled as a sequence of .J operations f; that
occur successively. Formally, the reference research output b is given by:

b:=bD) = frofq10--0fi(D). (1)

We assume that b is a scalar (e.g., an estimate, a t-statistic, or a p-value), but it may also be
a more complex object, such as a vector (e.g., a confidence interval).

As an illustration, in Figure 1, there are J = 7 steps and the first one (f;) pertains to
whether or not include financial companies in the analysis, while the second one ( f3) filters
out the smallest firms. Henceforth, we assume that each step f; offers r; deterministic
options from which the researcher must choose, denoted by f;, for r = 1,...,r;, with
r; = 2. In Figure 1, r; = 2 (include or exclude financials) and 7, = 3 (no screening plus
two thresholds for the size filter). Visually, a path corresponds to a complete trajectory

from left to right. The total number of paths is P = ]_[3.]21 T

As any output is always associated with a given path, we use path indices: b,. Each
output b, is a random variable that depends on the realization of D as well as on the choice
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of path p. This notation allows us to introduce the core concept of the paper, which is the
correlation between the outcomes produced by two alternative paths p and ¢:

pra = Cor (b,(D).b,(D) ). @

Empirically, the above correlation is estimated through variations in the dataset D. By
resampling the dataset IV times, we obtain N realizations of b,(D) and b,(D), which allows
us to compute the sample correlation between the two series. Intuitively, p, , measures
how similar two paths are, with more overlap leading to higher correlation and less com-
monality leading to lower correlation.

3 The pernicious effect of correlated outcomes

3.1 Impact on the distribution of the effect

The goal of multi-design analyses is to produce multiple estimates in order to build a ro-
bust body of evidence regarding the effect of interest. A natural approach is to summarize
the resulting estimates using means, medians, boxplots, etc. Such an approach relies on
the assumption that the empirical distribution generated from these estimates closely ap-
proximates the true distribution of the effect. To assess whether this assumption holds
in practice, it is necessary to evaluate the distance between the true (unknown) cumula-
tive distribution function and its estimate from the sampled paths. Notably, Theorem 1 in
Azriel and Schwartzman (2015) provides an upper bound on this distance. It states that
if the effects are assumed to follow a standard multivariate Gaussian law with correlation
matrix Xp = [ppql1<pqe<p, then:

supE[(@(r) — @5 p(@)*] < 75 + CISpl. ©)

zeR ’ 4P
where C' > 0 is some constant, which can be taken to be equal to C' = 1/2 for simplicity,
and thenorm is [ Zp[1 = P23, p |ppgl-* The above result simply states that the error
that one makes when confusing the empirical and true cumulative distribution functions
is bounded from above by C times the average of the absolute correlations between paths.
Indeed, this second term is in practice much larger than the first one (1/4P).

To illustrate how correlations affect the shape of the cumulative distribution function
of the effect, we consider a stylized example involving a group of financial analysts. We
assume that (1) each analyst provides one-year-ahead stock price forecasts for a sample of
firms, and (2) the analysts are allowed to confer before submitting their individual fore-
casts, which introduces the possibility of persuasion effects and correlation among fore-
casts. Furthermore, we consider another group of financial analysts covering the exact
same firms, but forming their predictions without any prior discussion. As a result, fore-
casts in the former group (group H for high) are more likely to be highly correlated than
those in the latter group (group L for low).

4In the case of equal correlation among all paths, [Xp|; = %(QP_”. We see that the upper bound in
(3) does not shrink to zero as P increases, unless p = 0.
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In each group, we model the distribution of the forecast price variations across analysts
using a multivariate Gaussian distribution with zero means and a group-specific correla-
tion matrix.” As shown in the left panel of Figure 2, our simulation framework produces
two plausible distributions of (non-diagonal) correlations, both displaying a large propor-
tion of small correlations. In group H, 64% of the correlations across analysts are below
0.3 whereas this fraction is 81% in group L. Note that we allow for positive correlations in
group L to account for the fact that analysts may process similar information or use the
same pricing models. Importantly, under this stylized model, there is a 50% probability
for each analyst to make a positive or negative price change.

° with discussion (H) 1.00 —
[ without discussion (L)
4 more
independent 0.75
analysts
3 in group L diversified
0.50 expected price
2 changes
in group L with discussion (H)
0.25 — without discussion (L)
1 I ‘ = Gaussian benchmark
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -3 -2 -1 -0 1 2
correlation between analysts' forecasts predicted price change

Figure 2: Simulation exercise. In the left panel, we plot the distributions of correlations for
group H (with higher correlations due to discussions, in ) and group L (with lower correla-
tions, in blue). The simulation is based on Toeplitz matrices with ascending and descending diago-
nals equal to v with n = 0 being the diagonal and v = 0.996 for group L (yielding [ X p|; = 0.1525)
and v = 0.998 for group H (corresponding to [Xp |1 = 0.2776). We set the number of analysts in
each group to P = 3,000, which is also the number of rows/columns of the correlation matrix.
In the right panel, we plot the cumulative distribution function of a single draw (i.e., firm) of the
P expected price changes. A value of -1 on the z-axis represents a price change of -$1. The black
points mark the Gaussian density.

In the right panel of Figure 2, we display the cumulative distribution function of the
predicted price change for a randomly selected firm. We see that the proportion of fore-
casts below zero is equal to 60% in the low-correlation case vs. 99% in the high-correlation
case. This means that, in group H, discussions among analysts have led to a crowding
towards bearish forecasts, as 99% of them predict a decline in the stock price. In group L,
only 60% of analysts also foresee a contraction in the price.

As the true proportion of negative predictions is 50% for each individual (unbiased)

°To generate correlations and make sure they are higher in group H than in group L, we resort to a
Toeplitz matrix that produces a distribution of positive correlations. The ascending and descending diag-
onals are equal to v where n = 0 on the diagonal, n = 1 on the first superdiagonal, etc. In group H, we
set v to 0.998 which corresponds to | p||; = 0.2776 whereas in group L, v = 0.996, which corresponds to
1Zp]1 = 0.1525.



analyst, the absolute error in the proportion is equal to 99% — 50% = 49% in group H,
but to only 10% in group L. These values are realizations of the error ®(z) — ®; ,(z) in
Equation (3). Other random draws, corresponding to other firms, could yield smaller
discrepancies. However, according to Equation (3), repeating this process a large number
of times would lead to an average squared error that is smaller than 1/(4P) plus C times
the values displayed in footnote (5).

This simulation exercise shows that even with moderate correlations between out-
comes, the distance separating the empirical distribution and the true one can be sub-
stantial for any given draw.® However, an important question remains: how large are the
correlations between outcomes in practice? To start answering this question, we conduct
a preliminary analysis based on four popular asset pricing anomalies: the market cap-
italization (size factor), the book-to-market ratio (value factor), the past 12 month return
(momentum factor), and the asset growth (investment factor).

To conduct our tests, we extract data from Chen and Zimmermann (2022a)’s website
for the period September 1950 to December 2022. The baseline dataset comprises 4.475
million observations, although some rows contain missing values when certain character-
istics are unavailable. The data are structured as an unbalanced panel: each row corre-
sponds to a firm-month pair, while each column reports a characteristic (e.g., stock price,
market capitalization, book-to-market, etc.), with the first two columns denoting date and
firm. Further details on the anomalies are provided in Appendix A.

For each sorting characteristic, we resample the initial dataset by extracting sub-samples
of the original data. Specifically, we randomly select rows of the data (i.e., month-stock
pairs) that correspond to 40% of the initial dataset, without replacement.” Then, for each
new sample, we run all 576 paths depicted in Figure 1. Since we use the same sample for
all the paths, we denote this approach the common resampling approach. As we repeat this
process N = 500 times, we end up for each factor with 500 x 576 = 288,000 estimates
for the average return of the long-minus-short sorted portfolios. For each factor, we then
compute all the correlations p, , that populate the matrix X p.

Figure 3 displays the distribution of estimated off-diagonal correlations of outcomes
across paths for the four sorting indicators. These distributions indicate that the corre-
lations are substantial, with a pronounced concentration around 0.5. The norms of the
corresponding correlation matrices, |Xp|;, are gathered in Panel A of Table 2. We note
that all of these values are substantially higher (0.27-0.37) than those observed in our sim-
ulation exercise (0.15-0.28). Taken together, these results underscore the potentially large
errors that may arise when using the empirical distribution of effects (here, the average
returns of sorted portfolios) as a proxy for the true distribution.

®In this simulation, each draw represents a firm, and throughout the remainder of the paper, one draw
denotes a sample.

7Depending on the empirical context (sample sizes, correlations in the data, etc.), one could resort to
more advanced resampling techniques. We discuss bootstrapping techniques in Section 6.2.
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Figure 3: Distribution of correlations. We show the distribution of the correlations Cor (b, b,)
for each of the four sorting variables, distinguished by color. Correlations are computed on 500
random subsamples with a number of rows equal to 40% of the original dataset.

Factors

PANEL A: Common resampling Asset growth Book-to-market Momentum  Size

P2 Dipg 1 Pal = 1351 0.3647 0.3652 0.3557 0.2703
P2 Yipq Pra 0.3448 0.3613 0.3430 0.2665
PANEL B: Specific resampling

P2 Yipg 1Pral = [2p[1 0.0377 0.0376 0.0376 0.0377
P2 Yipq Pra 0.0021 0.0024 0.0020 0.0020

Table 2: Sums of correlations. We report the sum of absolute correlations used to compute the
upper bound in Equation (3) and the sum of correlations used to compute the variance in Equation
(6). Both are estimated from N = 500 samples for each of the four asset pricing anomalies. In Panel
A, paths are run after common resampling (i.e., all paths use the same common dataset). In Panel B,
paths are run after specific resampling (i.e., each path uses its own specific dataset).

3.2 Impact on the variance of the sample mean

We now provide a second illustration of the detrimental impact of large and asymmetric
correlations. We start by showing how this translates into statistical testing for the mean.
To construct confidence intervals for the mean 1, we define the sample mean estimator:

1 &



and its variance:

azb:V[ﬂb]:;Q Z E[@p_ﬂb) <gq_ﬂb>]:;§22ﬂo,q ®)

1<p,g<P
2 2
T T
= o5 tpn il (6)
I L P 1

variance covariance

where o2 = V[b,] = V[b,]. This identity leads to two important observations. First, the
construction of confidence intervals for 1, requires information on the uncertainty of i,
which is captured by the estimation of aﬁb. As such, the intervals will depend on the
correlations between paths, as we will show in the next section.

Second, the intervals will be tighter and more informative if these correlations are small
and/or symmetric around zero. The fact that variance reduction can come from lower
correlations is well documented in other areas. For instance, in forecasting, combining
models with uncorrelated errors yields the best results, but estimating correlations across
models is hard (Timmermann (2006), Wang et al. (2023)). Similarly, in machine learn-
ing, bagging performs best when aggregating predictions with low correlations (Breiman
(2001)).

As shown in Equation (6), the variance of the sample mean 7, is smaller than o} be-
cause all pairwise correlations p, , are smaller than one. The extent of the difference be-
tween the two variances depends on the values of these correlations. If they are large and
positive, then ¢, will be close to o7, and thus quite large. This is often the case, since
highly similar paths tend to produce highly correlated outcomes (see Figure 3). In Panel A
of Table 2, we see that the sums of correlations, which are the rightmost terms in Equation
(6), range between 0.26 and 0.37. These high levels imply large variances for /1.

Importantly, the variance expression in Equation (6) bears a close connection to the het-
eroskedasticity and autocorrelation consistent (HAC) corrections introduced by Newey
and West (1987). In contrast to the temporal dependence typically considered in that set-
ting, the correlation here originates from cross-sectional dependence across paths.

We will show in Section 4 how path-specific resampling can mitigate correlation among
outcomes and greatly improve inference.

3.3 The origins of correlations

Where do these positive correlations come from? Part of the answer lies in the common-
ality between paths. Suppose that two researchers make exactly the same methodological
choices, except for outlier management. Arguably, this minor variation would only lead to
a small change in the outcome. Hence, because the paths are very similar, we can expect
that their results will be highly correlated. Conversely, if researchers follow paths that
rarely or never overlap, then the correlation should be much lower.
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Figure 4: Average correlation as a function of path distance. We plot the mean correlation
across all pairs of paths, as a function of the number of different choices between two paths (the
distance between paths).

As this is a testable assumption, we propose examining it empirically. To do so, we
define d(p, q) as the number of choices that differ between path p and path ¢.° In Figure
4, we plot the average correlation between outcomes as a function of the path distance
d(p,q). By definition, d(p,q) lies between one (for p # ¢) and the number of steps that
the researcher can make in the protocol (J). We observe a power decay: as the distance
increases, the average correlation decreases. It is reasonable to expect that, if the number
of steps is arbitrarily large, the correlations between two distant paths would approach
zZero.

4 The path-specific resampling strategy

4.1 The basic idea

The above analysis indicates that multi-design studies relying on a single version of a
dataset offer limited guarantees for statistical inference. Indeed, as the numerous analyses
carried out are likely to be highly correlated, we expect significant differences between
the empirical and the true distributions. In this section, we show that specific resampling,
which consists of generating a new dataset before running each path, is a simple and
efficient way to mitigate this problem.

We start by showing that resampling the data before running the paths significantly
alters the distribution of correlations. In order to clarify the difference between the two
sampling schemes, we outline their steps in Table 3. As in Figure 3, we randomly select
40% of the original sample, but we do so before running any path. This approach shares

8Formally, d(p, q) = #{j,rp.; # 74} € {0,1,...,J}, where the operator #{A} measures the size (number
of elements) of set A and 7, ; is the option through which path p passes for step j.
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strong similarities with subsampling in ensemble methods.” By picking only 40% of the
original sample, we hope to strongly curtail the correlations between path outcomes and
thus trim the variance defined in Equation (6).

common resampling | | path-specific resampling
given a dataset D and a set of paths: given a dataset D and a set of paths:
for bootstrap iterationn = 1,..., N, do: for bootstrap iterationn = 1,..., N, do:
generate new sample D,, forpathp=1,... P do:
forpathp =1,... P do: generate new sample D,, ,,
generate outcome b, (D,,) generate outcome b, (D, )

Table 3: Pseudo-algorithm of sampling procedures. The only difference between the two
methods is that the third and fourth lines are swapped.

Figure 5 displays the empirical density obtained by subsampling the data before each
new iteration of the protocol. We clearly see that the estimated correlations are symmet-
ric around zero and highly concentrated within the [-0.1,0.1] interval. Furthermore, the
distributions are very similar across all four characteristics. Coincidentally, this is approx-
imately the distribution one would obtain when estimating correlations among indepen-
dent Gaussian variables, based on a sample of 500 observations. This tends to suggest that
the outcomes are in fact independent but that the estimation of correlations is noisy. As
shown in Panel B of Table 2, the norm of the correlation matrix in this case is close to 0.04
for all four factors, which is almost a tenfold reduction compared to the case where we use
the same dataset for all the paths (see Panel A of Table 2).

4.2 Inference on the mean

In this section, we lay out ways to carry out inference on path-generated outcomes. We
are first interested in the empirical mean effect, /i, defined in Equation (4), which will
naturally serve as a proxy for the mean /. In order to proceed with inference, we must
make some hypotheses about the underlying effect and how it is characterized by paths.
We lay out a mild assumption on which we will rely for the remainder of the paper.

Assumption 1. The estimated effects b, are identically distributed and their law is (i) unimodal,
(ii) symmetric around its mode and mean v, and (iii) has a finite variance, o7.

Henceforth, we seek to build confidence intervals of the following form:
CIa = [,ab - Aom ,ab + Aa]: (7)

and for which the probability that the true mean 1, belongs to this interval is at least 1 — a,
e.g., with o = 0.05:
P[|:ub - Iab| < Aa] z1—a. (8)

9See, e.g., Zaman and Hirose (2009), Bithlmann (2011), and Duroux and Scornet (2018).
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Figure 5: Distribution of correlations after resampling. We show the distribution of the

correlations Cor(b,, b,) for each of the four sorting variables, coded with colors. In this case, the
data are subsampled before running each path and the number of rows corresponds to 40% of the
size of the initial sample, picked without replacement. Correlations are computed on 500 random
subsamples.

To set the value of A,, which defines the width of the interval, we use the following
Bienaymé-Chebyschev inequality, taken from Theorem 6.2 in lon et al. (2023).'

2
HM—EMH<M>1—<§Z) 9)
for v > 207/+/3. Setting o = (207/(3v))? and Z = i yields:
204
Pl — < Hb >1—
l|ub o] 3ﬁ1 a, (10)

where 1 — a € (0, 1] is the targeted level of confidence and o, is the standard deviation of
fuip, defined in Equation (6). Intuitively, when o, decreases, the confidence interval shrinks,
making it more informative. Conversely, as o diminishes to increase the confidence level,
the interval widens.

The only remaining challenge is the calculation of o;;,. The crux of the problem lies
in the estimation of the correlations, p, ,, based on N samples, which generates some ad-
ditional uncertainty due to estimation error. We postpone the technical discussion of this

90ther concentration inequalities could be used. Those that consider sums of variables are however
hard to apply. Indeed, the most general conditions for dependence are provided in Jirak (2023) and they
assume a natural ordering of variables for which is it possible to define the speed at which memory between
variables (e.g., autocorrelation) fades. The problem here is that, in presence of multiple paths, there is no
such natural ordering. Therefore, we cannot resort to these inequalities. One could nevertheless resort to
simpler concentration inequalities, such as Hoeffding (1963)’s bound, but treating the average as a single
random variable. The main issue in this case is the derivation of the support of the random variable, which
is far from obvious in the case of the sample mean.
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point to Appendix C, and we show that, with probability at least 1 —«, the following upper

bound holds for aﬁb:

penalty from
estimation error
| —

k02 o2
2 < T . A 11
O, 3VaN + p2 % Pp,q> (11)

where £ is a constant that depends on the correlations p,, (see Appendix C) and ¢? is an
upper bound for o7 (see Appendix D). Overall, our result relies on confidence intervals
for three quantities: fi;, the primary quantity of interest, its standard deviation o,, and
the average of correlations, > £r2, and we need these intervals to hold jointly. Because
it is extremely complex to properly model the dependence between the three terms, we
conservatively assume that they are independent. As shown in Appendix C, this requires
dividing « by three. Plugging the above expression into Equation (10), we obtain the final

expression for the width of the confidence interval (7):

Aq

_ 2\/§O’ﬂb < 2\/50* 2\/§/€ —|—Z (12)
p,q

p,q
Va o ya \[Van IZh

As an illustration, we plot in Figure 6 the confidence intervals for the four asset pricing
anomalies using the rightmost term of Equation (12). We consider two cases. First, we
suppose that correlations are evaluated from paths run on identical samples (common re-
sampling, displayed in yellow), which corresponds to the distributions shown in Figure 3.
The second case pertains to situations where new samples are drawn prior to running a
given path (specific resampling, displayed in blue), hence the distributions of correlations
are those depicted in Figure 5. The non-diagonal p,, (i.e., p # ¢) are then such that their
sum is negligible, hence the double sum in Equation (12) boils down to P/P? = 1/P due
to the diagonal terms.

common resampling — path-specific resampling
momentum ——
asset growth |
book-to—market ——
size ——
-10 0 10 20 30

annual return (%)

Figure 6: Inference on the mean. We plot, for o = 0.05, the confidence intervals (7) of the mean
of long-short portfolio returns in two situations: (i) common resampling corresponding to Figure
3in and (it) path-specific resampling in blue. By definition, the sample means lie in the
middle of the intervals. The width of intervals is given by A, in Equation (12).
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In the empirical derivations, o, is calculated as follows. First, for each of the N =
500 samples, we compute the standard deviation of effects across paths, which yields 500
estimates of 05. Next, to be as conservative as possible, we take the maximum of these
values. Finally, we then use the upper bound o2 defined in Equation (34) in Appendix D.

Clearly, the ranges of the intervals in Figure 6 illustrate the clear benefits of path-
specific resampling for inference on the mean. The width of the yellow interval is roughly
ten times larger than that of the blue one. The order of magnitude of this difference was to
be expected, given the figures in Table 2. Indeed, a sum of correlations that is more than
100 times larger is expected to yield, via Equation (12), an interval at least ten times wider.

4.3 Variance decomposition: standard vs. nonstandard errors

Given our focus on inference, the most critical quantity in this paper is the variance of the
mean effect:

2
g
Ty = B D1 Poa- (13)
p,q

Until now, we have focused on the rightmost component of this variance, namely the
correlation coefficients. In this section, we analyze the other important term, o2, the vari-
ance of the effect, and we show how it relates to standard and nonstandard errors.

The standard error of an estimate pertains to uncertainty related to sampling. In the
asset pricing literature, it is often estimated via bootstrapping returns, but, as shown in
the review by Horowitz (2019), there are many ways to carry this out (e.g., parametric
versus non-parametric methods, with or without blocks, etc.). To estimate the standard
deviation, the contributions listed in Table 1 resample outcomes after spanning the paths.

By contrast, the nonstandard error of a given result refers to dispersion in outcomes
across multiple paths. Two definitions are currently used in the literature: the interquartile
range (Menkveld et al. (2024); Walter et al. (2024)) and the standard deviation (Fieberg et al.
(2024); Soebhag et al. (2024)) of the cross-section of outcomes.

The current approaches have two shortcomings. First, the variety of estimation tech-
niques leads to many different SE (and NSE) estimates, and we lack theoretical guidance
for choosing among them. Moreover, the results vary across approaches, as shown in the
right panel of Figure 7. Second, the lack of integration between SE and NSE estimation
prevents these components from summing to the total variance of the mean effect.

In what follows, we propose a new approach to jointly evaluate both the standard and
nonstandard errors. This common estimation framework leads to a single decomposition
of the variance of the effect, which complies with the additivity property.

We first recall our notation b,(D) for estimated effects, where D represents the dataset
sample and p denotes the path. Naturally, these outcomes exhibit variations, and it is cru-
cial to determine their origin, whether they arise from random fluctuations in the dataset
or from methodological choices. To distinguish the sources of uncertainty, we employ the
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law of total variance, which we state below for two random variables X and Y with finite
variance (Theorem 9.5.4 in Blitzstein and Hwang (2019)):

V[Y] = V[E[Y|X]] + E[V[Y|X]]. (14)

We aim to decompose the variance of the effect BP(D), which can be done by condition-
ing either on samples or on paths. For instance, conditioning with respect to samples leads
to:

d=V|ho|= V| Elb®)i] + E| V(D)D) (15)
avg effect across paths variance across paths

L I NSE reported in literature
variance of avg effect across samples L |

average variance across samples

In the above expression, we notice that, in the second term, we recover the NSE that cor-
responds to the variance across paths, but only for one given dataset D. This version of
the law of total variance shows that this variance should then be averaged across several
D. The first term, which corresponds to the variance of the averages across datasets D has,
to the best of our knowledge, never been reported in the literature.

An alternative version of the law of total variance can be obtained by conditioning
with respect to each path p. In this case, we obtain the following sum:

9 A N A
ot =V[b®|= V| EG@p |+ E| VO (16)
avg effect across samples variance across samples
] L ]
variance of avg effect across paths average variance across paths

SE reported in literature

In this expression, the second term corresponds to the standard errors reported in the
literature featured in Table 1. The first term, however, is new. It first computes, for each
path, the average effect across samples and then evaluates the variance across paths. When
there is a unique dataset, this first term is equal to the NSE, defined as the variance of
the outcomes across paths. In Equation (16), paths will contribute to the dispersion of

outcomes via V[E[b|p]] , while sampling matters through E[V[b|p]].

The two identities above highlight each dimension individually (paths and sampling),
emphasizing that the SE and NSE reported in the literature are not directly comparable,
as they arise from different variance decompositions. Since both equations (16) and (15)
(i) provide valid decompositions of V[b,(D)], (ii) are readily computable within our frame-
work, and (iii) have no inherent reason to be preferred over one another, we propose the
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following unified definitions for standard and nonstandard errors:

- \/ E(V{p) + VE[D)) W)
— \/V[Empn CEVD) s

The finite sample expressions of the above quantities are rigorously defined in Appendix
E. Crucially, in contrast with the conventions previously used in the literature, these iden-
tities verify:

o7 = SE? + NSE?. (19)

This decomposition expresses the total variance of the effect as the sum of two compo-
nents: one arising from sampling variability, and the other from the variability across
paths. Several similar ideas or identities have been proposed in other contexts. For in-
stance, Abadie et al. (2020) also point out the duality between sampling and protocol vari-
ation and they refer to the average of the conditional variances but not to the variance of
the conditional averages. Therefore, an exact decomposition of the total variance is not
possible in their context. In a similar vein, Holzmeister et al. (2024) define heterogeneity
in outcomes as the variation in effect size estimates over and above sampling variation.

It is reasonable to question how the SE defined in Equation (17) compares to those
commonly reported in the literature (see Table 1). To shed light on this, we conduct the
following analysis. For the four baseline anomalies, we consider all 576 paths illustrated in
Figure 1, generating return series for each long-short portfolio sorted on the corresponding
tirm characteristic. As in Soebhag et al. (2024) and Fieberg et al. (2024), we then apply
a bootstrap procedure, resampling the returns (with replacement) to match the original
sample size and computing the average returns for each new sample. We compute for
each path the standard deviation of the bootstrapped averages, and then take the average
of these standard deviations across all paths. The left panel of Figure 7 presents the results
of this procedure, alongside the SE values obtained from Equation (17). We see that (1)
the outcomes are quite consistent across anomalies and that (2) our approach produces SE
values that are approximately half the size of those typically reported in the literature.

One may also wonder how the NSE defined in (18) compares to the single sample
approach used until now in the literature. In the right panel of Figure 7, we display the
distribution of NSEs evaluated on single datasets, across datasets. While the range is
limited, it still underlines that in this case, the NSE remains subject to uncertainty and
should be averaged, as shown in the last term of Equation (16). In the right panel, we also
report the NSE as defined in Equation (18) and it is always smaller than the single-sample
values currently used in the literature. The reason for this is simply that the single-sample
component (the second one in Equation (18)) is larger than the path-focused component.
Hence, upon averaging, the composite NSE is slightly lower than the single-sample NSE.
The relative importance of SE and NSE in Equation (19) will be further investigated in
Section 5.2 below.
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Figure 7: Comparing SE and NSE methods. In the left plot, we report the standard error for
both our method (Equation (17)) and from the bootstrapping method suggested in the literature.
In the right plot, we show the distribution of the NSE as it is computed in the literature (standard
deviation of outcomes across paths for a single dataset), across the N = 500 samples we originally
generated. In addition, the larger green points mark the NSE calculated as in Equation (18).

Finally, and most importantly, this analysis of the total variance allows us to simultane-
ously showcase the three components of uncertainty in multi-design studies. By plugging
Equation (19) into Equation (13), we can rewrite the variance of the estimator of the mean:

o7, = (SE? + NSE?) ) 221, (20)
pq

In the favorable case where correlations are approximately symmetric, such that the

last term approaches 1/P (e.g., when resampling is performed independently for each

path), the variance above depends primarily on SE, NSE, and the number of paths P.

As suggested by the previous results, and later confirmed in the more extensive analysis

below, the NSE tends to clearly dominate the SE. Consequently, methodological variation

becomes the main determinant of the width of the confidence interval for the mean effect.

5 Uncovering persistent anomalies and NSE at scale

5.1 Resilient anomalies

We now turn to the application of the methods described above to a broader set of anoma-
lies. We consider 33 factors out of the hundreds of factors reported in the literature. We
rely on the Open Source Asset Pricing dataset of Chen and Zimmermann (2022a), and only
keep the sorting variables that satisfy the following three criteria:

1. The variable is continuous and not discrete. Indeed, as we use several sorting thresh-
olds in the paths, this is only suited for variables taking arbitrarily large numbers of
values in the cross-section.

2. Data coverage is available for at least 500 stocks starting in 1950. This is because we
sometimes use deciles for sorting, setting a minimum of 500 assets implies long and
short legs of 50 stocks, which is the bare minimum to ensure diversification.
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3. Finally, we wish to compare our results with those in the original published papers.
This information is provided here by Chen and Zimmermann (2022a). Hence, the
last requirement is that the average return be reported for the sorting variable.

In the end, intersection of these conditions leads to 33 factors. For each of them, we
implement the 576 methodological paths presented in Figure 1. Each path leads to a time
series of portfolio returns after the final weighting step and these returns are averaged to
yield the performance of the factor. We repeat this analysis 500 times for each path and
obtain a total of 288,000 estimated average returns of a long-short portfolio. We display
the distribution of these estimates for each factor in Figure 8, along with the average re-
turn reported in the first academic study introducing this particular anomaly as reported
by Chen and Zimmermann (2022a). In Figure 9, we report the confidence intervals de-
fined by (12). We omit the intervals from common resampling, as this approach is clearly
suboptimal (i.e., excessively wide) and would not be used for inference in this context.

Taken together, the two figures reveal a variety of situations. First, there are cases in
which our results fully corroborate the original publications. This holds true, for instance,
for the Momé6m, IndMom, and BetaTailRisk variables. Indeed, the original average returns
fall in the middle of our intervals and none of them overlap with zero. We also find some
rare cases for which our results are more favorable: this occurs when the original returns
lie to the left of the intervals (High52, CBOperProf, OperProfRD, GP). There are also many
occurrences in which the original results lie far to the right (McLean and Pontiff (2016)),
but the latter are also to the right of zero, meaning that anomalies are nonetheless con-
firmed.

We also notice a variety of widths for the confidence intervals. This comes primarily
from the cross-path dispersion of outcomes. Narrow intervals signal that variables can
sustain a lot of methodological changes with limited changes in performance. However,
large intervals indicate that factors are more sensitive to implementation choices. Finally,
we also find instances of asset pricing factors that are not significant upon specific resam-
pling, i.e., for which the interval encompasses zero.

5.2 Standard vs. nonstandard errors

We implement the variance decomposition outlined in Equations (17)-(19) for the 33 fac-
tors. Doing so allows us to contribute to the ongoing debate in the literature on the im-
portance of variations due to differences in research design across researchers, i.e., NSE.
In their multi-analyst study in the field of microstructure, Menkveld et al. (2024) charac-
terize the NSE associated with their six types of estimates as “sizable”. However, they do
not compare them directly to the associated SE. Such direct comparison is made by Soeb-
hag et al. (2024) in their analysis on the Sharpe ratios of sorted portfolios. They find that
the magnitude of the NSE and SE are more or less comparable: for the ten factors they
consider, they report that the NSE-to-SE ratio lies between 0.5 and 2. Nevertheless, as
we argue in Section 4.3, SE and NSE can be meaningfully compared only when they are
linked to a common reference quantity, which we propose should be the variance of the
effect under investigation.
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Figure 8: Distribution of average returns. We plot the distribution of average annual returns
(in percents) across all 576 paths, bootstrapped samples, and sampling schemes. The blue dia-
monds and the vertical points mark the estimates first reported in the literature. The vertical gray
line shows the zero return. The names of characteristics and the corresponding returns are those
of Chen and Zimmermann (2022a), see Appendix A.
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Figure 9: Resilient anomalies. We plot, for a = 0.05, the confidence intervals (7) of the mean
of long-short returns under path-specific resampling. By definition, the sample means lie in the
middle of the intervals. The width of intervals is given by A, in Equation (12). The red diamonds
locate the average return in the original studies.

Our empirical evidence is in line with the findings reported by Menkveld et al. (2024).
We show in Figure 10 that variations in methodologies have a strong impact on the final
estimate, as shown by the large NSE reported in the figure. However, this effect varies
across anomalies. The total variance of the most sensitive factor, TrendFactor, is more than
ten times greater than that of the least sensitive one, Cash. Consequently, the widest inter-
vals in Figure 9 are roughly three times broader than the narrowest, as their range scales
with the square root of the effect’s variance.

We also see that, for most anomalies, the NSE is at least ten times larger than the SE. In
a handful of cases, it even exceeds 20 times the SE. This finding suggests a more important
role for NSE than previously claimed in the literature (Soebhag et al. (2024)) and shows
the importance of deriving both SE and NSE in a common framework.!! Finally, we notice
that the two anomalies (Realestate and OrgCap) whose standard errors are substantially
larger than those of the other anomalies. Upon closer examination, this comes from the

first component of the SE, namely E[V[b|p]] in Equation (19). It means that, on average, the

1 Applying the methodology from the literature, we obtain an NSE-to-SE ratio between 2 and 3 (see Figure
7), which closely aligns with the findings of Soebhag et al. (2024).
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path outcomes for these two characteristics are more sensitive to random sampling than
those of the other anomalies. Still, the dispersion of their average returns across paths is
similar to those of other factors.

Our results about the magnitude and relative importance of NSE have important im-
plications in terms of inference for multi-design studies. Indeed, as shown in Section 4.2,
the confidence interval for the empirical mean effect critically depends on its variance,
which we derive as follows: o2 = (SE* + NSE?) Yp.q Pra/ P?. As the SE term is dwarfed
by the NSE term and the final correlation term is small with path-specific resampling (see
Table 2), the main driver of the variance is the NSE. As a consequence, we claim that re-
searchers need to internalize the uncertainty about methodological choices by default in
any protocol whenever this is feasible.
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Figure 10: Variance decomposition: standard versus nonstandard errors. We display the
decomposition of the variance in average returns proposed in Equations (17)-(19) and formally
defined in Appendix E. The names of characteristics are those of Chen and Zimmermann (2022a).

6 Extensions

6.1 Differential weighting

Thus far, we have described an agnostic approach that treats all outcomes as equally im-
portant. However, alternative weighting schemes can be considered. One possibility is to
assign greater weight to specific paths, effectively counting them multiple times, if they
are more probable or if they are supported by stronger scientific reasoning. In this case,
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the sample mean estimator is written:

P P
iy = > wpbp, with > w, = 1. (21)
p=1 p=1
and its variance:
Uzb = V|| = angpwqpm, (22)
p.a

where we recover (4) and (6) by taking w, = 1/N. Moreover, we define the variance of
effects as:

Q>
SN

r
Z (by = fu)*. (23)

To assess the sensitivity of our results to the choice of weighting scheme, we propose
below a non-uniform alternative. We posit a baseline path, which we take to be the blue
one in Figure 1, which we call path number 1 and to which we assign a score of s; = 1. All
other paths will have a score of s, = 0.75%"1), where d(p, 1) is the distance with respect to
the initial path, i.e., the number of choices that differ between path p and path 1. Because
there are eight possible choices (the eight steps in Figure 1), this means that the maximum
distance is equal to eight. In turn, this implies that the minimum score is equal to spuin =
0.75% ~ 0.1. Thus, some paths, including the one in Figure 1, will have a score ten
times smaller than the baseline path. The weight of each path is then:

oy 24)
Zp:l Sp

In Figure 11 below, we reproduce the analysis from Figure 9 but with the weighted
averages and variances defined in Equations (21)-(23) with weights equal to (24). We are
only interested in the situations with path-specific resampling. In this case, because of the
symmetry in correlations, the term in (22) will not differ much from the baseline situation,
and it is (23) that will drive the changes in variability.

From afar, the confidence intervals are similar to those of Figure 9. The ranges of the in-
tervals are roughly unchanged, hence the weighting primarily affects the mean. The most
important shift is perhaps that of IndMom, with an interval now close to including zero.
Nevertheless, the same four factors are found to be sensitive to methodological changes.
This indicates that our results are mildly sensitive to the choice of weights. Yet, the latter
should be chosen carefully, reflecting an informed judgment on the relative representa-
tiveness of the paths.

In Figure 12, we also show the effect of weighting on variance decomposition. There
is one notable difference, compared to uniform weights (Figure 10): the ordering is not
exactly the same. For instance, realestate now ranks fourth, whereas it was second in the
original figure. Hence, weighting does mildly alter standard errors as well. Nevertheless,
standard errors are roughly comparable to those of Figure 10, highlighting that, in this
example, non-uniform weights do not shift the relative importance of SE vs. NSE.
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Figure 11: Resilient anomalies with non-uniform weights. We replicate the analysis in
Figure 9 but with non-uniform weights. The baseline path is the blue one in Figure 1 and each path
has a weight proportional to 0.75%, where d is the distance to the baseline path defined in Equation
(24). Averages and variances of outcomes are computed according to Equations (21) and (22).

6.2 Differential sampling

In our paper, the baseline sampling strategy involves randomly selecting 40% of the origi-
nal data. We adopted this approach for its simplicity, and our various experiments demon-
strate that it performs well. Notably, when the sampling is path-specific, the two rightmost
terms of Equation (12) (restated below) remain moderate, resulting in the tight confidence
intervals shown in Figure 9:

_ 2\/50[% - 2430, [24/3K n ﬁp,q.
Va Vva \[VaN = & P2

Admittedly, alternative sampling methods could also be employed. For instance, a
bootstrap strategy can be implemented to generate outcomes that are independent by de-
sign. Unlike in our baseline, there is no need to estimate correlations across paths, since
they are known ex ante to be zero, as samples are independent by construction. However,
a limitation of bootstrapping methods is that they typically rely on assumptions about the
data-generating process.

Aq
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Figure 12: Variance decomposition under non-uniform weights. We display the decompo-
sition of the variance in average returns proposed in Equation (19) and formalized in Appendix
E, but with weights given in Equation (24). The names of characteristics are those of Chen and
Zimmermann (2022a).

When the outcomes are independent by design, the expression for the confidence in-
terval simplifies considerably. Indeed, in this case, there is no need to estimate the cor-
relations between paths, p,,, as we know they are null. Relative to Equation (12), two
simplifications follow: (1) we can set N = o0 as there is no estimation error, and (2) the
average of the correlation terms is > ppq/ P? = 1/P since only the P diagonal terms
contribute. Consequently, Equation (12) reduces to:

<2\/§0*
o = \/(T

One popular bootstrap method that allows us to generate independent outcomes is
the wild bootstrap (see Davidson and Flachaire (2008)). Before implementing it, we recall
that average returns from sorted long-short portfolios can be viewed as estimates from
linear regressions without intercepts (see page 326 of Fama (1976) and the Appendix of
Freyberger et al. (2020)). We can write r = xb + e, where r is the vector of returns and « the

A

(25)

sorting variable (in panel format, i.e., across several dates and firms). We can estimate b

and the corresponding residuals ¢, and then generate new returns as follows r* = zb+uxé,

with u being a vector of iid N (0, 1) variates. The noise term u x & has the same mean and

variance as the original errors é.'?

2We assume iid variables primarily for reasons of simplicity. Since returns are sampled monthly, tempo-
ral correlation tends to be weak (Campbell et al. (1997)). Cross-sectional dependence, however, is a more
significant concern. The dataset is highly unbalanced, with numerous firms entering and exiting over time,
which complicates the estimation of cross-sectional correlations. To address this challenge, we adopt the sim-
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We plot in Figure 13 the confidence intervals at the 95% level for all anomalies under
wild bootstrap sampling. Both the number and identity of the persistent anomalies are
quite similar compared to our baseline results displayed in Figure 9. Indeed, the PriceDe-
layRsq, HerfAsset, and HerfBE are classified as persistent with both sampling methods. In
contrast, the Realestate anomaly is only persistent under wild bootstrap but not under our
baseline subsampling strategy. This shows that the estimation error from path-specific
sampling only had a marginal impact on our conclusions.

Another takeaway from Figure 13 is that interval widths are more homogeneous, com-
pared to those of Figures 9 and 11. This is because the sampling noise is more pronounced
with the bootstrap, and it attenuates the differences across anomalies, which, in the pre-
vious plots, originated mostly from the paths. Nevertheless, the average effects (i.e., the
centers of the intervals) remain invariant across the sampling schemes.
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Figure 13: Resilient anomalies under wild bootstrap sampling. We plot, for a = 0.05, the
confidence intervals (7) of the mean of long-short returns under path-specific resampling without
estimation error. The width of confidence interval is in this case given by Equation (25). By con-
struction, the sample means lie in the middle of the intervals .

plifying assumption that error terms are stationary and mutually independent, both over time and across
firms.



6.3 Enhanced robustness checks

The framework introduced in this paper can also be employed to conduct enhanced ro-
bustness checks in any empirical finance analysis. To illustrate this, consider a baseline
specification that examines the effect of a variable X; on an outcome variable Y}, while
controlling for a set of contemporaneous covariates. This baseline model may be theo-
retically motivated, derived from an identification strategy, based on prior research, or
constructed in a more ad hoc manner. The coefficient of interest, denoted [, is associated
with the variable X;, and the main conclusions typically concern its sign, magnitude, and
statistical significance.

As shown in Figure 1, this baseline specification corresponds to a single methodolog-
ical path among many. In the final section of most empirical studies, researchers conduct
robustness checks by introducing deviations from the baseline one at a time (e.g., changing
the sample, estimation method, set of control variables) while holding all other modeling
choices constant. Each such deviation alters one of the J methodological steps and corre-
sponds to a specific alternative path among the P possible paths. This “what-if” analysis
yields an alternative estimate, Ba, which is then compared with the baseline result 30 to
assess sensitivity. However, these checks are typically ceteris paribus in nature: they test
the sensitivity of the result to one decision at a time, keeping all others fixed. A more gen-
eral approach is to consider vectors of shocks that affect multiple methodological choices
simultaneously. However, each such combination also defines a single methodological
path.

The framework proposed in this paper allows researchers to go beyond a limited set
of ad hoc alternatives by systematically evaluating results across the full space of method-
ological paths. Rather than focusing on a few hand-picked alternatives, this approach
yields a distribution of estimates, providing richer information about the stability and re-
liability of the baseline result. For example, researchers can report the proportion of spec-
ifications that yield positive and statistically significant estimates. Moreover, by applying
the path-specific sampling strategy described in Section 4.2, one can construct a 95% confi-
dence interval for this proportion, offering a formal measure of inference over robustness.

7 Conclusion

Menkveld et al. (2024) is a truly path-breaking paper. Not only in the conventional sense of
being highly influential, but also literally, as it breaks the path of a single empirical approach
and maps out methodological alternatives. We build on their approach to derive a rigor-
ous framework for inference on the average return of a portfolio. Specifically, we derive a
canonical decomposition of the variance of the average return. This formula allows us to
clearly identify the drivers of the width of the confidence interval around this mean effect.
We find that three components matter.

The first component is the sum of the correlation terms across all path outcomes. As
this sum shrinks, so does the range of the confidence interval. The second component is
the standard error (SE), which quantifies the variation of the effect that are due to sampling
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noise. Finally, the third component is the nonstandard error (NSE) that results from the
uncertainty generated by methodological choices. Unlike other multi-design studies, we
derive both SE and NSE within a unified framework, enabling a meaningful comparison
between them.

Empirically, we illustrate these concepts in the context of asset pricing anomalies. Our
results show that keeping the data fixed while spanning the paths is detrimental to ac-
curacy because the correlations across paths are strongly skewed to the right. Resorting
to resampling allows us to shrink the width of confidence intervals by a factor of three
at least. Moreover, assuming a symmetric distribution of correlations further curtails the
range of these intervals threefold. These findings underline how crucial resampling can
be in multi-design studies. In our study, NSE are much larger than their standard coun-
terparts for most anomalies. Implementing our full methodology allows us to identify 29
persistent factors, that are robust to multiple methodological variations. For all of them, the
95% confidence interval for the average return of the long-short portfolio does not include
Zero.

Overall, we find that the NSE component is the primary determinant of the width
of confidence intervals for multi-path average effects. This highlights the need for re-
searchers to more systematically account for uncertainty stemming from methodological
choices in their scientific protocols. This paper offers a practical, operational framework
to do so. While the improvements we mention are contingent on our dataset, it is likely
that similar gains could be obtained in empirical corporate finance (Mitton, 2022), as well
as in other scientific areas.
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A Data

Variable Description ~ Return (%) Authors Journal Year
AssetGrowth Asset growth  1.73 Cooper, Gulen and Schill  JF 2008
BetaTailRisk Tail risk beta  0.33 Kelly and Jiang ~ RFS 2014
BM Book to market, original ~ 0.27 Stattman  Other 1980
Cash Cash to assets  0.69 Palazzo JFE 2012
CBOperProf Cash-based operating profitability =~ 0.47 Balletal. JFE 2016
CF Cash flow to market  0.66 Lakonishok, Shleifer, Vishny  JF 1994
CompositeDebtlssuance Composite debt issuance  0.52 Lyandres, Sun and Zhang  RFS 2008
CoskewACX Coskewness using daily returns ~ 0.28 Ang, Chen and Xing ~ RFS 2006
Coskewness Coskewness  0.30 Harvey and Siddique  JF 2000
ForecastDispersion EPS Forecast Dispersion ~ 0.79 Diether, Malloy and Scherbina  JF 2002
GP gross profits / total assets ~ 0.31 Novy-Marx  JFE 2013
Grcapx Change in capex (two years)  0.57 Anderson and Garcia-Feijoo  JF 2006
HerfAsset Industry concentration (assets) ~ 0.20 Hou and Robinson  JF 2006
HerfBE Industry concentration (equity)  0.24 Hou and Robinson  JF 2006
High52 52 week high  0.45 George and Hwang  JF 2004
IdioVol3F Idiosyncratic risk (3 factors)  1.06 Angetal. JF 2006
IndMom Industry Momentum  0.43 Grinblatt and Moskowitz ~ JF 1999
IntMom Intermediate Momentum  1.20 Novy-Marx  JFE 2012
InvestPPEInv change in ppe and inv/assets ~ 0.57 Lyandres, Sun and Zhang  RFS 2008
InvGrowth Inventory Growth ~ 0.89 Beloand Lin  RFS 2012
MaxRet Maximum return over month  1.03 Bali, Cakici, and Whitelaw  JFE 2011
Mom12m Momentum (12 month)  1.31 Jegadeesh and Titman  JF 1993
Momém Momentum (6 month)  0.84 Jegadeesh and Titman  JF 1993
MomOffSeason Off season long-term reversal ~ 1.25 Heston and Sadka ~ JFE 2008
MomSeason Return seasonality years2to 5  0.67 Heston and Sadka  JFE 2008
MomSeasonShort Return seasonality last year ~ 1.15 Heston and Sadka  JFE 2008
OperProfRD Operating profitability R&D adjusted ~ 0.29 Balletal. JFE 2016
OrgCap Organizational capital ~ 0.39 Eisfeldt and Papanikolaou JF 2013
PriceDelayRsq Price delay r square  0.31 Hou and Moskowitz ~ RFS 2005
Realestate Real estate holdings ~ 0.24 Tuzel RFS 2010
Mvell Size  1.01 Banz JFE 1981
TrendFactor Trend Factor  1.63 Han, Zhou, Zhu  JFE 2016
Zerotrade Days with zero trades  0.81 Liu JFE 2006

Table A.1: Information on anomalies. We provide descriptions and sources for the 33 asset pric-
ing anomalies examined in this paper. Journal abbreviations are as follows: JF = Journal of Finance;
JFE = Journal of Financial Economics; RFS = Review of Financial Studies. The data, including the orig-
inal average monthly returns reported in the respective studies (see column headed Return (%)),
are sourced from the Open Source Asset Pricing project.
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B Details on portfolio construction

This appendix outlines the steps involved in transforming the raw data into average re-
turns for the long-short portfolios constructed around various market anomalies. As de-
picted in Figure 1, we consider alternative forks for seven decisions:

1.

Financials. Financial firms (e.g., banks or insurance companies) have different busi-
ness models and capital structures, compared to other firms. In particular, they are
highly leveraged. Therefore, some authors, including Fama and French (1992), pre-
fer to exclude these companies from their analysis. Others choose to include them.
Exclusion is usually performed via the Standard Industrial Classification (SIC) clas-
sification and all firms with SIC codes between 6000 and 6999 can be withdrawn
from the data before continuing the process.

Size filter. Asset pricing anomalies are only interesting to investors if they imply
realistic strategies. One major issue is that of liquidity, i.e., the ability to buy and
sell stocks easily without being exposed to large bid-ask spreads. For this reason,
it is customary to exclude the least liquid stocks from the analysis. This is done by
filtering either according to price (removing penny stocks) or market capitalization
(withdrawing the smallest firms). In this paper, we adopt the latter approach by
excluding either the bottom 5% or 10% of firms with the smallest market capitaliza-
tions each month.

. Imputation. Missing data are ubiquitous in financial datasets. However, their preva-

lence is also an obstacle because they often imply to discard many observations,
thereby curtailing the amount of information to be analyzed. To avoid this, it is cus-
tomary to replace the missing points by an estimate of the best guess for these points.
Following Gu et al. (2020) and Chen and McCoy (2024)), we use cross-sectional av-
erages or medians, which are computed on a monthly basis.

. Quantile threshold. When exploiting anomalies, sorting the is standard procedure.

Each month, the stocks are ranked based on a specific firm characteristic, such as
firm size, book-to-market, etc. Then, the top X% and bottom X% of stocks, according
to this characteristic are grouped into two separate portfolios, the long portfolio and
the short portfolio. In the academic literature, X is typically set to 10 or 20, meaning
that each leg (long or short) comprises exactly one-tenth or one-fifth of the entire
stock universe at any given date. In this paper, we adhere to these two commonly
used values.

Sample period. Full-sample averages can be misleading. For instance, suppose an
anomaly yields an average return of +1% per month over the entire sample, but de-
livers +3% in the first half and -1% in the second half. In such a case, the anomaly
is unlikely to be persistent, and investors may be hesitant to act on it. To address
this, researchers commonly perform subsample analyses as robustness checks. We
adopt this approach by considering six distinct periods, defined by three starting
points (the beginning, the first third, and the second third of the sample) and three
corresponding endpoints (the first third, the second third, and the end of the sam-
ple). Prior to analysis, we restrict the data to include only the observations within
the selected period.
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6. Weighting scheme. After selecting the stocks for inclusion in the long and short
portfolios, the next step is to assign portfolio weights. These weights are typically
either equal-weighted—giving each stock the same importance—or value-weighted,
i.e., assigning weights in proportion to market capitalization. Equal-weighting en-
hances diversification by treating all stocks equally, while value-weighting mirrors
the structure of major equity indices, where larger firms have greater influence due
to their larger market share. In this paper, we employ both approaches.

7. Holding period. After constructing the portfolios, the holding period—i.e., the
length of time before rebalancing—is flexible. Typically, portfolios are rebalanced at
regular intervals measured in months: commonly every month, every three months
(quarterly), or every twelve months (annually). In this paper, we adopt monthly and
quarterly rebalancing frequencies for our analysis.
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C Inference on the mean

Let us recall Equation (10):

20
Pllay— o < 2| =>1-
[|Mb 1p)| 3\/»] o}

which relies on 0, and this value depends mostly on the information on the correlations
Ppq- Gnambs (2023) suggests that a reasonable choice for the variance of the estimator of
the correlation is (1 — p2 ,)/v/N — 3, where N is the number of samples that are generated
to compute the correlations. In any case, it is evident that there exists a N* such that for
N > N¥*, it holds that:

o2 < NL (26)

Pp,q,N

where the N index underlines the fact that estimations are performed on samples of size
N. We will henceforth assume that this inequality holds. For N' > 100, the simulation
studies in Gnambs (2023) suggest that the error on the standard error of correlations is
marginal. Moreover, by Lemma 1 below, we have, for large N:
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where the constant x? only depends on the correlations p,,. The Bienaymé-Chebyschev
inequality, applied to the estimated correlation implies, again for large enough N:
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For N large, it holds that:

4~ Ppa

< ]<1—a, (27)
and, with probability 1 — « at least,

2 < o2 Pp.a
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where we have written o2 for a known upper bound for o} (see Appendix D). Plugging
this into Equation (10) yields:

p [|ﬂb—ub| 2\(;1 Z ] o, (28)
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which is the sought interval.

The final step pertains to the coverage of the three confidence bounds: on the cor-
relations, on the sample mean, and on o, below. The adverse (complement) sets in the
probabilities of Equations (27), (28), and (33) are:

P 2K
a7 P T 3 TGN
. 20
Au = ’Mb - Mb‘ 3\/*7
P)q
6(;

Ay = |of — 62| > o

We want to avoid the union of these three sets (one, or the other, or the third), knowing
that the probability of each is smaller than «. Hence, P[A, U A, U A,| < 3a. This implies
that we can conservatively replace « in our overarching inequality by «/3, so that the
global probability is indeed smaller than a. This leads to the adjusted interval:

2430, [24/3k p 7
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which is the one (Equation (12)) we use throughout the paper.

Our line of reasoning relies on the following technical result.

Lemma 1. The covariance matrix of correlation coefficients is such that, asymptotically for large
N,

N N’

prqN] N—w f(= ):’12 (30)

where f(X) is simply a (scalar) function of correlations specified in the proof below.

We prove the lemma below. Itis also easy to test it numerically with simulations (which
are available upon request). First, Corollary 2 from Browne and Shapiro (1986) states that
the approximation, for a large sample size IV, of the covariance of sample correlations is:

Kijnk = NE[(pijn — pm‘)(ﬁh kN — Phk)]
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where §; ; = 1;—j) is the Kronecker delta. Hence,
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we obtain the sought result. If the correlations are bounded from above by p., then the
2 2
above quantity is smaller than W. In practice, the variance of average correlations

is small. For instance, the expression (31) computed for the (estimated) correlations re-
lated to Figure 3 lies between 0.088 /500 for the factor size and 0.101/500 for asset growth,
with N = 500 being the number of samples. For the correlations whose distributions are
depicted in Figure 5, the magnitude of the variance a% is 1071/500, i.e., it is negligible. We
could consider the error stemming from estimates (i.e., plugging py, »,, instead of p,, ,,,), but
for N > 500, the adjustment is inconsequential.
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D Discussion on o

The true variance of b, o7 is unknown and estimated with 67 (the sample variance). The
latter is computed across paths, and potentially, across samples too. The issue is that
we do not know much about the properties of 67. In particular, we need to quantify its
variance in order to be able to characterize the potential error we are making, compared
to o7. Below, we introduce an assumption that is empirically verified upon path-specific
sampling and that allows us to derive a bound on o7 with a confidence level of 1 — a.

Assumption 2. It holds that:

1. the correlations p,, , are symmetric around zero; in particular, their sum is null;
2. Zp,q,r E[(bp - /’Lb) (bq - Mb) (br — ,ub)] = 0.

If paths are jointly uncorrelated, then the hypothesis on co-skewness in the second
point is straightforward. We then proceed with a result on the variance of the sample
variance. It relies on a quantity, o, which is very close to zero according to our estimations
upon path-specific resampling. To substantiate this claim, we provide in Figure D.1 the
distribution of the correlation between squared effects for the four baseline anomalies in
our study.

Now, suppose we have an unbiased estimation o7 from P paths. Then, via the Bienaymé-
Chebyschev inequality:

2 |V[6?

Under Assumption 2 and Lemma 2 (stated and proven below), and for o ~ 0, we thus
have:

205 2
3ya'\ (P —1)
The bound in the bracket depends on o3, which is unknown, but we can consider the two
cases 07 < 67 and o} > 67

Pl|af—6g|< } >1—a, ac(0,1). (32)

e if 07 < 67, then Equation (32) holds when replacing o7 with 7.

e if 07 > 67, we rewrite the inequality inside the probability of (32) as o7 — 6

with e = 322 /5% € (0, 1) for P large enough, hence (1 — ¢)o} < 67, i.e. o}

SN
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In the end, we can replace o7 by
probability, and obtain:

in the right-hand side of the inequality within the

)
%%
1—e

e] >1—a, ac(0,1), (33)
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and hence, since o7 and 67 are very close with probability 1 — o, we can set:

o
ol=67 1+ (34)
2 2
1 3va\/ (P-1)
as the sought upper bound.
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Figure D.1: Distribution of correlations between squared effects. We show the distribution

of the correlations Cor(@f,, 133) for each of the four sorting variables. Correlations are computed
on N = 500 samples and the samples are generated separately for each path, following our path-

specific approach.

Lemma 2. Under Assumption 2, the variance of the sample variance is V[67] = o} (

where 0 = 5y 2, Cor (512,, B?)

Proof. First, as a side note, we note that:

V] =V []13 2 l;p] - ;QE [Z@p - b)2]

p.q

because the sum of correlation collapses (only the variances remain). Next, we have:
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and, in addition, it is an unbiased estimator, i.e., E[67] = o7. Indeed,

P P 2
A A P
Elof] = Y D - ( > bq) S R G L )
: q:l
Moreover, by Assumption 2, we have:
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and
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where the third row above comes from a generalization of Isserlis’ theorem to non-central

Gaussian laws. If the effects have zero mean, then Isserlis’ theorem for E|pi,/iqprps] and
Asssumption 2 imply:
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= Z Eptptiqpiris] + 41E[bpbybr] + 61°E[bybg] + 44°E[by] + pt
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= 3P%} + 6P%02 i + Py
Finally, we will need the following expression:
Y Cov (éﬁ,éq&) - ME [Aﬁéq&n] — E[B2]E[byb, ]
p?q?r p?q?r
= 0y (P* +2P) + (P* + 5P*) gy + Py — Ploy + i) (Poy + Ppug)
= 2P0} + 4P%0}

where we have again resorted to a variation of Isserlis” theorem in the second row. Now,
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gathering everything in a bigger picture and aggregating the pieces:

p= q=1 [ p=1 g=1
1 P 1 P 2 5 P P 2
_ 72 P 72 7
G V[pr + 5V ( bq) ~ 5 Cov b (qu>
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p7q7T
1
— 2P + 1)+ 8PofE — o} + 2P o) + oo
2 4
= Pibl + aglg.

E Computation of SE and NSE

In this section, we provide the sample-based definition of Equations (17) and (18). We
present the general formulation with potentially non-uniform weights w, that sum to one.

Below, 5p(Dn) is related to path p and to subsample n.

P N
1
SE = /12, | Y wpo2 + > (fin — )’ (35)
p=1 N n=1
1 & o
NSE = +/1/2 N;an+;w;;(up 1)’ (36)
where
1 & P L 1 &
fip = 5 Z bp(Dn),  fin = prbp(DN)7 K= Z “rklp = Z fin
N N
n=1 p=1 p=1 =l
and
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