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Abstract
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1 Introduction

The shale oil industry, which expanded rapidly after 2009, has become a dominant force in

global oil production, accounting for more than half of total output. However, the hydraulic

fracturing (fracking) techniques used in shale extraction have raised serious environmental

concerns, including groundwater contamination from high salinity and non-biodegradable

compounds, as well as the release of greenhouse gases. In response to growing environ-

mental, social, and governance (ESG) awareness among policymakers and investors, shale

producers have faced increasing pressure to adopt cleaner production practices. One such

approach involves using more environmentally friendly proppants in hydraulic fracturing.

The growing transparency provided by FracFocus, a public registry disclosing detailed well-

level information across 12 U.S. states, allows us to track the adoption of cleaner production

practices before and after the Paris Agreement.

This paper investigates whether firms’ access to external financing shapes their environ-

mental transition. The relationship is ambiguous. On the one hand, firms with better access

to capital may have greater flexibility to invest in cleaner technologies. On the other hand,

limited funding can constrain such investments. Yet, financial frictions—when combined

with external pressure—can also influence firms’ production and governance decisions, sug-

gesting that climate policy shocks may operate through financially induced reputational

mechanisms.

To examine this mechanism, we exploit the Paris Agreement as an exogenous shock that

tightened financing conditions for carbon-intensive industries. We focus on firms’ reliance

on short-term debt to capture heterogeneity in refinancing risk prior to the Agreement. Fol-

lowing 2015, highly leveraged firms experienced pronounced refinancing challenges: higher

debt costs, reduced bond issuance, and lower inflows of new syndicated loans. Contrary

to the notion that financial constraints exacerbate pollution, we find the opposite—high

short-term debt firms significantly reduced their use of toxic chemicals by about 52.5%

(–0.75 log points) relative to less-levered peers. Importantly, this pollution reduction was

not accompanied by higher production efficiency, implying that cleaner production arose

from financing and reputational pressures rather than technological improvements.

Our channel analysis reveals that the link between financial constraints and pollution re-
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duction operates primarily through external reputational pressure rather than internal gov-

ernance or traditional financial channels. Financially constrained firms exposed to stronger

media scrutiny curtailed toxic intensity more sharply, indicating that reputational con-

cerns amplified the impact of financial frictions on environmental behavior. While some

firms responded by strengthening internal oversight—such as establishing Environmental,

Health, and Safety (EHS) committees—these actions do not appear to be the main drivers

of pollution reduction. Similarly, we find no evidence that green institutional investors or

banks played an active role in this process.

This study contributes to three strands of literature. First, it adds to the literature on

the environmental impacts of hydraulic fracturing (HF). Prior studies, such as (Jackson et

al., 2014), (Currie, Greenstone, & Meckel, 2017), and (Bonetti, Leuz, & Michelon, 2021),

document the environmental risks of shale extraction, particularly groundwater contami-

nation due to non-biodegradable chemicals ((Vidic, Brantley, Vandenbossche, Yoxtheimer,

& Abad, 2013; Agarwal et al., 2020)). We complement this research by constructing a

novel well-level toxic chemical usage index from FracFocus, enabling granular tracking of

environmental behavior.

Second, we contribute to the literature on the effects of external policy shocks on firms’

environmental decisions. Building on evidence from (Christensen, Hail, & Leuz, 2021)

and (Kellogg, 2014), we show that the Paris Agreement, as a major global climate pol-

icy, intensified financing frictions for shale firms and induced cleaner production through

reputational channels.

Third, we extend the debate on how financial constraints affect corporate environmental

and social responsibility (CSR). While prior studies offer mixed evidence ((Cheng, Ioan-

nou, & Serafeim, 2013; Attig, Cleary, El Ghoul, & Guedhami, 2013; Habib, Costa, Huang,

Bhuiyan, & Sun, 2018; Chan, Chou, & Lo, 2017; Campbell, 2007)), we show that tighter

financing constraints can promote cleaner production rather than deter it. The effect

is strongest among firms under greater media scrutiny, highlighting that financial con-

straints can foster environmental improvement through reputational rather than financial

or investor-driven channels.

Collectively, by integrating well-level environmental data with firm-level financial and
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ownership characteristics, our analysis reveals the financial and institutional conditions

under which climate policy shocks effectively incentivize corporate environmental respon-

sibility.

The remainder of the paper proceeds as follows. Section 2 provides background on

hydraulic fracturing and environmental concerns. Section 3 describes the dataset. Section 4

analyzes the loan and debt market reaction. Section 5 presents firms’ production responses.

Section 6 investigates the transmission channels. Section 7 offers robustness tests, and

Section 8 concludes.

2 Background

In this section we will introduce the general research background regarding Hydraulic frac-

turing process and its environmental concerns.

Hydraulic fracturing and environmental concerns

The success of Shale Oil industry is largely benefited from technology advances such as

horizontal drilling, and hydraulic fracturing (HF). Operators adapt multiple chemicals for

different purposes during fracturing. The fracturing process involves the injection of high-

pressure ”fracking fluid”, normally consisting of water, sand and other proppants, into a

borehole in order to induce fractures in deep-rock formations. Consequently, this facilitates

the optimal movement of natural gas, petroleum, and brine. The fracturing process entails

injecting high-pressure ”fracking fluid,” primarily composed of water and containing sand

and other proppants, into a well hole to create cracks in deep-rock formations. This allows

for the more efficient flow of natural gas, petroleum, and brine. Upon removal of hydraulic

pressure, small grains of hydraulic fracturing proppants, such as sand or alumina, maintain

the fractures’ openness (Von Estorff & Gandossi, 2015). Furthermore, chemical usage in

HF works have effects on the productivity of wells, making the design of fracturing fluid

for optimal performance based on the shale layer properties is of vital importance.

While hydraulic fracturing offers economic benefits through increased hydrocarbon ac-

cessibility, opponents argue that it poses environmental risks, including water contamina-

tion, noise, air pollution and potential seismic activity, along with public health concerns.

Typical concerns include the chemicals present in HF fluids and the substantial volumes of
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wastewater generated by the process (Currie et al., 2017).

The potential hazards of HF fluids to health and the environment have prompted reg-

ulatory measures. From government disclosure, in the United Kingdom, environmental

regulators permit only nonhazardous chemicals to be used, prioritizing the protection of

underground water sources. Similar introductions of disclosure standards for HF wells and

fracturing fluids also appears in several U.S. states. Since 2010, various state-level legisla-

tive requirements have been introduced, mandating HF operators to disclose the chemical

composition of their fluids. Disclosure mandates lead to reduced pollution per unit of

production, decreased use of toxic chemicals, and fewer spills and leaks of HF fluids and

wastewater (Christensen et al., 2021).

3 Data and Variables

This section describes the construction of our dataset, which combines well-level hydraulic

fracturing data from FracFocus with firm-level financial, credit, and ownership informa-

tion. The well-level data provide detailed records of chemical usage, job start dates, and

operational characteristics for hydraulic fracturing wells disclosures across 12 U.S. states.

We match these data with firm-level financial information from Compustat, loan and bond

transactions from Dealscan and Refinitiv SDC Platinum, and institutional ownership data

from 13F filings. This integrated dataset allows us to quantify each well’s toxic chemical

intensity, measure firms’ financial constraints based on short-term debt reliance, and ex-

amine how changes in financing conditions following the Paris Agreement affected firms’

production and environmental decisions.

3.1 Well-level Data

FracFocus, founded in 2011, has been dedicated to documenting the chemicals used in hy-

draulic fracturing activities around the country. More than 1,600 companies have reported

chemicals used in more than 189,000 hydraulic fracturing operations. The detailed report-

ing include initiated hydraulic fracturing date, well vertical distance, latitude and longitude

geo-location, operators, federal land use, chemical purpose, chemical usage percentage in
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fracturing volumes, etc. We keep the sample after 2011. We drop the disclosures that (i)

with no meaningful completion date (starting date is later than the ending date), (ii) erro-

neous chemical usage information (e.g. with negative or 0 chemicals usage information, or

the sum of the chemicals proportion usage is larger than 110 or less than 80). (iii) For each

year, we keep states with new exploitation wells larger than 5 for the estimation robustness.

(iv) For consistency in production characteristics, We focus on oil wells with production

type labeled with ’OIL’ and ’OIL & GAS’. From the general exploitation properties side,

both private firm and public firms, voluntary disclosure and local legal forced disclosure are

taken into consideration; (v)We keep wells with valid supplier information and operators

with authentic financial data. In total, 18,961 disclosures are retained.

During the data selection process, we retain only firms and states with consistent time-

series information. Firms that ceased production after the Paris Agreement, as well as

states that introduced legislation halting shale production (such as New York State), are

excluded from the sample. FracFocus provides basic information on well characteristics,

which we use to control for drilling complexities. The data include variables such as vertical

depth, horizontal length, and total water usage for each oil well. In addition, production

processes, well complexity, and drilling profitability are related to the geographic location

of wells. Wells located in different geological formations exhibit distinct physical properties.

Finally, state-level policies are included as additional controls.

3.2 Chemicals Data

To evaluate the toxic information of the chemicals used during hydraulic fracturing, we

first list all the unique chemicals identified with the Chemical Abstract Service identifica-

tion number (CAS number) disclosed by FracFocus. CAS numbers, proposed by the CAS

Registry, identify each substance that appears in the literature. The purpose is to avoid

the hassle of having multiple names for a chemical and to make it easier to search for

chemical information. A CAS number can be divided into three parts, with the first part

having up to seven digits, the second part having two digits, and the third part a single

digit as a check digit. Each part is connected by hyphens (format such as xxxxxxx-xx-x).

We first drop FracFocus-disclosed CAS numbers that do not match the format, and then
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check whether the formatted CAS numbers exist or are valid. In total, 1,191 chemicals

are defined as authentic. In spite of new chemicals, business secret products, or the lack

of mandatory disclosure requirements from local governments, using CAS numbers we can

find the Material Safety Data Sheet (MSDS) for chemicals, which is a comprehensive doc-

ument that offers specific information on workplace safety and health related to the use of

various chemicals and chemical products. We use the MSDS information disclosed by the

ChemicalBook website. The Globally Harmonized System of Classification and Labelling

of Chemicals (GHS) shown in the MSDS is a globally acknowledged benchmark overseen

by the United Nations. Its purpose is to consolidate and replace the various hazardous

substance categorisation and labelling methods previously employed worldwide. The stan-

dardized labels include: (i) Symbols or GHS hazard pictograms, including information on

environmental concerns and human health hazards, which are assigned to multiple GHS

hazard codes. The nine categories are shown in Table 3 B. (ii) Two signal words (“Danger”

and “Warning”) are defined to highlight danger and hazard levels. Out of the 1,191 chem-

icals we have chosen, 528 are classified as dangerous, 458 are labeled as warnings, and 205

do not have any signal words. (iii) Other key information, such as Hazard statement(s) and

Precautionary statement(s), is difficult to determine and therefore not taken into consid-

eration. The GHS hazard pictograms allow us to explore toxic fluids’ chemical properties

within each subcategory, specifically from health and environmental hazard perspectives.

The signal words provide the hazardous degree of each chemical. Based on this information,

we are able to calculate the fluid toxicity index for each disclosure.

3.3 Firm-level Data

To address firm-level financial performance’s impact on production decisions, we down-

loaded core financial characteristics of the publicly traded oil and gas firms in Compustat.

As FracFocus received information from both publicly traded and private firms, we first use

fuzzy matching to match FracFocus ’OperatorName’ with Compustat ’conm’; we then man-

ually identify the final list of publicly traded firms. Secondly, we set the Global Industry

Classification Standard (GICS) code ’ggroup’ to 1010.0 for selecting the energy industry.

Thirdly, we keep public firms that have continued exploitation activity between 2012 and
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2019.1 We find 46 matching energy firms. Then we calculate the financial indicators used to

determine financial constraints and for further corporate-level controls. Firm-level financial

performance may be related to market leverage, Tobin’s Q, other observable dimensions

such as profitability, dividends, cash flow (in millions), and sales growth, etc. We use these

financial variables as firm-level control variables. We also use firms’ DEF 14A proxy state-

ments to identify the presence of green board committees. Specifically, we capture both

the intensive margin—the number of committee members involved in sustainability-related

responsibilities—and the extensive margin—whether the firm has established a dedicated

green or sustainability committee. In addition, we use data from PatentView to mea-

sure firms’ green innovation activities. For shareholder information, we combine 13F filings

with data from the Green Alliance list to identify institutional investors with environmental

preferences and to measure the pressure from green shareholders.

3.4 Loan, Bond and Credit Data

We use the Dealscan database to evaluate overall loan market activity. We focus on loans

with start dates between 2012 and 2019 and follow the data-cleaning process described in

(Green & Vallee, 2024). We assign shares equally across banks for syndicated loans without

detailed transaction amount information. We only focus on debt for general purposes rather

than specific aims.2 Among our selected firms, 2,485 deals are identified with loan properties

such as loan terms, debt amount, new money injection, and spread. Properties like new

money injection and spread are not available for each deal. We also use the Refinitiv SDC

New Issues database to evaluate firm-level debt issuance activity. For the credit ratings, we

use the Standard & Poor’s (S&P) Long-Term Issuer Rating when available. For unobserved

credit ratings, we double-check the credit information from Bloomberg.

1FracFocus was established in 2011, but state-level disclosure started in 2012. To make the time-series
estimation more robust, we drop the first disclosure year.

2Debts with specific purposes include mergers, acquisitions, leveraged buyouts, exit financing, trade
financing, IPO-related financing, and dividends or distributions to shareholders.
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4 Loan and Bond Market reaction to Paris Agreement

Following the 2015 Paris Agreement, oil and energy companies have faced intensified reg-

ulatory and financial constraints aimed at reducing carbon emissions and toxic pollution.

Governments, institutional investors, and financial intermediaries have increasingly in-

corporated environmental considerations into lending and investment decisions, exerting

mounting pressure on fossil fuel-dependent industries.

In particular, the loan and debt markets provide a direct lens into these emerging finan-

cial frictions. Loan agreements and debt issuance activities are critical financing channels

for energy firms, and shifts in credit terms—such as pricing, funding availability, maturity

structures, and ratings—reflect lenders’ reassessment of long-term risks associated with

brown-intensive industries.

In this section, we explore how the Paris Agreement has reshaped the loan and debt

financing environment for energy companies. We examine changes in the syndicated loan

and corporate debt markets to assess the extent to which financing conditions have tight-

ened relative to firms with high short-term debt ratios for their intensive financing needs.

Our analysis provides early evidence of how climate-related regulatory commitments affect

firms’ access to capital and potentially alter their production strategies.

4.1 Cost of Debt

To identify which shale firms are more affected, we divide them into two groups based on

their firm-level debt structure. Our key measure is the short-term leverage ratio (ST Debt),

which captures a firm’s reliance on short-term debt. Firms heavily dependent on short-

term debt are more likely to be affected by financing pressures in the aftermath of the

Paris Agreement due to their frequent need to roll over debt. To identify firms that rely

more heavily on short-term debt prior to the Paris Agreement, we construct a time-invariant

firm-level indicator, 1{ST Debtj}, based on firms’ historical short-term debt usage patterns.

Specifically, for each fiscal year up to 2015, we classify firms whose ratio of short-term debt

to total assets exceeds the cross-sectional median as being ”above median” for that year.

We then count, for each firm, the number of years in which it was classified as above median.

Firms in the top 50% based on this count are assigned a value of one for 1{ST Debtj},
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indicating persistent high levels of reliance on short-term debt; all others are assigned a

value of zero. This indicator remains fixed across all years in our analysis, ensuring that

it reflects pre–Paris Agreement financing structures rather than post-event adjustments.

This balance-sheet-based indicator is consistent with the interpretation in (Rauh & Sufi,

2010), (Custódio, Ferreira, & Laureano, 2012), and (Harford, Klasa, & Maxwell, 2013), who

document that a high share of short-term debt reflects limited access to long-term financing

and greater exposure to refinancing risk. We argue that, under market tightening, these

firms are more exposed to refinancing needs and therefore face greater lending frictions,

such as higher debt costs, reduced access to funding, and declining credit ratings.

We first calculate each firm’s pre-tax cost of debt as interest and related expenses

divided by total debt. We find that after 2015, high-ST Debt firms faced severe debt

financing frictions. Figure 1 plots the average cost of debt for high- and low-ST Debt

firms over 2012–2020. Before 2015, cost trajectories were relatively stable and parallel

across both groups. However, following 2015, high-ST Debt firms experienced a significant

rise in debt costs, surpassing low-ST Debt firms by 2016. This divergence suggests that

short-term-debt-dependent firms were more exposed to financing frictions or shifts in credit

conditions. Interestingly, the gap temporarily narrowed around 2018–2019.

To further validate this, we run the following subgroup regression:

CostofDebtj,t = α + β1 × Paris+ δj + ϵj,t (1)

where CostofDebtj,t is the cost of debt of operator j in year t. Paris is the Paris

Agreement dummy, and δj is the firm-level fixed effect. Table 6 reports the heterogeneity

analysis of firm-level cost of debt after the Paris Agreement. Column (1) includes all firms

with production information recorded in the year; the coefficient on the Paris dummy is

positive and statistically significant at the 5% level, suggesting that, on average, shale oil

firms experienced an increase in their cost of debt following the Agreement. In Columns

(2) and (3), we split the sample based on firms’ short-term debt leverage. The effect

is concentrated in high-ST Debt firms (Column 2), while the effect becomes statistically

insignificant and economically smaller for non–short-term-debt firms (Column 3). This

pattern indicates that firms more reliant on short-term debt faced greater financing frictions
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following the Paris Agreement.

[Insert Table 6 here]

4.2 Credit Ratings

Credit ratings provide a forward-looking measure of firms’ downside risk, and green frictions

may affect firms’ creditworthiness. We use Standard and Poor’s (S&P) Long-Term Issuer

Rating for operator-level credit ratings. We then follow (Baghai, Servaes, & Tamayo, 2014)

to linearize these ratings from 1 to 20. We use the following regression to test firms’ credit

rating changes under green frictions:

Creditj,t = α + β1 × Paris× 1{ST Debtj}+ δj + θt + ϵj,t (2)

where Creditj,t is the linearized credit rating of operator j in year t. Paris is the Paris

Agreement dummy, δj is the firm-level fixed effect, and θt is the year fixed effect. Figure 2

shows that credit ratings for both high- and low-short-term-leverage firms dropped notably

in 2016. Regression results in Table 7 confirm this pattern. In Column (1), we find that

the Paris dummy is negative and statistically significant, suggesting that shale oil firms,

on average, experienced a 0.27-point decline in their credit ratings after the Agreement.

In Column (2), however, the interaction term between Paris and short-term leverage is

insignificant, implying that the downgrade was broad-based across the industry rather

than concentrated among firms with higher short-term debt exposure.

[Insert Table 7 here]

4.3 Bond Issuance

We use the following regression to test the Paris Agreement’s impact on high–short-term-

debt-ratio firms’ new debt issuance:

NewDebti,j,t = α + β1 × Paris× 1{ST Debtj}+ γj + θt + ϵi,j,t (3)
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where NewDebti,j,t represents the properties of new debt i issued by firm j at time t,

including the logarithm of debt amount and debt spread. Paris is an indicator for years

after the Paris Agreement, and 1{ST Debtj} is a dummy for high–short-term-debt firms.

δj,t are firm-level controls, γj is the firm fixed effect, and θt is the time fixed effect.

Regression results are shown in Table 8. A negative coefficient on Paris × ST Debt

in Column (1) indicates that firms with higher short-term debt reliance experienced a

larger reduction in debt issuance volume after the Paris Agreement. In contrast, a positive

coefficient in Column (2) suggests that these firms faced higher borrowing costs in the

post-Paris period. These results provide evidence that firms with frequent refinancing

needs became more financially constrained following the Paris Agreement.

[Insert Table 8 here]

4.4 Bank Loan and Green Bank

After the Paris Agreement, (Green & Vallee, 2024) finds that banks are divesting from the

coal industry. Many NGOs have published lists of banks that are willing to exit the fossil

fuel market by 2030. From the shareholders’ perspective, stock holdings held by greener

investors force fossil fuel firms to take green transitions. In this section, we discuss the

actual loan market conditions for the shale oil industry after the Paris Agreement.

Loani,j,l,t = α + β1 × Paris× 1{ST Debtj}+ λj,l + ϕt + ϵi,j,l,t (4)

where Loani,j,l,t represents the properties of loan i borrowed by firm j from lender l

at time t, including the logarithm of loan amount and loan spread. Paris is an indicator

of whether the debt is issued after the Paris Agreement; 1{ST Debtj} is a dummy for

high–short-term-debt firms; λj,l is the borrower–lender fixed effect; and ϕt is the year fixed

effect.

Results in Table 9, Panel A, show that, relative to other firms, high–short-term-debt

firms’ total new loan amounts did not change materially (Column 2), while the amount

of new money raised from banks declined sharply (Column 3), suggesting that these firms

faced tightened credit constraints. The loan spread did not exhibit significant differences
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(Column 4), implying that the tightening was primarily on banks’ new money injections

rather than on the price of credit.

We also follow (Kacperczyk & Peydró, 2022) to examine green banks’ lending pres-

sure on shale oil firms. Our green banks are labeled as Science-Based Targets initiative

(SBTi) commitment banks. We label loans issued by green banks after their announcement

dates with a dummy variable GreenBanki. We then re-estimate a staggered difference-in-

differences specification as follows:

Loani,j,l,t = α + β1 ×GreenBanki × 1{ST Debtj}+ λj,l + ϕt + ϵi,j,l,t (5)

Results in Table 9, Panel B, show that for firms with high short-term debt ratios,

green banks reduce new money injections, while there is no significant heterogeneity in

total debt amounts or spreads. When focusing on the main effect of green banks, the

coefficients indicate that after the establishment of SBTi-related committees, green banks

decrease their overall debt exposure but charge a higher spread. Our findings are consistent

with (Kacperczyk & Peydró, 2021), who document that green banks reduce loan supply to

polluting firms while imposing higher financing costs.

The apparent divergence, lower total loan amounts but higher new money injections,

reflects a reallocation across borrowers. While financially constrained firms are not nec-

essarily more polluting, green banks may perceive them as riskier counterparties in the

post-Paris context. Lacking perfect information about firms’ pollution exposure, green

banks could use financial resilience (e.g., short-term leverage) as a proxy for transition risk.

Consequently, they reduce exposures to firms with weaker balance sheets.

[Insert Table 9 here]

5 Firm Response

This section examines how shale oil firms adjusted their production behavior in response

to the Paris Agreement. We analyze whether tighter financing conditions led financially

constrained firms to modify their drilling activities and chemical usage, revealing how green

policy shocks translate into real production adjustments.
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5.1 Main Result – Pollution Control

To measure toxic chemical usage for each well, we propose a toxic index for each well i:

Toxic Indexi,t =
∑
j

(
PercentHFJobi,j,t × 1{j∈toxic}

)
(6)

where PercentHFJobi,j,t represents the proportion of ingredient j in the total hydraulic

fracturing volume, expressed as a percentage by mass. The term 1{j∈toxic} denotes an

indicator function, which equals 1 if chemical j is labeled with the “Danger” signal word

and 0 otherwise. Chemicals defined as dangerous but not environmentally hazardous—such

as crystalline silica (SiO2)—are excluded from the calculation.3

To address the right skewness of the chemical index, we follow the approach outlined

by (Fetter, 2022). First, we apply a logarithmic transformation to the index, adding 0.01

to avoid taking the log of zero. Subsequently, we winsorize the data at the upper 1% level

to mitigate the impact of outliers.

Appendix Figure A3 shows the yearly distribution of the well-level toxic index. We find

a general decreasing trend in well-level toxic chemical usage. The lower percentiles decrease

after 2015, while the upper percentiles decline from 2015 to 2018 but revert to previous

levels thereafter.

We then examine well-level pollution heterogeneity between high–short-term-debt firms

and others using the following equations:

Toxic Indexi,j,s,g,t = α+
2019∑

k=2012

βk×1{ST Debtj}×Y eark+δj,t+θi+γj,s+λg+ϕt+ϵi,j,s,g,t (7)

Toxic Indexi,j,s,g,t = α+β1× 1{ST Debtj}×Paris+ δj,t+ θi+ γj,s+λg +ϕt+ ϵi,j,s,g,t (8)

where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i operated by

firm j in state s during year t. 1{ST Debtj} is a dummy variable indicating whether a firm

is highly reliant on short-term debt. δj,t are firm-level controls at year t; θi are well-level

3For chemicals labeled with the signal word “Danger,” we further investigate their GHS classifications.
We mainly find that silicon-related chemicals are less harmful to both the environment and human health.
See: Global Silicones Council. Other chemicals such as Ca2O3 or NOx compounds are more likely to be
water-soluble or associated with aquatic impacts (e.g., toxicity to fish).
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controls; γj,s are operator–supplier fixed effects; λg are state fixed effects; and ϕt is the year

fixed effect.

Regression results are shown in Table 10. We find that prior to the Paris Agreement,

there was no systematic difference in toxic chemical usage between firms with high and

low short-term debt ratios. Following the Agreement, high–ST Debt firms significantly

reduced their toxic chemical usage, with the effect strengthening over time. This suggests

that financially constrained firms were more responsive to the regulatory shift induced by

the Paris Agreement, adjusting their pollution behaviors to mitigate financing risks. The

estimated coefficient on the interaction term suggests an economically significant reduction

of approximately 52.5% in toxic chemical usage.

Our results differ from those of (Bellon & Boualam, 2024), who study the pollution be-

havior of shale firms under financial distress, measured by default probabilities and Chapter

11 filings. They find that pollution intensity increases with financial distress. We reconcile

this difference as follows. Our measure of financial constraints captures firms’ structural

dependence on short-term debt rather than proximity to bankruptcy. In this context, risk-

shifting or last-resort behaviors are less relevant. In contrast, our identification relies on

policy-induced frictions following the Paris Agreement, where lenders reassess environmen-

tal and refinancing risks. Without such policy pressure, financially constrained firms would

have no incentive to voluntarily transition.

[Insert Table 10 here]

5.2 Selective Halt New Production

We examine whether financially constrained firms are more likely to cut back on new well

exploitation. (Kellogg, 2014) shows that under oil price and consumption uncertainty,

drilling activity declines as firms delay investment. Similarly, (GILJE, LOUTSKINA, &

MURPHY, 2020) find that during periods of credit tightness or oil market shocks such

as contango, highly leveraged oil firms reduce new production and scale back investment.

Given that oil firms are typically highly indebted and capital-intensive, limited access to

external financing is expected to have a significant impact on their drilling decisions.
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Motivated by this literature, we test whether firms with persistently high short-term

leverage—those facing stronger refinancing needs—respond to the Paris Agreement by cut-

ting back new well drilling. Specifically, we compute firm-year measures of new well ex-

ploitation and estimate the following regression model:

NewWellj,t = α + β1 × Paris× 1{ST Debtj}+ γj + θt + ϵj,t (9)

where NewWellj,t is the logarithm of the number of new wells drilled by firm j in year

t, Paris is an indicator for years after the Paris Agreement, 1{ST Debtj} is a dummy for

high–short-term-debt firms, γj are firm fixed effects, and θt are year fixed effects.

We first assess the overall industry response to the Paris Agreement by regressing drilling

activity on a post-Paris dummy. In Table 11, the results are statistically insignificant,

suggesting no average effect across all firms. We then focus on financial heterogeneity by

interacting the Paris dummy with a time-invariant indicator of persistent short-term debt

reliance. Our preferred specification includes both firm and year fixed effects to absorb

time-invariant firm traits and common temporal shocks. The coefficient on the interaction

term is negative and statistically significant, indicating that financially constrained firms

reduced drilling activity more sharply after the Agreement. Our results are consistent with

existing literature suggesting that firms facing financial uncertainty tend to halt or scale

back production activities. Firms strategically selected greener new well exploitation when

facing financial constraints.

[Insert Table 11 here]

5.3 No Green Productivity Premium

Operators engage in resource exploitation to maximize economic benefits. Therefore, we

test whether financially constrained firms derive direct benefits from adopting greener pro-

duction practices. To examine whether adopting greener practices leads to production

advantages over medium- and long-term horizons, we estimate the following regression

model:
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Productioni,j,s,t = α + β1 × Toxic Indexi,j,s,t + γt + θj + δs + ϵi,j,s,t (10)

where Productioni,j,s,t is the logarithm of average gas (or oil) production over period t,

standardized by perforated footage, with t ∈ {6 months, 12 months}. Toxic Indexi,j,s,t is

the percentage of toxic chemical usage for well i operated by firm j in geolocation s at time

t. γt are year fixed effects, θj are firm fixed effects, and δs are geolocation-grid fixed effects,

where geolocation grids are defined by 1× 1 degree changes in latitude and longitude.

Regression results presented in Table 12, Columns (2) and (3), indicate that wells

utilizing fewer toxic chemicals—i.e., “greener” wells—do not exhibit higher production

levels in either the short or long term. This suggests that reducing toxic chemical usage

does not provide a production advantage.

[Insert Table 12 here]

6 The Channels

This section investigates the mechanisms through which financial frictions induced by the

Paris Agreement affected firms’ environmental behavior. We distinguish between internal

governance responses—such as the establishment of Environmental, Health, and Safety

(EHS) committees—and external reputational pressures from media scrutiny and public

attention. While internal adjustments may reflect firms’ alignment with evolving envi-

ronmental expectations, reputational discipline appears to be the dominant force shaping

pollution reduction.

6.1 Media Coverage Pressure

In the context of our study, high–short-term-debt (ST) firms may adjust their pollution

behavior not solely due to direct compliance costs but also to mitigate potential reputational

losses from media coverage following the Paris Agreement. Firms with higher exposure to

reputational risks could have stronger incentives to proactively reduce pollution to preserve

their public image and sustain investor confidence.
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We use the Reputation Risk Index (RRI) from RepRisk, available through the WRDS

platform. The RRI aggregates firm-level exposure to reputational risks across a wide range

of ESG issues. The index is constructed by systematically monitoring international and

local media outlets, blogs, newsletters, NGO reports, and government releases in multiple

languages, identifying adverse events such as environmental incidents, governance contro-

versies, and public protests.

Each company’s RRI score (ranging from 0 to 100) is driven by the frequency and reach

of news items, the severity and novelty of incidents, and the firm’s prior exposure: firms with

little prior negative attention tend to experience greater score jumps when newly criticized.

Instead of using the RRI score itself, we focus on its annual trend (∆RRI), which captures

the change in a firm’s reputational exposure over time. This dynamic measure better

reflects shifts in media scrutiny—a rising trend (∆RRI > 0) signals intensifying public

pressure, whereas a declining trend (∆RRI < 0) suggests easing reputational concerns.

We use both the interaction term and subsample regressions to test the media coverage

pressure channel (Table 13). In Column (1), the interaction between Paris×ST Debt and

media pressure (∆RRI) shows a negative coefficient, suggesting that financially constrained

shale firms facing stronger increases in negative media attention are more likely to reduce

the intensity of toxic chemical use after the Paris Agreement. This effect remains significant

in the high-pressure subsample (Column 3) but disappears when ∆RRI < 0 (Column 4),

indicating that reputational shocks primarily constrain firms under rising media scrutiny.

Our analysis builds on a growing literature showing that fluctuations in media coverage

materially affect firms’ behavior through external monitoring and information channels.

For example, (Heese, Pérez-Cavazos, & Peter, 2021) show that local newspaper closures

reduce media scrutiny and increase facility-level misconduct, while (Gao, Lee, & Murphy,

2019) demonstrate that newspaper closures raise borrowing costs for municipal issuers by

weakening public oversight. In contrast to these studies, which examine reductions in media

coverage, we focus on how intensified ESG media scrutiny influences financially constrained

firms’ green transition behavior.

[Insert Table 13 here]
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6.2 Green Shareholders Engagement

Although firms’ adoption of environmentally sustainable practices is central to addressing

climate change, managers often display a “business-as-usual” attitude and remain reluctant

to alter their environmental strategies. To overcome this inertia, institutional investors have

increasingly joined forces through coalitions that engage firms on climate issues.

We obtain institutional ownership data from the WRDS 13F Holdings database, which

records equity holdings of large institutional investors in U.S. public firms. Following stan-

dard practice, we aggregate quarterly observations to the annual level and compute annual

percentage ownership by investors affiliated with different “green alliances.” Specifically,

we focus on three major coalitions of climate-oriented investors:

1. Net Zero Asset Owner/Manager Alliance (NZAM): A coalition of large pension funds,

insurance companies, and asset managers that have committed to aligning their port-

folios with net-zero greenhouse gas emissions by 2050. Members pledge to gradually

decarbonize their assets and increase investments in sustainable activities.

2. Climate Action 100+ (CA100+): A network of global asset managers, asset owners,

and service providers engaging with the world’s largest corporate greenhouse gas

emitters. The main channel of influence is active shareholder engagement, including

filing shareholder proposals, voting, and direct dialogue with corporate boards.

3. Global Fossil Fuel Divestment Database (GFFD): A record of universities, founda-

tions, endowments, religious organizations, and public pension funds that have pub-

licly committed to divesting from coal, oil, and gas companies. The pressure here

is mainly reputational, as divestment announcements generate media coverage and

alter public perceptions of targeted firms.

We manually identified green shareholders from 13F filings and linked them to the above

alliances. For each firm-year, we aggregated the ownership shares held by alliance-affiliated

investors. We then examine two questions: (1) whether green shareholders reduced their

holdings in fossil fuel firms after the Paris Agreement; and (2) whether a higher percentage

of green ownership is associated with more environmentally friendly firm behavior, such as

reduced toxic chemical usage and increased green innovation.
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The estimation results are presented in Tables 14 and 15. We find no significant reduc-

tion in institutional ownership among highly leveraged firms following the Paris Agreement.

This suggests that large climate-oriented investors did not immediately divest from finan-

cially constrained fossil fuel firms. Next, we interact the post-Paris indicator with a dummy

for green institutional ownership. Table 15 shows that high green ownership is not asso-

ciated with a stronger decline in toxic chemical usage. The insignificant interaction term

indicates that the presence of green investors did not amplify the environmental response

of debt-constrained firms.

Overall, these findings imply that shareholder engagement did not serve as an active

channel of transition in this context. Consistent with (Krueger, Sautner, & Starks, 2019),

ESG-oriented investors appear to focus primarily on risk management and long-term en-

gagement, rather than exerting short-term pressure or enforcing immediate pollution re-

duction.

[Insert Table 14 here]

[Insert Table 15 here]

6.3 Internal Moderation of Green Governance

To further explore the mechanism, we examine the role of internal governance as a mod-

erating factor of the green pressure channel. While shareholder pressure represents an

external source of green expectations, internal governance determines whether firms are

capable of translating these external pressures into strategic or operational adjustments.

(Albuquerque, Koskinen, & Zhang, 2018) show both theoretical and empirical evidence

that corporate social responsibility (CSR) activities decrease systematic risk and increase

firm value.

Our measure of green governance is constructed from manually collected information in

firms’ DEF-14A proxy statements. Specifically, we identify whether a firm has established

a dedicated Environmental, Health, and Safety (EHS) committee at the board level. We

code a dummy variable, Green Board, equal to one if the proxy statement in a given year

provides detailed information about the EHS committee. In addition, we record the number
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of directors serving on this committee to capture the intensity of board-level engagement

in environmental governance.

EHS committees represent a formal governance mechanism through which boards over-

see firms’ exposure to environmental risks, workplace safety standards, and compliance

with environmental regulations. Prior literature in corporate governance suggests that such

committees can influence firms’ disclosure quality, environmental performance, and long-

term risk management by integrating sustainability considerations into strategic decision-

making.

The measure of green innovation is constructed at the firm level using patent data from

PatentView. We identify green patents by retaining only those patents classified under

the Y02 scheme of the European Patent Office’s Cooperative Patent Classification (CPC).

Following the literature, patents serve as a proxy for innovative activity, and the Y02

tagging specifically captures innovations related to the green transition, such as renewable

energy technologies, improvements in energy efficiency, and carbon mitigation strategies.

This approach, widely adopted in empirical studies (Angelucci, Hurtado-Albir, & Volpe,

2018), provides a consistent and internationally comparable standard for measuring firm-

level green innovation.

We use the following model to estimate firms’ internal green governance and green

innovation:

Greenj,t = α + β1 × Paris× 1{ST Debtj}+ γj + θt + ϵj,t (11)

where Greenj,t represents firm j’s green attributes at time t, including (i) the logarithm

of green patents labeled under the CPC Y02 classification, (ii) a dummy indicating whether

the firm has a green board in year t, and (iii) the logarithm of the number of green board

members. Paris is an indicator for years after the Paris Agreement, 1{ST Debtj} is a

dummy for high–short-term-debt firms, γj are firm fixed effects when included, and θt are

year fixed effects.

For the Green Board variable, we also provide Probit regression estimates and corre-

sponding average marginal effects of Paris× ST Debt.

Regression results are presented in Table 16. The coefficient on the interaction term

Paris× ST Debt is positive and statistically significant for both the Green Board dummy
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and the number of green committee members, indicating that firms with high reliance on

short-term debt were more likely to respond to post-Paris green pressures by establishing

green-related governance structures. Specifically, Column (2) shows that the probability

of having a green board significantly increases for these financially constrained firms, and

Column (3) reveals a higher count of green committee members. We do not observe similar

results for green innovation.

Moreover, the Probit regression and marginal effect results in Table 17 confirm this

pattern. In the specification without controls, the interaction term Paris×ST Debt has a

coefficient of 0.931, with an average marginal effect of 0.314, suggesting that high–ST Debt

firms are 31.4 percentage points more likely to establish a green board after the Paris

Agreement. Even after including financial controls such as firm size, profitability, and

investment ratios, the effect remains positive and significant, with a marginal effect of 16.5

percentage points.

Our findings suggest that the Paris Agreement introduced new pressures for firms with

higher short-term debt reliance, leading to greener governance responses. The observed

increase in green board formation and committee participation among these firms indi-

cates that financially constrained firms may be more responsive to climate regulation or

investor pressure, possibly as a strategic adaptation to maintain financing access or improve

perceived ESG performance.

[Insert Table 16 here]

[Insert Table 17 here]

7 Robustness and Alternative Explanations

7.1 Placebo Test with a Random Shock

To further validate the identification strategy and rule out potential pre-existing trends

or spurious correlations, we conduct a series of placebo tests. For each placebo year from

2012 to 2019, we create a pseudo-treatment variable that equals one for firms classified as

having a high short-term debt ratio (ST Debt) as if the treatment started in that year, and
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zero otherwise. We then estimate the same baseline specification:

Toxic Indexi,j,s,g,t = α+β1×1{ST Debtj}×Shock+δj,t+θi+γj,s+λg+ϕt+ ϵi,j,s,g,t (12)

where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage for well i operated by

firm j in state s during year t. 1{ST Debtj} is a dummy variable equal to one if firm

j relies heavily on short-term debt. Shock is a dummy variable representing a randomly

assigned placebo shock year before or after the Paris Agreement. δj,t are firm-level controls

at year t; θi are well-level controls; γj,s are operator–supplier fixed effects; λg are state fixed

effects; and ϕt are year fixed effects.

The logic is straightforward: if our baseline results are driven by a genuine exogenous

shock from the Paris Agreement, placebo policy shocks assigned to other years should not

yield significant treatment effects.

Figure 4 plots the estimated placebo treatment effects with their 95% confidence inter-

vals across years. The figure shows that the estimated placebo effects fluctuate randomly

around zero before 2015, without any strong systematic pre-trends. After 2015, the co-

efficients shift downward consistently, indicating a genuine policy impact beginning with

the Paris Agreement. The visual evidence supports the parallel trends assumption and

reinforces the credibility of our difference-in-differences estimation. Overall, the placebo

tests provide robust support for our identification strategy.

The absence of systematic pre-trends and the sharp negative shift after 2015 both

confirm that the Paris Agreement serves as an exogenous shock to firms’ pollution behavior,

particularly for those with higher short-term debt exposure.

7.2 Oil Price Shock Mechanism

One major concern in our analysis is that the global oil market experienced significant

turbulence during the Paris Agreement period. In mid-2014, oil prices experienced a historic

collapse, with WTI crude plummeting from over $100 per barrel to below $50 by the end of

the year. The sharp decline was driven by a combination of rising U.S. shale oil production,

OPEC’s refusal to cut output, and weakening global demand. The crash had far-reaching
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impacts on oil-producing firms, financial markets, and energy policy worldwide.

In the main regression, we control for Oil beta, which measures a firm’s stock price

sensitivity to WTI oil prices. Oil beta is widely used in the climate finance literature

(see (Ilhan, Sautner, & Vilkov, 2020); (Ginglinger & Moreau, 2023)). In this section, we

more directly test the oil price mechanism. (Shi & Zhang, 2024) highlight a mechanism

whereby oil prices serve as a primary driver of brown firms’ “greenium.” When oil prices

fall, investor expectations regarding the fossil fuel industry deteriorate, raising the cost

of capital for brown firms. This, in turn, affects firms’ asset allocations and investment

decisions. Motivated by this mechanism, we examine whether oil price shocks influence

firms’ environmental behavior.

However, oil prices are themselves endogenous, influenced by a variety of macroeco-

nomic and geopolitical factors ((Kilian, 2009); (Baumeister & Hamilton, 2019)). Different

types of oil shocks can impact the energy sector’s growth prospects in heterogeneous ways,

making it difficult to isolate causal effects. To address this issue, we follow (Känzig, 2021)

and implement an instrumental-variable (IV) strategy that leverages OPEC announcement

surprises as plausibly exogenous shocks to global oil supply.

Specifically, we estimate the following two-stage model using monthly WTI prices and

OPEC surprise measures as instruments:

∆ log(WTI)t = γ0 + γ1 ·OPECt + ut (13)

Toxic Indexi,j,s,g,t = β0 + β1 · ̂∆ log(WTI)t + β2 ·
( ̂∆ log(WTI)t × 1{ST Debtj}

)
+ β3 ·

( ̂∆ log(WTI)t × 1{ST Debtj} × Paris
)

(14)

+ β4 · (Paris× 1{ST Debtj}) + θi + εi,j,s,g,t

where OPECt denotes the surprise component of OPEC announcements, and 1{ST Debtj}

is an indicator for firms with high short-term debt exposure. WTI denotes the monthly oil

price.4

4Oil price data are from the U.S. Energy Information Administration, Cushing, OK WTI Spot Price
FOB.
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Panel A of Table 18 presents the first-stage results, which confirm that the instrument

is strong: a one-unit oil supply shock increases the log return of WTI by 1.2437, with a

first-stage F -statistic well above 10.

Panel B of Table 18 presents the second-stage regression results. The coefficient on the

instrumented oil price return, ̂∆ log(WTI), is positive and statistically significant, indicat-

ing that increases in oil prices are associated with higher pollution levels. This pattern

is consistent with firms expanding production when profitability improves. The triple in-

teraction term ̂∆ log(WTI) × ST Debt × Paris reveals a nuanced mechanism: financially

constrained firms tend to increase pollution more strongly when benefiting from oil price

upswings, suggesting that improved cash flows weaken their incentives for green behavior.

In contrast, the interaction between the Paris Agreement dummy and the high–short-

term-debt dummy remains large and negative, consistent with our baseline difference-in-

differences results. This implies that green policy constraints, such as the Paris Agreement,

still exert a countervailing force, pushing financially constrained firms to reduce pollution

despite favorable oil price conditions.

Our findings complement (Shi & Zhang, 2024), who show that fluctuations in oil prices

significantly shape the cost of capital for energy firms and partially drive the observed

“greenium” in financial markets. While their study emphasizes investor preferences and

market-based green premia, our results demonstrate that oil price shocks also affect real

firm behavior—specifically, pollution outcomes. In particular, financially constrained firms

tend to increase pollution following oil price upswings, likely due to relaxed capital con-

straints. However, our difference-in-differences estimates also show that external green

policies such as the Paris Agreement continue to exert disciplining effects, even during

favorable commodity price cycles.

[Insert Table 18 here]

7.3 Alternative Financing Access

Our measure of short-term leverage is constructed from balance-sheet information, captur-

ing all liabilities due within one fiscal year. A potential concern is that large and financially

sound corporations—such as ExxonMobil or Chevron—often issue commercial paper as a

24



convenient source of short-term funding for working capital purposes, rather than due to

limited access to long-term debt markets. To ensure that our results are not driven by such

unconstrained firms, we re-estimate the main regressions after sequentially excluding the

largest 3, 6, and 8 firms by total assets. The results in Table 19 remain robust, suggest-

ing that our findings are not mechanically driven by large firms with access to alternative

short-term financing sources such as commercial paper.

[Insert Table 19 here]

7.4 Bank Lending Access

We test whether the post-Paris reduction in toxic intensity among debt-constrained firms is

affected by the relaxation of financing constraints. Specifically, we interact the post-Paris

dummy with an indicator for firms that received bank loans. If the decline in pollution

primarily reflects financial tightening, the effect should be weaker among firms with access

to bank financing. Table 20 reports the results.

The interaction term between the Paris Agreement dummy and the Bank Loan indica-

tor is positive and statistically significant, indicating that the reduction in toxic intensity

is substantially smaller for firms that obtained bank loans. In other words, financially

constrained firms without new bank lending reduced pollution more sharply, whereas those

with access to external credit mitigated their environmental response. We do not find

evidence of additional pressure from green banks.

[Insert Table 20 here]

8 Concluding Remarks

This paper shows that global climate commitments can shape corporate environmen-

tal behavior through financial and reputational channels. Following the Paris Agree-

ment, shale oil firms with heavier short-term debt reliance faced greater refinancing fric-

tions—manifested in higher borrowing costs, reduced bond issuance, and tighter bank

lending—which constrained their financial flexibility. Rather than worsening environmen-

tal outcomes, these pressures prompted a strategic adjustment: high short-term leveraged
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firms cut toxic chemical use by about 53 percent and scaled back new well drilling, signaling

a strategically shift toward greener production choices.

Firms under stronger refinancing pressure were also more responsive to reputational

risks. Greater media scrutiny intensified the disciplinary effect of financial constraints, re-

inforcing cleaner operational choices. In contrast, neither green investors nor banks appear

to have actively directed capital toward cleaner firms, and internal governance changes such

as the establishment of EHS committees remained largely symbolic.

Taken together, the evidence suggests that climate policy shocks operate not through

active green capital reallocation, but through financially induced reputational pressure

that tightens financing conditions and amplifies external monitoring. This mechanism

highlights how global climate commitments can indirectly discipline indebted firms toward

environmental improvement—even in the absence of explicit regulatory enforcement or

investor activism.
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Table 3 A: Chemicals Signal Word Statistics

Table 3 panel A reports the summary statistics of well-level information based on production
type clustered in state level. Table 2 panel B reports the summary statistics of median unique
chemicals usage for each production type clustered in state level since 2010.

Variables OBS Danger Warning No Description

Signal Words 1191 528 458 205

Table 3 B: Hazard Class Pictograms

Table 3 panel B reports the meaning of GHS code. For each chemical with unique CAS Number,
the MSDS reports its GHS information, which provide not only dangerous level but also hazardous
classification.

GHS Code Meanings

GHS01 Explosives
GHS02 Flammables
GHS03 Oxidizers
GHS04 Compressed Gasesl
GHS05 Corrosives
GHS06 Acute Toxicity
GHS07 Irritant
GHS08 Health Hazard
GHS09 Environment
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Table 4: Financial Indicators and Calculation Methods

Table 4 listed the financial indicators we use to as firm control their detailed calculation method-
ology.

Financial indicators Calculation methods

Dividened Dividends - total divided by Total Asset

Tobin’s Q Market value of equity plus debt divided by book assets.

Debt Long-Term Debt – Total + Debt in Current Liabilities

Total capital Debt plus total stockholders’ equity

Cost of Debt Interest and Related Expense (XINT) Divided by Debt

Market Capitalization Equity price multiplied by shares outstanding,
prcc c× csho in Compustat.

Market Leverage Debt divided by the sum of Debt and Market
Capitalization.

Log(Total Asset) Natural logarithm of book asset (AT in Compustat)

Profit EBITDA divided by total assets

Capex/Total Asset Capital expenditures divided by total assets

Tangibility Net property, plant, and equipment divided by total assets

Delta Sale Annual percentage change in sales revenue for each firm.

Log(SGA/Sale) Selling, General, and Administrative expenses divided by
sales.

Oil Beta Sensitivity of Monthly stock returns to monthly WTI oil
returns. The variable is computed for each month with 5
years rolling window. Winsorized at 1% level.
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Table 5: Summary Statistics of Variables

Firm Variable Obs Mean Std. Dev. Min Max

Log Total Asset 300 9.166 1.940 3.569 12.846
Q 289 1.055 0.487 0.265 2.828
Capex/Total Asset 300 0.196 0.124 0.021 0.606
Profit 297 0.077 0.166 -0.476 0.407
Dividend 297 0.010 0.014 0.000 0.056
Tangibility 300 0.801 0.120 0.437 0.979
Log(SGA/Sale) 285 -10.094 2.739 -16.215 -0.933
Delta Sale 296 0.150 0.610 -0.667 3.350
Wellcount 303 157.505 232.348 5 1642
Patent count 303 4.525 16.414 0 115
Green board 255 0.431 0.496 0 1
Committee number 255 1.729 2.313 0 9
NetZero shares 236 12.113 6.620 0 32.582
Climate100 shares 236 11.357 5.770 0 36.175
GFFD shares 236 9.208 4.751 0 21.362

Well-level variable Obs Mean Std. Dev. Min Max

Toxic Index 18,961 -1.6364 1.1199 -12.4743 1.8320
Log Vertical Depth 18,961 9.0958 0.2936 0.0000 17.5370
Log Horizontal Length 18,961 8.8780 0.3876 2.1656 9.8452
Log Water 18,961 15.6204 0.8976 3.1781 19.1210
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Table 6: Paris Agreement Impact on Firm Cost of Debt

We use the following empirical model to explore firm cost of debt heterogeneity. Cost of Debtj,t =
α+β1×Paris+δj+ϵj,t, where Cost of Debtj,t is the cost of debt of operator j in year t, calculated
by interest and related expense divided by debt. Paris is Paris agreement dummy, δj is firm level
fixed effect. All regressions controls with firm characteristics from Compustat, financial variables
including logarithm of total asset, profitability and market leverage. Column (1) conducted on
the total sample, in columns (2) and (3) we conduct subgroup regression with short term leverage
ratio properties before paris agreement. Standard errors are clustered at operator level and are
given in parentheses. ∗, ∗∗, and∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

(1) (2) (3)
Cost of Debt Cost of Debt Cost of Debt

All High ST Low ST

Paris 0.00746** 0.00790* 0.00348
(0.00326) (0.00442) (0.00360)

Log Total Asset -0.01860*** -0.02269*** -0.01135*
(0.00655) (0.00812) (0.00569)

Profit -0.00391 -0.01451 0.00653
(0.01380) (0.02369) (0.01388)

Market Leverage -0.00351 -0.01178 0.00491
(0.01130) (0.01763) (0.01414)

Mean Dep.Var. 0.056 0.053 0.061
Obs. 258 166 92
R2 0.509 0.490 0.602
Operator FE Y Y Y
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Table 7: Paris Agreement Impact on Firm Credit Rating

We use the following empirical model to explore firm credit rating. Creditj,t = α+ β1 ×Paris×
1{ST Debtj}+ δj ++θt + ϵj,t, where Creditj,t is the linearized credit rating of operator j in year
t. Credit data resourced from Standard and Poor’s (S&P) LongTerm Issuer Rating. Paris is
the Paris Agreement dummy, δj is firm level fixed effect, θt is the year fixed effect. Column(1)
estimates Paris Agreement’s impact on shale oil firm’s credit rating. Column(2) report estimation
of Paris agreement’s impact on high short-term leverage firms (ST-Firms). All regressions controls
for firm financial like logarithm of total asset, profitability and market leverage (resource from
Compustat), Oil Beta controls for firm’s stock price sensitivity to oil price. ∗, ∗∗, and∗∗∗ indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2)
Credit Rating Credit Rating

Paris -0.27412*
(0.14365)

Paris×ST Debt -0.20567
(0.37340)

Log Total Asset 1.54902*** 1.57062***
(0.27286) (0.28891)

Profit 0.10848 0.26771
(0.65367) (0.93033)

Market Leverage -0.65304 -1.08282*
(0.55993) (0.64140)

Oil Beta -4.70092 -8.03691
(13.37685) (12.33152)

Mean Dep.Var. 8.958 8.958
Obs. 263 263
R2 0.980 0.981
Operator FE Y Y
Year FE Y
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Table 8: Paris Agreement and Debt Market Reactions: New Bond Issue

The table shows the the estimation of the following panel fixed effect regression: NewDebti,j,t =
α+ β1 × Paris× 1{ST Debtj}+ δj,t + γj + θt + ϵi,j,t where NewDebti,j,t is firm j’s new debt i’s
properties at time t including Logarithm of Debt Amount, Debt spread, resourced from Refinitiv
SDC new debt issue database. Paris is an indicator of years after Paris agreement, 1{ST Debtj}
is a dummy of high short-term leverage ratio firms, δj,t is the firm controls, γj is firm fixed effect,
θt is the time fixed effect. All regressions include control for logarithm of total asset, profitability,
Market Leverage, Tobin’s Q, Altman Z score, Sale to Total Asset, Interest Expense, all financial
ratios resource from Compustat. Standard errors are clustered at year month level and are given
in parentheses. ∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

(1) (2)
Log(Amount) Spread

Paris×ST Debt -0.34702** 0.86510**
(0.15310) (0.37734)

Log Total Asset -0.00001** -0.00002**
(0.00000) (0.00001)

Profit -0.97298** 0.20955
(0.45342) (1.61418)

Market Leverage 0.59241 1.61566
(0.42406) (1.42243)

Q -0.16949 0.60064
(0.18116) (0.40083)

Z 0.07376 -0.28620
(0.09381) (0.20197)

Sale/Total Asset 0.06811 -1.31963***
(0.17284) (0.46310)

Interest Expense -0.00033 0.19732
(0.00239) (0.21469)

Mean Dep.Var. 6.281 2.254
Obs. 367 217
R2 0.768 0.829
Firm FE Y Y
Year FE Y Y
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Table 9: Paris Agreement and Syndicated Loan Market Reactions

The table shows the estimation of the following panel fixed effect regression: In Panel A,
Loani,j,l,t = α+β1×Paris×1{ST Debtj}+λj,l+ϕt+δp+ϵi,j,l,t where Loani,j,l,t is debt i’s properties
including, Logarithm of Loan Amount, Debt spread borrowed by oil firm j with lender l at time t
resourced from Dealscan database. Paris is an indicator of whether the debt is issued after Paris
agreement, 1{ST Debtj} is a dummy of high short-term ratio firms, λj,l is the borrower lender fixed
effect, ϕt is the year fixed effect. Standard errors are clustered at borrower-lender level and given
in parentheses. In Panel B, Loani,j,l,t = α+β1×GreenBanki×1{ST Debtj}+λj,l+ϕt+δp+ϵi,j,l,t
We estimate the staggered difference in differences specification with a label of whether loans is-
sued by green banks after the announcement date. ∗, ∗∗, and ∗ ∗ ∗ indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel A: Paris Agreement Shock

(1) (2) (3)
Debt amount New money Spread

Paris×ST Debt 0.01035 -1.19703*** -0.16113
(0.03048) (0.30561) (0.12135)

Debt Term 0.01928*** 0.12668* -0.01692
(0.00703) (0.06605) (0.02040)

Mean Dep.Var. 3.436 5.370 1.835
Obs. 2485 305 2247
R2 0.966 0.878 0.679
Borrower-Lender FE Y Y Y
Year FE Y Y Y

Panel B: Green Bank Effects

(1) (2) (3)
Debt amount New money Spread

Green Bank×ST Debt -0.02447 -0.84311* -0.11886
(0.11920) (0.48181) (0.13603)

Green Bank -0.06012*** 1.36383*** 0.22290*
(0.01952) (0.33089) (0.11942)

Debt Term 0.01973*** 0.14377** -0.01884
(0.00702) (0.06802) (0.02017)

Mean Dep.Var. 3.436 5.370 1.835
Obs. 2485 305 2247
R2 0.966 0.873 0.678
Borrower-Lender FE Y Y Y
Year FE Y Y Y
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Table 10: Firm Production Reaction: Pollution Control

We use the following empirical model to explore firm pollution heterogeneity.
Toxic Indexi,j,s,g,t = α+

∑2019
k=2012 βk × 1{ST Debtj}× Y eark + δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t

and Toxic Indexi,j,s,g,t = α+ β1 × 1{ST Debtj} × Prais+ δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t
where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i with operator j at
state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for whether firms depends
more on short term debt financing. δj,t is firm level controls at year t, θi is well level controls,
γj,s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals. λg is
state level fixed effect, ϕt is the year fixed effect. All regressions are controlled for well production
properties such as logarithm of well vertical depth, logarithm of well horizontal length, logarithm
of well water usage, well levels data are resourced from FracFocus. All regressions are also
controls with firm level characteristics resourced from Compustat like logarithm of Total Asset,
Tobin’s Q, Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating Expense,
Sale Percentage, and Oil Beta. Standard errors are clustered at operator level and are given
in parentheses. ∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

(1) (2)
Toxic Index Toxic Index

2012×ST Debt 0.00778
(0.66395)

2013×ST Debt 0.07942
(0.15504)

2015×ST Debt -0.42910
(0.34260)

2016×ST Debt -0.89623**
(0.37991)

2017×ST Debt -0.91638**
(0.41552)

2018×ST Debt -1.18407***
(0.43721)

2019×ST Debt -1.50281*
(0.77512)

Paris×ST Debt -0.74548***
(0.22487)

Log True Vertical Depth 0.06115 0.05497
(0.04726) (0.04747)

Log Horizontal Length 0.14168** 0.14098**
(0.05673) (0.05713)

Log Water Volume -0.21532*** -0.21626***
(0.03955) (0.03947)

Log(Total Asset) -0.39727 -0.35971
(0.29008) (0.30222)

Q -0.88382*** -0.93327***
(0.31679) (0.33440)

Capex/Total Asset 1.87239* 1.76976
(1.03872) (1.15634)

Profit 0.81216 0.51052
(0.68223) (0.58288)

Dividend/Total Asset -12.29308 -21.39727
(16.40122) (18.60460)

Tangibility -0.48914 -0.68219
(1.27147) (1.41295)

Log(SGA/Sale) 0.17279 0.06903
(0.13297) (0.11828)

Delta Sale 0.06453 0.01520
(0.19670) (0.21421)

Oil beta -33.21436 -45.27810
(59.46284) (66.06001)

Mean Dep.Var. -1.636 -1.636
Obs. 18961 18961
R2 0.527 0.524
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y39



Table 11: Firm’s Production Reaction: New Well Exploitation

We use the following model to estimate firm’s new well exploitation decision, NewWellj,t =
α + β1 × Paris × 1{ST Debtj} + γj + θt + ϵj,t where NewWelli,j,t is the logarithm of firm j’s
new number count at time t resourced from FracFocus database, Paris is an indicator of years
after Paris agreement, 1{ST Debtj} is a dummy of high short-term ratio firms, γj is firm fixed
effect, θt is the time fixed effect. Column (1) reports the estimation of Paris agreement impact on
industry level production, Column (2) reports the production hetero under green policy. Standard
error are given in parentheses and clustered at operator level. ∗, ∗∗, and ∗ ∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2)
New Well New Well

Paris 0.05844
(0.12642)

Paris×ST Debt -0.49488**
(0.23097)

Mean Dep.Var. 4.314 4.314
Obs. 301 301
R2 0.672 0.840
Year FE Y
Operator FE Y Y

Table 12: Green Well with Limited Production Benefits

The table shows the the estimation of the following panel fixed effect regression Productioni,j,s,t =
α+β1×Toxic Indexi,j,s,t+γt+θj+δs+ϵi,j,s,t where Productioni,t is the gross gas (oil) production
within t period average standardized by perforated foot, t ∈ {6 month, 12 months}, Production
data resourced from DrillingInfo. All regression controls for year fixed effect, firm fixed effect and
1*1 longitude to latitude fixed effect. All regression also controls for well drilling properties like
logarithm of well depth, logarithm of well length, logarithm of water usage. All well level data re-
sourced from FracFocus. Standard errors are clustered at operator level and given in parentheses.
∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2)
Log prod 6 Log prod 12

Toxic Index -0.00054 0.00380
(0.01158) (0.01178)

Log True Vertical Depth 0.15417*** 0.14237***
(0.04843) (0.04380)

Log Horizontal Length -0.36636*** -0.31549***
(0.04713) (0.04796)

Log Water Volume 0.12571*** 0.12233***
(0.02585) (0.02574)

Obs. 61115 61123
R2 0.425 0.462
Year FE Y Y
Geo FE Y Y
Firm FE Y Y
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Table 13: Media Coverage Pressure

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α + β1 × 1{ST Debtj} × Prais × ∆RRIj,t,t−1 +
δj,t+θi+γj,s+λg+ϕt+ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage
by well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning
for whether firms are mojre long term debt financers, ∆RRIj,t,t−1 is firm year level media coverage
pressure, δj,t is firm level controls at year t, θi is well level controls, γj,s is operator-supplier fixed
effect λg is state level fixed effect, ϕt is the year fixed effect. Standard errors are clustered at
operator level and are given in parentheses. ∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4)
Toxic Index Toxic Index Toxic Index Toxic Index
Interaction All ∆RRI > 0 ∆RRI < 0

Paris×ST Debt×∆RRI -0.21085*
(0.10775)

Paris×ST Debt -0.73270*** -0.74548*** -0.81479** 0.06885
(0.24940) (0.22487) (0.36394) (0.34683)

∆RRI 0.01152
(0.05613)

Mean Dep.Var. -1.636 -1.636 -1.664 -1.634
Obs. 16970 18961 10823 7268
R2 0.534 0.524 0.549 0.618
Year FE Y Y Y Y
Operator-supplier FE Y Y Y Y
Geo FE Y Y Y Y
Well Control Y Y Y Y
Firm Control Y Y Y Y
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Table 14: External Pressure: Green Investor Holdings

We use the following model to estimate firm’s internal green governance, Greenownerpctj,t =
α+β1×Paris×1{ST Debtj}+γj+θt+ϵj,t where Greenownerpctj,t is firm j’s green institutional
ownership holding percentage at time t. Holding data resourced from 13F fillings, with labeling
green institution holders under Net Zero Alliance, Climate 100 and Global Fossil Fuel Divestment
Database. Paris is an indicator of years after Paris agreement, 1{ST Debtj} is a dummy of high
short-term ratio firms, γj is firm fixed effect when needed, θt is the time fixed effect. ∗, ∗∗, and∗∗∗
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
NetZero Climate100 GFFD

Paris×ST Debt -0.52129 -0.91979 -1.13830
(1.53893) (1.50325) (1.13020)

Mean Dep.Var. 12.135 11.312 9.259
Obs. 232 232 232
R2 0.798 0.784 0.786
Year FE Y Y Y
Operator FE Y Y Y
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Table 15: External Pressure: Green Investor Pressure

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α+β1×1{ST Debtj}×Paris×Greenownerpctj,t+
Greenholdingj,t+δj,t+θi+γj,s+λg+ϕt+ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic
chemical usage by well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy
variable meaning for whether firms are high short term leverage firms, Greenholdingj is firm
with high average level ownership percentage holding by green alliance. Holding data resourced
from 13F fillings, with labeling green institution holders under Net Zero Alliance, Climate 100
and Global Fossil Fuel Divestment Database. δj,t is firm level controls at year t, θi is well level
controls, γj,s is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed
effect. Standard errors are clustered at operator level and are given in parentheses. ∗, ∗∗, and∗∗∗
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
Toxic Index Toxic Index Toxic Index
Climate100 GGFD NetZero

Paris×ST Debt -0.58099*** -0.56307*** -0.56307***
(0.16977) (0.18306) (0.18306)

Green holding 0.18803 0.18715 0.18715
(0.30839) (0.30533) (0.30533)

Paris×ST Debt×Green holding -0.24628 -0.21499 -0.21499
(0.24232) (0.27892) (0.27892)

Mean Dep.Var. -1.637 -1.637 -1.637
Obs. 18975 18975 18975
R2 0.524 0.523 0.523
Year FE Y Y Y
Operator-supplier FE Y Y Y
Geo FE Y Y Y
Firm Control Y Y Y
Well Control Y Y Y
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Table 16: Internal Governance: Green Innovation and Green Board

We use the following model to estimate firm’s internal green governance, Greenj,t = α + β1 ×
Paris×1{ST Debtj}+γj+θt+ϵj,t where Greeni,j,t is firm j’s green property at time t, Properties
including logarithm of Green Patent labeled with CPC Y02 classification, Patent data resourced
from PatentView; a Dummy variable indicating whether firm j have a green board in year t,
logarithm of green board numbers count, green board data resource from Proxy Statement DEF14-
A file. Paris is an indicator of years after Paris agreement, 1{ST Debtj} is a dummy of high
short-term ratio firms, γj is firm fixed effect when needed, θt is the time fixed effect. ∗, ∗∗, and∗∗∗
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
Green Patent Green Committee Green members

Paris×ST Debt -0.08697 0.36678*** 0.57545***
(0.05780) (0.11384) (0.18492)

Mean Dep.Var. 0.423 0.363 0.557
Obs. 301 303 303
R2 0.973 0.189 0.202
Year FE Y Y Y
Operator FE Y N N
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Table 17: Green Board: Probit Regression and Marginal Effect

This table reports the Probit regression estimates and corresponding average marginal effect for
the Paris × ST Debt variable. The dependent variable is a binary indicator for whether the
firm has a green board resourced from Proxy Statement DEF-14A. Standard errors are reported
in parentheses. Marginal effects are computed using the margins command. In columns (2)
regression controls for logarithm of total asset, Tobin’s Q, Capex Ratio, Profitability, Dividend
Ratio, resourced from Compustat. ∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.

No Controls With Controls

Coef. Marg. Eff. Coef. Marg. Eff.

Paris×ST Debt 0.931*** 0.314*** 0.570*** 0.165***
(0.154) (0.042) (0.189) (0.052)

Log Total Asset 0.211***
(0.073)

Tobin’s Q 0.220
(0.192)

Capex/Total Asset -2.387**
(1.112)

Profit 0.007
(0.607)

Dividend 5.888
(8.030)

Observations 303 287
Pseudo R2 0.0950 0.2274
Log Likelihood -179.66 -147.61

45



Table 18: Two-Stage Regression Results: Oil Supply IV Strategy

The first stage regresses monthly log oil price returns on exogenous oil supply shocks
from Känzig (2021). ∆ log(WTI)t = γ0 + γ1 · OPECt + ut. The fitted value is
then used in the second-stage ivreghdfe regression. Toxic Indexi,j,s,g,t = β0 + β1 ·̂∆ log(WTI)t+β2 ·

( ̂∆ log(WTI)t × 1{ST Debtj}
)
+β3 ·

( ̂∆ log(WTI)t × 1{ST Debtj} × Paris
)
+

β4 · (Parist × 1{ST Debtj}) + θi + εi,j,s,g,t. Standard errors are in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1.

1st Stage 2nd Stage 2nd Stage 2nd Stage

Panel A: First Stage ∆ log(WTI)
OECD supply surprise 1.2437***

(0.375)
Observations 240
R-squared 0.044

Panel B: Second Stage Toxic Index Toxic Index Toxic Index̂∆ log(WTI) 0.011 0.021*** 0.020***
(0.009) (0.008) (0.006)̂∆ log(WTI)× STDebt -0.016 -0.022** -0.021***
(0.012) (0.010) (0.008)̂∆ log(WTI)× STDebt× Paris 0.017*** 0.026*** 0.017*
(0.006) (0.006) (0.009)

STDebt× Paris -0.873** -0.879*** -0.658***
(0.346) (0.288) (0.233)

Weak-ID test (K-P F) 636.404 829.272 339.416

Clusters Operator Operator Operator
Well Controls Y Y Y
Firm Controls N Y Y
Operator supplier FE N N Y
Year, State FE N N Y
Observations 29421 28626 18975
R-squared (centered) 0.200 0.281 0.059
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Table 19: Alternative Financing Access

We re-estimate the following empirical model to explore firm pollution heterogeneity excluding
3,6 and 8 large firms. Toxic Indexi,j,s,g,t = α + β1 × 1{ST Debtj} × Prais + δj,t + θi + γj,s +
λg+ϕt+ ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i with
operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for whether
firms depends more on short term debt financing. δj,t is firm level controls at year t, θi is well level
controls, γj,s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals.
λg is state level fixed effect, ϕt is the year fixed effect. All regressions are controlled for well
production properties such as logarithm of well vertical depth, logarithm of well horizontal length,
logarithm of well water usage, well levels data are resourced from FracFocus. All regressions are
also controls with firm level characteristics resourced from Compustat like logarithm of Total
Asset, Tobin’s Q, Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating
Expense, Sale Percentage, and Oil Beta. Standard errors are clustered at operator level and are
given in parentheses. ∗, ∗∗, and∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

(1) (2) (3)
VARIABLES toxic1 toxic1 toxic1
Drop Top3 Top6 Top8

Paris×ST Debt -0.382*** -0.330* -0.451***
(0.101) (0.180) (0.156)

Log True Vertical Depth 0.0801* 0.101** 0.101*
(0.0434) (0.0405) (0.0502)

Log Horizontal Length 0.0565 0.102*** 0.129***
(0.0342) (0.0304) (0.0353)

Log Water Volume -0.191*** -0.193*** -0.195***
(0.0349) (0.0262) (0.0298)

Log(Total Asset) -0.269 -0.223 -0.149
(0.240) (0.262) (0.268)

Q -0.458* -0.566** -0.467*
(0.244) (0.269) (0.256)

Capex/Total Asset 0.284 0.346 0.0158
(0.703) (0.652) (0.638)

Profit 0.0408 0.00543 0.170
(0.419) (0.423) (0.444)

Dividend/Total Asset -3.732 14.28 18.74
(13.13) (9.251) (13.40)

Tangibility 1.347* 0.376 0.766
(0.797) (0.701) (0.805)

Log(SGA/Sale) -0.0468 -0.139 -0.122
(0.0843) (0.109) (0.133)

Delta Sale -0.0969 -0.191 -0.183
(0.141) (0.161) (0.151)

Oil Beta 2.866 14.95 6.561
(21.50) (20.74) (19.54)

Observations 15,717 11,596 9,246
R-squared 0.519 0.561 0.535
Year FE Y Y Y
Operator-supplier FE Y Y Y
Geo FE Y Y Y47



Table 20: Bank Lending Access

We re-estimate the following empirical model to explore firm pollution heterogeneity when receiv-
ing new loans. Toxic Indexi,j,s,g,t = α+ β1 × 1{ST Debtj} × Prais×Bank Loanj,t + δj,t + θi +
γj,s+λg +ϕt+ ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well
i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for
whether firms depends more on short term debt financing. Bank Loanj,t is a dummy to indicate
whether firm j has received bank loans. δj,t is firm level controls at year t, θi is well level controls,
γj,s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals. λg is
state level fixed effect, ϕt is the year fixed effect. All regressions are controlled for well production
properties such as logarithm of well vertical depth, logarithm of well horizontal length, logarithm
of well water usage, well levels data are resourced from FracFocus. All regressions are also controls
with firm level characteristics resourced from Compustat like logarithm of Total Asset, Tobin’s Q,
Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating Expense, Sale Percent-
age, and Oil Beta. Standard errors are clustered at operator level and are given in parentheses.
∗, ∗∗, and ∗ ∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2)
Toxic Index Toxic Index
All Bank Green Bank

Paris× ST Debt -1.21575*** -1.00159***
(0.25288) (0.27186)

Bank Loan -0.23905 -0.27217*
(0.15512) (0.15311)

Paris× ST Debt×Bank Loan 0.78482*** 0.56848**
(0.20935) (0.22951)

Mean Dep.Var. -1.636 -1.636
Obs. 18961 18961
R2 0.533 0.531
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y
Well Controls Y Y
Firm Controls Y Y
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Figure 1: Average Cost of Debt

Figure 2: Average Credit Rating
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Figure 3: Parallel Trend for Policy Shock
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Figure 4: Placebo test for Policy Shock
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Appendix

Appendix A1: Purpose of Toxic and Chemical Usage

Fracturing fluids are injected into wells to generate conductive fractures and circumvent

formation damage near the wellbore in hydrocarbon-bearing zones. This procedure sub-

stantially increases the productive surface area of the reservoir compared with its condition

before fracking. A variety of chemical additives are used to ensure that the fluid pos-

sesses specific characteristics such as viscosity, friction reduction, compatibility with the

formation, and control over fluid loss.

The hydraulic fracturing process employs two primary types of materials: fracturing

fluids and proppants. The fluids traditionally used in shale well fracturing treatments

consist of either water-based solutions or mixed slickwater fluids. The latter refers to

water-based fluids blended with friction-reducing additives such as potassium chloride.

Determining the appropriate fracturing fluids, additives, and proppants is a subjective

process that takes into account factors such as formation evaluation, laboratory test results,

and field experience. The most fundamental and widely used technique for stimulating

unconventional gas wells is slickwater fracturing.

Chemical additives used in hydraulic fracturing serve several purposes and are catego-

rized into subgroups including fluid-loss additives, clay stabilizers, gel breakers, bactericides

or biocides, and pH control agents. Acidizing treatments aim to enhance the productivity

or injectivity of a well.

Proppants—typically composed of sand or synthetic, sand-like materials such as silica

sand, resin-coated silica sand, or ceramic beads—are used to maintain fracture openness,

thereby facilitating the movement and extraction of crude oil and natural gas. The ef-

fectiveness of a proppant is evaluated by its ability to preserve fracture conductivity, and

the optimal selection is achieved by ensuring sufficient fracture continuity. Over time,

production rates tend to decline more rapidly with larger proppant sizes, as they are con-

strained by the permeability of the formation matrix. Beyond fracture conductivity, other

important considerations in multistage fracturing include flow convergence in transverse

fractures, proppant transport in low-viscosity fluids, and proppant compression under low-
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concentration conditions.

To categorize and determine the specific uses of toxic chemicals in the fracturing pro-

cess, we consulted relevant chapters from the Handbook of Hydraulic Fracturing (Speight,

2016). We first cataloged the chemical types and their intended purposes as outlined in

the handbook, and then employed fuzzy matching against the reported purposes in the

FracFocus dataset. We retained the results of this matching for subsequent analysis. The

keywords used for the matching procedure are listed in the appendix. Our objective is to

identify which functional purposes most frequently involve toxic chemicals and which have

reduced their use of such substances over the past decade.

Figure ?? provides a detailed visualization of toxic chemical applications—identified by

the hazard designation “Danger”—across various fracturing operations since 2011. Each

cell within the heatmap is color-coded to represent the count of distinct toxic chemicals

employed, with the gradient transitioning from blue (lower count) to red (higher count).

The analysis of the heatmap yields several notable observations:

(i) There was a distinct peak in the number of unique toxic chemicals used during the

period from 2013 to 2015.

(ii) The subsequent reduction in chemical diversity is likely attributable to the introduc-

tion of stricter regulatory frameworks and enhanced disclosure transparency.

(iii) Substantial variability exists across different operational purposes; functions such as

acid treatment, bactericides/biocides, corrosion inhibitors, general additives, surfac-

tants, and scale inhibitors consistently exhibit higher chemical diversity.

(iv) The observed decline in the use of toxic chemicals within each category suggests an

ongoing industry-wide shift toward minimizing the use of hazardous substances in

specific applications.
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A1: Toxic chemicals usage type per year classified by purpose
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A2: Toxic Index Distribution

A3: Toxic index yearly distribution within high short-term leverage firm
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Figure A4: Chemical Purpose Explaination
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Figure A5: Purpose Matching Word
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Appendix A2: Key Regulatory Developments Related to Hy-

draulic Fracturing

1. Safe Drinking Water Act (SDWA) and the “Halliburton Loophole.” The

Safe Drinking Water Act (SDWA) is the primary federal law ensuring the quality

of Americans’ drinking water. However, the 2005 Energy Policy Act created an ex-

emption—commonly known as the “Halliburton Loophole”—that excluded hydraulic

fracturing activities from SDWA regulation. Between 2014 and 2015, growing public

pressure and environmental advocacy efforts sought to close this loophole, arguing

that fracking should be subject to the same federal groundwater protection standards

as other industrial activities.

2. Bureau of LandManagement (BLM) Hydraulic Fracturing Rule (2015–2017).

In March 2015, the U.S. Bureau of Land Management (BLM) issued a rule aimed at

strengthening environmental safeguards for hydraulic fracturing on federal and tribal

lands. The rule required operators to disclose the chemical composition of fracturing

fluids and to implement stronger well integrity and wastewater management stan-

dards. However, the rule faced legal challenges and was ultimately rescinded in early

2017.

3. Toxic Substances Control Act (TSCA). The TSCA regulates the manufacture,

processing, and distribution of toxic or hazardous substances. Under this act, com-

panies are required to report the discharge of pollutants once they reach specified

thresholds. This ensures that the public and regulatory agencies are informed and

can monitor the environmental impact of shale gas development.

4. State-Level Water Withdrawal Regulations. Individual U.S. states have intro-

duced strict limits on water withdrawal for shale gas development to prevent water

waste and pollution. For example, Louisiana restricts the scope of water withdrawal;

New York requires that withdrawals be evaluated and licensed by local regulatory

agencies; and Michigan has established a water withdrawal assessment system to

ensure that industrial usage does not impair public or ecological needs.
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Table A1: Major U.S. Regulations Affecting Hydraulic Fracturing (2015–2016)

Regulation Proposal
Time

Implementat
Time

Termination /
Expiration

Main Provisions Impact on Hydraulic
Fracturing Industry

BLM Hydraulic
Fracturing Rule

2013 draft,
finalized
2015

Published Mar.
2015, effective
Jun. 2015

Repealed in 2017 Well integrity tests,
wastewater container
storage, chemical disclo-
sure

Higher costs, disclosure
pressure, scope limited to
federal/tribal lands

EPA Methane &
VOC Standards
(CAA)

Proposed
Aug. 2015

Effective May
2016

Weakened 2017–
2020, strength-
ened again in
2021

Limits on
methane/VOCs, manda-
tory green completions,
LDAR requirements

Increased equipment invest-
ment and operating costs,
disproportionate burden on
small independents

TSCA Reform
(Lautenberg
Act)

Proposed
Mar. 2015

Signed Jun. 22,
2016

Permanent Mandatory risk assess-
ments, expanded EPA
authority, strengthened
information disclosure

Toxic chemicals sub-
ject to review, need for
substitutes, rising compli-
ance/disclosure costs
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