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Abstract

This paper analyzes how firms in the shale oil industry adjusted their produc-
tion in response to green policy shocks, particularly after the Paris Agreement. We
find that firms with high levels of short-term debt faced significant refinancing chal-
lenges, reflected in reduced bond issuance, weaker new bank lending, declining credit
ratings, and higher costs of debt. Using a novel well-level index of toxic chemical us-
age combined with firm-level financial data, we employ a difference-in-differences—like
approach to show that highly indebted firms significantly reduced their use of toxic
chemicals by 52.5% following the policy shock. Empirically, we find that after the
Paris Agreement, tighter financing conditions and heightened reputational concerns
led firms to curb toxic-intensive operations. These findings highlight how climate com-
mitments can influence environmental outcomes through financially induced pressure.
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1 Introduction

The shale oil industry, which expanded rapidly after 2009, has become a dominant force in
global oil production, accounting for more than half of total output. However, the hydraulic
fracturing (fracking) techniques used in shale extraction have raised serious environmental
concerns, including groundwater contamination from high salinity and non-biodegradable
compounds, as well as the release of greenhouse gases. In response to growing environ-
mental, social, and governance (ESG) awareness among policymakers and investors, shale
producers have faced increasing pressure to adopt cleaner production practices. One such
approach involves using more environmentally friendly proppants in hydraulic fracturing.
The growing transparency provided by FracFocus, a public registry disclosing detailed well-
level information across 12 U.S. states, allows us to track the adoption of cleaner production
practices before and after the Paris Agreement.

This paper investigates whether firms’ access to external financing shapes their environ-
mental transition. The relationship is ambiguous. On the one hand, firms with better access
to capital may have greater flexibility to invest in cleaner technologies. On the other hand,
limited funding can constrain such investments. Yet, financial frictions—when combined
with external pressure—can also influence firms’ production and governance decisions, sug-
gesting that climate policy shocks may operate through financially induced reputational
mechanisms.

To examine this mechanism, we exploit the Paris Agreement as an exogenous shock that
tightened financing conditions for carbon-intensive industries. We focus on firms’ reliance
on short-term debt to capture heterogeneity in refinancing risk prior to the Agreement. Fol-
lowing 2015, highly leveraged firms experienced pronounced refinancing challenges: higher
debt costs, reduced bond issuance, and lower inflows of new syndicated loans. Contrary
to the notion that financial constraints exacerbate pollution, we find the opposite—high
short-term debt firms significantly reduced their use of toxic chemicals by about 52.5%
(—0.75 log points) relative to less-levered peers. Importantly, this pollution reduction was
not accompanied by higher production efficiency, implying that cleaner production arose
from financing and reputational pressures rather than technological improvements.

Our channel analysis reveals that the link between financial constraints and pollution re-



duction operates primarily through external reputational pressure rather than internal gov-
ernance or traditional financial channels. Financially constrained firms exposed to stronger
media scrutiny curtailed toxic intensity more sharply, indicating that reputational con-
cerns amplified the impact of financial frictions on environmental behavior. While some
firms responded by strengthening internal oversight—such as establishing Environmental,
Health, and Safety (EHS) committees—these actions do not appear to be the main drivers
of pollution reduction. Similarly, we find no evidence that green institutional investors or
banks played an active role in this process.

This study contributes to three strands of literature. First, it adds to the literature on
the environmental impacts of hydraulic fracturing (HF). Prior studies, such as (Jackson et
al [2014), (Currie, Greenstone, & Meckel, 2017)), and (Bonetti, Leuz, & Michelon| [2021)),
document the environmental risks of shale extraction, particularly groundwater contami-
nation due to non-biodegradable chemicals ((Vidic, Brantley, Vandenbossche, Yoxtheimer,
& Abad, 2013 |Agarwal et all 2020)). We complement this research by constructing a
novel well-level toxic chemical usage index from FracFocus, enabling granular tracking of
environmental behavior.

Second, we contribute to the literature on the effects of external policy shocks on firms’
environmental decisions. Building on evidence from (Christensen, Hail, & Leuz, [2021)
and (Kellogg, 2014), we show that the Paris Agreement, as a major global climate pol-
icy, intensified financing frictions for shale firms and induced cleaner production through
reputational channels.

Third, we extend the debate on how financial constraints affect corporate environmental
and social responsibility (CSR). While prior studies offer mixed evidence ((Cheng, loan-
nou, & Serafeim) 2013} |Attig, Cleary, EI Ghoul, & Guedhami, |2013; Habib, Costa, Huang,
Bhuiyan, & Sun| [2018; |Chan, Chou, & Lo, 2017; |Campbell, 2007))), we show that tighter
financing constraints can promote cleaner production rather than deter it. The effect
is strongest among firms under greater media scrutiny, highlighting that financial con-
straints can foster environmental improvement through reputational rather than financial
or investor-driven channels.

Collectively, by integrating well-level environmental data with firm-level financial and



ownership characteristics, our analysis reveals the financial and institutional conditions
under which climate policy shocks effectively incentivize corporate environmental respon-
sibility.

The remainder of the paper proceeds as follows. Section 2 provides background on
hydraulic fracturing and environmental concerns. Section 3 describes the dataset. Section 4
analyzes the loan and debt market reaction. Section 5 presents firms’ production responses.
Section 6 investigates the transmission channels. Section 7 offers robustness tests, and

Section 8 concludes.

2 Background

In this section we will introduce the general research background regarding Hydraulic frac-
turing process and its environmental concerns.
Hydraulic fracturing and environmental concerns

The success of Shale Oil industry is largely benefited from technology advances such as
horizontal drilling, and hydraulic fracturing (HF'). Operators adapt multiple chemicals for
different purposes during fracturing. The fracturing process involves the injection of high-
pressure ”fracking fluid”, normally consisting of water, sand and other proppants, into a
borehole in order to induce fractures in deep-rock formations. Consequently, this facilitates
the optimal movement of natural gas, petroleum, and brine. The fracturing process entails
injecting high-pressure ”fracking fluid,” primarily composed of water and containing sand
and other proppants, into a well hole to create cracks in deep-rock formations. This allows
for the more efficient flow of natural gas, petroleum, and brine. Upon removal of hydraulic
pressure, small grains of hydraulic fracturing proppants, such as sand or alumina, maintain
the fractures’ openness (Von Estorff & Gandossi, 2015). Furthermore, chemical usage in
HF works have effects on the productivity of wells, making the design of fracturing fluid
for optimal performance based on the shale layer properties is of vital importance.

While hydraulic fracturing offers economic benefits through increased hydrocarbon ac-
cessibility, opponents argue that it poses environmental risks, including water contamina-
tion, noise, air pollution and potential seismic activity, along with public health concerns.

Typical concerns include the chemicals present in HF fluids and the substantial volumes of



wastewater generated by the process (Currie et al., 2017)).

The potential hazards of HF fluids to health and the environment have prompted reg-
ulatory measures. From government disclosure, in the United Kingdom, environmental
regulators permit only nonhazardous chemicals to be used, prioritizing the protection of
underground water sources. Similar introductions of disclosure standards for HF wells and
fracturing fluids also appears in several U.S. states. Since 2010, various state-level legisla-
tive requirements have been introduced, mandating HF operators to disclose the chemical
composition of their fluids. Disclosure mandates lead to reduced pollution per unit of
production, decreased use of toxic chemicals, and fewer spills and leaks of HF fluids and

wastewater (Christensen et al., 2021)).

3 Data and Variables

This section describes the construction of our dataset, which combines well-level hydraulic
fracturing data from FracFocus with firm-level financial, credit, and ownership informa-
tion. The well-level data provide detailed records of chemical usage, job start dates, and
operational characteristics for hydraulic fracturing wells disclosures across 12 U.S. states.
We match these data with firm-level financial information from Compustat, loan and bond
transactions from Dealscan and Refinitiv SDC Platinum, and institutional ownership data
from 13F filings. This integrated dataset allows us to quantify each well’s toxic chemical
intensity, measure firms’ financial constraints based on short-term debt reliance, and ex-
amine how changes in financing conditions following the Paris Agreement affected firms’

production and environmental decisions.

3.1 Well-level Data

FracFocus, founded in 2011, has been dedicated to documenting the chemicals used in hy-
draulic fracturing activities around the country. More than 1,600 companies have reported
chemicals used in more than 189,000 hydraulic fracturing operations. The detailed report-
ing include initiated hydraulic fracturing date, well vertical distance, latitude and longitude

geo-location, operators, federal land use, chemical purpose, chemical usage percentage in



fracturing volumes, etc. We keep the sample after 2011. We drop the disclosures that (i)
with no meaningful completion date (starting date is later than the ending date), (ii) erro-
neous chemical usage information (e.g. with negative or 0 chemicals usage information, or
the sum of the chemicals proportion usage is larger than 110 or less than 80). (iii) For each
year, we keep states with new exploitation wells larger than 5 for the estimation robustness.
(iv) For consistency in production characteristics, We focus on oil wells with production
type labeled with OIL’ and 'OIL & GAS’. From the general exploitation properties side,
both private firm and public firms, voluntary disclosure and local legal forced disclosure are
taken into consideration; (v)We keep wells with valid supplier information and operators
with authentic financial data. In total, 18,961 disclosures are retained.

During the data selection process, we retain only firms and states with consistent time-
series information. Firms that ceased production after the Paris Agreement, as well as
states that introduced legislation halting shale production (such as New York State), are
excluded from the sample. FracFocus provides basic information on well characteristics,
which we use to control for drilling complexities. The data include variables such as vertical
depth, horizontal length, and total water usage for each oil well. In addition, production
processes, well complexity, and drilling profitability are related to the geographic location
of wells. Wells located in different geological formations exhibit distinct physical properties.

Finally, state-level policies are included as additional controls.

3.2 Chemicals Data

To evaluate the toxic information of the chemicals used during hydraulic fracturing, we
first list all the unique chemicals identified with the Chemical Abstract Service identifica-
tion number (CAS number) disclosed by FracFocus. CAS numbers, proposed by the CAS
Registry, identify each substance that appears in the literature. The purpose is to avoid
the hassle of having multiple names for a chemical and to make it easier to search for
chemical information. A CAS number can be divided into three parts, with the first part
having up to seven digits, the second part having two digits, and the third part a single
digit as a check digit. Each part is connected by hyphens (format such as xxxxxxx-xx-X).

We first drop FracFocus-disclosed CAS numbers that do not match the format, and then



check whether the formatted CAS numbers exist or are valid. In total, 1,191 chemicals
are defined as authentic. In spite of new chemicals, business secret products, or the lack
of mandatory disclosure requirements from local governments, using CAS numbers we can
find the Material Safety Data Sheet (MSDS) for chemicals, which is a comprehensive doc-
ument that offers specific information on workplace safety and health related to the use of
various chemicals and chemical products. We use the MSDS information disclosed by the
ChemicalBook website. The Globally Harmonized System of Classification and Labelling
of Chemicals (GHS) shown in the MSDS is a globally acknowledged benchmark overseen
by the United Nations. Its purpose is to consolidate and replace the various hazardous
substance categorisation and labelling methods previously employed worldwide. The stan-
dardized labels include: (i) Symbols or GHS hazard pictograms, including information on
environmental concerns and human health hazards, which are assigned to multiple GHS
hazard codes. The nine categories are shown in Table[3 B] (ii) Two signal words (“Danger”
and “Warning”) are defined to highlight danger and hazard levels. Out of the 1,191 chem-
icals we have chosen, 528 are classified as dangerous, 458 are labeled as warnings, and 205
do not have any signal words. (iii) Other key information, such as Hazard statement(s) and
Precautionary statement(s), is difficult to determine and therefore not taken into consid-
eration. The GHS hazard pictograms allow us to explore toxic fluids’ chemical properties
within each subcategory, specifically from health and environmental hazard perspectives.
The signal words provide the hazardous degree of each chemical. Based on this information,

we are able to calculate the fluid toxicity index for each disclosure.

3.3 Firm-level Data

To address firm-level financial performance’s impact on production decisions, we down-
loaded core financial characteristics of the publicly traded oil and gas firms in Compustat.
As FracFocus received information from both publicly traded and private firms, we first use
fuzzy matching to match FracFocus 'OperatorName’ with Compustat ‘'conm’; we then man-
ually identify the final list of publicly traded firms. Secondly, we set the Global Industry
Classification Standard (GICS) code "ggroup’ to 1010.0 for selecting the energy industry.
Thirdly, we keep public firms that have continued exploitation activity between 2012 and



2019/l We find 46 matching energy firms. Then we calculate the financial indicators used to
determine financial constraints and for further corporate-level controls. Firm-level financial
performance may be related to market leverage, Tobin’s Q, other observable dimensions
such as profitability, dividends, cash flow (in millions), and sales growth, etc. We use these
financial variables as firm-level control variables. We also use firms’ DEF 14A proxy state-
ments to identify the presence of green board committees. Specifically, we capture both
the intensive margin—the number of committee members involved in sustainability-related
responsibilities—and the extensive margin—whether the firm has established a dedicated
green or sustainability committee. In addition, we use data from PatentView to mea-
sure firms’ green innovation activities. For shareholder information, we combine 13F filings
with data from the Green Alliance list to identify institutional investors with environmental

preferences and to measure the pressure from green shareholders.

3.4 Loan, Bond and Credit Data

We use the Dealscan database to evaluate overall loan market activity. We focus on loans
with start dates between 2012 and 2019 and follow the data-cleaning process described in
(Green & Vallee, 2024]). We assign shares equally across banks for syndicated loans without
detailed transaction amount information. We only focus on debt for general purposes rather
than specific aimsE] Among our selected firms, 2,485 deals are identified with loan properties
such as loan terms, debt amount, new money injection, and spread. Properties like new
money injection and spread are not available for each deal. We also use the Refinitiv SDC
New Issues database to evaluate firm-level debt issuance activity. For the credit ratings, we
use the Standard & Poor’s (S&P) Long-Term Issuer Rating when available. For unobserved

credit ratings, we double-check the credit information from Bloomberg.

IFracFocus was established in 2011, but state-level disclosure started in 2012. To make the time-series
estimation more robust, we drop the first disclosure year.

2Debts with specific purposes include mergers, acquisitions, leveraged buyouts, exit financing, trade
financing, IPO-related financing, and dividends or distributions to shareholders.



4 Loan and Bond Market reaction to Paris Agreement

Following the 2015 Paris Agreement, oil and energy companies have faced intensified reg-
ulatory and financial constraints aimed at reducing carbon emissions and toxic pollution.
Governments, institutional investors, and financial intermediaries have increasingly in-
corporated environmental considerations into lending and investment decisions, exerting
mounting pressure on fossil fuel-dependent industries.

In particular, the loan and debt markets provide a direct lens into these emerging finan-
cial frictions. Loan agreements and debt issuance activities are critical financing channels
for energy firms, and shifts in credit terms—such as pricing, funding availability, maturity
structures, and ratings—reflect lenders’ reassessment of long-term risks associated with
brown-intensive industries.

In this section, we explore how the Paris Agreement has reshaped the loan and debt
financing environment for energy companies. We examine changes in the syndicated loan
and corporate debt markets to assess the extent to which financing conditions have tight-
ened relative to firms with high short-term debt ratios for their intensive financing needs.
Our analysis provides early evidence of how climate-related regulatory commitments affect

firms’ access to capital and potentially alter their production strategies.

4.1 Cost of Debt

To identify which shale firms are more affected, we divide them into two groups based on
their firm-level debt structure. Our key measure is the short-term leverage ratio (ST_Debt),
which captures a firm’s reliance on short-term debt. Firms heavily dependent on short-
term debt are more likely to be affected by financing pressures in the aftermath of the
Paris Agreement due to their frequent need to roll over debt. To identify firms that rely
more heavily on short-term debt prior to the Paris Agreement, we construct a time-invariant
firm-level indicator, 1{ST _Debt; }, based on firms’ historical short-term debt usage patterns.
Specifically, for each fiscal year up to 2015, we classify firms whose ratio of short-term debt
to total assets exceeds the cross-sectional median as being "above median” for that year.
We then count, for each firm, the number of years in which it was classified as above median.

Firms in the top 50% based on this count are assigned a value of one for 1{ST_Debt;},
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indicating persistent high levels of reliance on short-term debt; all others are assigned a
value of zero. This indicator remains fixed across all years in our analysis, ensuring that
it reflects pre—Paris Agreement financing structures rather than post-event adjustments.
This balance-sheet-based indicator is consistent with the interpretation in (Rauh & Sufi,
2010)), (Custodio, Ferreira, & Laureano, 2012)), and (Harford, Klasa, & Maxwell, 2013), who
document that a high share of short-term debt reflects limited access to long-term financing
and greater exposure to refinancing risk. We argue that, under market tightening, these
firms are more exposed to refinancing needs and therefore face greater lending frictions,
such as higher debt costs, reduced access to funding, and declining credit ratings.

We first calculate each firm’s pre-tax cost of debt as interest and related expenses
divided by total debt. We find that after 2015, high-ST _Debt firms faced severe debt
financing frictions. Figure [1| plots the average cost of debt for high- and low-ST_Debt
firms over 2012-2020. Before 2015, cost trajectories were relatively stable and parallel
across both groups. However, following 2015, high-ST_Debt firms experienced a significant
rise in debt costs, surpassing low-ST _Debt firms by 2016. This divergence suggests that
short-term-debt-dependent firms were more exposed to financing frictions or shifts in credit
conditions. Interestingly, the gap temporarily narrowed around 2018-2019.

To further validate this, we run the following subgroup regression:

CostofDebt;y = o+ 1 X Paris +0; + €54 (1)

where CostofDebt;, is the cost of debt of operator j in year t. Paris is the Paris
Agreement dummy, and ¢; is the firm-level fixed effect. Table @ reports the heterogeneity
analysis of firm-level cost of debt after the Paris Agreement. Column (1) includes all firms
with production information recorded in the year; the coefficient on the Paris dummy is
positive and statistically significant at the 5% level, suggesting that, on average, shale oil
firms experienced an increase in their cost of debt following the Agreement. In Columns
(2) and (3), we split the sample based on firms’ short-term debt leverage. The effect
is concentrated in high-ST_Debt firms (Column 2), while the effect becomes statistically
insignificant and economically smaller for non-short-term-debt firms (Column 3). This

pattern indicates that firms more reliant on short-term debt faced greater financing frictions



following the Paris Agreement.

[Insert Table 6 here]

4.2 Credit Ratings

Credit ratings provide a forward-looking measure of firms’ downside risk, and green frictions
may affect firms’ creditworthiness. We use Standard and Poor’s (S&P) Long-Term Issuer
Rating for operator-level credit ratings. We then follow (Baghai, Servaes, & Tamayo, 2014)
to linearize these ratings from 1 to 20. We use the following regression to test firms’ credit

rating changes under green frictions:

Creditj; = o+ [y x Paris x 1{ST_Debt;} + 6; + 0, + €;, (2)

where Credit;; is the linearized credit rating of operator j in year t. Paris is the Paris
Agreement dummy, 9, is the firm-level fixed effect, and 6, is the year fixed effect. Figure
shows that credit ratings for both high- and low-short-term-leverage firms dropped notably
in 2016. Regression results in Table [7| confirm this pattern. In Column (1), we find that
the Paris dummy is negative and statistically significant, suggesting that shale oil firms,
on average, experienced a 0.27-point decline in their credit ratings after the Agreement.
In Column (2), however, the interaction term between Paris and short-term leverage is
insignificant, implying that the downgrade was broad-based across the industry rather

than concentrated among firms with higher short-term debt exposure.

[Insert Table 7 here]

4.3 Bond Issuance

We use the following regression to test the Paris Agreement’s impact on high—short-term-

debt-ratio firms’ new debt issuance:

NewDebt; j; = o+ (1 X Paris x 1{ST Debt;} + v, + 0; + €; ;¢ (3)
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where NewDelt; ;+ represents the properties of new debt ¢ issued by firm j at time ¢,
including the logarithm of debt amount and debt spread. Paris is an indicator for years
after the Paris Agreement, and 1{ST_Debt;} is a dummy for high-short-term-debt firms.
d;+ are firm-level controls, ; is the firm fixed effect, and 6, is the time fixed effect.

Regression results are shown in Table [§] A negative coefficient on Paris x ST _Debt
in Column (1) indicates that firms with higher short-term debt reliance experienced a
larger reduction in debt issuance volume after the Paris Agreement. In contrast, a positive
coefficient in Column (2) suggests that these firms faced higher borrowing costs in the
post-Paris period. These results provide evidence that firms with frequent refinancing

needs became more financially constrained following the Paris Agreement.

[Insert Table 8 here]

4.4 Bank Loan and Green Bank

After the Paris Agreement, (Green & Vallee| |2024) finds that banks are divesting from the
coal industry. Many NGOs have published lists of banks that are willing to exit the fossil
fuel market by 2030. From the shareholders’ perspective, stock holdings held by greener
investors force fossil fuel firms to take green transitions. In this section, we discuss the

actual loan market conditions for the shale oil industry after the Paris Agreement.

Loan; j;+ = o+ 1 X Paris x 1{ST_Debt;} + \j; + ¢¢ + € 1t (4)

where Loan; j;; represents the properties of loan ¢ borrowed by firm j from lender !
at time t, including the logarithm of loan amount and loan spread. Paris is an indicator
of whether the debt is issued after the Paris Agreement; 1{ST_Debt;} is a dummy for
high-short-term-debt firms; A;; is the borrower-lender fixed effect; and ¢, is the year fixed
effect.

Results in Table [0, Panel A, show that, relative to other firms, high-short-term-debt
firms’ total new loan amounts did not change materially (Column 2), while the amount
of new money raised from banks declined sharply (Column 3), suggesting that these firms

faced tightened credit constraints. The loan spread did not exhibit significant differences

11



(Column 4), implying that the tightening was primarily on banks’ new money injections
rather than on the price of credit.

We also follow (Kacperczyk & Peydrd, 2022) to examine green banks’ lending pres-
sure on shale oil firms. Our green banks are labeled as Science-Based Targets initiative
(SBTi) commitment banks. We label loans issued by green banks after their announcement
dates with a dummy variable GreenBank;. We then re-estimate a staggered difference-in-

differences specification as follows:

Loan; j1+ = o+ 1 x GreenBank; x 1{ST Debt;} + \;; + ¢1 + € j1+ (5)

Results in Table [9] Panel B, show that for firms with high short-term debt ratios,
green banks reduce new money injections, while there is no significant heterogeneity in
total debt amounts or spreads. When focusing on the main effect of green banks, the
coefficients indicate that after the establishment of SBTi-related committees, green banks
decrease their overall debt exposure but charge a higher spread. Our findings are consistent
with (Kacperczyk & Peydrd, 2021)), who document that green banks reduce loan supply to
polluting firms while imposing higher financing costs.

The apparent divergence, lower total loan amounts but higher new money injections,
reflects a reallocation across borrowers. While financially constrained firms are not nec-
essarily more polluting, green banks may perceive them as riskier counterparties in the
post-Paris context. Lacking perfect information about firms’ pollution exposure, green
banks could use financial resilience (e.g., short-term leverage) as a proxy for transition risk.

Consequently, they reduce exposures to firms with weaker balance sheets.

[Insert Table 9 here]

5 Firm Response

This section examines how shale oil firms adjusted their production behavior in response
to the Paris Agreement. We analyze whether tighter financing conditions led financially
constrained firms to modify their drilling activities and chemical usage, revealing how green

policy shocks translate into real production adjustments.
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5.1 Main Result — Pollution Control

To measure toxic chemical usage for each well, we propose a toxic index for each well 7:

Toxic_Index;; = Z (PercentHFJobmt X l{jetoxic}) (6)
j

where PercentH F Job; j, represents the proportion of ingredient j in the total hydraulic
fracturing volume, expressed as a percentage by mass. The term 1gjcionicy denotes an
indicator function, which equals 1 if chemical j is labeled with the “Danger” signal word
and 0 otherwise. Chemicals defined as dangerous but not environmentally hazardous—such
as crystalline silica (SiOy)—are excluded from the calculationﬂ

To address the right skewness of the chemical index, we follow the approach outlined
by (Fetter] 2022)). First, we apply a logarithmic transformation to the index, adding 0.01
to avoid taking the log of zero. Subsequently, we winsorize the data at the upper 1% level
to mitigate the impact of outliers.

Appendix Figure A3 shows the yearly distribution of the well-level toxic index. We find
a general decreasing trend in well-level toxic chemical usage. The lower percentiles decrease
after 2015, while the upper percentiles decline from 2015 to 2018 but revert to previous
levels thereafter.

We then examine well-level pollution heterogeneity between high—short-term-debt firms
and others using the following equations:

2019

Toxic_Index; 4 = a+ Z Brx1{ST_Debt; } xYear+0d;,+0;+7j s+ A+ Pr+€ijsgr (7)
k=2012

Toxic_Index; js 40 = a+ 1 X 1{ST_Debt;} x Paris+d;++6; +v;s+Xg+ bt +€ijsgr (8)

where Toxic_Index; ;s 4. is the percentage of toxic chemical usage by well ¢ operated by
firm j in state s during year ¢. 1{ST_Debt;} is a dummy variable indicating whether a firm

is highly reliant on short-term debt. ¢;; are firm-level controls at year t; 0; are well-level

3For chemicals labeled with the signal word “Danger,” we further investigate their GHS classifications.
We mainly find that silicon-related chemicals are less harmful to both the environment and human health.
See: |Global Silicones Council. Other chemicals such as CasO3 or NO, compounds are more likely to be
water-soluble or associated with aquatic impacts (e.g., toxicity to fish).

13


https://globalsilicones.org/explore-silicones/

controls; 7; s are operator-supplier fixed effects; A\, are state fixed effects; and ¢; is the year
fixed effect.

Regression results are shown in Table [[0] We find that prior to the Paris Agreement,
there was no systematic difference in toxic chemical usage between firms with high and
low short-term debt ratios. Following the Agreement, high—ST Debt firms significantly
reduced their toxic chemical usage, with the effect strengthening over time. This suggests
that financially constrained firms were more responsive to the regulatory shift induced by
the Paris Agreement, adjusting their pollution behaviors to mitigate financing risks. The
estimated coefficient on the interaction term suggests an economically significant reduction
of approximately 52.5% in toxic chemical usage.

Our results differ from those of (Bellon & Boualam| [2024), who study the pollution be-
havior of shale firms under financial distress, measured by default probabilities and Chapter
11 filings. They find that pollution intensity increases with financial distress. We reconcile
this difference as follows. Our measure of financial constraints captures firms’ structural
dependence on short-term debt rather than proximity to bankruptcy. In this context, risk-
shifting or last-resort behaviors are less relevant. In contrast, our identification relies on
policy-induced frictions following the Paris Agreement, where lenders reassess environmen-
tal and refinancing risks. Without such policy pressure, financially constrained firms would

have no incentive to voluntarily transition.

[Insert Table 10 here]

5.2 Selective Halt New Production

We examine whether financially constrained firms are more likely to cut back on new well
exploitation. (Kellogg, 2014)) shows that under oil price and consumption uncertainty,
drilling activity declines as firms delay investment. Similarly, (GILJE, LOUTSKINA, &
MURPHY], [2020)) find that during periods of credit tightness or oil market shocks such
as contango, highly leveraged oil firms reduce new production and scale back investment.
Given that oil firms are typically highly indebted and capital-intensive, limited access to

external financing is expected to have a significant impact on their drilling decisions.
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Motivated by this literature, we test whether firms with persistently high short-term
leverage—those facing stronger refinancing needs—respond to the Paris Agreement by cut-
ting back new well drilling. Specifically, we compute firm-year measures of new well ex-

ploitation and estimate the following regression model:

NewWell;, = o+ By x Paris x 1{ST_Debt;} +v; + 0; + €;4 9)

where NewWell;, is the logarithm of the number of new wells drilled by firm j in year
t, Paris is an indicator for years after the Paris Agreement, 1{ST _Debt;} is a dummy for
high—short-term-debt firms, «; are firm fixed effects, and 6, are year fixed effects.

We first assess the overall industry response to the Paris Agreement by regressing drilling
activity on a post-Paris dummy. In Table [II] the results are statistically insignificant,
suggesting no average effect across all firms. We then focus on financial heterogeneity by
interacting the Paris dummy with a time-invariant indicator of persistent short-term debt
reliance. Our preferred specification includes both firm and year fixed effects to absorb
time-invariant firm traits and common temporal shocks. The coefficient on the interaction
term is negative and statistically significant, indicating that financially constrained firms
reduced drilling activity more sharply after the Agreement. Our results are consistent with
existing literature suggesting that firms facing financial uncertainty tend to halt or scale
back production activities. Firms strategically selected greener new well exploitation when

facing financial constraints.

[Insert Table 11 here]

5.3 No Green Productivity Premium

Operators engage in resource exploitation to maximize economic benefits. Therefore, we
test whether financially constrained firms derive direct benefits from adopting greener pro-
duction practices. To examine whether adopting greener practices leads to production
advantages over medium- and long-term horizons, we estimate the following regression

model:
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Production; j s, = o+ [y x Toxic_Index; js¢ + v + 0 + 05 + € j 51 (10)

where Production; ;s is the logarithm of average gas (or oil) production over period t,
standardized by perforated footage, with ¢ € {6 months, 12 months}. Toxic_Index; ;. is
the percentage of toxic chemical usage for well 7 operated by firm 7 in geolocation s at time
t. ¢ are year fixed effects, 6; are firm fixed effects, and d, are geolocation-grid fixed effects,
where geolocation grids are defined by 1 x 1 degree changes in latitude and longitude.

Regression results presented in Table [12, Columns (2) and (3), indicate that wells
utilizing fewer toxic chemicals—i.e., “greener” wells—do not exhibit higher production
levels in either the short or long term. This suggests that reducing toxic chemical usage

does not provide a production advantage.

[Insert Table 12 here]

6 The Channels

This section investigates the mechanisms through which financial frictions induced by the
Paris Agreement affected firms’ environmental behavior. We distinguish between internal
governance responses—such as the establishment of Environmental, Health, and Safety
(EHS) committees—and external reputational pressures from media scrutiny and public
attention. While internal adjustments may reflect firms’ alignment with evolving envi-
ronmental expectations, reputational discipline appears to be the dominant force shaping

pollution reduction.

6.1 Media Coverage Pressure

In the context of our study, high-short-term-debt (ST) firms may adjust their pollution
behavior not solely due to direct compliance costs but also to mitigate potential reputational
losses from media coverage following the Paris Agreement. Firms with higher exposure to
reputational risks could have stronger incentives to proactively reduce pollution to preserve

their public image and sustain investor confidence.
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We use the Reputation Risk Index (RRI) from RepRisk, available through the WRDS
platform. The RRI aggregates firm-level exposure to reputational risks across a wide range
of ESG issues. The index is constructed by systematically monitoring international and
local media outlets, blogs, newsletters, NGO reports, and government releases in multiple
languages, identifying adverse events such as environmental incidents, governance contro-
versies, and public protests.

Each company’s RRI score (ranging from 0 to 100) is driven by the frequency and reach
of news items, the severity and novelty of incidents, and the firm’s prior exposure: firms with
little prior negative attention tend to experience greater score jumps when newly criticized.
Instead of using the RRI score itself, we focus on its annual trend (ARRI), which captures
the change in a firm’s reputational exposure over time. This dynamic measure better
reflects shifts in media scrutiny—a rising trend (ARRI > 0) signals intensifying public
pressure, whereas a declining trend (ARRI < 0) suggests easing reputational concerns.

We use both the interaction term and subsample regressions to test the media coverage
pressure channel (Table[13). In Column (1), the interaction between Paris x ST_Debt and
media pressure (ARRI) shows a negative coefficient, suggesting that financially constrained
shale firms facing stronger increases in negative media attention are more likely to reduce
the intensity of toxic chemical use after the Paris Agreement. This effect remains significant
in the high-pressure subsample (Column 3) but disappears when ARRI < 0 (Column 4),
indicating that reputational shocks primarily constrain firms under rising media scrutiny.

Our analysis builds on a growing literature showing that fluctuations in media coverage
materially affect firms’ behavior through external monitoring and information channels.
For example, (Heese, Pérez-Cavazos, & Peter, |2021) show that local newspaper closures
reduce media scrutiny and increase facility-level misconduct, while (Gao, Lee, & Murphy,
2019) demonstrate that newspaper closures raise borrowing costs for municipal issuers by
weakening public oversight. In contrast to these studies, which examine reductions in media
coverage, we focus on how intensified ESG media scrutiny influences financially constrained

firms’ green transition behavior.

[Insert Table 13 here]
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6.2 Green Shareholders Engagement

Although firms’ adoption of environmentally sustainable practices is central to addressing
climate change, managers often display a “business-as-usual” attitude and remain reluctant
to alter their environmental strategies. To overcome this inertia, institutional investors have
increasingly joined forces through coalitions that engage firms on climate issues.

We obtain institutional ownership data from the WRDS 13F Holdings database, which
records equity holdings of large institutional investors in U.S. public firms. Following stan-
dard practice, we aggregate quarterly observations to the annual level and compute annual
percentage ownership by investors affiliated with different “green alliances.” Specifically,

we focus on three major coalitions of climate-oriented investors:

1. Net Zero Asset Owner/Manager Alliance (NZAM): A coalition of large pension funds,
insurance companies, and asset managers that have committed to aligning their port-
folios with net-zero greenhouse gas emissions by 2050. Members pledge to gradually

decarbonize their assets and increase investments in sustainable activities.

2. Climate Action 100+ (CA100+): A network of global asset managers, asset owners,
and service providers engaging with the world’s largest corporate greenhouse gas
emitters. The main channel of influence is active shareholder engagement, including

filing shareholder proposals, voting, and direct dialogue with corporate boards.

3. Global Fossil Fuel Divestment Database (GFFD): A record of universities, founda-
tions, endowments, religious organizations, and public pension funds that have pub-
licly committed to divesting from coal, oil, and gas companies. The pressure here
is mainly reputational, as divestment announcements generate media coverage and

alter public perceptions of targeted firms.

We manually identified green shareholders from 13F filings and linked them to the above
alliances. For each firm-year, we aggregated the ownership shares held by alliance-affiliated
investors. We then examine two questions: (1) whether green shareholders reduced their
holdings in fossil fuel firms after the Paris Agreement; and (2) whether a higher percentage
of green ownership is associated with more environmentally friendly firm behavior, such as

reduced toxic chemical usage and increased green innovation.
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The estimation results are presented in Tables[14] and [I5] We find no significant reduc-
tion in institutional ownership among highly leveraged firms following the Paris Agreement.
This suggests that large climate-oriented investors did not immediately divest from finan-
cially constrained fossil fuel firms. Next, we interact the post-Paris indicator with a dummy
for green institutional ownership. Table shows that high green ownership is not asso-
ciated with a stronger decline in toxic chemical usage. The insignificant interaction term
indicates that the presence of green investors did not amplify the environmental response
of debt-constrained firms.

Overall, these findings imply that shareholder engagement did not serve as an active
channel of transition in this context. Consistent with (Krueger, Sautner, & Starks| 2019),
ESG-oriented investors appear to focus primarily on risk management and long-term en-
gagement, rather than exerting short-term pressure or enforcing immediate pollution re-

duction.
[Insert Table 14 here]

[Insert Table 15 here]

6.3 Internal Moderation of Green Governance

To further explore the mechanism, we examine the role of internal governance as a mod-
erating factor of the green pressure channel. While shareholder pressure represents an
external source of green expectations, internal governance determines whether firms are
capable of translating these external pressures into strategic or operational adjustments.
(Albuquerque, Koskinen, & Zhang, 2018) show both theoretical and empirical evidence
that corporate social responsibility (CSR) activities decrease systematic risk and increase
firm value.

Our measure of green governance is constructed from manually collected information in
firms’” DEF-14A proxy statements. Specifically, we identify whether a firm has established
a dedicated Environmental, Health, and Safety (EHS) committee at the board level. We
code a dummy variable, Green Board, equal to one if the proxy statement in a given year

provides detailed information about the EHS committee. In addition, we record the number
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of directors serving on this committee to capture the intensity of board-level engagement
in environmental governance.

EHS committees represent a formal governance mechanism through which boards over-
see firms’ exposure to environmental risks, workplace safety standards, and compliance
with environmental regulations. Prior literature in corporate governance suggests that such
committees can influence firms’ disclosure quality, environmental performance, and long-
term risk management by integrating sustainability considerations into strategic decision-
making.

The measure of green innovation is constructed at the firm level using patent data from
PatentView. We identify green patents by retaining only those patents classified under
the Y02 scheme of the European Patent Office’s Cooperative Patent Classification (CPC).
Following the literature, patents serve as a proxy for innovative activity, and the Y02
tagging specifically captures innovations related to the green transition, such as renewable
energy technologies, improvements in energy efficiency, and carbon mitigation strategies.
This approach, widely adopted in empirical studies (Angelucci, Hurtado-Albir, & Volpe,
2018)), provides a consistent and internationally comparable standard for measuring firm-
level green innovation.

We use the following model to estimate firms’ internal green governance and green
innovation:

Greenj, = a+ 1 x Paris x 1{ST_Debt;} +v; + 0, + €;, (11)

where Green;, represents firm j’s green attributes at time ¢, including (i) the logarithm
of green patents labeled under the CPC Y02 classification, (ii) a dummy indicating whether
the firm has a green board in year ¢, and (iii) the logarithm of the number of green board
members. Paris is an indicator for years after the Paris Agreement, 1{ST_Debt;} is a
dummy for high-short-term-debt firms, «; are firm fixed effects when included, and 6, are
year fixed effects.

For the Green Board variable, we also provide Probit regression estimates and corre-
sponding average marginal effects of Paris x ST _Debt.

Regression results are presented in Table [I6] The coefficient on the interaction term

Paris x ST _Debt is positive and statistically significant for both the Green Board dummy
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and the number of green committee members, indicating that firms with high reliance on
short-term debt were more likely to respond to post-Paris green pressures by establishing
green-related governance structures. Specifically, Column (2) shows that the probability
of having a green board significantly increases for these financially constrained firms, and
Column (3) reveals a higher count of green committee members. We do not observe similar
results for green innovation.

Moreover, the Probit regression and marginal effect results in Table confirm this
pattern. In the specification without controls, the interaction term Paris x ST _Debt has a
coefficient of 0.931, with an average marginal effect of 0.314, suggesting that high—ST _Debt
firms are 31.4 percentage points more likely to establish a green board after the Paris
Agreement. Even after including financial controls such as firm size, profitability, and
investment ratios, the effect remains positive and significant, with a marginal effect of 16.5
percentage points.

Our findings suggest that the Paris Agreement introduced new pressures for firms with
higher short-term debt reliance, leading to greener governance responses. The observed
increase in green board formation and committee participation among these firms indi-
cates that financially constrained firms may be more responsive to climate regulation or
investor pressure, possibly as a strategic adaptation to maintain financing access or improve

perceived ESG performance.
[Insert Table 16 here]

[Insert Table 17 here]

7 Robustness and Alternative Explanations

7.1 Placebo Test with a Random Shock

To further validate the identification strategy and rule out potential pre-existing trends
or spurious correlations, we conduct a series of placebo tests. For each placebo year from
2012 to 2019, we create a pseudo-treatment variable that equals one for firms classified as

having a high short-term debt ratio (ST_Debt) as if the treatment started in that year, and
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zero otherwise. We then estimate the same baseline specification:
Tozic_Index; ¢ = o+ 1 X 1{ST_Debt;} x Shock+0;,+0; +7js +Ag+ P +€ijsgr (12)

where Toxic_Index; ;s 4+ is the percentage of toxic chemical usage for well ¢ operated by
firm j in state s during year t. 1{ST_Debt;} is a dummy variable equal to one if firm
j relies heavily on short-term debt. Shock is a dummy variable representing a randomly
assigned placebo shock year before or after the Paris Agreement. §;, are firm-level controls
at year t; 0; are well-level controls; v, s are operator—supplier fixed effects; A\, are state fixed
effects; and ¢, are year fixed effects.

The logic is straightforward: if our baseline results are driven by a genuine exogenous
shock from the Paris Agreement, placebo policy shocks assigned to other years should not
yield significant treatment effects.

Figure 4| plots the estimated placebo treatment effects with their 95% confidence inter-
vals across years. The figure shows that the estimated placebo effects fluctuate randomly
around zero before 2015, without any strong systematic pre-trends. After 2015, the co-
efficients shift downward consistently, indicating a genuine policy impact beginning with
the Paris Agreement. The visual evidence supports the parallel trends assumption and
reinforces the credibility of our difference-in-differences estimation. Overall, the placebo
tests provide robust support for our identification strategy.

The absence of systematic pre-trends and the sharp negative shift after 2015 both
confirm that the Paris Agreement serves as an exogenous shock to firms’ pollution behavior,

particularly for those with higher short-term debt exposure.

7.2 Qil Price Shock Mechanism

One major concern in our analysis is that the global oil market experienced significant
turbulence during the Paris Agreement period. In mid-2014, oil prices experienced a historic
collapse, with WTI crude plummeting from over $100 per barrel to below $50 by the end of
the year. The sharp decline was driven by a combination of rising U.S. shale oil production,

OPEC’s refusal to cut output, and weakening global demand. The crash had far-reaching
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impacts on oil-producing firms, financial markets, and energy policy worldwide.

In the main regression, we control for Oil_beta, which measures a firm’s stock price
sensitivity to WTT oil prices. Oil_beta is widely used in the climate finance literature
(see (Ilhan, Sautner, & Vilkov} [2020); (Ginglinger & Moreau), 2023)). In this section, we
more directly test the oil price mechanism. (Shi & Zhang, 2024)) highlight a mechanism
whereby oil prices serve as a primary driver of brown firms’ “greenium.” When oil prices
fall, investor expectations regarding the fossil fuel industry deteriorate, raising the cost
of capital for brown firms. This, in turn, affects firms’ asset allocations and investment
decisions. Motivated by this mechanism, we examine whether oil price shocks influence
firms’ environmental behavior.

However, oil prices are themselves endogenous, influenced by a variety of macroeco-
nomic and geopolitical factors ((Kilian, 2009)); (Baumeister & Hamilton) 2019))). Different
types of oil shocks can impact the energy sector’s growth prospects in heterogeneous ways,
making it difficult to isolate causal effects. To address this issue, we follow (Kéanzig), 2021)
and implement an instrumental-variable (IV) strategy that leverages OPEC announcement
surprises as plausibly exogenous shocks to global oil supply.

Specifically, we estimate the following two-stage model using monthly WTTI prices and

OPEC surprise measures as instruments:

Toxic_Index; jsq4:= Bo+ P - Alog/(TNTI)t + s - (A logaNTI)t X l{ST,Debtj}>
+ By (A log(WTI), x 1{ST_Debt;} x Pam's) (14)

+ By - (Paris x 1{ST Debt;}) +6; + € js g1

where OPEC; denotes the surprise component of OPEC announcements, and 1{ST_Debt;, }
is an indicator for firms with high short-term debt exposure. WTI denotes the monthly oil

price/[]]

4Qil price data are from the U.S. Energy Information Administration, Cushing, OK WTI Spot Price
FOB.
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Panel A of Table [1§] presents the first-stage results, which confirm that the instrument
is strong: a one-unit oil supply shock increases the log return of WTI by 1.2437, with a
first-stage F-statistic well above 10.

Panel B of Table [18| presents the second-stage regression results. The coefficient on the
instrumented oil price return, A logT(?N TT), is positive and statistically significant, indicat-
ing that increases in oil prices are associated with higher pollution levels. This pattern
is consistent with firms expanding production when profitability improves. The triple in-
teraction term Alo@ TI) x ST _Debt x Paris reveals a nuanced mechanism: financially
constrained firms tend to increase pollution more strongly when benefiting from oil price
upswings, suggesting that improved cash flows weaken their incentives for green behavior.
In contrast, the interaction between the Paris Agreement dummy and the high—short-
term-debt dummy remains large and negative, consistent with our baseline difference-in-
differences results. This implies that green policy constraints, such as the Paris Agreement,
still exert a countervailing force, pushing financially constrained firms to reduce pollution
despite favorable oil price conditions.

Our findings complement (Shi & Zhang;, 2024)), who show that fluctuations in oil prices
significantly shape the cost of capital for energy firms and partially drive the observed
“greenium” in financial markets. While their study emphasizes investor preferences and
market-based green premia, our results demonstrate that oil price shocks also affect real
firm behavior—specifically, pollution outcomes. In particular, financially constrained firms
tend to increase pollution following oil price upswings, likely due to relaxed capital con-
straints. However, our difference-in-differences estimates also show that external green

policies such as the Paris Agreement continue to exert disciplining effects, even during

favorable commodity price cycles.

[Insert Table 18 here]

7.3 Alternative Financing Access

Our measure of short-term leverage is constructed from balance-sheet information, captur-
ing all liabilities due within one fiscal year. A potential concern is that large and financially

sound corporations—such as ExxonMobil or Chevron—often issue commercial paper as a
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convenient source of short-term funding for working capital purposes, rather than due to
limited access to long-term debt markets. To ensure that our results are not driven by such
unconstrained firms, we re-estimate the main regressions after sequentially excluding the
largest 3, 6, and 8 firms by total assets. The results in Table [19 remain robust, suggest-
ing that our findings are not mechanically driven by large firms with access to alternative

short-term financing sources such as commercial paper.

[Insert Table 19 here]

7.4 Bank Lending Access

We test whether the post-Paris reduction in toxic intensity among debt-constrained firms is
affected by the relaxation of financing constraints. Specifically, we interact the post-Paris
dummy with an indicator for firms that received bank loans. If the decline in pollution
primarily reflects financial tightening, the effect should be weaker among firms with access
to bank financing. Table [20] reports the results.

The interaction term between the Paris Agreement dummy and the Bank Loan indica-
tor is positive and statistically significant, indicating that the reduction in toxic intensity
is substantially smaller for firms that obtained bank loans. In other words, financially
constrained firms without new bank lending reduced pollution more sharply, whereas those
with access to external credit mitigated their environmental response. We do not find

evidence of additional pressure from green banks.

[Insert Table 20 here]

8 Concluding Remarks

This paper shows that global climate commitments can shape corporate environmen-
tal behavior through financial and reputational channels. Following the Paris Agree-
ment, shale oil firms with heavier short-term debt reliance faced greater refinancing fric-
tions—manifested in higher borrowing costs, reduced bond issuance, and tighter bank
lending—which constrained their financial flexibility. Rather than worsening environmen-

tal outcomes, these pressures prompted a strategic adjustment: high short-term leveraged
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firms cut toxic chemical use by about 53 percent and scaled back new well drilling, signaling
a strategically shift toward greener production choices.

Firms under stronger refinancing pressure were also more responsive to reputational
risks. Greater media scrutiny intensified the disciplinary effect of financial constraints, re-
inforcing cleaner operational choices. In contrast, neither green investors nor banks appear
to have actively directed capital toward cleaner firms, and internal governance changes such
as the establishment of EHS committees remained largely symbolic.

Taken together, the evidence suggests that climate policy shocks operate not through
active green capital reallocation, but through financially induced reputational pressure
that tightens financing conditions and amplifies external monitoring. This mechanism
highlights how global climate commitments can indirectly discipline indebted firms toward
environmental improvement—even in the absence of explicit regulatory enforcement or

investor activism.
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Table 3 A: Chemicals Signal Word Statistics

Table 3 panel A reports the summary statistics of well-level information based on production
type clustered in state level. Table 2 panel B reports the summary statistics of median unique
chemicals usage for each production type clustered in state level since 2010.

Variables OBS Danger Warning No Description
Signal Words 1191 528 458 205

Table 3 B: Hazard Class Pictograms

Table 3 panel B reports the meaning of GHS code. For each chemical with unique CAS Number,
the MSDS reports its GHS information, which provide not only dangerous level but also hazardous
classification.

GHS Code Meanings
GHS01 Explosives
GHS02 Flammables
GHSO03 Oxidizers
GHS04 Compressed Gasesl
GHS05 Corrosives
GHS06 Acute Toxicity
GHSO07 Irritant
GHSO08 Health Hazard
GHS09 Environment
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Table 4: Financial Indicators and Calculation Methods

Table 4 listed the financial indicators we use to as firm control their detailed calculation method-
ology.

Financial indicators

Calculation methods

Dividened

Tobin’s Q

Debt

Total capital

Cost of Debt

Market Capitalization

Market Leverage

Log(Total Asset)
Profit
Capex/Total Asset
Tangibility

Delta Sale
Log(SGA /Sale)

Qil Beta

Dividends - total divided by Total Asset

Market value of equity plus debt divided by book assets.
Long-Term Debt — Total 4+ Debt in Current Liabilities
Debt plus total stockholders’ equity

Interest and Related Expense (XINT) Divided by Debt

Equity price multiplied by shares outstanding,
prec_c X csho in Compustat.

Debt divided by the sum of Debt and Market
Capitalization.

Natural logarithm of book asset (AT in Compustat)
EBITDA divided by total assets

Capital expenditures divided by total assets

Net property, plant, and equipment divided by total assets
Annual percentage change in sales revenue for each firm.

Selling, General, and Administrative expenses divided by
sales.

Sensitivity of Monthly stock returns to monthly WTT oil
returns. The variable is computed for each month with 5
years rolling window. Winsorized at 1% level.
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Table 5: Summary Statistics of Variables

Firm Variable Obs Mean  Std. Dev. Min Max
Log Total Asset 300 9.166 1.940 3.569 12.846
Q 289 1.055 0.487 0.265 2.828
Capex/Total Asset 300 0.196 0.124 0.021 0.606
Profit 297 0.077 0.166 -0.476 0.407
Dividend 297 0.010 0.014 0.000 0.056
Tangibility 300 0.801 0.120 0.437 0.979
Log(SGA/Sale) 285 -10.094 2.739 -16.215  -0.933
Delta_Sale 296 0.150 0.610 -0.667 3.350
Wellcount 303  157.505  232.348 5 1642
Patent_count 303 4.525 16.414 0 115
Green_board 255 0.431 0.496 0 1
Committee_number 255 1.729 2.313 0 9
NetZero_shares 236 12.113 6.620 0 32.582
Climatel00_shares 236 11.357 5.770 0 36.175
GFFD _shares 236 9.208 4.751 0 21.362
Well-level variable Obs Mean  Std. Dev. Min Max
Toxic Index 18,961 -1.6364 1.1199 -12.4743  1.8320
Log Vertical Depth 18,961  9.0958 0.2936 0.0000  17.5370
Log Horizontal Length 18,961  8.8780 0.3876 2.1656  9.8452
Log Water 18,961 15.6204 0.8976 3.1781  19.1210
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Table 6: Paris Agreement Impact on Firm Cost of Debt

We use the following empirical model to explore firm cost of debt heterogeneity. Cost of Debt;; =
a+p1 X Paris+0;+¢; ¢, where Cost of Debt; ; is the cost of debt of operator j in year t, calculated
by interest and related expense divided by debt. Paris is Paris agreement dummy, 4, is firm level
fixed effect. All regressions controls with firm characteristics from Compustat, financial variables
including logarithm of total asset, profitability and market leverage. Column (1) conducted on
the total sample, in columns (2) and (3) we conduct subgroup regression with short term leverage
ratio properties before paris agreement. Standard errors are clustered at operator level and are
given in parentheses. x, *x, and * ** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

0 @) ®
Cost of Debt  Cost of Debt  Cost of Debt
All High ST Low ST
Paris 0.00746** 0.00790* 0.00348
(0.00326) (0.00442) (0.00360)
Log Total Asset  -0.01860***  -0.02269*** -0.01135*
(0.00655) (0.00812) (0.00569)
Profit -0.00391 -0.01451 0.00653
(0.01380) (0.02369) (0.01388)
Market_Leverage -0.00351 -0.01178 0.00491
(0.01130) (0.01763) (0.01414)
Mean Dep.Var. 0.056 0.053 0.061
Obs. 258 166 92
R? 0.509 0.490 0.602
Operator FE Y Y Y

35



Table 7: Paris Agreement Impact on Firm Credit Rating

We use the following empirical model to explore firm credit rating. Credit;; = o+ 31 x Paris x
1{ST Debt;} + 6; + +0; + €+, where Credit;; is the linearized credit rating of operator j in year
t. Credit data resourced from Standard and Poor’s (S&P) LongTerm Issuer Rating. Paris is
the Paris Agreement dummy, §; is firm level fixed effect, 6, is the year fixed effect. Column(1)
estimates Paris Agreement’s impact on shale oil firm’s credit rating. Column(2) report estimation
of Paris agreement’s impact on high short-term leverage firms (ST-Firms). All regressions controls
for firm financial like logarithm of total asset, profitability and market leverage (resource from
Compustat), Oil_Beta controls for firm’s stock price sensitivity to oil price. x*, %%, and*** indicate

statistical significance at the 10%, 5%, and 1% levels, respectively.

(1)

(2)

Credit Rating Credit Rating

Paris -0.27412%*
(0.14365)
Parisx ST _Debt -0.20567
(0.37340)
Log Total Asset 1.54902%** 1.57062***
(0.27286) (0.28891)
Profit 0.10848 0.26771
(0.65367) (0.93033)
Market_Leverage -0.65304 -1.08282*
(0.55993) (0.64140)
Oil_Beta -4.70092 -8.03691
(13.37685) (12.33152)
Mean Dep.Var. 8.958 8.958
Obs. 263 263
R? 0.980 0.981
Operator FE Y Y
Year FE Y
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Table 8: Paris Agreement and Debt Market Reactions: New Bond Issue

The table shows the the estimation of the following panel fixed effect regression: NewDebt; j; =
a+ B x Paris x 1{ST_Debt;} 4+ 6+ + vj + 6; + €; j+ where NewDebt,; ;, is firm j’s new debt i’s
properties at time t including Logarithm of Debt Amount, Debt spread, resourced from Refinitiv
SDC new debt issue database. Paris is an indicator of years after Paris agreement, 1{ST_Debt;}
is a dummy of high short-term leverage ratio firms, d;; is the firm controls, v; is firm fixed effect,
0; is the time fixed effect. All regressions include control for logarithm of total asset, profitability,
Market Leverage, Tobin’s Q, Altman Z score, Sale to Total Asset, Interest Expense, all financial
ratios resource from Compustat. Standard errors are clustered at year_month level and are given
in parentheses. x*,x*%,and * ** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

M @)
Log(Amount) Spread
Parisx ST _Debt -0.34702%* 0.86510**
(0.15310) (0.37734)
Log Total Asset -0.00001** -0.00002%**
(0.00000) (0.00001)
Profit -0.97298%** 0.20955
(0.45342) (1.61418)
Market_Leverage 0.59241 1.61566
(0.42406) (1.42243)
Q -0.16949 0.60064
(0.18116) (0.40083)
Z 0.07376 -0.28620
(0.09381) (0.20197)
Sale/Total Asset 0.06811 -1.31963%**
(0.17284) (0.46310)
Interest Expense -0.00033 0.19732
(0.00239) (0.21469)
Mean Dep.Var. 6.281 2.254
Obs. 367 217
R? 0.768 0.829
Firm FE Y Y
Year FE Y Y
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Table 9: Paris Agreement and Syndicated Loan Market Reactions

The table shows the estimation of the following panel fixed effect regression: In Panel A,
Loan; 1+ = a+P1 x Parisx1{ST Debt; }4+\; 14+ ¢;+0p+¢€; j1 . where Loan; j; , is debt i’s properties
including, Logarithm of Loan Amount, Debt spread borrowed by oil firm j with lender 1 at time t
resourced from Dealscan database. Paris is an indicator of whether the debt is issued after Paris
agreement, 1{ST Debt;} is a dummy of high short-term ratio firms, A;; is the borrower lender fixed
effect, ¢, is the year fixed effect. Standard errors are clustered at borrower-lender level and given
in parentheses. In Panel B, Loan; j;; = a+ 1 X GreenBank; x 1{ST Debt; } +X; 1+ o1 +0p+€; 514
We estimate the staggered difference in differences specification with a label of whether loans is-
sued by green banks after the announcement date. x,*x, and * % * indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.
Panel A: Paris Agreement Shock

M @) )
Debt_amount New_money  Spread
Parisx ST _Debt 0.01035 -1.19703*%**  -0.16113
(0.03048) (0.30561)  (0.12135)
Debt Term 0.01928*** 0.12668* -0.01692
(0.00703) (0.06605)  (0.02040)
Mean Dep.Var. 3.436 5.370 1.835
Obs. 2485 305 2247
R? 0.966 0.878 0.679
Borrower-Lender FE Y Y Y
Year FE Y Y Y

Panel B: Green Bank Effects
(1) (2) (3)

Debt_amount New_money  Spread

Green Bankx ST _Debt -0.02447 -0.84311* -0.11886
(0.11920) (0.48181) (0.13603)
Green Bank -0.06012*** 1.36383***  (.22290%*
(0.01952) (0.33089) (0.11942)
Debt Term 0.01973*** 0.14377** -0.01884
(0.00702) (0.06802) (0.02017)
Mean Dep.Var. 3.436 5.370 1.835
Obs. 2485 305 2247
R? 0.966 0.873 0.678
Borrower-Lender FE Y Y Y
Year FE Y Y Y
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Table 10: Firm Production Reaction: Pollution Control

We use the following empirical model to explore firm pollution heterogeneity.
Toxic_Index; ;g = a + Ziozlzgou B x 1{ST Debt; } x Yeary 4+ ;4 0; + Vjs + Ag + Ot + €5 j s.9.¢
and Tozic_Index; js g1 = a+ 1 X 1{ST Debt;} x Prais+ 0 + 6; + Vs + Ag + Ot + € jsgt
where Toxic_Index; ;s 4 is the percentage of toxic chemical usage by well i with operator j at
state s exploited in year t. 1{ST_Debt;} is a dummy variable meaning for whether firms depends
more on short term debt financing. d;; is firm level controls at year t, 6; is well level controls,
7j,s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals. Ay is
state level fixed effect, ¢, is the year fixed effect. All regressions are controlled for well production
properties such as logarithm of well vertical depth, logarithm of well horizontal length, logarithm
of well water usage, well levels data are resourced from FracFocus. All regressions are also
controls with firm level characteristics resourced from Compustat like logarithm of Total Asset,
Tobin’s Q, Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating Expense,
Sale Percentage, and Oil Beta. Standard errors are clustered at operator level and are given
in parentheses. x*,x*%,and * ** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

1 2)

Toxic Index  Toxic Index

2012x ST _Debt 0.00778
(0.66395)
2013x ST _Debt 0.07942
(0.15504)
2015x ST _Debt -0.42910
(0.34260)
2016x ST _Debt -0.89623**
(0.37991)
2017xST_Debt -0.91638**
(0.41552)
2018x ST_Debt -1.18407%**
(0.43721)
2019x ST_Debt -1.50281*
(0.77512)
Parisx ST _Debt -0.74548%**

(0.22487)

Log True Vertical Depth 0.06115 0.05497
(0.04726)  (0.04747)
Log Horizontal Length 0.14168*%  0.14098**
(0.05673)  (0.05713)

Log Water Volume -0.21532%%%  -0.21626***
(0.03955)  (0.03947)
Log(Total Asset) -0.39727 -0.35971
(0.20008)  (0.30222)
Q -0.88382%%*  -(.93327***
(0.31679) (0.33440)
Capex/Total Asset 1.87239* 1.76976
(1.03872)  (1.15634)
Profit 0.81216 0.51052
(0.68223)  (0.58288)
Dividend/Total Asset -12.29308 -21.39727
(16.40122)  (18.60460)
Tangibility 048014 -0.68219
(1.27147)  (1.41295)
Log(SGA/Sale) 0.17279 0.06903
(0.13297) (0.11828)
Delta_Sale 0.06453 0.01520
(0.19670)  (0.21421)
Oil_beta -33.21436 -45.27810
(50.46284)  (66.06001)
Mean Dep.Var. -1.636 -1.636
Obs. 18961 18961
R? 0.527 0.524
Year FE Y Y
Operator-supplier FE Y Y

Geo FE Q.O, Y Y




Table 11: Firm’s Production Reaction: New Well Exploitation

We use the following model to estimate firm’s new well exploitation decision, NewWell;; =
a+ 1 x Paris x 1{ST_Debt;} + ; + 0; + €;+ where NewW'ell; j; is the logarithm of firm j’s
new number count at time t resourced from FracFocus database, Paris is an indicator of years
after Paris agreement, 1{ST_Debt;} is a dummy of high short-term ratio firms, ; is firm fixed
effect, 6, is the time fixed effect. Column (1) reports the estimation of Paris agreement impact on
industry level production, Column (2) reports the production hetero under green policy. Standard
error are given in parentheses and clustered at operator level. x,xx, and * *x indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.
0 @)
New Well New Well

Paris 0.05844

(0.12642)
Parisx ST _Debt -0.49488**

(0.23097)

Mean Dep.Var. 4.314 4.314
Obs. 301 301
R? 0.672 0.840
Year FE Y
Operator FE Y Y

Table 12: Green Well with Limited Production Benefits

The table shows the the estimation of the following panel fixed effect regression Production; ;s =
a+ 1 xToxic_Index; j s +v+0;+0s+¢€ j s+ where Production; is the gross gas (oil) production
within ¢ period average standardized by perforated foot, ¢ € {6 month, 12 months}, Production
data resourced from DrillingInfo. All regression controls for year fixed effect, firm fixed effect and
1*1 longitude to latitude fixed effect. All regression also controls for well drilling properties like
logarithm of well depth, logarithm of well length, logarithm of water usage. All well level data re-
sourced from FracFocus. Standard errors are clustered at operator level and given in parentheses.
*, %%, and * x* indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
0 )
Log prod 6 Log prod_12
Toxic Index -0.00054 0.00380
(0.01158) (0.01178)
Log True Vertical Depth  0.15417*%*  (.14237***
(0.04843) (0.04380)
Log Horizontal Length -0.36636***  -0.31549%**
(0.04713) (0.04796)

Log Water Volume 0.12571%%*  (.12233***
(0.02585) (0.02574)
Obs. 61115 61123
R? 0.425 0.462
Year FE Y Y
Geo FE Y Y
Firm FE Y Y

40



Table 13: Media Coverage Pressure

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic_Index; s s = o + f1 x 1{ST_ Debt;} x Prais x ARRI;;—1 +
0t +0i +7js+ g+ bt +€ j 5,90 Where Toxic_Index; j s 4.+ is the percentage of toxic chemical usage
by well i with operator j at state s exploited in year t. 1{ST_Debt;} is a dummy variable meaning
for whether firms are mojre long term debt financers, ARRI;; ;1 is firm year level media coverage
pressure, 0;; is firm level controls at year t, 0; is well level controls, v, s is operator-supplier fixed
effect A\, is state level fixed effect, ¢; is the year fixed effect. Standard errors are clustered at
operator level and are given in parentheses. *, x*, and * *x indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4)

Toxic Index Toxic Index Toxic Index Toxic Index

Interaction All ARRI >0 ARRI <O

Parisx ST_Debt x ARRI  -0.21085*

(0.10775)
Parisx ST _Debt -0.73270%*F*%  _0.74548***  _(0.81479** 0.06885

(0.24940) (0.22487) (0.36394) (0.34683)
ARRI 0.01152

(0.05613)
Mean Dep.Var. -1.636 -1.636 -1.664 -1.634
Obs. 16970 18961 10823 7268
R? 0.534 0.524 0.549 0.618
Year FE Y Y Y Y
Operator-supplier FE Y Y Y Y
Geo FE Y Y Y Y
Well Control Y Y Y Y
Firm Control Y Y Y Y
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Table 14: External Pressure: Green Investor Holdings

We use the following model to estimate firm’s internal green governance, Greenownerpct;; =
a+ 1 x Paris x 1{ST _Debt;} +v; + 0 +€; where Greenownerpct;, is firm j’s green institutional
ownership holding percentage at time t. Holding data resourced from 13F fillings, with labeling
green institution holders under Net Zero Alliance, Climate 100 and Global Fossil Fuel Divestment
Database. Paris is an indicator of years after Paris agreement, 1{ST_Debt;} is a dummy of high
short-term ratio firms, v; is firm fixed effect when needed, ¢; is the time fixed effect. *, xx, and**x*
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
M) @) ®
NetZero Climatel00  GFFD
ParisxST _Debt  -0.52129 -0.91979 -1.13830
(1.53893)  (1.50325)  (1.13020)

Mean Dep.Var. 12.135 11.312 9.259
Obs. 232 232 232
R? 0.798 0.784 0.786
Year FE Y Y Y
Operator FE Y Y Y
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Table 15: External Pressure: Green Investor Pressure

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic_Index; js 4+ = a+P1 x1{ST_Debt;} x Paris x Greenownerpct; ;+
Greenholding;+0;140;+7;,s+Ag+ bt +€; js,9,0 Where Toxic_Index; ;s 4+ is the percentage of toxic
chemical usage by well i with operator j at state s exploited in year t. 1{ST_Debt;} is a dummy
variable meaning for whether firms are high short term leverage firms, Greenholding; is firm
with high average level ownership percentage holding by green alliance. Holding data resourced
from 13F fillings, with labeling green institution holders under Net Zero Alliance, Climate 100
and Global Fossil Fuel Divestment Database. d;; is firm level controls at year t, ¢; is well level
controls, 7y; s is operator-supplier fixed effect A, is state level fixed effect, ¢; is the year fixed
effect. Standard errors are clustered at operator level and are given in parentheses. x,xx, and * *x
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
(1) (2) (3)

Toxic Index Toxic Index Toxic Index

Climatel00 GGFD NetZero

Parisx ST _Debt -0.58099***  _0.56307*** -0.56307***

(0.16977) (0.18306) (0.18306)
Green_holding 0.18803 0.18715 0.18715

(0.30839) (0.30533) (0.30533)
Parisx ST _Debt x Green_holding -0.24628 -0.21499 -0.21499

(0.24232) (0.27892) (0.27892)
Mean Dep.Var. -1.637 -1.637 -1.637
Obs. 18975 18975 18975
R? 0.524 0.523 0.523
Year FE Y Y Y
Operator-supplier FE Y Y Y
Geo FE Y Y Y
Firm Control Y Y Y
Well Control Y Y Y
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Table 16: Internal Governance: Green Innovation and Green Board

We use the following model to estimate firm’s internal green governance, Green;; = a + 1 X
Paris x 1{ST_Debt;} +v;+0; +¢€;; where Green, j; is firm j’s green property at time t, Properties
including logarithm of Green Patent labeled with CPC Y02 classification, Patent data resourced
from PatentView; a Dummy variable indicating whether firm j have a green board in year t,
logarithm of green board numbers count, green board data resource from Proxy Statement DEF14-
A file. Paris is an indicator of years after Paris agreement, 1{ST_Debt;} is a dummy of high
short-term ratio firms, v; is firm fixed effect when needed, ¢; is the time fixed effect. *, xx, and**x*
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
(1) (2) (3)

Green Patent Green Committee Green members

Parisx ST _Debt -0.08697 0.36678*** 0.57545%**
(0.05780) (0.11384) (0.18492)

Mean Dep.Var. 0.423 0.363 0.557

Obs. 301 303 303

R? 0.973 0.189 0.202

Year FE Y Y Y

Operator FE Y N N
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Table 17: Green Board: Probit Regression and Marginal Effect

This table reports the Probit regression estimates and corresponding average marginal effect for
the Paris x ST _Debt variable. The dependent variable is a binary indicator for whether the
firm has a green board resourced from Proxy Statement DEF-14A. Standard errors are reported
in parentheses. Marginal effects are computed using the margins command. In columns (2)
regression controls for logarithm of total asset, Tobin’s Q, Capex Ratio, Profitability, Dividend
Ratio, resourced from Compustat. *, *x, and * *x indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.

No Controls With Controls
Coef. Marg. Eff. Coef. Marg. Eff.

Parisx ST_Debt 0.931%%F  (.314%%%  (570%F%  (0.165%%*
(0.154)  (0.042)  (0.189)  (0.052)

Log Total Asset 0.211%**
(0.073)
Tobin’s Q 0.220
(0.192)
Capex/Total Asset -2.387**
(1.112)
Profit 0.007
(0.607)
Dividend 5.888
(8.030)
Observations 303 287
Pseudo R? 0.0950 0.2274
Log Likelihood -179.66 -147.61

45



Table 18: Two-Stage Regression Results: Oil Supply IV Strategy

The first stage regresses monthly log oil price returns on exogenous oil supply shocks
from Kaénzig (2021). Alog(WTI); = 70 + 71 - OPEC; + w. The fitted value is
then used in the second-stage ivreghdfe regression. ToxicIndex;;sq: = [Bo + B -
Alog(WTI),+ s (A log(WTI), x 1{ST,Debtj}) +f3- (A log(WTI), x 1{ST Debt;} x Pam's) +
Ba - (Parisy x 1{ST Debt;}) + 0; + € j s+ Standard errors are in parentheses. *** p < 0.01, **
p < 0.05, * p<0.1.

1st Stage 2nd Stage 2nd Stage 2nd Stage
Panel A: First Stage Alog(WTI)
OECD supply surprise 1.2437%**
(0.375)
Observations 240
R-squared 0.044

Panel B: Second Stage

—

Toxic_.Index ToxicIndex Toxic_Index

Alog(WTI) 0.011 0.021*** 0.020***
(0.009) (0.008) (0.006)
Alog(WTI) x ST Debt -0.016 0.022%F  -0.021%%%
(0.012) (0.010) (0.008)
Alog/(vVTI) x ST Debt x Paris 0.017*** 0.026*** 0.017*
(0.006) (0.006) (0.009)
ST Debt x Paris -0.873** -0.879%#* -0.658***
(0.346) (0.288) (0.233)
Weak-ID test (K-P F) 636.404 829.272 339.416
Clusters Operator Operator Operator
Well Controls Y Y Y
Firm Controls N Y Y
Operator_supplier FE N N Y
Year, State FE N N Y
Observations 29421 28626 18975
R-squared (centered) 0.200 0.281 0.059
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Table 19: Alternative Financing Access

We re-estimate the following empirical model to explore firm pollution heterogeneity excluding
3,6 and 8 large firms. Toxic_Index;;sgq¢ = o + 1 x 1{ST_Debt;} x Prais + 0;; + 0; + vjs +
Ag+ @1+ € j 5.9 Where Toxic_Index; j s 4+ is the percentage of toxic chemical usage by well i with
operator j at state s exploited in year t. 1{ST_Debt;} is a dummy variable meaning for whether
firms depends more on short term debt financing. d;; is firm level controls at year t, 8; is well level
controls, 7; s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals.
Ag is state level fixed effect, ¢; is the year fixed effect. All regressions are controlled for well
production properties such as logarithm of well vertical depth, logarithm of well horizontal length,
logarithm of well water usage, well levels data are resourced from FracFocus. All regressions are
also controls with firm level characteristics resourced from Compustat like logarithm of Total
Asset, Tobin’s Q, Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating
Expense, Sale Percentage, and Oil Beta. Standard errors are clustered at operator level and are
given in parentheses. x, x*, and* ** indicate statistical significance at the 10%, 5%, and 1% levels,

respectively.

M ) )
VARIABLES toxicl toxicl toxicl
Drop Top3 Top6 Top8
Parisx ST _Debt -0.382*%F*F  _(0.330*%  -0.451%**
(0.101)  (0.180)  (0.156)
Log True Vertical Depth ~ 0.0801* 0.101** 0.101*
(0.0434)  (0.0405)  (0.0502)
Log Horizontal Length 0.0565 0.102%%%  0.129%***
(0.0342)  (0.0304)  (0.0353)
Log Water Volume -0.191%**  -0.193%F*  _(0.195%***
(0.0349)  (0.0262)  (0.0298)
Log(Total Asset) -0.269 -0.223 -0.149
(0.240)  (0.262)  (0.268)
Q -0.458%* -0.566** -0.467*
(0.244)  (0.269)  (0.256)
Capex/Total Asset 0.284 0.346 0.0158
(0.703)  (0.652)  (0.638)
Profit 0.0408 0.00543 0.170
(0.419)  (0.423)  (0.444)
Dividend/Total Asset -3.732 14.28 18.74
(13.13)  (9.251)  (13.40)
Tangibility 1.347* 0.376 0.766
(0.797)  (0.701)  (0.805)
Log(SGA /Sale) 0.0468 0139 -0.122
(0.0843)  (0.109)  (0.133)
Delta Sale -0.0969 -0.191 -0.183
(0.141)  (0.161)  (0.151)
Oil Beta 2.866 14.95 6.561
(21.50)  (20.74)  (19.54)
Observations 15,717 11,596 9,246
R-squared 0.519 0.561 0.535
Year FE Y Y Y
Operator-supplier FE Y Y Y
Geo FE 47Y Y Y




Table 20: Bank Lending Access

We re-estimate the following empirical model to explore firm pollution heterogeneity when receiv-
ing new loans. Toxic_Index; jsq: = o+ 1 x 1{ST Debt;} x Prais x Bank_Loan;; + d;; + 6; +
Vjs + Ag + Gt + € j 5.9 Where Toxic_Index; js g+ is the percentage of toxic chemical usage by well
i with operator j at state s exploited in year t. 1{ST_Debt;} is a dummy variable meaning for
whether firms depends more on short term debt financing. Bank_Loan;; is a dummy to indicate
whether firm j has received bank loans. ¢;; is firm level controls at year t, §; is well level controls,
7,,s is operator-supplier fixed effect for the controlling of firm’s access of toxic chemicals. Ay is
state level fixed effect, ¢, is the year fixed effect. All regressions are controlled for well production
properties such as logarithm of well vertical depth, logarithm of well horizontal length, logarithm
of well water usage, well levels data are resourced from FracFocus. All regressions are also controls
with firm level characteristics resourced from Compustat like logarithm of Total Asset, Tobin’s Q,
Capex to Total Asset, Profitability, Dividend Ratio, Tangibility, Operating Expense, Sale Percent-
age, and Oil Beta. Standard errors are clustered at operator level and are given in parentheses.
*, %%, and * x* indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
(1) (2)

Toxic Index Toxic Index

All Bank  Green Bank
Paris x ST _Debt -1.21575%*F*  _1.00159%**
(0.25288) (0.27186)
Bank_Loan -0.23905 -0.27217*
(0.15512)  (0.15311)
Paris x ST_Debt x Bank_Loan  0.78482***  (.56848**
(0.20935) (0.22951)
Mean Dep.Var. -1.636 -1.636
Obs. 18961 18961
R? 0.533 0.531
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y
Well Controls Y Y
Firm Controls Y Y
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Figure 2: Average Credit Rating
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Figure 3: Parallel Trend for Policy Shock
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Figure 4: Placebo test for Policy Shock
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Appendix

Appendix Al: Purpose of Toxic and Chemical Usage

Fracturing fluids are injected into wells to generate conductive fractures and circumvent
formation damage near the wellbore in hydrocarbon-bearing zones. This procedure sub-
stantially increases the productive surface area of the reservoir compared with its condition
before fracking. A variety of chemical additives are used to ensure that the fluid pos-
sesses specific characteristics such as viscosity, friction reduction, compatibility with the
formation, and control over fluid loss.

The hydraulic fracturing process employs two primary types of materials: fracturing
fluids and proppants. The fluids traditionally used in shale well fracturing treatments
consist of either water-based solutions or mixed slickwater fluids. The latter refers to
water-based fluids blended with friction-reducing additives such as potassium chloride.
Determining the appropriate fracturing fluids, additives, and proppants is a subjective
process that takes into account factors such as formation evaluation, laboratory test results,
and field experience. The most fundamental and widely used technique for stimulating
unconventional gas wells is slickwater fracturing.

Chemical additives used in hydraulic fracturing serve several purposes and are catego-
rized into subgroups including fluid-loss additives, clay stabilizers, gel breakers, bactericides
or biocides, and pH control agents. Acidizing treatments aim to enhance the productivity
or injectivity of a well.

Proppants—typically composed of sand or synthetic, sand-like materials such as silica
sand, resin-coated silica sand, or ceramic beads—are used to maintain fracture openness,
thereby facilitating the movement and extraction of crude oil and natural gas. The ef-
fectiveness of a proppant is evaluated by its ability to preserve fracture conductivity, and
the optimal selection is achieved by ensuring sufficient fracture continuity. Over time,
production rates tend to decline more rapidly with larger proppant sizes, as they are con-
strained by the permeability of the formation matrix. Beyond fracture conductivity, other
important considerations in multistage fracturing include flow convergence in transverse

fractures, proppant transport in low-viscosity fluids, and proppant compression under low-
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concentration conditions.

To categorize and determine the specific uses of toxic chemicals in the fracturing pro-
cess, we consulted relevant chapters from the Handbook of Hydraulic Fracturing (Speight),
2016)). We first cataloged the chemical types and their intended purposes as outlined in
the handbook, and then employed fuzzy matching against the reported purposes in the
FracFocus dataset. We retained the results of this matching for subsequent analysis. The
keywords used for the matching procedure are listed in the appendix. Our objective is to
identify which functional purposes most frequently involve toxic chemicals and which have
reduced their use of such substances over the past decade.

Figure [77] provides a detailed visualization of toxic chemical applications—identified by
the hazard designation “Danger”—across various fracturing operations since 2011. Each
cell within the heatmap is color-coded to represent the count of distinct toxic chemicals
employed, with the gradient transitioning from blue (lower count) to red (higher count).

The analysis of the heatmap yields several notable observations:

(i) There was a distinct peak in the number of unique toxic chemicals used during the

period from 2013 to 2015.

(ii) The subsequent reduction in chemical diversity is likely attributable to the introduc-

tion of stricter regulatory frameworks and enhanced disclosure transparency.

(iii) Substantial variability exists across different operational purposes; functions such as
acid treatment, bactericides/biocides, corrosion inhibitors, general additives, surfac-

tants, and scale inhibitors consistently exhibit higher chemical diversity.

(iv) The observed decline in the use of toxic chemicals within each category suggests an
ongoing industry-wide shift toward minimizing the use of hazardous substances in

specific applications.
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Unique Toxic Chemicals by Job Start Year and Purpose
acid JE a1
lactericides/Biocides 45 38
Breaker 44 2

Buffer

Clay Stabilizers

Corrosion inhibitor

Cross-linking agent
wilsioin-based Fluids
Fluid-Loss Additives

Foam-based Fluids

Friction Reducers
Gel Breakers
Gelling agents
rol/stabilizing agent
«d Ceramic Materials
Oil-based Fluids

1er Types Addictives
her Types Proppants
Other fluid

PH Control
sin-Coated Proppant
Surfactants

Wetting agent

scale inhibitor
viscosifier

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Job Start Year

Al: Toxic chemicals usage type per year classified by purpose
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A3: Toxic index yearly distribution within high short-term leverage firm
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fluid and addictives

Oil and gas service companies design fracturing fluids to create fractures and transport sand or other granular substances to prop open the fractures

Type Purpose ‘matched
Water-based Fluids water friction reducing agent
water gelling agent
Foam-based Fluids defoamer
antifoam agent
Oil-based Fluids base oil
Emulsioin-bascd Fluids emulsion preventer
demulsifier
nonemulsif
other Fluid base (luid
addictives

Additives are chemicals added to the fracturing fluid to achieve specific target properties of the fracturing fluid and constitute between 0.1 and 0.5% v/v of the total fracture

fluid (Arthur et al., 2008; Holloway and Rudd, 2013; Spellman, 2013; Uddameri et al., 2016).

Type

Purpose

matched

enhance fracture creation

Tluid-Loss Additives
Visco:
Temperature stabilizer

fier

Fluid-loss additives arc used to restrict leak-off of the fracturing fluid into the exposed rock at the
fracture face, which leads to prevention of excessive leak-off. thereby maintaining fracturing fluid
effectiveness.

fluid-Loss additives
viscosilier
low temperature fiber

PH Control Control the pH of the fluid ph
buffer
reduce damage
Gel Breakers minimize return of proppant and maximize return of fracturing fluid to the surface ge},b'fake'
activator
bactericide

Bactericides/Biocides

Surfactants

Clay Stabilizers

Friction Reducers

Fracture fluids typically contain gels that are organic and can therefore provide a medium for bacterial
growth. Bacteria can break down the gelling agent reducing its viscosity and ability to carry proppant.
Biocides are added to the mixing tanks with the gelling agents (o kill these bacteria

Clay stabilizers reduce clay swelling and function through ion exchange.

friction allowing fracture fluids to be injected at optimum rates and pressures.

bactericide myacide

biocide
TONIONIC s
flowback surfactant
surfactant

clay control

kel substitute

clay stabilizer
friction reducer

surfactant

others

Cross-linking agent

Scale inhibitor
Iron control/stabilizing agent

Corrosion inhibitor

Wetting agent

Acid Corrosion Inhibitors

Breaker

Acid

Tubricant

Viscosity Stabilizers

Gelling agents

Other Types Addictives

There are two basic types of gels that are used in fracturing fluids: lincar and cross-linked gels. Cross-
linked gels have the advantage of higher viscosities that do not break down quickly

Control the precipitation of certain carbonate and sulfate mincrals

Inhibit precipitation of iron compounds by keeping them in a soluble form

Used in fracture fluids that contain acids: inhibits the corrosion of steel tubing, well casings. tools, and
tanks

Wetting agents are added to the desalter to help capture excess solids in the water, rather than allowing the
undesired solids to travel further downstream into the process

Used in fracture fluids that contain acids: inhibits the corrosion of steel tubing, well casings. tools. and
tanks

Chemicals that are typically introduced toward the later sequences of a fracturing project to break down
the viscosity of the gelling agent to better release the proppant from the fluid as well as enhance the
recovery or “flowback™ of the fracturing fluid

To direct acid to the low-permeability section of a formation

For the fracturing of shale formations. acids are used to clean cement from casing perforations and drilling
mud clogging natural formation porosity. if any prior to fracturing fluid injection (dilute acid
concentrations are typically on the order of 15% v/v acid)

Typically. the well is drilled by a rotary drill that uses a heavy mud (drilling mud) as a lubricant and as a
means of producing a confining pressure against the formation face in the borehole. preventing blowouts.
Viscosity stabilizers are added to the fracturing fluids to reduce the loss of viscosity at high reservoir
temperatures

Thicken the water-based solution to help transport the proppant material

crosslinker
scale inhibitor
scale preventer
iron control

iron reducing agent
corrosion inhibitor
inhibitor aid

wetting agent

acid corrosion inhibitor
breaker

breaker aid
diverter
diverting agent

acid

lubricating agent

viscosity friction reducer

gel

gelling agent

additive

solvent

stabiliz

lubricating agent

scavenger

1nitiator

clean perforation
agent

Prevent and keep an induced hydraulic fracturc open dur-ing and after a fracturing

so that the fracture does not collapse and close

Type

Purpose

matched

Silica Sand

Resin-Coated Proppant
Manufactured Ceramic Materials

Other Types Proppants

mesh sand/ sand
fracturing sand

resin coated proppant
ceramic

propp

carrier

Figure A4: Chemical Purpose Explaination
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Detailed Purpose Type

Purpose Matching Word

General Purpose Type

Water-based Fluids
Water-based Fluids

water friction reducing agent
water gelling agent

fluid and specialist addictives
fluid and specialist addictives

Foam-based Fluids defoamer fluid and specialist addictives
Foam-based Fluids antifoam agent fluid and specialist addictives
Oil-based Fluids base oil fluid and specialist addictives
Emulsioin-based Fluids emulsion preventer fluid and specialist addictives
Emulsioin-based Fluids demulsifier fluid and specialist addictives
Emulsioin-based Fluids nonemulsif fluid and specialist addictives
Other fluid carrier fluid and specialist addictives
Other fluid base fluid fluid and specialist addictives
Fluid-Loss Additives fluid loss Additives addictives enhance fracture creation
Viscosifier viscosifier addictives enhance fracture creation

Temperature stabilizer

low temperature fiber

addictives enhance fracture creation

PH Control ph addictives enhance fracture creation
Buffer buffer addictives enhance fracture creation
Gel Breakers gel breaker addictives reduce formation damage
Gel Breakers activator addictives reduce formation damage
Bactericides/Biocides bactericide addictives reduce formation damage
Bactericides/Biocides bactericide myacide addictives reduce formation damage
Bactericides/Biocides biocide addictives reduce formation damage
Bactericides/Biocides microbiocide addictives reduce formation damage
Bactericides/Biocides antibacterial agent addictives reduce formation damage
Bactericides/Biocides antimicrobial addictives reduce formation damage
Surfactants nonionic surfactant addictives reduce formation damage
Surfactants flowback surfactant addictives reduce formation damage
Surfactants surfactant addictives reduce formation damage

Clay Stabilizers
Clay Stabilizers
Clay Stabilizers
Friction Reducers

clay control
kel substitute
clay stabilizer
friction reducer

addictives reduce formation damage
addictives reduce formation damage
addictives reduce formation damage
addictives reduce formation damage

Cross- linking agent

crosslinker

addictives

Scale inhibitor scale inhibitor addictives
Scale mhibitor scale preventer addictives
Tron control/stabilizing agent iron control addictives
Tron control/stabilizing agent iron reducing agent addictives
Corrosion inhibitor corrosion inhibitor addictives
Corrosion inhibitor inhibitor aid addictives
Wetting agent wetting agent addictives
Acid Corrosion Inhibitors acid corrosion inhibitor addictives
Breaker breaker addictives
Breaker breaker aid addictives
Acid diverter addictives
Acid diverting agent addictives
Acid acid addictives
Lubricant lubricating agent addictives
Viscosity Stabilizers viscosity friction reducer addictives
Gelling agents gel addictives
Gelling agents gelling agent addictives
Other Types Addictives additive addictives
Other Types Addictives solvent addictives
Other Types Addictives stabilizer addictives
Other Types Addictives lubricating agent addictives
Other Types Addictives scavenger addictives
Other Types Addictives initiator addictives
Other Types Addictives clean perforation addictives
Other Types Addictives chelating agent addictives
Silica Sand mesh sand/ sand proppants
Silica Sand fracturing sand proppants
Resin-Coated Proppant resin coated proppant proppants
Manufactured Ceramic Materials ceramic proppants
Other Types Proppants propp proppants

Figure A5: Purpose Matching Word

o7




Appendix A2: Key Regulatory Developments Related to Hy-

draulic Fracturing

1. Safe Drinking Water Act (SDWA) and the “Halliburton Loophole.” The
Safe Drinking Water Act (SDWA) is the primary federal law ensuring the quality
of Americans’ drinking water. However, the 2005 Energy Policy Act created an ex-
emption—commonly known as the “Halliburton Loophole”—that excluded hydraulic
fracturing activities from SDWA regulation. Between 2014 and 2015, growing public
pressure and environmental advocacy efforts sought to close this loophole, arguing
that fracking should be subject to the same federal groundwater protection standards

as other industrial activities.

2. Bureau of Land Management (BLM) Hydraulic Fracturing Rule (2015-2017).
In March 2015, the U.S. Bureau of Land Management (BLM) issued a rule aimed at
strengthening environmental safeguards for hydraulic fracturing on federal and tribal
lands. The rule required operators to disclose the chemical composition of fracturing
fluids and to implement stronger well integrity and wastewater management stan-

dards. However, the rule faced legal challenges and was ultimately rescinded in early

2017.

3. Toxic Substances Control Act (TSCA). The TSCA regulates the manufacture,
processing, and distribution of toxic or hazardous substances. Under this act, com-
panies are required to report the discharge of pollutants once they reach specified
thresholds. This ensures that the public and regulatory agencies are informed and

can monitor the environmental impact of shale gas development.

4. State-Level Water Withdrawal Regulations. Individual U.S. states have intro-
duced strict limits on water withdrawal for shale gas development to prevent water
waste and pollution. For example, Louisiana restricts the scope of water withdrawal;
New York requires that withdrawals be evaluated and licensed by local regulatory
agencies; and Michigan has established a water withdrawal assessment system to

ensure that industrial usage does not impair public or ecological needs.
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Table Al: Major U.S. Regulations Affecting Hydraulic Fracturing (2015-2016)

Regulation Proposal | Implementat | Termination / | Main Provisions Impact on Hydraulic
Time Time Expiration Fracturing Industry
BLM Hydraulic | 2013 draft, | Published Mar. | Repealed in 2017 | Well ~ integrity  tests, | Higher costs, disclosure
Fracturing Rule | finalized 2015, effective wastewater  container | pressure, scope limited to
2015 Jun. 2015 storage, chemical disclo- | federal/tribal lands
sure
EPA Methane & | Proposed | Effective  May | Weakened 2017- | Limits on | Increased equipment invest-
VOC Standards | Aug. 2015 | 2016 2020, strength- | methane/VOCs, manda- | ment and operating costs,
(CAA) ened again in | tory green completions, | disproportionate burden on
2021 LDAR requirements small independents
TSCA  Reform | Proposed | Signed Jun. 22, | Permanent Mandatory risk assess- | Toxic ~ chemicals  sub-
(Lautenberg Mar. 2015 | 2016 ments, expanded EPA | ject to review, need for
Act) authority, strengthened | substitutes, rising compli-

information disclosure

ance/disclosure costs
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