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Abstract

Using data from LinkedIn profiles, we measure the adoption of Al technologies by
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returns and incur lower expenses. The stock-picking abilities of high-ATI funds improve
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1 Introduction

There is much excitement and uncertainty about the potential for Artificial Intelligence
(AI) to significantly impact GDP growth and productivity, with projections that range from
the modest to simply remarkable.! There is also speculation and misgiving about the effect
of Al on different industries and occupations since this depends on the types of human skills
that AI might enhance and those it could render obsolete. Evidence is mixed on whether
Al enhances skilled work. While research on earlier forms of Al finds that the technology
raised wages of skilled workers, other studies indicate that generative Al can serve, at least
to some degree, as a complement to low-skilled workers within a given occupation.?

Agrawal et al. (2019) conceptualize Al as a general-purpose prediction technology that
lowers the cost of inference and reconfigures decision-making and organizational design—
complementing evidence that its diffusion is reshaping task content and skill demand. In
the same vein, Autor (2015) emphasizes the complementarity between digital tools and ana-
lytical occupations, implying that Al is more likely to amplify than to displace professional
judgment. While the potential impact on aggregate employment and growth effects is unre-
solved (Webb, 2019), Acemoglu et al. (2022) find evidence suggesting that the adoption of
Al is associated with a change in skill requirements and less hiring in non-AlI positions.?

In the paper, we study the influence of Al on asset management, specifically its utiliza-
tion by mutual funds and the impact on their performance. Of particular interest is whether

AT tends to complement and enhance human skills in asset management. Our paper is re-

1On the high side, an IDC report claims that AI could contribute $19.9 trillion to the global economy
through 2030, accounting for 3.5% of global GDP (IDC Economic Impact https://my.idc.com/getdoc.
jsp?containerId=prUS52600524). However, MIT economist Daron Acemoglu estimates a more modest
GDP increase of 1.1 to 1.6% over 10 years, with an annual productivity gain of only 0.05%.https://news.
mit.edu/2024/what-do-we-know-about-economics-ai-1206

2See, for instance, https://www.cbo.gov/publication/61147

3Grennan and Michaely (2020) provides evidence of negative consequences for skilled individuals. They
find that analysts with portfolios exposed to AI are more likely to reallocate efforts to soft skills, shift coverage
towards low AT stocks, and even leave the profession. Similarly, Bonelli and Foucault (2023) suggests that
big data has the potential to displace high-skill workers in finance such as portfolio managers.
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lated to a growing body of work that links Al to capital-market efficiency and information
production.” A recent global survey of asset managers suggests that a majority (54%) re-
port making some use of Al in investment strategy or asset class research (Mercer, 2024).°
The survey suggests that Al is seen as valuable in generating ‘alpha’, since it facilitates the
crunching of massive datasets to detect market trends, in analyzing company financials, and
even satellite imagery of parking lots to uncover insights no human could process at scale.
It is also lauded for improving cost efficiency and risk mitigation.

Large asset managers are now incorporating Al directly into their investment processes.
For instance, BlackRock (2025) reports deploying large language models (LLMs) to analyze
corporate earnings call transcripts, news articles, and social media to help inform investment
forecasts and uncover potential alpha opportunities.® Likewise, Cliff Asness—co-founder
of AQR, a quant asset manager with deep academic ties—says the firm has ‘surrendered
more to the machines,” underscoring the accelerating shift toward Al-driven decision making
(Mourselas and Pollard, 2025).”

While our paper focuses on the impact of AI on investment performance, we believe that
the study can also offer insight into the broader ramifications of Al for human productivity.
An issue of keen interest is whether we should expect the Al revolution to complement
and strengthen human skills, such as in investment decisions, or whether we might expect
Al and powerful machines to largely displace the human skills and judgment of investment
professionals (Cao et al., 2024).® Hence, as part of our analysis, we examine whether Al

tends to have a differential impact on investment strategies in which there is a greater

4See, for example, Babina et al. (2024); Abis and Veldkamp (2024); Cao et al. (2024); Lopez-Lira and
Tang (2023); Jha et al. (2024); Bonelli and Foucault (2023); Fuster et al. (2022).

Shttps://www.mercer.com/insights/investments/portfolio-strategies/
ai-in-investment-management-survey/.

Shttps://www.blackrock.com/us/individual/insights/ai-investing?utm_source=chatgpt.com.

"https://www.ft.com/content/e62c85cb-e3c8-4df3-b115-e3ellecaal66.

8Cao et al. (2024) compare the performance of Al and human analysts and find that humans provide
significant incremental value in “Man + Machine” settings.
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contribution by human skills and judgment relative to strategies that follow systematic rule-
based algorithms (Abis, 2020).

We begin by determining the extent of Al adoption by an assessment of the AT skills
of individuals hired by mutual fund management companies (“advisers”) using LinkedIn
profile data from Revelio Labs. The dataset provides detailed information on the employ-
ment history of several hundred million individuals across the globe, including job titles and
functions, educational background, and firm affiliations. Revelio uses machine learning algo-
rithms to identify and categorize skills associated with each individual based on their listed
experiences and roles. For each skill, we compute its Al-relatedness score by the likelihood
of its co-occurrence with any of the Al core skills (Babina et al., 2024). Next, we compute
the Al skill level of each individual by taking the average of the Al-relatedness scores across
all skills associated with that individual. For our main independent variable of interest, we
measure the level of investment in Al technologies made by a mutual fund adviser by taking
the average of the Al skill levels of all individuals employed by that adviser.

We next assess the performance implications of Al by sorting mutual funds each month
into quintiles based on their advisers’ investment in Al technologies. By construction, top-
quintile (“high-AI”) funds enter the sample with markedly greater AI exposure. Moreover,
they continue to expand adoption over time, so the dispersion in Al investment relative to
lower-quintile funds widens substantially, particularly from the mid-2010s onward. For each
quintile-sorted portfolio, we compute the value-weighted averages of fund returns in excess
of their benchmark returns, as well as the difference in benchmark-adjusted returns between
the highest and lowest quintile (long/short) portfolios. We find that the long/short portfolio
has benchmark-adjusted returns of 10.6 basis points per month (about 1.27% per year).
The Al outperformance is both economically and statistically significant. We obtain similar
results when we compute the alphas (risk-adjusted returns) of benchmark-adjusted returns.

Our results further show that both Al adoption and its performance benefits for mutual



funds are concentrated in the latter half of the sample (2016-2023). In this subperiod, the
high-minus-low Al return spread approximately doubles—from 7 bps per month to 14.1 bps
per month (about 0.84% vs. 1.69% per year). This pattern contrasts sharply with Chen
et al. (2025), who examine hedge funds with Al-labeled strategies and document that their
outperformance declines after 2015 and disappears by 2020.

AT technologies can also enhance fund performance by reducing expenses, which tend
to substantially erode net returns. To assess the impact of Al adoption on fund expenses,
we decompose returns (net of expenses) into two components: returns (gross of expenses)
and expenses. Indeed, we find that high Al funds incur substantially lower expenses than
low Al funds, with expenses being 1.7 basis points per month lower.

To examine the sources of Al outperformance, we leverage the well-documented strength
of AT and machine learning in processing unstructured “big data” (e.g., satellite imagery)
and use this setting to test whether such capabilities translate into superior investment per-
formance. Using the staggered introduction of satellite imagery of parking lots for retail firms
(Katona et al., 2025), we find that the positive impact of Al technologies on stock-picking
ability is enhanced by the availability of unstructured big data.’ Overall, our results suggest
that mutual funds utilizing Al technologies are better equipped to process and exploit big
data as more unstructured information becomes available. We note that these performance
results, since they are consistent with the core benefits of using Al, also validate the measure
of Al adoption that we use.

As noted above, a central objective is to assess whether Al enhances human perfor-
mance or bypasses human skills in asset management. Having established AI outperfor-
mance, we ask which funds benefit most: those driven by human discretion and judgment,

or those relying on quantitative, algorithmic techniques (Abis, 2020). Put differently, does Al

9The use of satellite imagery as an alternative data source is well documented—parking-lot car counts
forecast store performance and guide institutional trading (Kang et al., 2021; Katona et al., 2025); more
broadly, imagery-based measures such as night lights map to real activity (Henderson et al., 2012).



chiefly make algorithms better at being algorithms, or does it complement human decision-
making?

To address this, we classify mutual funds as discretionary or quantitative by train-
ing a random-forest classifier on the Principal Investment Strategy sections of mutual fund
prospectuses obtained from SEC filings, following Abis (2020). The results are informa-
tive: Al disproportionately boosts discretionary funds. Among discretionary funds, high-Al
funds outperform low-AT funds by 12.9 bps per month (about 1.55% per year). In contrast,
among quantitative funds, the Al premium is 7.1 bps per month (about 0.85% per year).
These findings align with the view—also supported by Cao et al. (2024)—that, rather than
replacing human intelligence, artificial intelligence more often complements it.

We further examine whether AI enhances human decision-making by drawing on the
model and evidence in Kacperczyk et al. (2014, 2016). Their framework posits time-varying
managerial skill: fund managers engage in stock picking during normal times and switch
to market timing during bad times. Abis (2020) further argues that such state dependence
is a hallmark of human decision making. Consistent with this view, we show that Al aug-
ments human intelligence in a state-contingent manner: performance improvements are time
varying, with high-AI funds exhibiting stronger stock picking in normal times and supe-
rior market timing in volatile periods when aggregate risk and investor risk aversion are
elevated.!’

Why do certain mutual fund advisers invest more in Al technologies than others? We
conjecture that since Al skills are scarce and geographically concentrated (e.g., in Silicon
Valley), the local supply of AI technologies could be a major determinant of the cross-

sectional variation in the level of investment in Al technologies by mutual fund advisers. For

0These findings contrast with Zhang (2024), who attributes the outperformance of Al-investing funds
primarily to enhanced stock picking rather than to market timing. Our results instead indicate that Al can
bolster both capabilities, with portfolio managers reweighting signal sets as conditions change; consequently,
AT’s contribution manifests differently across market regimes.



each metropolitan area, we measure the local supply of Al technologies by taking the average
of the AI skill levels of individuals working in that area. Consistent with our conjecture,
the local supply of Al technologies is significantly positively associated with the adoption
of AI technologies by mutual fund advisers located in that area. Our results suggest that
AT adoption is constrained by the local supply of Al technologies, and mutual fund advisers
located in metro areas with a larger supply of Al technologies tend to invest more in Al
technologies. The geographic variation in the local supply of Al skills provides a source of
exogenous variation in the utilization of AI by mutual funds. We show that our findings are
robust to using the exogenous variation as an instrument for the utilization of AI by asset
managers.

Recent contemporaneous studies provide complementary evidence on how artificial in-
telligence is transforming the asset management industry. Chen et al. (2025) document
that hedge funds with Al-driven strategies initially outperform peers, though the perfor-
mance premium narrows as adoption becomes widespread. Sheng et al. (2024) focus on
generative Al, showing that hedge funds incorporating ChatGPT-based signals earn 2-4
percent higher annualized alphas and improve price efficiency, particularly when analyzing
firm-specific information. Zhang (2024) finds that mutual funds with greater Al investment
outperform peers through enhanced stock-picking—rather than market timing—especially
in information-rich stocks. Cen et al. (2024) link data-science human capital to trading
profitability and portfolio concentration, showing that while hiring data scientists improves
fund performance, concentrated data-science coverage can reduce market-wide price infor-
mativeness.

Our paper is related to recent papers that examine the impact of Al on firm produc-
tivity. Among these, Babina et al. (2024) develops some of the Al investment measures that
we also employ in our paper. Babina et al. (2024) shows that there is a stark increase in Al

investment across sectors and finds that Al-investing firms experience significantly higher



growth, primarily through increased product innovation.

Our paper complements and extends this emerging literature in several important ways.
First, we show that Al’s performance gains are concentrated in discretionary funds—rather
than quantitative funds—pinpointing the style margin on which AI complements human
judgment and enhances discretionary decision-making. This style-based heterogeneity speaks
directly to man+machine synergies (Cao et al., 2024) and addresses a question not explored in
the contemporaneous studies, which do not separate investment styles or test this mechanism
at the strategy level. Second, by linking AI adoption to both realized fund performance and
time-varying managerial skill, we identify when Al augments human intelligence—relaxing
information-processing constraints while preserving the flexibility and context sensitivity
of human portfolio managers (Kacperczyk et al., 2014, 2016; Abis, 2020). Third, using a
broader measure of Al adoption across asset managers, we document a sharpening impact
of Al on performance in recent years, underscoring its growing relevance as data intensity
rises and tools mature—in contrast to Chen et al. (2025), who, under a narrower definition
focused on explicitly Al-labeled investment strategies, document a disappearance of the Al

premium post-2020.

2 Data and methodology

2.1 Data contruction

Our source of online resume data is Revelio Labs, which provides detailed information
on the employment histories of hundreds of millions of individuals worldwide. Revelio Labs
data are derived from publicly available online resumes, primarily sourced from LinkedIn.
The dataset provides structured information on employment history, including job titles,

firm affiliations, tenure periods, educational background, and job titles.



We obtain mutual fund returns, total net assets (TNA), expenses, and holdings from
the CRSP Survivor-Bias-Free Mutual Fund database. CRSP holdings data offer greater
coverage than the Thomson/Refinitiv Mutual Fund Holdings (s12) database for our sample
period, and holdings are available on a monthly basis for the majority of our sample funds.

We match mutual fund advisers (asset managers) from our mutual fund datasets to
companies in the Revelio Labs database using Legal Entity Identifier (LEI) numbers, if
available, and company names. For adviser identification, we obtain detailed information on
mutual fund advisers as well as sub-advisers directly from SEC filings: Form N-SAR and
Form N-CEN. We match funds available in the CRSP dataset with those in the N-SAR filings
using a name-matching algorithm (Han et al., 2024), and with funds in the N-CEN filings
using the crsp_cik_map file made available by CRSP. Form N-SAR filings were discontinued
in 2018 and replaced by Form N-CEN filings in 2019.

Form N-CEN filings report advisers’ Legal Entity Identifier (LEI) numbers, if available,
which are also provided for a subset of companies in the Revelio Labs data. We use LEI
numbers to match mutual fund advisers with companies in the Revelio Labs data. We
extrapolate LEI numbers for advisers available in both N-CEN and N-SAR filings using
SEC file numbers, which consistently identify mutual fund advisers across different SEC
filings. For the remaining managers, we use a name-matching algorithm to match mutual
fund advisers from our mutual fund datasets with companies in the Revelio Labs data.
Since company names may not be reported consistently and tend to be quite similar across
subsidiaries and affiliates, we strive to be conservative when in doubt during the name-
matching process.

Since we focus on actively managed U.S. domestic equity funds, we require that funds
belong to one of the nine Morningstar categories, known as the Morningstar equity style
box, defined by the funds’ size and style tilts: {Large, Mid-cap, Small} x {Growth, Blend,

Value}. We obtain Morningstar categories from the Morningstar Direct database. We match



funds from CRSP with those from Morningstar based on CUSIP, ticker, and fund name, in
that order (Berk and van Binsbergen, 2015; Péstor et al., 2015). We exclude index funds
and exchange-traded funds using the fund flags available from CRSP and Morningstar. To
avoid the incubation bias (Evans, 2010), we require that funds’ TNAs be greater than $5
million at the beginning of the month. We aggregate share-class-level information to the

fund (portfolio) level using Morningstar’s fundid.

2.2 Al adoption measure

We construct our Al adoption measure using LinkedIn profile data obtained from Reve-
lio Labs. Revelio uses machine learning algorithms to identify and categorize skills associated
with each individual (user) based on their listed experiences and roles. For each skill j, we
compute its Al-relatedness score by the likelihood of its co-occurrence with any of the Al

core skills (Babina et al., 2024):

Number of individuals with skill 7 and any of the Al core skills

(1)

Al relatedness; =
relatedness Number of individuals with skill j

where the average is taken over all individuals associated with skill j. For the Al core
skills, we use Artificial Intelligence, Machine Learning, Deep Learning, Natural Language
Processing, and Computer Vision.

We report Al relatedness scores for a few selected skills in Figure 1. Among the top Al-
related skills are Pattern Recognition, Data Science, Signal Processing, and Image Processing,
with Al-relatedness scores of 0.81, 0.66, 0.63, and 0.59, respectively. On the other hand,
traditional data analysis skills, such as Statistics and Data Analysis have relatively low Al-
relatedness scores of 0.19 and 0.08, respectively. General-purpose programming languages
such as R and Python, which are widely used in machine learning applications, have relatively

high Al-relatedness scores of 0.31 and 0.19, respectively. In contrast, traditional finance skills



such as Corporate Finance and Investments have Al-relatedness scores of virtually zero.
[Insert Figure 1]

Next, we compute the level of Al skills of each individual (employee) by taking the
average of the Al-relatedness scores across all skills associated with that individual. To
illustrate the roles (positions) of Al skilled workers play within mutual fund investment
managers, we report the average level of Al skills of employees for a few selected roles
(O*NET titles) in Figure 2. Not surprisingly, Data Scientists have the highest level of
AT skills. Computer scientists such as Software Developers, Computer Programmers, and
Computer Systems Analysts also have high levels of Al skills. In contrast, traditional finance
positions such as Investment Fund Managers and Financial and Investment Analysts have

relatively low levels of AT skills.

[Insert Figure 2]

3 Al outperformance

3.1 Does Al adoption improve fund performance?

In this subsection, we test whether Al adoption improves mutual fund performance by
sorting funds into monthly quintiles based on advisers’ Al adoption level (defined in Section
2.2). To characterize cross-sectional variation in AI adoption, Figure 3 plots the value-
weighted 12-month rolling average of the Al adoption level for each monthly quintile. By
construction, the top-quintile funds exhibit higher levels of Al adoption from the start of the
sample. Notably, the gap between high-AI funds and the rest widens rapidly beginning in the
mid-2010s, indicating aggressive adoption by a subset of mutual fund advisers. This widening

dispersion in Al adoption is consistent with evidence of heterogeneous Al technology adoption

10



and data-driven practices across firms (Brynjolfsson and McElheran, 2016; Babina et al.,

2024).
[Insert Figure 3]

Next, for each quintile portfolio, we compute value-weighted fund returns in excess of
benchmark returns and the long—short (Q5-Q1) differences in benchmark-adjusted perfor-
mance. Benchmarks are Morningstar category indices (Sensoy, 2009). Time-series averages
are reported in Table 1. The top (bottom) Al-quintile portfolio delivers the highest (lowest)
benchmark-adjusted returns, and the benchmark-adjusted returns. The long—short (Q5-Q1)
portfolio earns 10.6 bps per month (1.27% per momth) with a t-stat of 3.85, indicating

economically and statistically significant outperformance.
[Insert Table 1]

As shown in Figure 3, Al adoption among mutual fund advisers rises sharply beginning
in the mid-2010s. We ask whether this widening adoption gap translates into a widening Al
premium—the performance spread between high- and low-Al funds. To test this, we split
the sample into two subperiods: 2008-2015 and 20162023, and report portfolio-sort results
separately in Table 2. In the early period (2008-2015; Panel A), the long—short portfolio
sorted on Al adoption earns 7 bps per month (0.84% per year; t-stat = 1.91). In the recent
period (2016-2023; Panel B), the Al premium roughly doubles to 14.1 bps per month (1.69%
per year; t-stat=3.62), indicating that the return advantage associated with Al adoption has

strengthened over time.
[Insert Table 2]

These portfolio results are consistent with contemporaneous evidence that Al capabil-

ity is associated with better performance, while highlighting important differences in what
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is measured and when. We study capability-based adoption at mutual funds; by contrast,
Chen et al. (2025) examine hedge funds explicitly labeled as Al strategies and find initial
outperformance that attenuates post-2020 as adoption diffuses. Our results—together with
the widening cross-fund dispersion in Al capability (Figure 3)—suggest that depth of orga-
nizational Al capacity, rather than strategy labels, underpins persistent gains. Relatedly,
Sheng et al. (2024) show hedge funds using LLM-based signals earn higher alphas, reinforcing
that Al can raise performance across organizational forms. The stronger post-2015 effects
also speak to diffusion dynamics: unlike the attenuation in Al-labeled strategies reported by
Chen et al. (2025), capability-based adoption appears to scale with maturing tools and data
availability.

For robustness, we estimate alphas (risk-adjusted returns) for the long—short portfolio
using the CAPM, the Fama—French three-factor model (Fama and French, 1993), and the
Carhart four-factor model (Carhart, 1997). Table 3 reports the results. The Al spread

persists: alphas range from 8.9 to 9.4 bps per month.

[Insert Table 3]

3.2 Does Al adoption reduce fund expenses?

We expect the performance gains from Al to stem primarily from enhanced stock
picking and market timing—mechanisms we analyze in detail in Section 4.2. That said, Al
can also boost performance by lowering expenses, which materially erode net returns. To
evaluate this cost channel, we decompose net returns into (i) gross returns and (ii) expenses,
and run portfolio sorts for each component using the same procedure as in the previous

subsection. Results are reported in Table 4.

[Insert Table 4]
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For reference, Panel A of Table 1 (net-of-benchmark returns) is reproduced here. On
a gross basis—excluding expenses—high-Al funds still outperform low-Al funds by about
9.2 bps per month (1.10% per year). In addition, high-Al funds bear substantially lower
expenses—roughly 1.7 bps per month less—than low-Al funds. A decline of 20.4 bps per
year in the expense ratio is economically meaningful relative to the sample’s average an-
nual expenses of about 1%—roughly a 20% reduction in expenses. These cost differences
are consistent with process efficiencies from data infrastructure and analytics teams. The
expense reductions we document suggest that organizational Al capability can deliver both

information gains and operational efficiencies.

3.3 Sources of Al outperformance: Evidence from the outer space

Having documented an Al premium, we next examine its underlying sources. This
analysis also serves as a validation test for our Al-adoption measure by assessing whether
it maps to managers’ actual use of Al in investment decisions. Our identification lever-
ages the staggered expansion of satellite imagery coverage of retailer parking lots (Katona
et al., 2025), which provides plausibly exogenous variation in the availability of unstruc-
tured big data. Because converting raw images into tradable signals requires computer-
vision/machine-learning (ML) workflows, funds with stronger Al capabilities should extract
more value from this unstructured data.'! The use of satellite imagery as an alternative data
source is well documented—parking-lot car counts forecast store performance and guide in-
stitutional trading (Kang et al., 2021; Katona et al., 2025); more broadly, imagery-based

measures such as night lights map to real activity (Henderson et al., 2012).

1 Complementarity between data availability and organizational Al capability is consistent with evidence
on data-driven decision-making and AT adoption across firms (Brynjolfsson and McElheran, 2016). Turning
raw pixels into signals typically relies on deep-learning models for vision (LeCun et al., 2015); machine-
learning methods also deliver sizable gains in return prediction (Gu et al., 2020).
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We test our prediction using the following regression specification:

Alphajvt = p(W@ighti7j7t_1 X AIi,t—l X ]l(POStjvt_l)) + (51 (Weighti’j,t_l X A]i,t—l)
+ (52 (Weighti,j,t_l X ]l(POStht_l)) + 53 (]l(POStj7t_1) X AIi,t—l)
+ BiWeight; ji—1 + B2 Al sy + B3l (Post;;_1)

F i+l +0; +0; + 0, + <554

where 7 indexes mutual funds, j indexes stocks, and ¢ indexes time in months. Alpha;; is the
alpha (idiosyncratic return) of stock j in month ¢, defined as R;; — 3 -1 R+, where R;, and
R, are the returns of stock j and the market, respectively, in excess of the risk-free rate in
month ¢, and 3;,_; is the market beta of stock j, estimated over a 12-month rolling window
from month ¢t — 12 to t — 1. Weight; j1—1 = w; j—1 — W j+—1 is fund 4’s portfolio weight on
stock j in excess of its market weight at the end of month t —1. Al ;_; represents the level of
AT adoption by mutual fund i’s adviser, as defined in Section 2.2. 1(Post;;_;) is an indicator
variable that takes a value of one if firm j is covered by RS Metrics for satellite imagery of
parking lots in month ¢ — 1, and zero otherwise. The timing of satellite imagery availability is
sourced from Katona et al. (2025). I'; ;4 is a vector of lagged fund characteristics, including
the natural logarithm of total net assets (TNA, in $ million), expense ratio (in percent),
turnover ratio, and the natural logarithm of fund age (in years). I';;_ is a vector of lagged
stock characteristics, including the percentile rankings of market capitalization, book-to-
market ratio, and the past 12-month return (excluding the most recent month). 6;, 6;, and
0, represent fund, stock, and time fixed effects, respectively. The sample includes retail firms
covered by RS Metrics from 12 months before to 12 months after satellite imagery coverage
of parking lots became available. Standard errors are double-clustered by fund and stock.
Table 5 reports the estimates. The coefficient of interest—the triple interaction p on

Weight x Al x 1(Post)—is positive and statistically significant in column (1), indicating

14



that the stock-picking gap between high- and low-Al funds widens precisely when (Post)
and where (treated retail stocks) satellite parking-lot data become available. In short, once
imagery rolls out, higher-AI funds extract more signal from this unstructured data and

improve selection on the exposed retail stocks relative to their lower-Al peers.
[Insert Table 5]

In addition, the double interaction &1 on Weight x Al is small and statistically indis-
tinguishable from zero, indicating no pre-imagery differential in stock picking between high-
and low-Al funds on the treated retail stocks. This alleviates concerns that our Al-adoption
measure merely proxies for generic stock-picking skill or other fund attributes, isolating com-
plementarities between Al capability and the availability of unstructured data. The absence
of pre-period differences also provides informal support for parallel trends, consistent with
recommended diagnostics for staggered DiD settings (Roth et al., 2023).

The triple-interaction effect remains similar in magnitude and statistically significant
after sequentially adding fund and stock characteristics and comprehensive fixed effects in
columns (2)—(4). Taken together, the evidence indicates that Al-intensive funds are better
at converting newly available unstructured data into alpha, giving us strong confidence that
our measure captures the actual use of Al in investment decisions rather than correlating
with unrelated fund traits.

Our results echo recent evidence that Al tools help investors convert unstructured
information into tradable signals: hedge funds using generative-Al prompts/LLM-based sig-
nals earn higher alphas and improve price efficiency, especially for firm-specific news (Sheng
et al., 2024); and mutual funds with stronger Al-related human capital realize superior stock

selection in information-rich settings (Zhang, 2024).
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4 Inspecting the mechanism

Having documented Al outperformance, we next examine the mechanisms—which
funds benefit most from AI? Our central question is whether AI primarily substitutes for hu-
man judgment (“man vs. machine”) or complements human expertise by elevating decision

quality (“man + machine”).

4.1 Quantitative vs. discretionary funds

To provide initial evidence on whether Al substitutes for or enhances human decision-
making in asset management, we conduct a heterogeneity analysis by fund type. We classify
mutual funds into (i) quantitative funds, which employ systematic, rule-based algorithms,
and (ii) discretionary funds, which rely primarily on human judgment. Following Abis (2020),
we train a random-forest text classifier on the Principal Investment Strategy sections of fund
prospectuses to assign funds to these categories, and then compare Al effects across the two
groups.

We form two-by-five portfolios by double-sorting funds on (i) their quantitative vs.
discretionary classification and (ii) the mutual fund adviser’s Al adoption quintile, and report
results in Table 6. Along quantitative funds, those in the high-Al group outperform their low-
AT counterparts by 7.1 bps per month (0.85% annualized). By contrast, within discretionary
funds, the Al-return spread nearly doubles to 12.9 bps per month (1.55% per month). This
cross-sectional pattern is consistent with Al complementing, rather than replacing, human

judgment (“man + machine”).
[Insert Table 6]

This style-specific heterogeneity complements Zhang (2024), who find that mutual

funds with higher Al investment outperform primarily via stock selection; our results show
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where this advantage is realized—discretionary strategies that rely on judgment—rather
than in rule-based quantitative funds. Taken together, the evidence indicates that Al has a
larger impact in discretionary funds—where managerial judgment is central—than in quanti-
tative funds that follow fixed, rule-based algorithms. The double-sort results therefore favor
augmentation over substitution: rather than replacing human intelligence, Al appears to

complement and enhance it, consistent with Cao et al. (2024).

4.2 Time-varying managerial skill

Kacperczyk et al. (2014) document time-varying managerial skill: mutual fund man-
agers emphasize stock picking in normal times but shift toward market timing in recessions.
To rationalize this pattern, Kacperczyk et al. (2016) develop an attention-allocation model
in which skilled managers face limited attention and optimally split it between idiosyncratic
(stock-specific) and aggregate (marketwide) signals. In bad times—when both market risk
and investors’ risk aversion are elevated—the optimal allocation tilts toward aggregate in-
formation, making market timing more valuable.

Building on Kacperczyk et al. (2016), Abis (2020) argues that time-varying skill is a
hallmark of human portfolio managers: it is pronounced among discretionary funds that rely
on judgment and muted among quantitative funds that follow fixed rules and algorithms.
Consistent with Section 4.1, if artificial intelligence augments rather than replaces human
intelligence, it should amplify this state-contingent skill. We therefore test the prediction
that time variation in managerial skill increases with Al adoption in this subsection.

To assess time-varying managerial skill, we construct monthly measures of stock pick-
ing (SP) and market timing (MT) as the cross-sectional covariance between a fund’s ac-

tive (excess) weights and, respectively, the idiosyncratic and market components of returns
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(Kacperczyk et al., 2014):

N; -1
SPi,t = Z (wi,j,t—l - wm,j,t—l) (Rj,t - 5j7t—1Rm7t) (3)
J
Nit—1
MT;; = Z (Wi jt—1 — Wmjt—1) (Bji—1Rmt) (4)

J

where ¢ indexes funds, j indexes stocks, and ¢ indexes time in months. w; ;1 — Wy ;-1
represents fund ¢’s portfolio weight on stock j in excess of the market weight at the end of
month ¢t — 1. R;; and R,,; are the returns on stock j and the market, respectively, during
month ¢. ;1 is the market beta of stock j, estimated over a 12-month rolling window from
month ¢ — 12 to ¢t — 1. The summation is taken over all stock holdings of fund ¢ at the end
of month ¢t — 1, N; ;4

Intuitively, stock picking (SP) is high when a fund’s active weights covary positively
with next-month idiosyncratic returns: the manager overweights stocks that subsequently
earn positive alphas and underweights those that deliver negative alphas. Likewise, market
timing (MT) is high when active weights move in the same direction as the realized market
payoff: the fund tilts toward high-beta stocks before a positive market month and toward
low-beta stocks before a negative one.

To test whether Al technologies enhance fund managers’ time-varying skills, we esti-

mate the following linear regression model:

SP,y (MT;;) = BAILi1—1 + 0 (Al ;-1 x 1( Volatile market;))
(5)
+ 51 4+ 0; + 60 (Oei1) +€is
where 7 indexes mutual funds and ¢ indexes time in months. Al ;_; represents the level of

AT adoption by mutual fund i’s adviser, as defined in Section 2.2. 1(Volatile market;) is an

indicator variable that takes a value of one if market volatility in month ¢ exceeds its 80th
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percentile, and zero otherwise. Market volatility is measured as the standard deviation of
daily market returns within that month. I';;,_; is a vector of lagged fund characteristics,
including the natural logarithm of total net assets (TNA, in $ million), expense ratio (in
percent), turnover ratio, and the natural logarithm of fund age (in years). 6;, 0;, and 6.,
are fund, time, and category-by-time fixed effects, respectively.

We report estimates in Table 7. In columns (1)-(2), where the dependent variable
is SP, /3 is positive and statistically significant, while § is negative and significant (albeit
marginally). In columns (3)(4), where the dependent variable is MT, the signs reverse: [3 is
small and statistically insignificant, and 5 is positive and statistically significant. These sign
flips are consistent with our prediction: Al adoption strengthens stock picking in normal
times and market timing in volatile periods when aggregate market risk and investor risk
aversion are elevated.

The state-contingent pattern connects to Zhang (2024), who emphasize stock-picking
improvements; our results clarify that Al also aids market timing precisely in volatile states
when aggregate information is most valuable. Moreover, the enhanced information processing
is also consistent with the price-efficiency gains from LLM-based signals in Sheng et al.
(2024).

Overall, our evidence indicates that Al adoption enhances managers’ time-varying
skills—hallmarks of human discretion (Abis, 2020). Taken together with the double-sort
results, the evidence points to augmentation over substitution: artificial intelligence comple-
ments, rather than replaces, human judgment, consistent with a “man + machine” equilib-

rium (Cao et al., 2024).

[Insert Table 7]
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5 Addressing endogeneity concerns

5.1 Controlling for fund characteristics

Section 3.2 showed that Al adoption is associated with lower expenses, that these sav-
ings improve net performance, and that the Al return premium persists even after stripping
out expense effects. In this subsection, we estimate the impact of Al investment on fund per-
formance in a multivariate setting that explicitly controls for fund characteristics—including
expenses—to corroborate the baseline portfolio-sorts in Section 3.1. The specification also
serves as the reduced-form counterpart to the instrumental-variables (IV) analysis in the
subsections that follow.

Specifically, we estimate the following linear regression model:

BAR, , (Alphai,t) = BAL 1+ Y1 + 0c1 + €4y (6)

where ¢ indexes mutual funds and ¢ indexes time in months. BAR;, denotes the return of
fund 7 in excess of its benchmark return in month ¢. Alpha;, is the CAPM alpha, defined as
Rii — Bit—1Rm, where R;; and R, are the returns of fund ¢ and the market, respectively,
in excess of the risk-free rate in month ¢, and 3;,_; is the market beta of fund ¢, estimated
over a 12-month rolling window from month ¢t — 12 to t — 1. Al ;_; represents the level of
AT adoption by mutual fund ¢’s adviser, as defined in Section 2.2. T';;_; is a vector of lagged
fund characteristics, including the natural logarithm of total net assets (TNA, in $ million),
expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).
0.+—1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund
and time.

We report results in Table 9. Columns (1)—(2) use benchmark-adjusted returns as the

A

dependent variable. In the univariate specification in column (1), 5 is positive and statisti-
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cally significant at the 1% level. Adding fund characteristics, including expenses, in column
(2) leaves 3 positive and statistically significant at the 5% level, with a modest attenuation
in magnitude. Replacing benchmark-adjusted returns with CAPM alphas in columns (3)—
(4) yields qualitatively similar results. Overall, these regression estimates corroborate the

portfolio-sort evidence in Section 3.1.

[Insert Table 9]

5.2 Instrumenting AI adoption

A natural concern with our analyses is measurement error in the adviser’s Al adoption
proxy, which can induce attenuation bias. Our measure focuses on human-capital invest-
ments plausibly tied to Al capabilities; as a result, it may omit other relevant inputs—e.g.,
computing infrastructure, cloud services, data storage, and data acquisition/licensing—that
are central to AI/ML performance. Such omissions, along with potential timing mismatches
and reporting noise, would bias estimated effects toward zero and weaken statistical power.

Endogeneity is a second concern: self-selection and omitted variables could bias esti-
mates upward if managers that invest more in Al also differ systematically in unobserved
ways. Why do some advisers adopt Al more aggressively than others? Our evidence in Sec-
tion 3.3 helps alleviate this concern: prior to the availability of satellite imagery of retailer
parking lots, high- and low-Al funds did not differentially select retail stocks, suggesting
no pre-trend in alpha generation along this margin. To further bolster identification, we
employ instrumental-variables (IV) regressions. Although it is a priori unclear whether
alpha-generating managers are intrinsically more likely to invest in AI, the IV approach mit-
igates bias from such potential selection and from omitted factors correlated with both Al
adoption and performance.

Why do some asset managers invest more in Al than others? We conjecture that,
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because Al expertise is scarce and geographically concentrated (e.g., Silicon Valley), the
local supply of Al technologies is a key driver of cross-sectional differences in adoption
across advisers. Building on this idea, we instrument adviser-level Al adoption with the
local availability of AI technologies in the areas where asset managers are located.
Specifically, for each metropolitan area and year t, we measure the local supply of
AT technologies (Al aLjC‘ll) as the average Al-skill score of all individuals employed in area
a at time t. For illustration, Figure 4 maps AI***® in 2023. The San Jose metro (Silicon
Valley) exhibits the highest local Al supply in the United States, followed by Seattle, San
Francisco, Boston, and Austin. The figure also highlights pronounced within-state dispersion:
in California, San Jose ranks at the national frontier while Bakersfield is among the lowest;

in Texas, Austin is near the top nationally whereas Lubbock sits near the bottom.
[Insert Figure 4]

With our instrument in hand, we estimate the following two-stage least squares (2SLS)

model:
ALy = BYAIL ) + ' Ty + 62,1 +el,,  (first-stage) (7)

BAR;; (Alpha;,) = 521/4\12‘,1:—1 +7°Ty1 + 931&_1 + Efﬂf (second-stage) (8)

where ¢ indexes mutual funds and ¢ indexes time in months. BAR,;, denotes the return of
fund 7 in excess of its benchmark return in month ¢. Alpha;, is the CAPM alpha, defined as
Rii — Bit—1Rm,, where R;; and R,,, are the returns of fund ¢ and the market, respectively,
in excess of the risk-free rate in month ¢, and 3;,_; is the market beta of fund ¢, estimated
over a 12-month rolling window from month ¢t — 12 to t — 1. Al represents the level
of AT adoption by mutual fund ¢’s adviser, as defined in Section 2.2. AI'¢*% is the local

supply of AI technologies available to mutual fund 4’s adviser. I';;_; is a vector of lagged
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fund characteristics, including the natural logarithm of total net assets (TNA, in $ million),
expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).
0.+—1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund
and time.

Table 10 reports the first-stage regressions linking adviser-level Al adoption to local
AT supply. Consistent with our conjecture, the coefficient on the local supply of Al tech-
nologies is positive and statistically significant. This pattern suggests that Al adoption is
constrained by local availability of Al talent/technology, with advisers in metros richer in Al
resources investing more in Al. Regarding fund controls, larger, younger, and higher-turnover
funds exhibit greater Al adoption, while expense ratios are negatively related to adoption

(consistent with Section 3.2).
[Insert Table 10]

Finally, Table 11 reports the second-stage estimates. Columns (1)—(2) use benchmark-
adjusted returns as the dependent variable. In the univariate second stage in column (1), the
IV coefficient Bl V' is positive and statistically significant at the 10% level. Its magnitude is
about 4.85 times the corresponding OLS estimate in Table 9 (4.85 = 0.126/0.026), consistent
with attenuation from measurement error in our Al investment proxy. Results are similar
when adding fund characteristics in column (2) and when replacing benchmark-adjusted
returns with CAPM alphas in columns (3)—(4). Taken together, the IV results reinforce our

earlier findings and suggest a causal Al outperformance effect.

[Insert Table 11]
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6 Conclusion

In the paper, we study the influence of Al on investment management, specifically
its utilization by mutual fund managers and its impact on their performance. In addition,
the study provides insight into the broader implications of Al for human productivity and
displacement. The issue is whether we should expect the Al revolution to complement and
strengthen human skills, such as in investment management, or whether we might expect Al
and powerful machines to largely replace human skills and judgment in these endeavors.

Using unique data from LinkedIn profiles, we measure the adoption of Al technologies
among mutual fund management companies. This is done by computing the AT skill level of
each individual by taking the average of Al-relatedness scores across all skills associated with
that individual. The level of investment in Al technologies made by a mutual fund advisor
is measured by the average of the AI skill levels of all individuals employed by that advisor.
Among our results, we show the local supply of Al technologies is a major determinant of
the cross-sectional variation in mutual fund Al investment. The geographic variation in the
local supply of Al skills provides a source of exogenous variation in the utilization of Al
by mutual funds. We show our findings are robust to using the exogenous variation as an
instrument for the utilization of AI by funds.

Compared to low-Al funds, high-Al funds earn superior benchmark-adjusted returns
and incur lower expenses. The long/short portfolio has benchmark-adjusted returns of 4.3
basis points per month (0.52% annualized). The AT outperformance is both economically and
statistically significant. We obtain similar results when we compute the alphas (risk-adjusted
returns) of benchmark-adjusted returns.

Our results are quite instructive in their implications for human-machine complemen-
tarity. In particular, our results show that Al tends to boost the performance of discretionary

funds that invest based on human skills and judgment — relative to funds that rely more
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on quantitative and algorithmic techniques. Among discretionary funds, high-Al funds out-
perform low-AI funds by 8.8 basis points per month (1.06% annualized). In contrast, among
quantitative funds, AI outperformance is muted and statistically insignificant. This is in
keeping with the view that rather than replacing human intelligence, artificial intelligence
is more likely to augment it, consistent with the findings of Cao et al. (2024). We further
corroborate that Al tends to augment human intelligence by showing that the source of
the improved performance is time-varying and is evident in stock-picking and market-timing
skills conditional on market conditions. The stock-picking skills of high-Al funds improve

with the availability of big data, such as satellite imagery of parking lots for retailers.
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Figure 1: This figure shows the Al-relatedness scores for a few selected skills.
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Figure 2: This figure shows the Al-relatedness scores for a few selected roles (O*NET
titles).
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Figure 3: This figure shows the value-weighted average level of investment in Al technologies
by mutual fund investment advisers, sorted into quintiles each month.
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Figure 4: This figure shows the local supply of Al technologies in 2023.
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Table 1: Does Al adoption improve fund performance?

This table presents the results of portfolio sorts based on Al adoption. First, we sort the funds into quintile
portfolios each month based on the level of investment in AI technologies by mutual fund management
companies (“investment advisers”), as defined in Section 2.2. Next, we compute the value-weighted average
returns of the funds in each quintile, as well as the difference between the extreme quintile portfolios (long-
short portfolio). Fund returns are reported as excess returns relative to their benchmark returns. t-statistics,
based on Newey-West standard errors with five lags, are reported in parentheses, with statistical significance
at the 10%, 5%, and 1% levels indicated by *, ** and *** respectively.

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1

—0.164* —0.100** —0.117"* —0.097"*  —0.058" 0.106**
(—4.05) (—3.57) (—3.81) (—2.65) (—1.84) (3.85)
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Table 2: Al outperformance over time

This table reports portfolio-sort results by Al adoption for two subperiods. We re-estimate the specifications
in Table 1 separately for the early (2008—2015) and recent (2016—2023) periods. t-statistics, based on Newey-
West standard errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%,
and 1% levels indicated by *, ** and *** respectively.

Panel A: Early period (2008-2015)

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5-Q1
—0.116* —0.077* —0.108** —0.089 —0.046 0.070*
(—1.86) (—2.02) (—2.28) (—1.40) (—0.87) (1.91)

Panel B: Recent period (2016-2023)

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1
—0.212%* —0.124%* —0.126"* —0.106™* —0.071* 0.141%
(—4.41) (=3.12) (—3.36) (—2.86) (—2.02) (3.62)
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Table 3: Can Al outperformance be explained by common risk factors?

This table presents the results of the following linear regression model:
Rp,t = Qp + bpMKTt + SpSMBt + thMLt + ’U,pUMDt + Ep,t

where R, represents the value-weighted average benchmark-adjusted return of the long-short portfolio,
which is sorted into quintiles based on the level of investment in Al technologies by mutual fund investment
advisers, as defined in Section 2.2. MKT;, SMB;, HML;, and UMD; are the factor returns on the market,
size, value, and momentum (Fama and French, 1993; Carhart, 1997). t-statistics, based on Newey and West
standard errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, ** and *** respectively.

Benchmark-adjusted returns

(1) (2) (3)

Alpha 0.094*** 0.091*** 0.089***
(3.52) (3.47) (3.28)

MKT 0.014 0.018 0.023*
(1.64) (1.94) (2.55)
SMB —0.018"* —0.014
(—1.88) (—1.48)
HML —0.001 0.004
(—0.10) (0.36)

UMD 0.016**
(2.28)
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Table 4: Does Al adoption reduce fund expenses?

This table presents the results of portfolio sorts based on Al adoption. First, we sort the funds into quintile

portfolios each month based on the level of investment in Al technologies by mutual fund investment advisers,
as defined in Section 2.2. Next, we compute the value-weighted average returns (both before and after
expenses) and expenses for the funds in each quintile, as well as the difference between the extreme quintile
portfolios (long-short portfolio). Fund returns are reported as excess returns relative to their benchmark

returns. t-statistics, based on Newey-West standard errors with five lags, are reported in parentheses, with

statistical significance at the 10%, 5%, and 1% levels indicated by *, ** and *** respectively.

Panel A: Net returns

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5-Q1
—0.164"* —0.100*** —0.117** —0.097*** —0.058" 0.106***
(—4.05) (—3.57) (—3.81) (—2.65) (—1.84) (3.85)

Panel B: Gross returns

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1
—0.093** —0.038 —0.039 —0.033 —0.001 0.092%**
(—2.26) (—1.37) (—1.24) (—0.89) (—0.05) (3.32)

Panel C: Expenses

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1
0.074** 0.067** 0.077* 0.070"* 0.057"* —0.017"*
(29.19) (66.13) (32.24) (20.34) (22.22) (—12.92)
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Table 5: Stock picking with satellite imagery of parking lots

This table presents the results of the following linear regression model:

Alphaj,t = p(W@Z’ghtiJ’t,l X Ali,tfl X ]I(POStjﬂg,l)) + 61 (Weighti’j,tfl X AIi’tfl)
+ 52 (W@ightiyj’tfl X ]l(POStj’tfl)) + (53 (1(P08tj1t,1) X AL;’tfl)
+ f1Weight; j1—1 + BoALi 11 + BsL(Postji—1) +vilip—1 + 72l -1+ 0; +0; + 6, +¢ij+

where ¢ indexes mutual funds, j indexes stocks, and ¢ indexes time in months. Alpha;; is the alpha (idiosyn-
cratic return) of stock j in month ¢, defined as R; ¢ — 8 +—1Rm, ¢+, where R; ; and R, ; are the returns of stock
j and the market, respectively, in excess of the risk-free rate in month ¢, and 5; ;1 is the market beta of stock
J, estimated over a 12-month rolling window from month ¢t —12 to t —1. Weight; j -1 = W; j.t—1 — W jt—1 IS
fund ’s portfolio weight on stock j in excess of its market weight at the end of month t —1. 1(Post;—1) is an
indicator variable that takes a value of one if firm j is covered by RS Metrics for satellite imagery of parking
lots in month ¢ — 1, and zero otherwise. The timing of satellite imagery availability is sourced from Katona
et al. (2025). Al ;_; represents the level of investment in Al technologies by mutual fund ¢’s investment
adviser, as defined in Section 2.2. I';;_; is a vector of lagged fund characteristics, including the natural
logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural
logarithm of fund age (in years). I';;—1 is a vector of lagged stock characteristics, including the percentile
rankings of market capitalization, book-to-market ratio, and the past 12-month return (excluding the most
recent month). 6;, §;, and 6; represent fund, stock, and time fixed effects, respectively. The sample includes
retail firms covered by RS Metrics from 12 months before to 12 months after satellite imagery coverage of
parking lots became available. Standard errors are double-clustered by fund and stock, and t-statistics are
reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated by *, ** and
K respectively.
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Table 5-Continued

Alpha
(1) (2) (3) (4)
Weight x Al x Post 0.21** 0.21** 0.24** 0.24**
(2.38) (2.36) (2.34) (2.41)
Weight x Al —0.04 —0.04 —0.03 —0.03
(—0.60) (—0.54) (—0.39) (—0.43)
Weight x Post —0.13 —0.12 0.01 —0.004
(—0.95) (—0.92) (0.05) (—0.04)
Post x Al —0.07 —0.06 —0.17* —0.17*
(—0.99) (—0.91) (—2.11) (—2.19)
Weight —0.31* —0.32%* —0.26™** —0.25***
(—4.45) (—4.61) (—3.95) (—4.10)
Al 0.08 0.08 0.12 0.12
(0.63) (0.58) (0.93) (0.92)
Post —0.72 —0.75 —0.85 —0.87
(—1.02) (—1.06) (—1.13) (—1.15)
Fund fixed effects Yes Yes Yes Yes
Stock fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Fund characteristics Yes Yes
Stock characteristics Yes Yes
Observations 85,620 80,865 85,600 80,846
Adjusted R? 0.24 0.24 0.26 0.26
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Table 6: Quantitative vs. discretionary funds

This table presents the results of double sorts based on quantitative/discretionary fund classification and
AT adoption. First, we sort the funds into two-by-five portfolios each month, based on the fund’s quantita-
tive/discretionary classification (Abis, 2020) and the level of investment in AT technologies by its adviser, as
defined in Section 2.2. Next, we compute the value-weighted average return of the funds in each portfolio,
as well as the difference between the extreme quintile portfolios (long-short portfolio) for each classifica-
tion. Fund returns are reported as excess returns relative to their benchmark returns. t-statistics, based on
Newey-West standard errors with five lags, are reported in parentheses, with statistical significance at the
10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Panel A: Quantitative funds

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1
—0.114* —0.123* —0.165* —0.090"  —0.043 0.071*
(—3.48) (—3.68) (—4.98) (—2.47) (—1.29) (2.22)

Panel B: Discretionary funds

Portfolios sorted on Al adoption

Q1 Q2 Q3 Q4 Q5 Q5 - Q1
—0.192** —0.102" —0.098"* —0.102*  —0.063" 0.129**
(—3.73) (—3.25) (—2.41) (—2.17) (—1.81) (3.21)
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Table 7: Time-varying fund manager skill

This table presents the results of the following linear regression model:
SPi,t (MTi7t) = ﬂAIi7t_1 + 6 (AIi7t_1 X ]l( Volatile markett)) + ’)/Fiﬂg_l +0; + 6, (007,5_1) + €it

where ¢ indexes mutual funds and ¢ indexes time in months. AI; ;1 represents the level of investment in Al
technologies by mutual fund 4’s investment adviser, as defined in Section 2.2. SP;, and MT;, capture the
stock picking and market timing skills of mutual funds, defined as the covariance between fund weights (in
excess of the market) and the idiosyncratic returns (alphas) and systematic returns of the stock holdings, re-
spectively (Kacperczyk et al., 2014). See Equations (3) and (4) in Section 4.2 for details. 1( Volatile market;)
is an indicator variable that takes a value of one if market volatility in month ¢ exceeds its 80th percentile,
and zero otherwise. Market volatility is measured as the standard deviation of daily market returns within
that month. I';,_; is a vector of lagged fund characteristics, including the natural logarithm of total net
assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of fund
age (in years). 0;, 64, and 6.;_1 are fund, time, and category-by-time fixed effects, respectively. Standard
errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with statistical
significance at the 10%, 5%, and 1% levels indicated by *, ** and ***, respectively.

SP MT
(1) (2) (3) (4)
Al 0.031* 0.020** —0.032 —0.018
(1.76) (2.16) (—1.52) (—1.52)
AT x 1(Volatile market) —0.045 —0.030* 0.133** 0.086**
(—1.42) (—1.70) (2.20) (2.50)
log(TNA) —0.142%* —0.113*** —0.011 0.001
(—5.27) (—10.15) (—0.96) (0.14)
Expense ratio —0.086 —0.012 0.022 0.036
(—1.47) (—0.28) (0.84) (1.24)
Turnover ratio —0.146*** —0.090*** 0.063*** 0.030***
(—4.54) (—4.79) (3.15) (2.81)
log(Fund age) 0.042 0.032** 0.027** 0.013
(1.51) (2.09) (2.07) (1.33)
Fund fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes
Category-by-time FEs Yes Yes
Observations 149,332 149,332 149,332 149,332
Adjusted R? 0.22 0.58 0.91 0.96

41



Table 8: STEM vs. non-STEM managers

This table presents the results of double sorts on manager STEM designation and Al adoption. We classify a
fund as STEM-run if at least one manager has an educational background in science, technology, engineering,
or mathematics. Each month, funds are assigned to two-by-five portfolios based on the manager’s STEM
status (STEM vs. non-STEM) and the adviser’s level of Al adoption (quintiles). Next, we compute the
value-weighted average return of the funds in each portfolio, as well as the difference between the extreme
quintile portfolios (long-short portfolio) for each classification. Fund returns are reported as excess returns
relative to their benchmark returns. t-statistics, based on Newey-West standard errors with five lags, are

reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and
*** respectively.
Panel A: STEM managers
Portfolios sorted on Al adoption
Q1 Q2 Q3 Q4 Q5 Q5 - Q1
—0.180*** —0.081* —0.141%** —0.112* —0.037 0.143*
(—3.57) (—1.68) (—3.32) (—1.99) (—1.14) (3.18)
Panel B: Non-STEM managers
Portfolios sorted on Al adoption
Q1L Q2 Q3 Q4 Q5 Q5 - Q1
—0.175%** —0.129*** —0.118*** —0.084** —0.081** 0.094**

(—3.93) (—3.38) (—3.34) (—2.24) (—2.06) (2.43)
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Table 9: Controlling for fund characteristics

This table presents the results of the following linear regression model:
BAR;; (Alpha; ;) = BAL 41 +9Ti-1+0c4-1+€it

where ¢ indexes mutual funds and ¢ indexes time (in months). BAR; ; denotes the return of fund ¢ in excess
of its benchmark return in month ¢. Alpha; , is the CAPM alpha, defined as R;; — Bit—1Rm ¢, where R;;
and R,,: are the returns of fund ¢ and the market, respectively, in excess of the risk-free rate in month ¢,
and f;+—1 is the market beta of fund ¢, estimated over a 12-month rolling window from month ¢ — 12 to
t—1. Al ;_; represents the level of investment in Al technologies by mutual fund ¢’s investment adviser, as
defined in Section 2.2. T';;_; is a vector of lagged fund characteristics, including the natural logarithm of
total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of
fund age (in years). 6.;—1 denotes category-by-time fixed effects. Standard errors are double-clustered by
fund and time, and t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, ** and *** respectively.

BAR Alpha
(1) (2) (3) (4)
Al 0.026*** 0.019* 0.026*** 0.018*
(2.73) (2.10) (2.69) (1.91)
log(TNA) —0.003 0.002
(—0.66) (0.38)
Expense ratio —0.119*** —0.110***
(—4.89) (—3.98)
Turnover ratio —0.052* —0.076***
(—1.66) (—2.81)
log(Fund age) 0.004 —0.017*
(0.39) (—1.91)
Category-by-time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R? 0.16 0.16 0.58 0.57
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Table 10: Determinants of mutual fund AI adoption

This table presents the results of the following linear regression model:
Al = 5AIaLftmal F+ L1 +0c—1 + €0t

where ¢ indexes mutual funds and ¢ indexes time in months. AI;; represents the level of investment in Al
technologies by mutual fund i’s investment adviser, as defined in Section 2.2. AT ffgcal is the local supply of Al
technologies available to mutual fund ¢’s investment adviser. I'; 1 is a vector of lagged fund characteristics,
including the natural logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover
ratio, and the natural logarithm of fund age (in years). 6.,_1 denotes category-by-time fixed effects. Standard
errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with statistical
significance at the 10%, 5%, and 1% levels indicated by *, ** and *** respectively.

Al
(1) (2) (3) (4) () (6)
Ahecal 0.551* 0.500* 0.397* 0.476* 0.569* 0.359*
(1.91) (1.90) (1.76) (1.70) (1.94) (1.67)
log(TNA) 0.030** 0.027**
(2.45) (2.09)
Expense ratio —0.416*** —0.359***
(—2.69) (—2.72)
Turnover ratio 0.060* 0.091**
(1.69) (2.65)
log(Fund age) —0.061* —0.069**
(—1.83) (—2.08)
Category by time FEs Yes Yes Yes Yes Yes Yes
Observations 145,742 145,742 138,155 138,174 145,742 138,152
Adjusted R? 0.09 0.09 0.12 0.09 0.09 0.13
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Table 11: Instrumental variables (IV) regressions

This table presents the results of the following two-stage least squares model:

Al = BlAIaL,(Ziall + ’eri,t—1 + o(lz,t—l + 5%,t—1 (first stage)
BAR; ; (Alpha; ;) = 522\[“_1 +7°Tie—1 + 9?)16_1 + 6?)75 (second stage)

where 7 indexes mutual funds and ¢ indexes time in months. BAR; ; denotes the return of fund ¢ in excess of
its benchmark return in month ¢. Alpham is the CAPM alpha, defined as R; ; — 3; +—1Rpm ¢, where R; ; and
R, are the returns of fund ¢ and the market, respectively, in excess of the risk-free rate in month ¢, and
Bi,t—1 is the market beta of fund ¢, estimated over a 12-month rolling window from month ¢ — 12 to ¢t — 1.
Al ;_; represents the level of investment in Al technologies by mutual fund ¢’s investment adviser, as defined
in Section 2.2. Al aL"t)i“ll is the local supply of AT technologies available to mutual fund i’s investment adviser.
T -1 is a vector of lagged fund characteristics, including the natural logarithm of total net assets (TNA,
in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).
0.+—1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund and time, and
t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated

by *, ** and ***, respectively.

BAR Alpha
(1) (2) (3) (4)
Al 0.126* 0.205* 0.114* 0.197*
(1.88) (1.80) (1.84) (1.91)
log(TNA) —0.009 —0.003
(—1.38) (—0.30)
Expense ratio —0.050 —0.043
(—1.26) (—0.95)
Turnover ratio —0.072% —0.094***
(—1.95) (—3.10)
log(Fund age) 0.016 —0.005
(1.31) (—0.30)
Category by time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R? 0.16 0.15 0.58 0.57
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