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1 Introduction

There is much excitement and uncertainty about the potential for Artificial Intelligence

(AI) to significantly impact GDP growth and productivity, with projections that range from

the modest to simply remarkable.1 There is also speculation and misgiving about the effect

of AI on different industries and occupations since this depends on the types of human skills

that AI might enhance and those it could render obsolete. Evidence is mixed on whether

AI enhances skilled work. While research on earlier forms of AI finds that the technology

raised wages of skilled workers, other studies indicate that generative AI can serve, at least

to some degree, as a complement to low-skilled workers within a given occupation.2

Agrawal et al. (2019) conceptualize AI as a general-purpose prediction technology that

lowers the cost of inference and reconfigures decision-making and organizational design—

complementing evidence that its diffusion is reshaping task content and skill demand. In

the same vein, Autor (2015) emphasizes the complementarity between digital tools and ana-

lytical occupations, implying that AI is more likely to amplify than to displace professional

judgment. While the potential impact on aggregate employment and growth effects is unre-

solved (Webb, 2019), Acemoglu et al. (2022) find evidence suggesting that the adoption of

AI is associated with a change in skill requirements and less hiring in non-AI positions.3

In the paper, we study the influence of AI on asset management, specifically its utiliza-

tion by mutual funds and the impact on their performance. Of particular interest is whether

AI tends to complement and enhance human skills in asset management. Our paper is re-
1On the high side, an IDC report claims that AI could contribute $19.9 trillion to the global economy

through 2030, accounting for 3.5% of global GDP (IDC Economic Impact https://my.idc.com/getdoc.
jsp?containerId=prUS52600524). However, MIT economist Daron Acemoglu estimates a more modest
GDP increase of 1.1 to 1.6% over 10 years, with an annual productivity gain of only 0.05%.https://news.
mit.edu/2024/what-do-we-know-about-economics-ai-1206

2See, for instance, https://www.cbo.gov/publication/61147
3Grennan and Michaely (2020) provides evidence of negative consequences for skilled individuals. They

find that analysts with portfolios exposed to AI are more likely to reallocate efforts to soft skills, shift coverage
towards low AI stocks, and even leave the profession. Similarly, Bonelli and Foucault (2023) suggests that
big data has the potential to displace high-skill workers in finance such as portfolio managers.
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lated to a growing body of work that links AI to capital-market efficiency and information

production.4 A recent global survey of asset managers suggests that a majority (54%) re-

port making some use of AI in investment strategy or asset class research (Mercer, 2024).5

The survey suggests that AI is seen as valuable in generating ‘alpha’, since it facilitates the

crunching of massive datasets to detect market trends, in analyzing company financials, and

even satellite imagery of parking lots to uncover insights no human could process at scale.

It is also lauded for improving cost efficiency and risk mitigation.

Large asset managers are now incorporating AI directly into their investment processes.

For instance, BlackRock (2025) reports deploying large language models (LLMs) to analyze

corporate earnings call transcripts, news articles, and social media to help inform investment

forecasts and uncover potential alpha opportunities.6 Likewise, Cliff Asness—co-founder

of AQR, a quant asset manager with deep academic ties—says the firm has ‘surrendered

more to the machines,’ underscoring the accelerating shift toward AI-driven decision making

(Mourselas and Pollard, 2025).7

While our paper focuses on the impact of AI on investment performance, we believe that

the study can also offer insight into the broader ramifications of AI for human productivity.

An issue of keen interest is whether we should expect the AI revolution to complement

and strengthen human skills, such as in investment decisions, or whether we might expect

AI and powerful machines to largely displace the human skills and judgment of investment

professionals (Cao et al., 2024).8 Hence, as part of our analysis, we examine whether AI

tends to have a differential impact on investment strategies in which there is a greater
4See, for example, Babina et al. (2024); Abis and Veldkamp (2024); Cao et al. (2024); Lopez-Lira and

Tang (2023); Jha et al. (2024); Bonelli and Foucault (2023); Fuster et al. (2022).
5https://www.mercer.com/insights/investments/portfolio-strategies/

ai-in-investment-management-survey/.
6https://www.blackrock.com/us/individual/insights/ai-investing?utm_source=chatgpt.com.
7https://www.ft.com/content/e62c85cb-e3c8-4df3-b115-e3e11eeaa266.
8Cao et al. (2024) compare the performance of AI and human analysts and find that humans provide

significant incremental value in “Man + Machine” settings.
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contribution by human skills and judgment relative to strategies that follow systematic rule-

based algorithms (Abis, 2020).

We begin by determining the extent of AI adoption by an assessment of the AI skills

of individuals hired by mutual fund management companies (“advisers”) using LinkedIn

profile data from Revelio Labs. The dataset provides detailed information on the employ-

ment history of several hundred million individuals across the globe, including job titles and

functions, educational background, and firm affiliations. Revelio uses machine learning algo-

rithms to identify and categorize skills associated with each individual based on their listed

experiences and roles. For each skill, we compute its AI-relatedness score by the likelihood

of its co-occurrence with any of the AI core skills (Babina et al., 2024). Next, we compute

the AI skill level of each individual by taking the average of the AI-relatedness scores across

all skills associated with that individual. For our main independent variable of interest, we

measure the level of investment in AI technologies made by a mutual fund adviser by taking

the average of the AI skill levels of all individuals employed by that adviser.

We next assess the performance implications of AI by sorting mutual funds each month

into quintiles based on their advisers’ investment in AI technologies. By construction, top-

quintile (“high-AI”) funds enter the sample with markedly greater AI exposure. Moreover,

they continue to expand adoption over time, so the dispersion in AI investment relative to

lower-quintile funds widens substantially, particularly from the mid-2010s onward. For each

quintile-sorted portfolio, we compute the value-weighted averages of fund returns in excess

of their benchmark returns, as well as the difference in benchmark-adjusted returns between

the highest and lowest quintile (long/short) portfolios. We find that the long/short portfolio

has benchmark-adjusted returns of 10.6 basis points per month (about 1.27% per year).

The AI outperformance is both economically and statistically significant. We obtain similar

results when we compute the alphas (risk-adjusted returns) of benchmark-adjusted returns.

Our results further show that both AI adoption and its performance benefits for mutual
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funds are concentrated in the latter half of the sample (2016–2023). In this subperiod, the

high-minus-low AI return spread approximately doubles—from 7 bps per month to 14.1 bps

per month (about 0.84% vs. 1.69% per year). This pattern contrasts sharply with Chen

et al. (2025), who examine hedge funds with AI-labeled strategies and document that their

outperformance declines after 2015 and disappears by 2020.

AI technologies can also enhance fund performance by reducing expenses, which tend

to substantially erode net returns. To assess the impact of AI adoption on fund expenses,

we decompose returns (net of expenses) into two components: returns (gross of expenses)

and expenses. Indeed, we find that high AI funds incur substantially lower expenses than

low AI funds, with expenses being 1.7 basis points per month lower.

To examine the sources of AI outperformance, we leverage the well-documented strength

of AI and machine learning in processing unstructured “big data” (e.g., satellite imagery)

and use this setting to test whether such capabilities translate into superior investment per-

formance. Using the staggered introduction of satellite imagery of parking lots for retail firms

(Katona et al., 2025), we find that the positive impact of AI technologies on stock-picking

ability is enhanced by the availability of unstructured big data.9 Overall, our results suggest

that mutual funds utilizing AI technologies are better equipped to process and exploit big

data as more unstructured information becomes available. We note that these performance

results, since they are consistent with the core benefits of using AI, also validate the measure

of AI adoption that we use.

As noted above, a central objective is to assess whether AI enhances human perfor-

mance or bypasses human skills in asset management. Having established AI outperfor-

mance, we ask which funds benefit most: those driven by human discretion and judgment,

or those relying on quantitative, algorithmic techniques (Abis, 2020). Put differently, does AI
9The use of satellite imagery as an alternative data source is well documented—parking-lot car counts

forecast store performance and guide institutional trading (Kang et al., 2021; Katona et al., 2025); more
broadly, imagery-based measures such as night lights map to real activity (Henderson et al., 2012).
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chiefly make algorithms better at being algorithms, or does it complement human decision-

making?

To address this, we classify mutual funds as discretionary or quantitative by train-

ing a random-forest classifier on the Principal Investment Strategy sections of mutual fund

prospectuses obtained from SEC filings, following Abis (2020). The results are informa-

tive: AI disproportionately boosts discretionary funds. Among discretionary funds, high-AI

funds outperform low-AI funds by 12.9 bps per month (about 1.55% per year). In contrast,

among quantitative funds, the AI premium is 7.1 bps per month (about 0.85% per year).

These findings align with the view—also supported by Cao et al. (2024)—that, rather than

replacing human intelligence, artificial intelligence more often complements it.

We further examine whether AI enhances human decision-making by drawing on the

model and evidence in Kacperczyk et al. (2014, 2016). Their framework posits time-varying

managerial skill: fund managers engage in stock picking during normal times and switch

to market timing during bad times. Abis (2020) further argues that such state dependence

is a hallmark of human decision making. Consistent with this view, we show that AI aug-

ments human intelligence in a state-contingent manner: performance improvements are time

varying, with high-AI funds exhibiting stronger stock picking in normal times and supe-

rior market timing in volatile periods when aggregate risk and investor risk aversion are

elevated.10

Why do certain mutual fund advisers invest more in AI technologies than others? We

conjecture that since AI skills are scarce and geographically concentrated (e.g., in Silicon

Valley), the local supply of AI technologies could be a major determinant of the cross-

sectional variation in the level of investment in AI technologies by mutual fund advisers. For
10These findings contrast with Zhang (2024), who attributes the outperformance of AI-investing funds

primarily to enhanced stock picking rather than to market timing. Our results instead indicate that AI can
bolster both capabilities, with portfolio managers reweighting signal sets as conditions change; consequently,
AI’s contribution manifests differently across market regimes.

5



each metropolitan area, we measure the local supply of AI technologies by taking the average

of the AI skill levels of individuals working in that area. Consistent with our conjecture,

the local supply of AI technologies is significantly positively associated with the adoption

of AI technologies by mutual fund advisers located in that area. Our results suggest that

AI adoption is constrained by the local supply of AI technologies, and mutual fund advisers

located in metro areas with a larger supply of AI technologies tend to invest more in AI

technologies. The geographic variation in the local supply of AI skills provides a source of

exogenous variation in the utilization of AI by mutual funds. We show that our findings are

robust to using the exogenous variation as an instrument for the utilization of AI by asset

managers.

Recent contemporaneous studies provide complementary evidence on how artificial in-

telligence is transforming the asset management industry. Chen et al. (2025) document

that hedge funds with AI-driven strategies initially outperform peers, though the perfor-

mance premium narrows as adoption becomes widespread. Sheng et al. (2024) focus on

generative AI, showing that hedge funds incorporating ChatGPT-based signals earn 2-4

percent higher annualized alphas and improve price efficiency, particularly when analyzing

firm-specific information. Zhang (2024) finds that mutual funds with greater AI investment

outperform peers through enhanced stock-picking—rather than market timing—especially

in information-rich stocks. Cen et al. (2024) link data-science human capital to trading

profitability and portfolio concentration, showing that while hiring data scientists improves

fund performance, concentrated data-science coverage can reduce market-wide price infor-

mativeness.

Our paper is related to recent papers that examine the impact of AI on firm produc-

tivity. Among these, Babina et al. (2024) develops some of the AI investment measures that

we also employ in our paper. Babina et al. (2024) shows that there is a stark increase in AI

investment across sectors and finds that AI-investing firms experience significantly higher
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growth, primarily through increased product innovation.

Our paper complements and extends this emerging literature in several important ways.

First, we show that AI’s performance gains are concentrated in discretionary funds—rather

than quantitative funds—pinpointing the style margin on which AI complements human

judgment and enhances discretionary decision-making. This style-based heterogeneity speaks

directly to man+machine synergies (Cao et al., 2024) and addresses a question not explored in

the contemporaneous studies, which do not separate investment styles or test this mechanism

at the strategy level. Second, by linking AI adoption to both realized fund performance and

time-varying managerial skill, we identify when AI augments human intelligence—relaxing

information-processing constraints while preserving the flexibility and context sensitivity

of human portfolio managers (Kacperczyk et al., 2014, 2016; Abis, 2020). Third, using a

broader measure of AI adoption across asset managers, we document a sharpening impact

of AI on performance in recent years, underscoring its growing relevance as data intensity

rises and tools mature—in contrast to Chen et al. (2025), who, under a narrower definition

focused on explicitly AI-labeled investment strategies, document a disappearance of the AI

premium post-2020.

2 Data and methodology

2.1 Data contruction

Our source of online resume data is Revelio Labs, which provides detailed information

on the employment histories of hundreds of millions of individuals worldwide. Revelio Labs

data are derived from publicly available online resumes, primarily sourced from LinkedIn.

The dataset provides structured information on employment history, including job titles,

firm affiliations, tenure periods, educational background, and job titles.
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We obtain mutual fund returns, total net assets (TNA), expenses, and holdings from

the CRSP Survivor-Bias-Free Mutual Fund database. CRSP holdings data offer greater

coverage than the Thomson/Refinitiv Mutual Fund Holdings (s12) database for our sample

period, and holdings are available on a monthly basis for the majority of our sample funds.

We match mutual fund advisers (asset managers) from our mutual fund datasets to

companies in the Revelio Labs database using Legal Entity Identifier (LEI) numbers, if

available, and company names. For adviser identification, we obtain detailed information on

mutual fund advisers as well as sub-advisers directly from SEC filings: Form N-SAR and

Form N-CEN. We match funds available in the CRSP dataset with those in the N-SAR filings

using a name-matching algorithm (Han et al., 2024), and with funds in the N-CEN filings

using the crsp cik map file made available by CRSP. Form N-SAR filings were discontinued

in 2018 and replaced by Form N-CEN filings in 2019.

Form N-CEN filings report advisers’ Legal Entity Identifier (LEI) numbers, if available,

which are also provided for a subset of companies in the Revelio Labs data. We use LEI

numbers to match mutual fund advisers with companies in the Revelio Labs data. We

extrapolate LEI numbers for advisers available in both N-CEN and N-SAR filings using

SEC file numbers, which consistently identify mutual fund advisers across different SEC

filings. For the remaining managers, we use a name-matching algorithm to match mutual

fund advisers from our mutual fund datasets with companies in the Revelio Labs data.

Since company names may not be reported consistently and tend to be quite similar across

subsidiaries and affiliates, we strive to be conservative when in doubt during the name-

matching process.

Since we focus on actively managed U.S. domestic equity funds, we require that funds

belong to one of the nine Morningstar categories, known as the Morningstar equity style

box, defined by the funds’ size and style tilts: {Large, Mid-cap, Small} × {Growth, Blend,

Value}. We obtain Morningstar categories from the Morningstar Direct database. We match
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funds from CRSP with those from Morningstar based on CUSIP, ticker, and fund name, in

that order (Berk and van Binsbergen, 2015; Pástor et al., 2015). We exclude index funds

and exchange-traded funds using the fund flags available from CRSP and Morningstar. To

avoid the incubation bias (Evans, 2010), we require that funds’ TNAs be greater than $5

million at the beginning of the month. We aggregate share-class-level information to the

fund (portfolio) level using Morningstar’s fundid.

2.2 AI adoption measure

We construct our AI adoption measure using LinkedIn profile data obtained from Reve-

lio Labs. Revelio uses machine learning algorithms to identify and categorize skills associated

with each individual (user) based on their listed experiences and roles. For each skill j, we

compute its AI-relatedness score by the likelihood of its co-occurrence with any of the AI

core skills (Babina et al., 2024):

AI relatednessj = Number of individuals with skill j and any of the AI core skills
Number of individuals with skill j

, (1)

where the average is taken over all individuals associated with skill j. For the AI core

skills, we use Artificial Intelligence, Machine Learning, Deep Learning, Natural Language

Processing, and Computer Vision.

We report AI relatedness scores for a few selected skills in Figure 1. Among the top AI-

related skills are Pattern Recognition, Data Science, Signal Processing, and Image Processing,

with AI-relatedness scores of 0.81, 0.66, 0.63, and 0.59, respectively. On the other hand,

traditional data analysis skills, such as Statistics and Data Analysis have relatively low AI-

relatedness scores of 0.19 and 0.08, respectively. General-purpose programming languages

such as R and Python, which are widely used in machine learning applications, have relatively

high AI-relatedness scores of 0.31 and 0.19, respectively. In contrast, traditional finance skills
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such as Corporate Finance and Investments have AI-relatedness scores of virtually zero.

[Insert Figure 1]

Next, we compute the level of AI skills of each individual (employee) by taking the

average of the AI-relatedness scores across all skills associated with that individual. To

illustrate the roles (positions) of AI skilled workers play within mutual fund investment

managers, we report the average level of AI skills of employees for a few selected roles

(O*NET titles) in Figure 2. Not surprisingly, Data Scientists have the highest level of

AI skills. Computer scientists such as Software Developers, Computer Programmers, and

Computer Systems Analysts also have high levels of AI skills. In contrast, traditional finance

positions such as Investment Fund Managers and Financial and Investment Analysts have

relatively low levels of AI skills.

[Insert Figure 2]

3 AI outperformance

3.1 Does AI adoption improve fund performance?

In this subsection, we test whether AI adoption improves mutual fund performance by

sorting funds into monthly quintiles based on advisers’ AI adoption level (defined in Section

2.2). To characterize cross-sectional variation in AI adoption, Figure 3 plots the value-

weighted 12-month rolling average of the AI adoption level for each monthly quintile. By

construction, the top-quintile funds exhibit higher levels of AI adoption from the start of the

sample. Notably, the gap between high-AI funds and the rest widens rapidly beginning in the

mid-2010s, indicating aggressive adoption by a subset of mutual fund advisers. This widening

dispersion in AI adoption is consistent with evidence of heterogeneous AI technology adoption
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and data-driven practices across firms (Brynjolfsson and McElheran, 2016; Babina et al.,

2024).

[Insert Figure 3]

Next, for each quintile portfolio, we compute value-weighted fund returns in excess of

benchmark returns and the long–short (Q5–Q1) differences in benchmark-adjusted perfor-

mance. Benchmarks are Morningstar category indices (Sensoy, 2009). Time-series averages

are reported in Table 1. The top (bottom) AI-quintile portfolio delivers the highest (lowest)

benchmark-adjusted returns, and the benchmark-adjusted returns. The long–short (Q5–Q1)

portfolio earns 10.6 bps per month (1.27% per momth) with a t-stat of 3.85, indicating

economically and statistically significant outperformance.

[Insert Table 1]

As shown in Figure 3, AI adoption among mutual fund advisers rises sharply beginning

in the mid-2010s. We ask whether this widening adoption gap translates into a widening AI

premium—the performance spread between high- and low-AI funds. To test this, we split

the sample into two subperiods: 2008–2015 and 2016–2023, and report portfolio-sort results

separately in Table 2. In the early period (2008–2015; Panel A), the long–short portfolio

sorted on AI adoption earns 7 bps per month (0.84% per year; t-stat = 1.91). In the recent

period (2016–2023; Panel B), the AI premium roughly doubles to 14.1 bps per month (1.69%

per year; t-stat=3.62), indicating that the return advantage associated with AI adoption has

strengthened over time.

[Insert Table 2]

These portfolio results are consistent with contemporaneous evidence that AI capabil-

ity is associated with better performance, while highlighting important differences in what
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is measured and when. We study capability-based adoption at mutual funds; by contrast,

Chen et al. (2025) examine hedge funds explicitly labeled as AI strategies and find initial

outperformance that attenuates post-2020 as adoption diffuses. Our results—together with

the widening cross-fund dispersion in AI capability (Figure 3)—suggest that depth of orga-

nizational AI capacity, rather than strategy labels, underpins persistent gains. Relatedly,

Sheng et al. (2024) show hedge funds using LLM-based signals earn higher alphas, reinforcing

that AI can raise performance across organizational forms. The stronger post-2015 effects

also speak to diffusion dynamics: unlike the attenuation in AI-labeled strategies reported by

Chen et al. (2025), capability-based adoption appears to scale with maturing tools and data

availability.

For robustness, we estimate alphas (risk-adjusted returns) for the long–short portfolio

using the CAPM, the Fama–French three-factor model (Fama and French, 1993), and the

Carhart four-factor model (Carhart, 1997). Table 3 reports the results. The AI spread

persists: alphas range from 8.9 to 9.4 bps per month.

[Insert Table 3]

3.2 Does AI adoption reduce fund expenses?

We expect the performance gains from AI to stem primarily from enhanced stock

picking and market timing—mechanisms we analyze in detail in Section 4.2. That said, AI

can also boost performance by lowering expenses, which materially erode net returns. To

evaluate this cost channel, we decompose net returns into (i) gross returns and (ii) expenses,

and run portfolio sorts for each component using the same procedure as in the previous

subsection. Results are reported in Table 4.

[Insert Table 4]
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For reference, Panel A of Table 1 (net-of-benchmark returns) is reproduced here. On

a gross basis—excluding expenses—high-AI funds still outperform low-AI funds by about

9.2 bps per month (1.10% per year). In addition, high-AI funds bear substantially lower

expenses—roughly 1.7 bps per month less—than low-AI funds. A decline of 20.4 bps per

year in the expense ratio is economically meaningful relative to the sample’s average an-

nual expenses of about 1%—roughly a 20% reduction in expenses. These cost differences

are consistent with process efficiencies from data infrastructure and analytics teams. The

expense reductions we document suggest that organizational AI capability can deliver both

information gains and operational efficiencies.

3.3 Sources of AI outperformance: Evidence from the outer space

Having documented an AI premium, we next examine its underlying sources. This

analysis also serves as a validation test for our AI-adoption measure by assessing whether

it maps to managers’ actual use of AI in investment decisions. Our identification lever-

ages the staggered expansion of satellite imagery coverage of retailer parking lots (Katona

et al., 2025), which provides plausibly exogenous variation in the availability of unstruc-

tured big data. Because converting raw images into tradable signals requires computer-

vision/machine-learning (ML) workflows, funds with stronger AI capabilities should extract

more value from this unstructured data.11 The use of satellite imagery as an alternative data

source is well documented—parking-lot car counts forecast store performance and guide in-

stitutional trading (Kang et al., 2021; Katona et al., 2025); more broadly, imagery-based

measures such as night lights map to real activity (Henderson et al., 2012).
11Complementarity between data availability and organizational AI capability is consistent with evidence

on data-driven decision-making and AI adoption across firms (Brynjolfsson and McElheran, 2016). Turning
raw pixels into signals typically relies on deep-learning models for vision (LeCun et al., 2015); machine-
learning methods also deliver sizable gains in return prediction (Gu et al., 2020).
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We test our prediction using the following regression specification:

Alphaj,t = ρ (Weighti,j,t−1 × AIi,t−1 × 1(Postj,t−1)) + δ1 (Weighti,j,t−1 × AIi,t−1)

+ δ2 (Weighti,j,t−1 × 1(Postj,t−1)) + δ3 (1(Postj,t−1) × AIi,t−1)

+ β1Weighti,j,t−1 + β2AIi,t−1 + β31(Postj,t−1)

+ γ1Γi,t−1 + γ2Γj,t−1 + θi + θj + θt + εi,j,t

(2)

where i indexes mutual funds, j indexes stocks, and t indexes time in months. Alphaj,t is the

alpha (idiosyncratic return) of stock j in month t, defined as Rj,t −βj,t−1Rm,t, where Rj,t and

Rm,t are the returns of stock j and the market, respectively, in excess of the risk-free rate in

month t, and βj,t−1 is the market beta of stock j, estimated over a 12-month rolling window

from month t − 12 to t − 1. Weighti,j,t−1 = wi,j,t−1 − wm,j,t−1 is fund i’s portfolio weight on

stock j in excess of its market weight at the end of month t−1. AIi,t−1 represents the level of

AI adoption by mutual fund i’s adviser, as defined in Section 2.2. 1(Postj,t−1) is an indicator

variable that takes a value of one if firm j is covered by RS Metrics for satellite imagery of

parking lots in month t−1, and zero otherwise. The timing of satellite imagery availability is

sourced from Katona et al. (2025). Γi,t−1 is a vector of lagged fund characteristics, including

the natural logarithm of total net assets (TNA, in $ million), expense ratio (in percent),

turnover ratio, and the natural logarithm of fund age (in years). Γj,t−1 is a vector of lagged

stock characteristics, including the percentile rankings of market capitalization, book-to-

market ratio, and the past 12-month return (excluding the most recent month). θi, θj, and

θt represent fund, stock, and time fixed effects, respectively. The sample includes retail firms

covered by RS Metrics from 12 months before to 12 months after satellite imagery coverage

of parking lots became available. Standard errors are double-clustered by fund and stock.

Table 5 reports the estimates. The coefficient of interest—the triple interaction ρ̂ on

Weight × AI × 1(Post)—is positive and statistically significant in column (1), indicating
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that the stock-picking gap between high- and low-AI funds widens precisely when (Post)

and where (treated retail stocks) satellite parking-lot data become available. In short, once

imagery rolls out, higher-AI funds extract more signal from this unstructured data and

improve selection on the exposed retail stocks relative to their lower-AI peers.

[Insert Table 5]

In addition, the double interaction δ̂1 on Weight × AI is small and statistically indis-

tinguishable from zero, indicating no pre-imagery differential in stock picking between high-

and low-AI funds on the treated retail stocks. This alleviates concerns that our AI-adoption

measure merely proxies for generic stock-picking skill or other fund attributes, isolating com-

plementarities between AI capability and the availability of unstructured data. The absence

of pre-period differences also provides informal support for parallel trends, consistent with

recommended diagnostics for staggered DiD settings (Roth et al., 2023).

The triple-interaction effect remains similar in magnitude and statistically significant

after sequentially adding fund and stock characteristics and comprehensive fixed effects in

columns (2)–(4). Taken together, the evidence indicates that AI-intensive funds are better

at converting newly available unstructured data into alpha, giving us strong confidence that

our measure captures the actual use of AI in investment decisions rather than correlating

with unrelated fund traits.

Our results echo recent evidence that AI tools help investors convert unstructured

information into tradable signals: hedge funds using generative-AI prompts/LLM-based sig-

nals earn higher alphas and improve price efficiency, especially for firm-specific news (Sheng

et al., 2024); and mutual funds with stronger AI-related human capital realize superior stock

selection in information-rich settings (Zhang, 2024).
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4 Inspecting the mechanism

Having documented AI outperformance, we next examine the mechanisms—which

funds benefit most from AI? Our central question is whether AI primarily substitutes for hu-

man judgment (“man vs. machine”) or complements human expertise by elevating decision

quality (“man + machine”).

4.1 Quantitative vs. discretionary funds

To provide initial evidence on whether AI substitutes for or enhances human decision-

making in asset management, we conduct a heterogeneity analysis by fund type. We classify

mutual funds into (i) quantitative funds, which employ systematic, rule-based algorithms,

and (ii) discretionary funds, which rely primarily on human judgment. Following Abis (2020),

we train a random-forest text classifier on the Principal Investment Strategy sections of fund

prospectuses to assign funds to these categories, and then compare AI effects across the two

groups.

We form two-by-five portfolios by double-sorting funds on (i) their quantitative vs.

discretionary classification and (ii) the mutual fund adviser’s AI adoption quintile, and report

results in Table 6. Along quantitative funds, those in the high-AI group outperform their low-

AI counterparts by 7.1 bps per month (0.85% annualized). By contrast, within discretionary

funds, the AI–return spread nearly doubles to 12.9 bps per month (1.55% per month). This

cross-sectional pattern is consistent with AI complementing, rather than replacing, human

judgment (“man + machine”).

[Insert Table 6]

This style-specific heterogeneity complements Zhang (2024), who find that mutual

funds with higher AI investment outperform primarily via stock selection; our results show
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where this advantage is realized—discretionary strategies that rely on judgment—rather

than in rule-based quantitative funds. Taken together, the evidence indicates that AI has a

larger impact in discretionary funds—where managerial judgment is central—than in quanti-

tative funds that follow fixed, rule-based algorithms. The double-sort results therefore favor

augmentation over substitution: rather than replacing human intelligence, AI appears to

complement and enhance it, consistent with Cao et al. (2024).

4.2 Time-varying managerial skill

Kacperczyk et al. (2014) document time-varying managerial skill: mutual fund man-

agers emphasize stock picking in normal times but shift toward market timing in recessions.

To rationalize this pattern, Kacperczyk et al. (2016) develop an attention-allocation model

in which skilled managers face limited attention and optimally split it between idiosyncratic

(stock-specific) and aggregate (marketwide) signals. In bad times—when both market risk

and investors’ risk aversion are elevated—the optimal allocation tilts toward aggregate in-

formation, making market timing more valuable.

Building on Kacperczyk et al. (2016), Abis (2020) argues that time-varying skill is a

hallmark of human portfolio managers: it is pronounced among discretionary funds that rely

on judgment and muted among quantitative funds that follow fixed rules and algorithms.

Consistent with Section 4.1, if artificial intelligence augments rather than replaces human

intelligence, it should amplify this state-contingent skill. We therefore test the prediction

that time variation in managerial skill increases with AI adoption in this subsection.

To assess time-varying managerial skill, we construct monthly measures of stock pick-

ing (SP ) and market timing (MT ) as the cross-sectional covariance between a fund’s ac-

tive (excess) weights and, respectively, the idiosyncratic and market components of returns
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(Kacperczyk et al., 2014):

SPi,t =
Ni,t−1∑

j

(wi,j,t−1 − wm,j,t−1) (Rj,t − βj,t−1Rm,t) (3)

MTi,t =
Ni,t−1∑

j

(wi,j,t−1 − wm,j,t−1) (βj,t−1Rm,t) (4)

where i indexes funds, j indexes stocks, and t indexes time in months. wi,j,t−1 − wm,j,t−1

represents fund i’s portfolio weight on stock j in excess of the market weight at the end of

month t − 1. Rj,t and Rm,t are the returns on stock j and the market, respectively, during

month t. βj,t−1 is the market beta of stock j, estimated over a 12-month rolling window from

month t − 12 to t − 1. The summation is taken over all stock holdings of fund i at the end

of month t − 1, Ni,t−1

Intuitively, stock picking (SP ) is high when a fund’s active weights covary positively

with next-month idiosyncratic returns: the manager overweights stocks that subsequently

earn positive alphas and underweights those that deliver negative alphas. Likewise, market

timing (MT ) is high when active weights move in the same direction as the realized market

payoff: the fund tilts toward high-beta stocks before a positive market month and toward

low-beta stocks before a negative one.

To test whether AI technologies enhance fund managers’ time-varying skills, we esti-

mate the following linear regression model:

SPi,t (MTi,t) = βAIi,t−1 + δ (AIi,t−1 × 1(Volatile markett))

+ γΓi,t−1 + θi + θt (θc,t−1) + εi,t

(5)

where i indexes mutual funds and t indexes time in months. AIi,t−1 represents the level of

AI adoption by mutual fund i’s adviser, as defined in Section 2.2. 1(Volatile markett) is an

indicator variable that takes a value of one if market volatility in month t exceeds its 80th
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percentile, and zero otherwise. Market volatility is measured as the standard deviation of

daily market returns within that month. Γi,t−1 is a vector of lagged fund characteristics,

including the natural logarithm of total net assets (TNA, in $ million), expense ratio (in

percent), turnover ratio, and the natural logarithm of fund age (in years). θi, θt, and θc,t−1

are fund, time, and category-by-time fixed effects, respectively.

We report estimates in Table 7. In columns (1)–(2), where the dependent variable

is SP , β̂ is positive and statistically significant, while δ̂ is negative and significant (albeit

marginally). In columns (3)–(4), where the dependent variable is MT , the signs reverse: β̂ is

small and statistically insignificant, and δ̂ is positive and statistically significant. These sign

flips are consistent with our prediction: AI adoption strengthens stock picking in normal

times and market timing in volatile periods when aggregate market risk and investor risk

aversion are elevated.

The state-contingent pattern connects to Zhang (2024), who emphasize stock-picking

improvements; our results clarify that AI also aids market timing precisely in volatile states

when aggregate information is most valuable. Moreover, the enhanced information processing

is also consistent with the price-efficiency gains from LLM-based signals in Sheng et al.

(2024).

Overall, our evidence indicates that AI adoption enhances managers’ time-varying

skills—hallmarks of human discretion (Abis, 2020). Taken together with the double-sort

results, the evidence points to augmentation over substitution: artificial intelligence comple-

ments, rather than replaces, human judgment, consistent with a “man + machine” equilib-

rium (Cao et al., 2024).

[Insert Table 7]
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5 Addressing endogeneity concerns

5.1 Controlling for fund characteristics

Section 3.2 showed that AI adoption is associated with lower expenses, that these sav-

ings improve net performance, and that the AI return premium persists even after stripping

out expense effects. In this subsection, we estimate the impact of AI investment on fund per-

formance in a multivariate setting that explicitly controls for fund characteristics—including

expenses—to corroborate the baseline portfolio-sorts in Section 3.1. The specification also

serves as the reduced-form counterpart to the instrumental-variables (IV) analysis in the

subsections that follow.

Specifically, we estimate the following linear regression model:

BARi,t (Alphai,t) = βAIi,t−1 + γΓi,t−1 + θc,t−1 + εi,t (6)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of

fund i in excess of its benchmark return in month t. Alphai,t is the CAPM alpha, defined as

Ri,t − βi,t−1Rm,t, where Ri,t and Rm,t are the returns of fund i and the market, respectively,

in excess of the risk-free rate in month t, and βi,t−1 is the market beta of fund i, estimated

over a 12-month rolling window from month t − 12 to t − 1. AIi,t−1 represents the level of

AI adoption by mutual fund i’s adviser, as defined in Section 2.2. Γi,t−1 is a vector of lagged

fund characteristics, including the natural logarithm of total net assets (TNA, in $ million),

expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).

θc,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund

and time.

We report results in Table 9. Columns (1)–(2) use benchmark-adjusted returns as the

dependent variable. In the univariate specification in column (1), β̂ is positive and statisti-
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cally significant at the 1% level. Adding fund characteristics, including expenses, in column

(2) leaves β̂ positive and statistically significant at the 5% level, with a modest attenuation

in magnitude. Replacing benchmark-adjusted returns with CAPM alphas in columns (3)–

(4) yields qualitatively similar results. Overall, these regression estimates corroborate the

portfolio-sort evidence in Section 3.1.

[Insert Table 9]

5.2 Instrumenting AI adoption

A natural concern with our analyses is measurement error in the adviser’s AI adoption

proxy, which can induce attenuation bias. Our measure focuses on human-capital invest-

ments plausibly tied to AI capabilities; as a result, it may omit other relevant inputs—e.g.,

computing infrastructure, cloud services, data storage, and data acquisition/licensing—that

are central to AI/ML performance. Such omissions, along with potential timing mismatches

and reporting noise, would bias estimated effects toward zero and weaken statistical power.

Endogeneity is a second concern: self-selection and omitted variables could bias esti-

mates upward if managers that invest more in AI also differ systematically in unobserved

ways. Why do some advisers adopt AI more aggressively than others? Our evidence in Sec-

tion 3.3 helps alleviate this concern: prior to the availability of satellite imagery of retailer

parking lots, high- and low-AI funds did not differentially select retail stocks, suggesting

no pre-trend in alpha generation along this margin. To further bolster identification, we

employ instrumental-variables (IV) regressions. Although it is a priori unclear whether

alpha-generating managers are intrinsically more likely to invest in AI, the IV approach mit-

igates bias from such potential selection and from omitted factors correlated with both AI

adoption and performance.

Why do some asset managers invest more in AI than others? We conjecture that,
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because AI expertise is scarce and geographically concentrated (e.g., Silicon Valley), the

local supply of AI technologies is a key driver of cross-sectional differences in adoption

across advisers. Building on this idea, we instrument adviser-level AI adoption with the

local availability of AI technologies in the areas where asset managers are located.

Specifically, for each metropolitan area and year t, we measure the local supply of

AI technologies (AILocal
a,t ) as the average AI-skill score of all individuals employed in area

a at time t. For illustration, Figure 4 maps AILocal in 2023. The San Jose metro (Silicon

Valley) exhibits the highest local AI supply in the United States, followed by Seattle, San

Francisco, Boston, and Austin. The figure also highlights pronounced within-state dispersion:

in California, San Jose ranks at the national frontier while Bakersfield is among the lowest;

in Texas, Austin is near the top nationally whereas Lubbock sits near the bottom.

[Insert Figure 4]

With our instrument in hand, we estimate the following two-stage least squares (2SLS)

model:

AIi,t−1 = β1AILocal
a,t−1 + γ1Γi,t−1 + θ1

c,t−1 + ε1
i,t−1 (first-stage) (7)

BARi,t (Alphai,t) = β2ÂIi,t−1 + γ2Γi,t−1 + θ2
c,t−1 + ε2

i,t (second-stage) (8)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of

fund i in excess of its benchmark return in month t. Alphai,t is the CAPM alpha, defined as

Ri,t − βi,t−1Rm,t, where Ri,t and Rm,t are the returns of fund i and the market, respectively,

in excess of the risk-free rate in month t, and βi,t−1 is the market beta of fund i, estimated

over a 12-month rolling window from month t − 12 to t − 1. AIi,t−1 represents the level

of AI adoption by mutual fund i’s adviser, as defined in Section 2.2. AILocal
a,t−1 is the local

supply of AI technologies available to mutual fund i’s adviser. Γi,t−1 is a vector of lagged
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fund characteristics, including the natural logarithm of total net assets (TNA, in $ million),

expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).

θc,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund

and time.

Table 10 reports the first-stage regressions linking adviser-level AI adoption to local

AI supply. Consistent with our conjecture, the coefficient on the local supply of AI tech-

nologies is positive and statistically significant. This pattern suggests that AI adoption is

constrained by local availability of AI talent/technology, with advisers in metros richer in AI

resources investing more in AI. Regarding fund controls, larger, younger, and higher-turnover

funds exhibit greater AI adoption, while expense ratios are negatively related to adoption

(consistent with Section 3.2).

[Insert Table 10]

Finally, Table 11 reports the second-stage estimates. Columns (1)–(2) use benchmark-

adjusted returns as the dependent variable. In the univariate second stage in column (1), the

IV coefficient β̂IV is positive and statistically significant at the 10% level. Its magnitude is

about 4.85 times the corresponding OLS estimate in Table 9 (4.85 = 0.126/0.026), consistent

with attenuation from measurement error in our AI investment proxy. Results are similar

when adding fund characteristics in column (2) and when replacing benchmark-adjusted

returns with CAPM alphas in columns (3)–(4). Taken together, the IV results reinforce our

earlier findings and suggest a causal AI outperformance effect.

[Insert Table 11]
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6 Conclusion

In the paper, we study the influence of AI on investment management, specifically

its utilization by mutual fund managers and its impact on their performance. In addition,

the study provides insight into the broader implications of AI for human productivity and

displacement. The issue is whether we should expect the AI revolution to complement and

strengthen human skills, such as in investment management, or whether we might expect AI

and powerful machines to largely replace human skills and judgment in these endeavors.

Using unique data from LinkedIn profiles, we measure the adoption of AI technologies

among mutual fund management companies. This is done by computing the AI skill level of

each individual by taking the average of AI-relatedness scores across all skills associated with

that individual. The level of investment in AI technologies made by a mutual fund advisor

is measured by the average of the AI skill levels of all individuals employed by that advisor.

Among our results, we show the local supply of AI technologies is a major determinant of

the cross-sectional variation in mutual fund AI investment. The geographic variation in the

local supply of AI skills provides a source of exogenous variation in the utilization of AI

by mutual funds. We show our findings are robust to using the exogenous variation as an

instrument for the utilization of AI by funds.

Compared to low-AI funds, high-AI funds earn superior benchmark-adjusted returns

and incur lower expenses. The long/short portfolio has benchmark-adjusted returns of 4.3

basis points per month (0.52% annualized). The AI outperformance is both economically and

statistically significant. We obtain similar results when we compute the alphas (risk-adjusted

returns) of benchmark-adjusted returns.

Our results are quite instructive in their implications for human-machine complemen-

tarity. In particular, our results show that AI tends to boost the performance of discretionary

funds that invest based on human skills and judgment — relative to funds that rely more
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on quantitative and algorithmic techniques. Among discretionary funds, high-AI funds out-

perform low-AI funds by 8.8 basis points per month (1.06% annualized). In contrast, among

quantitative funds, AI outperformance is muted and statistically insignificant. This is in

keeping with the view that rather than replacing human intelligence, artificial intelligence

is more likely to augment it, consistent with the findings of Cao et al. (2024). We further

corroborate that AI tends to augment human intelligence by showing that the source of

the improved performance is time-varying and is evident in stock-picking and market-timing

skills conditional on market conditions. The stock-picking skills of high-AI funds improve

with the availability of big data, such as satellite imagery of parking lots for retailers.
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Figure 1: This figure shows the AI-relatedness scores for a few selected skills.

30



Figure 2: This figure shows the AI-relatedness scores for a few selected roles (O*NET
titles).

31



Figure 3: This figure shows the value-weighted average level of investment in AI technologies
by mutual fund investment advisers, sorted into quintiles each month.
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Figure 4: This figure shows the local supply of AI technologies in 2023.
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Table 1: Does AI adoption improve fund performance?

This table presents the results of portfolio sorts based on AI adoption. First, we sort the funds into quintile
portfolios each month based on the level of investment in AI technologies by mutual fund management
companies (“investment advisers”), as defined in Section 2.2. Next, we compute the value-weighted average
returns of the funds in each quintile, as well as the difference between the extreme quintile portfolios (long-
short portfolio). Fund returns are reported as excess returns relative to their benchmark returns. t-statistics,
based on Newey-West standard errors with five lags, are reported in parentheses, with statistical significance
at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.164∗∗∗ −0.100∗∗∗ −0.117∗∗∗ −0.097∗∗∗ −0.058∗ 0.106∗∗∗

(−4.05) (−3.57) (−3.81) (−2.65) (−1.84) (3.85)
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Table 2: AI outperformance over time

This table reports portfolio-sort results by AI adoption for two subperiods. We re-estimate the specifications
in Table 1 separately for the early (2008–2015) and recent (2016–2023) periods. t-statistics, based on Newey-
West standard errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%,
and 1% levels indicated by *, **, and ***, respectively.

Panel A: Early period (2008–2015)

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.116∗ −0.077∗∗ −0.108∗∗ −0.089 −0.046 0.070∗

(−1.86) (−2.02) (−2.28) (−1.40) (−0.87) (1.91)

Panel B: Recent period (2016–2023)

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.212∗∗∗ −0.124∗∗∗ −0.126∗∗∗ −0.106∗∗∗ −0.071∗∗ 0.141∗∗∗

(−4.41) (−3.12) (−3.36) (−2.86) (−2.02) (3.62)
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Table 3: Can AI outperformance be explained by common risk factors?

This table presents the results of the following linear regression model:

Rp,t = αp + bpMKTt + spSMBt + hpHMLt + upUMDt + εp,t

where Rp,t represents the value-weighted average benchmark-adjusted return of the long-short portfolio,
which is sorted into quintiles based on the level of investment in AI technologies by mutual fund investment
advisers, as defined in Section 2.2. MKTt, SMBt, HMLt, and UMDt are the factor returns on the market,
size, value, and momentum (Fama and French, 1993; Carhart, 1997). t-statistics, based on Newey and West
standard errors with five lags, are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, **, and ***, respectively.

Benchmark-adjusted returns
(1) (2) (3)

Alpha 0.094∗∗∗ 0.091∗∗∗ 0.089∗∗∗

(3.52) (3.47) (3.28)
MKT 0.014 0.018∗ 0.023∗∗

(1.64) (1.94) (2.55)
SMB −0.018∗ −0.014

(−1.88) (−1.48)
HML −0.001 0.004

(−0.10) (0.36)
UMD 0.016∗∗

(2.28)
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Table 4: Does AI adoption reduce fund expenses?

This table presents the results of portfolio sorts based on AI adoption. First, we sort the funds into quintile
portfolios each month based on the level of investment in AI technologies by mutual fund investment advisers,
as defined in Section 2.2. Next, we compute the value-weighted average returns (both before and after
expenses) and expenses for the funds in each quintile, as well as the difference between the extreme quintile
portfolios (long-short portfolio). Fund returns are reported as excess returns relative to their benchmark
returns. t-statistics, based on Newey-West standard errors with five lags, are reported in parentheses, with
statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Panel A: Net returns

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.164∗∗∗ −0.100∗∗∗ −0.117∗∗∗ −0.097∗∗∗ −0.058∗ 0.106∗∗∗

(−4.05) (−3.57) (−3.81) (−2.65) (−1.84) (3.85)

Panel B: Gross returns

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.093∗∗ −0.038 −0.039 −0.033 −0.001 0.092∗∗∗

(−2.26) (−1.37) (−1.24) (−0.89) (−0.05) (3.32)

Panel C: Expenses

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1
0.074∗∗∗ 0.067∗∗∗ 0.077∗∗∗ 0.070∗∗∗ 0.057∗∗∗ −0.017∗∗∗

(29.19) (66.13) (32.24) (20.34) (22.22) (−12.92)
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Table 5: Stock picking with satellite imagery of parking lots

This table presents the results of the following linear regression model:

Alphaj,t = ρ (Weighti,j,t−1 × AIi,t−1 × 1(Postj,t−1)) + δ1 (Weighti,j,t−1 × AIi,t−1)
+ δ2 (Weighti,j,t−1 × 1(Postj,t−1)) + δ3 (1(Postj,t−1) × AIi,t−1)
+ β1Weighti,j,t−1 + β2AIi,t−1 + β31(Postj,t−1) + γ1Γi,t−1 + γ2Γj,t−1 + θi + θj + θt + εi,j,t

where i indexes mutual funds, j indexes stocks, and t indexes time in months. Alphaj,t is the alpha (idiosyn-
cratic return) of stock j in month t, defined as Rj,t −βj,t−1Rm,t, where Rj,t and Rm,t are the returns of stock
j and the market, respectively, in excess of the risk-free rate in month t, and βj,t−1 is the market beta of stock
j, estimated over a 12-month rolling window from month t−12 to t−1. Weighti,j,t−1 = wi,j,t−1 −wm,j,t−1 is
fund i’s portfolio weight on stock j in excess of its market weight at the end of month t−1. 1(Postj,t−1) is an
indicator variable that takes a value of one if firm j is covered by RS Metrics for satellite imagery of parking
lots in month t − 1, and zero otherwise. The timing of satellite imagery availability is sourced from Katona
et al. (2025). AIi,t−1 represents the level of investment in AI technologies by mutual fund i’s investment
adviser, as defined in Section 2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural
logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural
logarithm of fund age (in years). Γj,t−1 is a vector of lagged stock characteristics, including the percentile
rankings of market capitalization, book-to-market ratio, and the past 12-month return (excluding the most
recent month). θi, θj , and θt represent fund, stock, and time fixed effects, respectively. The sample includes
retail firms covered by RS Metrics from 12 months before to 12 months after satellite imagery coverage of
parking lots became available. Standard errors are double-clustered by fund and stock, and t-statistics are
reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and
***, respectively.
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Table 5–Continued

Alpha
(1) (2) (3) (4)

Weight × AI × Post 0.21∗∗ 0.21∗∗ 0.24∗∗ 0.24∗∗

(2.38) (2.36) (2.34) (2.41)
Weight × AI −0.04 −0.04 −0.03 −0.03

(−0.60) (−0.54) (−0.39) (−0.43)
Weight × Post −0.13 −0.12 0.01 −0.004

(−0.95) (−0.92) (0.05) (−0.04)
Post × AI −0.07 −0.06 −0.17∗∗ −0.17∗∗

(−0.99) (−0.91) (−2.11) (−2.19)
Weight −0.31∗∗∗ −0.32∗∗∗ −0.26∗∗∗ −0.25∗∗∗

(−4.45) (−4.61) (−3.95) (−4.10)
AI 0.08 0.08 0.12 0.12

(0.63) (0.58) (0.93) (0.92)
Post −0.72 −0.75 −0.85 −0.87

(−1.02) (−1.06) (−1.13) (−1.15)
Fund fixed effects Yes Yes Yes Yes
Stock fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Fund characteristics Yes Yes
Stock characteristics Yes Yes
Observations 85,620 80,865 85,600 80,846
Adjusted R2 0.24 0.24 0.26 0.26
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Table 6: Quantitative vs. discretionary funds

This table presents the results of double sorts based on quantitative/discretionary fund classification and
AI adoption. First, we sort the funds into two-by-five portfolios each month, based on the fund’s quantita-
tive/discretionary classification (Abis, 2020) and the level of investment in AI technologies by its adviser, as
defined in Section 2.2. Next, we compute the value-weighted average return of the funds in each portfolio,
as well as the difference between the extreme quintile portfolios (long-short portfolio) for each classifica-
tion. Fund returns are reported as excess returns relative to their benchmark returns. t-statistics, based on
Newey-West standard errors with five lags, are reported in parentheses, with statistical significance at the
10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

Panel A: Quantitative funds

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.114∗∗∗ −0.123∗∗∗ −0.165∗∗∗ −0.090∗∗ −0.043 0.071∗∗

(−3.48) (−3.68) (−4.98) (−2.47) (−1.29) (2.22)

Panel B: Discretionary funds

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.192∗∗∗ −0.102∗∗∗ −0.098∗∗ −0.102∗∗ −0.063∗ 0.129∗∗∗

(−3.73) (−3.25) (−2.41) (−2.17) (−1.81) (3.21)
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Table 7: Time-varying fund manager skill

This table presents the results of the following linear regression model:

SPi,t (MTi,t) = βAIi,t−1 + δ (AIi,t−1 × 1(Volatile markett)) + γΓi,t−1 + θi + θt (θc,t−1) + εi,t

where i indexes mutual funds and t indexes time in months. AIi,t−1 represents the level of investment in AI
technologies by mutual fund i’s investment adviser, as defined in Section 2.2. SPi,t and MTi,t capture the
stock picking and market timing skills of mutual funds, defined as the covariance between fund weights (in
excess of the market) and the idiosyncratic returns (alphas) and systematic returns of the stock holdings, re-
spectively (Kacperczyk et al., 2014). See Equations (3) and (4) in Section 4.2 for details. 1(Volatile markett)
is an indicator variable that takes a value of one if market volatility in month t exceeds its 80th percentile,
and zero otherwise. Market volatility is measured as the standard deviation of daily market returns within
that month. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of total net
assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of fund
age (in years). θi, θt, and θc,t−1 are fund, time, and category-by-time fixed effects, respectively. Standard
errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with statistical
significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

SP MT
(1) (2) (3) (4)

AI 0.031∗ 0.020∗∗ −0.032 −0.018
(1.76) (2.16) (−1.52) (−1.52)

AI × 1(Volatile market) −0.045 −0.030∗ 0.133∗∗ 0.086∗∗

(−1.42) (−1.70) (2.20) (2.50)
log(TNA) −0.142∗∗∗ −0.113∗∗∗ −0.011 0.001

(−5.27) (−10.15) (−0.96) (0.14)
Expense ratio −0.086 −0.012 0.022 0.036

(−1.47) (−0.28) (0.84) (1.24)
Turnover ratio −0.146∗∗∗ −0.090∗∗∗ 0.063∗∗∗ 0.030∗∗∗

(−4.54) (−4.79) (3.15) (2.81)
log(Fund age) 0.042 0.032∗∗ 0.027∗∗ 0.013

(1.51) (2.09) (2.07) (1.33)
Fund fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes
Category-by-time FEs Yes Yes
Observations 149,332 149,332 149,332 149,332
Adjusted R2 0.22 0.58 0.91 0.96
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Table 8: STEM vs. non-STEM managers

This table presents the results of double sorts on manager STEM designation and AI adoption. We classify a
fund as STEM-run if at least one manager has an educational background in science, technology, engineering,
or mathematics. Each month, funds are assigned to two-by-five portfolios based on the manager’s STEM
status (STEM vs. non-STEM) and the adviser’s level of AI adoption (quintiles). Next, we compute the
value-weighted average return of the funds in each portfolio, as well as the difference between the extreme
quintile portfolios (long-short portfolio) for each classification. Fund returns are reported as excess returns
relative to their benchmark returns. t-statistics, based on Newey-West standard errors with five lags, are
reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated by *, **, and
***, respectively.

Panel A: STEM managers

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.180∗∗∗ −0.081∗ −0.141∗∗∗ −0.112∗∗ −0.037 0.143∗∗∗

(−3.57) (−1.68) (−3.32) (−1.99) (−1.14) (3.18)

Panel B: Non-STEM managers

Portfolios sorted on AI adoption
Q1 Q2 Q3 Q4 Q5 Q5 – Q1

−0.175∗∗∗ −0.129∗∗∗ −0.118∗∗∗ −0.084∗∗ −0.081∗∗ 0.094∗∗

(−3.93) (−3.38) (−3.34) (−2.24) (−2.06) (2.43)
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Table 9: Controlling for fund characteristics

This table presents the results of the following linear regression model:

BARi,t (Alphai,t) = βAIi,t−1 + γΓi,t−1 + θc,t−1 + εi,t

where i indexes mutual funds and t indexes time (in months). BARi,t denotes the return of fund i in excess
of its benchmark return in month t. Alphai,t is the CAPM alpha, defined as Ri,t − βi,t−1Rm,t, where Ri,t

and Rm,t are the returns of fund i and the market, respectively, in excess of the risk-free rate in month t,
and βi,t−1 is the market beta of fund i, estimated over a 12-month rolling window from month t − 12 to
t − 1. AIi,t−1 represents the level of investment in AI technologies by mutual fund i’s investment adviser, as
defined in Section 2.2. Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of
total net assets (TNA, in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of
fund age (in years). θc,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by
fund and time, and t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and
1% levels indicated by *, **, and ***, respectively.

BAR Alpha
(1) (2) (3) (4)

AI 0.026∗∗∗ 0.019∗∗ 0.026∗∗∗ 0.018∗

(2.73) (2.10) (2.69) (1.91)
log(TNA) −0.003 0.002

(−0.66) (0.38)
Expense ratio −0.119∗∗∗ −0.110∗∗∗

(−4.89) (−3.98)
Turnover ratio −0.052∗ −0.076∗∗∗

(−1.66) (−2.81)
log(Fund age) 0.004 −0.017∗

(0.39) (−1.91)
Category-by-time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R2 0.16 0.16 0.58 0.57
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Table 10: Determinants of mutual fund AI adoption

This table presents the results of the following linear regression model:

AIi,t = βAILocal
a,t + γΓi,t−1 + θc,t−1 + εi,t

where i indexes mutual funds and t indexes time in months. AIi,t represents the level of investment in AI
technologies by mutual fund i’s investment adviser, as defined in Section 2.2. AILocal

a,t is the local supply of AI
technologies available to mutual fund i’s investment adviser. Γi,t−1 is a vector of lagged fund characteristics,
including the natural logarithm of total net assets (TNA, in $ million), expense ratio (in percent), turnover
ratio, and the natural logarithm of fund age (in years). θc,t−1 denotes category-by-time fixed effects. Standard
errors are double-clustered by fund and time, and t-statistics are reported in parentheses, with statistical
significance at the 10%, 5%, and 1% levels indicated by *, **, and ***, respectively.

AI
(1) (2) (3) (4) (5) (6)

AILocal 0.551∗ 0.500∗ 0.397∗ 0.476∗ 0.569∗ 0.359∗

(1.91) (1.90) (1.76) (1.70) (1.94) (1.67)
log(TNA) 0.030∗∗ 0.027∗∗

(2.45) (2.09)
Expense ratio −0.416∗∗∗ −0.359∗∗∗

(−2.69) (−2.72)
Turnover ratio 0.060∗ 0.091∗∗∗

(1.69) (2.65)
log(Fund age) −0.061∗ −0.069∗∗

(−1.83) (−2.08)
Category by time FEs Yes Yes Yes Yes Yes Yes
Observations 145,742 145,742 138,155 138,174 145,742 138,152
Adjusted R2 0.09 0.09 0.12 0.09 0.09 0.13

44



Table 11: Instrumental variables (IV) regressions

This table presents the results of the following two-stage least squares model:

AIi,t−1 = β1AILocal
a,t−1 + γ1Γi,t−1 + θ1

c,t−1 + ε1
i,t−1 (first stage)

BARi,t (Alphai,t) = β2ÂIi,t−1 + γ2Γi,t−1 + θ2
c,t−1 + ε2

i,t (second stage)

where i indexes mutual funds and t indexes time in months. BARi,t denotes the return of fund i in excess of
its benchmark return in month t. Alphai,t is the CAPM alpha, defined as Ri,t − βi,t−1Rm,t, where Ri,t and
Rm,t are the returns of fund i and the market, respectively, in excess of the risk-free rate in month t, and
βi,t−1 is the market beta of fund i, estimated over a 12-month rolling window from month t − 12 to t − 1.
AIi,t−1 represents the level of investment in AI technologies by mutual fund i’s investment adviser, as defined
in Section 2.2. AILocal

a,t−1 is the local supply of AI technologies available to mutual fund i’s investment adviser.
Γi,t−1 is a vector of lagged fund characteristics, including the natural logarithm of total net assets (TNA,
in $ million), expense ratio (in percent), turnover ratio, and the natural logarithm of fund age (in years).
θc,t−1 denotes category-by-time fixed effects. Standard errors are double-clustered by fund and time, and
t-statistics are reported in parentheses, with statistical significance at the 10%, 5%, and 1% levels indicated
by *, **, and ***, respectively.

BAR Alpha
(1) (2) (3) (4)

ÂI 0.126∗ 0.205∗ 0.114∗ 0.197∗

(1.88) (1.80) (1.84) (1.91)
log(TNA) −0.009 −0.003

(−1.38) (−0.30)
Expense ratio −0.050 −0.043

(−1.26) (−0.95)
Turnover ratio −0.072∗ −0.094∗∗∗

(−1.95) (−3.10)
log(Fund age) 0.016 −0.005

(1.31) (−0.30)
Category by time FEs Yes Yes Yes Yes
Observations 145,742 138,152 145,742 138,152
Adjusted R2 0.16 0.15 0.58 0.57
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