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1 Introduction

This paper provides insights into small maturity phenomena by exploiting advancements in the

simultaneous trading of seven-day (Friday to Friday) and one-day (Thursday to Friday) expiry

options on Treasury bond futures and the S&P 500 stock index. A novel aspect is the time-

matching of option payoffs for small maturity options across bond and stock markets.

This development on the data front allows us to analyze option prices and synchronous payoffs

observed across four separate markets: Treasury bond futures, the S&P 500 index, options on the

Treasury bond futures, and options on the S&P 500 index. These markets are instrumental to

understanding the trading behaviors, changes in asset allocations, pricing, and concerns of bond

and stock investors over a small horizon. Over the course of 630 weekly option expiration cycles

from January 28, 2011, to February 24, 2023, we examine state-contingent returns pertinent to

small maturity. This joint time-series of state-contingent returns on bond and stock has not yet

been studied. To integrate market-wide small maturity phenomena, we combine this data with

small maturity options on VIX futures.

A. Unique characteristics of state-contingent returns of bond and stock. Our investigation ex-

amines the connection between bond and stock markets and their respective option markets, in

addition to providing evidence on their determinants and joint pricing. A key finding is the strong

positive correlation between returns to buying OTM calls on bond and OTM puts on stock, con-

trasting the much weaker correlation between returns to buying puts on bond and calls on stock.

We develop a model that incorporates simultaneous down and up price jumps in stock and

bond markets, which aligns with our empirical results. Furthermore, we provide an economic

explanation for the documented small maturity phenomena: Investors solicit protection against

both downward stock movements and upward bond movements. During times of market stress,

both forms of protection are in demand, likely due to investors seeking safer investments. Our

findings are reinforced by this explanation, with evidence to support it.

Our analysis indicates that there is a need for jumps in both directions in bond futures prices

to explain the observed small maturity pattern of option returns. Extant models that derive bond

futures prices do not incorporate this feature. Therefore, our findings from options and stock-bond

associations may challenge these models in terms of both explaining and incorporating them.
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B. Reconciling gaps in prevailing theories by modeling two Poisson processes, each with stochas-

tic intensity rates. Our model accounts for the tendency of bond prices to jump up when stock

prices jump down. Additionally, when stock prices jump up, bond prices are allowed to jump down,

but the association is weaker than when stock prices jump down. The intensity rate of down (up)

jumps in stock is associated with bad (good) news. Our premise of simultaneous price jumps is

supported by the empirical specification exercises advocated by Barndorff-Nielsen and Shephard

(2006) and Dumitru and Urga (2012).

In the context of small maturity option expirations, the properties of state-contingent returns

can be attributed to the structure of price jumps in stock and bond. We model these discontinuities

through the marginal and bivariate distributions of down (up) and up (down) jumps in stock (bond).

The real-world and risk-neutral jump measures are modeled to respect empirical observations.

Our theory aligns with state-contingent stock and bond returns that can change with market

conditions, necessitating stochastic intensity rates. We model these influences on the returns of

stock and bond options using two — as opposed to one or four — Poisson processes, each with a

stochastic intensity rate. Providing a rationale for our approach, we show that the Merton (1976)

model, modified to have a single stochastic jump intensity, cannot generate imperfect small maturity

correlations between state-contingent returns of stock and bond.

The essence of our approach is that the returns of bond calls can be positively correlated

with those of stock puts. This small maturity relationship can be attributed to flight-to-quality

effects, which are evident during market declines. The asymmetrical correlation between the state-

contingent returns of bond and stock — constructed using Friday-to-Friday (7DTE) and Thursday-

to-Friday (1DTE) options — is our salient modeling aspect and has not been previously explored.

C. Benchmarking our data, findings, and estimated model to the literature. Our modeling

approach formulates option prices, correlations between state-contingent returns, and volatilities.

This approach — utilized in our estimation procedure — assumes that stock prices can jump down

or up according to an exponential distribution, as can bond prices but in the opposite direction.

We examine the applicability of the model through empirical exercises. We use weekly puts and

calls on bond and stock, along with intraday calculated seven-day realized volatilities and VIX data
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from Treasury bond futures and S&P 500 index. We find that the model reasonably represents the

data, revealing evidence in favor of simultaneous (negatively correlated) jumps in bond and stock.

Our framework introduces two novelties for small maturity options. First, it takes into account

the risks associated with price jumps, recognizing their significant role in generating option values.

Second, it acknowledges that diffusive volatility is not as relevant for small maturity options (as

framed in Aı̈t-Sahalia (2004), Bollerslev and Todorov (2011), Aı̈t-Sahalia and Jacod (2012), Ander-

sen, Fusari, and Todorov (2017), and Bakshi, Crosby, and Gao (2022)). Specifically, we examine

conditions that reveal a potential correlation between buying bond calls and buying stock puts,

which implies the need to incorporate jump intensities of two types, namely, “bad news” and “good

news.” Previous research has investigated weekly options on the S&P 500 index, but there is a gap

in knowledge about weekly options on bond futures (see Bakshi, Crosby, Gao, and Hansen (2023)).

Unlike our investigation, extant studies do not consider state-contingent returns constructed

from small maturity options or the impact of simultaneous price jumps in stock and bond markets.

By utilizing the Ang and Chen (2002) method to reveal asymmetric exceedance correlations, we

convey further understanding of small maturity data. Studies examining the low-frequency rela-

tionship between stock and bond returns include, among others, Baele, Bekaert, and Inghelbrecht

(2010), David and Veronesi (2013), Wachter (2013), and Campbell, Pflueger, and Viceira (2020).1

D. Empirical findings and small maturity phenomena. A substantive finding of our study is the

robust positive correlation between returns from buying OTM call options on bond and OTM put

options on stock, compared to the weaker and statistically insignificant correlation between returns

from buying OTM put options on bond and OTM call options on stock. Bolstering confidence, this

idea remains consistent in a bootstrap exercise that pairwise compares correlation magnitudes.

These findings suggest that there is a common factor, likely a bad news jump factor with

a stochastic intensity rate, that is a major influencer of (a) price increases in bond, (b) price

decreases in stock, and (c) OTM call option prices on bond and OTM put option prices on stock.

We also observe evidence of a second common factor, a good news jump factor, which drives price

1We add to the understanding of the stock, bond, and traded volatility markets by addressing theories of small
maturity contingent claims by incorporating simultaneous jumps in the context of estimated models. Furthermore,
we identify the characteristics of state-contingent returns of bond and stock and the link to safety phenomena in
these markets. Our approach stands out from studies, such as those of Connolly, Sun, and Stivers (2005), Andersen,
Bollerslev, Diebold, and Vega (2007), Campbell, Sunderam, and Viceira (2017), Baele, Bekaert, Inghelbrecht, and
Wei (2020), Cieslak and Pang (2021), Ermolov (2022), and Kozak (2022).
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decreases in bond and increases in stock, but with a smaller average magnitude. This perspective

is supported by our findings on the relationship between the option payoffs standardized by the

underlier price on the upside (downside) of bond and on the downside (upside) of stock markets.

E. Empirical consistency of the estimated model with small maturity phenomena. We propose a

four-state variable model that incorporates both stochastic volatility and stochastic jump intensity

rates for stock and bond contingent claims. Our goal is to improve upon existing models, which do

not take into account characteristics of priced down and up jump risks jointly for stock and bond.

To estimate this model, we use the Kalman filter in combination with quasi-maximum likelihood.

A benefit of our pricing formulas for small maturity put and call options is in avoiding inverse

Fourier transform methods. This aspect immensely simplifies the estimation process that targets

consistency with small maturity OTM stock and bond option prices.

Through our study, we make empirical contributions by demonstrating that our model is able

to generate realistic bond and stock return volatilities. Moreover, the model shows a quantita-

tive agreement with both seven-day bond VIX and stock VIX, indicating that our model aligns

with risk-neutral volatilities and embedded risk premiums. Furthermore, our model captures the

characteristics of the joint cross-section of stock and bond options, which have not been consid-

ered by previous models. Overall, our approach takes us a step closer to better understanding and

addressing multiple aspects — 15 data variables — of the Treasury bond futures and stock markets.

We also evaluate the model’s performance with regard to the behavior of the small maturity

VVIX to stock VIX ratio. This ratio reflects the relative cost of hedging against upside market

volatility (via small maturity calls on VIX futures) compared to downside S&P 500 index protection

(via small maturity stock index puts). This exercise is significant for two reasons. First, it allows us

to understand how well the model quantitatively captures the ratio of VVIX to stock VIX during

times of market stress. Second, the derived VVIX values are informative about the model’s internal

consistency. Hence, validating these model aspects is pertinent and informative.

Setting a bar for model consistency, we further assess the model’s ability to forecast small matu-

rity correlations between stock and bond returns. Our estimated model is compatible with negative

values for the stock-bond correlation, aligning with essential features of associations between stock

and bond option payoffs.
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Our framework offers a way for evaluating and distinguishing between models. Previous litera-

ture has not analyzed small maturity patterns of state-contingent claims of bond and stock, joint

drivers of options on bond and the S&P 500 index, and the intersection of volatilities of bond and

stock returns. This makes our estimated model a contribution to the field, offering an economically

meaningful perspective on the relationship between small maturity stock and bond returns, with

implications for both small maturity asset pricing and economic analysis.

2 The nature of small maturity phenomena in markets

Our empirical investigation centers on the relationship between small maturity options on the Trea-

sury bond futures and those on the S&P 500 stock index (augmented later by small maturity options

on traded stock volatility). We consider data of correlations between option excess returns on both

bond and stock. Four distinct pairs are examined: (rb, call, rs, put), (rb, put, rs, call), (rb, put, rs, put),

and (rb, call, rs, call). The first option return in every pair represents the bond (b), while the second

represents the stock (s). The options under analysis have a small maturity — seven-day or one-day

— and standardized moneyness connected to option deltas, δ, of ± 20 (OTM) or ±7 (deeper OTM).

Of the correlations that are analyzed, only the (rb, call, rs, put) pair exhibits a significantly positive

correlation, while the remaining three are weaker and/or statistically indistinct from zero.

Our empirical results motivate the development of a continuous-time model to explain and

understand the joint dynamics of bond and stock returns. This model captures features of stochastic

volatility and simultaneous upward and downward jumps in the prices of bond and stock. One

possible explanation for the documented correlation pattern is the higher cost — relative to the

expected payoff — for protective measures in times of market stress, as well as a preference for

safer investments during periods of volatile market conditions. This model recognizes mechanisms

influencing the observed small-maturity option relationships.

Weekly options on futures on the 10-year Treasury bond and the S&P 500 index are actively

traded on the Chicago Mercantile Exchange and the Chicago Board of Options Exchange, respec-

tively. The novelty is that these options expire each Friday (PM-settled), allowing us to address

questions related to asymmetry of state-contingent returns, for both the Treasury bond futures and

the S&P 500 index, in addition to properties of their correlations.
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The prices of stock (cum-dividend) are represented by St and the prices of futures on the stock

by F s
t . Similarly, Fb

t represents the futures price on bond. The matched sample of weekly expiring

options on futures on the 10-year Treasury bond and the S&P 500 spans the period of January 28,

2011, to February 24, 2023, with 630 cycles. We denote the stock (bond) option strike price by Ks

(Kb).

At the beginning of weekly expiration cycles (Friday initiation), we focus on options on stock,

where OTM puts (calls) are associated with moneyness ks ≡ Ks

St
< 1 (ks > 1). We adopt the

same approach for options on bond futures (i.e., kb ≡ Kb

Fb
t

), considering strikes — by enforcing

comparable deltas — that account for the higher stock volatility than bond volatility. For example,

the weekly return volatility for 10-year bond futures is 0.7%, compared to 2.24% for the S&P 500.

The impact of downward and upward price jumps and perceptions of tail risks in the stock

and bond markets can be inferred through OTM state-contingent returns. We compute the excess

returns of buying OTM options on stock with fixed-option delta, denoted δs, as follows:

r

s, put

{t→t+∆}[k
s] =

[Ks − St+∆]
+

putt[K
s]

−Rrf
t , where strike Ks corresponds to δs of − 20 or − 7 and (1)

r

s, call

{t→t+∆}[k
s] =

[St+∆ −Ks]+

callt[Ks]
−Rrf

t , where strike Ks corresponds to δs of 20 or 7. (2)

The option holding period is from t to t+∆, where ∆ is the time to maturity of the option, and

putt[K] (callt[K]) is the price of a put (call) with strike K. Additionally, [a]+ ≡ max(a, 0) and Rrf
t

is the gross risk-free return over ∆ (known at time t).

Accounting for differences in return volatilities across stock and bond, we similarly compute the

returns of buying OTM options on bond futures with fixed delta δb. These bond option returns —

following equations (1) and (2) — are denoted by rb, put

{t→t+∆}[k
b] and rb, call

{t→t+∆}[k
b].

Table 1 (Panels A and B) displays the characteristics of these 7DTE option returns in both

Treasury bond and stock markets. Dollar open interest and volume associated with these small

maturity options is sizable. The returns of both 20 and 7 delta call options for bond futures

and stock are not pairwise significantly different, as shown by the stationary bootstrap confidence

intervals (Panel C of Table 1). Moreover, the average excess returns of OTM puts on bond are less

negative than those on stock. These findings suggest consistent investor behavior in the bond and

stock markets, as manifested in the shared signs of average state-contingent returns.
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To set the stage for discussing the correlations between stock and bond option returns, we first

employ the modeling of the conditional joint distribution of stock and bond returns in Ang and Chen

(2002). Their methodology targets exceedance return correlations benchmarked to the bivariate

normal distribution based on sigma event thresholds and without using options data. Adopting

their approach over the extended sample period of January 5, 1990, to February 23, 2023 (1,781

observations), we report exceedance correlation statistics for seven-day stock and bond futures

returns in Table 2. The meaning of reported H− (Ang and Chen (2002, equation (15), page 464))

in row (a) is that conditional on the downside pairing of log(F s
t+∆/F

s
t ) and {− log(Fb

t+∆/F
b
t )}, the

correlations differ from the bivariate normal counterparts by 23%. This H− statistic for negative

sigma thresholds significantly differs from H+ of 18% for positive sigma thresholds in row (b).

The bootstrap p-value for H− < H+ is 0.02, which is reinforced by the two-sided p-value of

0.07 using the test of Hong, Tu, and Zhou (2006, equation (8)). To summarize, the consequential

finding — with respect to our analysis of protective measures — is asymmetric return correlation

effects over small maturity: Losses on stock declines are accompanied by gains on rising Treasury

bond futures (as mirrored by losses on the short position in Treasury bond futures).

Our principal innovation is uncovering the relationship between the returns of OTM calls on

bond and OTM puts on stock. For this exercise, we calculate the following sample correlations:

ρ[δb, δs] corresponds to the return correlation with δb(δs) of 20 (−20) and 7 (−7).

Our approach, which is based on small-maturity option returns, is in line with the method used

by Hong, Tu, and Zhou (2006, equation (9)) and is effective in analyzing the characteristics of

state-contingent correlations between stock and bond returns.

In Table 3 (column I), the full sample correlations of 7DTE call returns on bond and 7DTE

put returns on stock range from 0.28 to 0.47, whereas the mean 52-week rolling correlations range

from 0.25 and 0.43. These correlations are significantly positive, as evidenced by the stationary

bootstrap confidence intervals (displayed in square brackets).

These findings can be interpreted as quantifying the impact of de-risking strategies. Specifically,

they suggest that investors tend to reallocate their portfolios from riskier stocks to more secure

bonds during weeks marked by significant stock market declines. In times of volatility, many
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investors choose to shift their focus to Treasuries, which offer both quality and liquidity. Thus, calls

on bond are desirable and offer a layer of protection when stocks perform poorly. This relationship

is evident through the positive correlation between the returns of OTM bond calls and stock puts.

Emphasizing this part of our analysis, we next construct data on options with even smaller

maturity given by 1DTE. We note that our estimation approach is based on asymptotics as ∆ → 0,

where the effects of diffusive return volatility diminish and price jumps become the determining

factor in shaping OTM option prices. Thus, examining 1DTE options is aligned with the underlying

premise of our investigation. We utilize 630 daily expiration cycles, with each cycle occurring every

week from Thursday PM initiation to Friday PM expiration,2 rather than from Friday to Friday.

Compatible with our findings, Table 3 (column II) shows that the full sample correlations of 1DTE

call returns on bond and 1DTE put returns on stock are positive and range from 0.20 to 0.25.

Table 3 (Panel B) shows the correlations between the returns of buying OTM puts on bond and

buying OTM calls on stock. Specifically,

ρ[δb, δs] corresponds to the return correlation with δb(δs) of − 20 (20) and − 7 (7).

In comparison to Table 3 (Panel A), the correlations in Panel B are noticeably lower, and the

bootstrap confidence intervals bracket zero. Equally relevant to the big picture, our findings in

Table 3 (Panels C and D) demonstrate near-zero correlations between returns of OTM puts (calls)

of bond and returns of OTM puts (calls) of stock.

In support of our arguments, we perform a bootstrap exercise aimed to determine whether the

correlation between (rb, call, rs, put) for a specific delta is statistically higher than the correlations

among the other three option return pairs: (rb, put, rs, call), (rb, put, rs, put), and (rb, call, rs, call). Sta-

tionary bootstrap p-values generated in Table 4 (Panel A) imply that the correlations between the

returns of bond calls and stock puts are generally higher, in comparison with the remaining pairs of

option returns and delta configurations. The substantive message is that stock and bond markets

are more interconnected when there are upward jumps in bond and downward jumps in stock.

We acknowledge that our analysis leans on tail returns and the results underscore the varying

nature of correlations based on return percentiles. Such an analysis alludes to the difficulties of esti-

mating tail associations (e.g., Longin and Solnik (2001), Ang and Chen (2002), and Patton (2006)).

2See Table Internet I-1 for the empirical properties of one-day OTM option returns.
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To strengthen interpretations, we derive standardized option payoff outcomes and investigate the

consistency of their correlation profiles. These standardized payoffs, namely
[Fb

t+∆−Kb]+

Fb
t

for upside

of bond and
[Ks−St+∆]+

St
for downside of stock, do not require option prices and can be determined

over the extended sample of January 5, 1992, to February 23, 2024 (1,781 cycles (as in Table 2)).

Although option payoffs normalized by underlying prices are not equal to those normalized by op-

tion prices, they inform correlations among the respective state-contingent returns. Table 5 reveals

significant evidence of interdependence between bond and stock markets.

A key takeaway is the positive correlations of standardized option payoffs to the upside of bond

and downside of stock. Conversely, and as anticipated, we observe weaker correlations between the

downside of bond and upside of stock. Emphasizing our justification, Table 4 (Panel B) shows the

broader validity of our central findings by scrutinizing the bootstrap-based p-values between corre-

lation pairs. This analysis supports the notion that
[Fb

t+∆−Kb]+

Fb
t

and
[Ks−St+∆]+

St
display statistically

higher correlation in comparison to other combinations.

The analysis conducted in Tables 3, 4, and 5 reveals certain asymmetries in the correlations of

small maturity state-contingent payoffs. Specifically, we observe that during significant downward

movements in stock prices, bond prices tend to increase (reflecting a flight-to-quality effect). How-

ever, in contrast, when stock prices are optimistic, bond prices do not decrease correspondingly,

indicating a lack of retreat-from-quality. These findings pose a challenge for models that aim to

align the characteristics of state-contingent stock and bond returns across market conditions.

We delve into the link between bond and stock markets, offering insight and support for this

relationship. Our fundamental distinction is that we establish an elevated correlation between

returns of bond calls and stock puts, indicating a tendency for investors to safeguard against

adverse market declines. During such times, both types of protection are revealed to be more

costly. These appraisals agree with the evidence from exceedance correlations shown in Table 2.

To enhance our results from a related perspective, we investigate economic relationships and

the preference for safer investments during times of stress and high market volatility, using futures

returns of stock and bond. In support of our evidence, we utilize synchronized intraday stock and

bond returns data at five-minute intervals aligned with the Friday-to-Friday horizon.3 Our analysis,

3Extant empirical understanding is often centered on the equivalence between covariances of five-minute returns
and longer-horizon moment constructs (over seven days or 22 days). See the estimation approaches in, among others,
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developed in Table 6, yields one central connecting finding: The stock-bond correlation — which

correlates with stress variables (shown in column CORR) — is more negative during periods of

unfavorable economic conditions.

We uncover this aspect by investigating the environment that motivates flight-to-safety pro-

tections over small horizon. The specific evidence is based on the following regression framework:

ρt+∆ = ρ{Ft∈sbad}
× 1{Ft∈sbad}

+ ρ{Ft∈snormal}
× 1{Ft∈snormal}

+ ρ{Ft∈sgood}
× 1{Ft∈sgood}︸ ︷︷ ︸

indicator variable

+ ǫt+∆.︸ ︷︷ ︸
error term

(3)

The stock-bond return correlation — denoted by ρt+∆ — is negative for 86.5% of the weeks. We

consider nine variables, known at time t, denoted by Ft, as proxies for economic states, such as

stress indicators and VIX futures return variances constructed at five-minute intervals. For example,

ρ{Ft∈sbad} represents the average stock-bond correlation when VIX futures return variance is high.

Equation (3) decomposes the correlation into its components in different economic states.

Our analysis is based on the one-sided p-values from the Wald test of ρ{Ft∈sbad} = ρ{Ft∈sgood}.

The pattern is that the stock-bond correlations are more negative in pessimistic states compared

to those in optimistic states. This evidence is in line with our theory that argues that investors

are willing to pay a higher premium for protection during periods of heightened economic un-

certainty. Additionally, the fluctuations in the seven-day stock-bond correlation are predictable.

This is demonstrated by seven significant predictive slope coefficients. Indicative of low levels of

predictability over a small horizon, the R
2
(shown in column R

2
predictive) range from 0.1% to 14.8%.

In sum, our analysis reveals how combinations of calls on bond and puts on stock serve to

neutralize bad uncertainty. Consistent with returns on calls on bond and puts on stock being driven

by adverse jumps, our analysis of stock-bond correlation reveals sizable influence of economy-wide

variables. We identify the concentration of shocks that markets dislike and that warrant safety.

Our empirical findings arise from the data gathered on small maturity — 7DTE and 1DTE —

options on Treasury bond futures and the S&P 500 index. Since monthly stock and bond options

have different expiration dates, it is not feasible to use a time-series of paired monthly expiring

options to calculate correlations between stock and bond option returns. We next consider a model

that aligns with our findings on small maturity phenomena and that can be estimated.

Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004), Lee and Mykland (2008),
Bollerslev, Tauchen, and Zhou (2009, page 4477), Aı̈t-Sahalia, Fan, and Xiu (2010), Amaya, Christoffersen, Jacobs,
and Vasquez (2015, Section 2), and Liu, Patton, and Sheppard (2015, Section 2).
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3 A model of small maturity phenomena and price jumps

New to our study, we highlight return phenomena that are entwined across multiple trading venues:

stock and bond futures as well as small maturity puts and calls written on stock and bond. In this

section, we theoretically address the return properties of stock and bond options over t to t + ∆

and their covariances. Specifically, ∆ represents a short holding period. Our contribution is the

modeling of simultaneous price jumps in stock and bond markets.

To support our model assumption of simultaneous stock and bond price jumps, we utilize the

Barndorff-Nielsen and Shephard (2006) test for jump identification — tailored to detect cojumps

— in conjunction with a bootstrap analysis. This test compares realized quadratic variation with

bipower variation: A significant and sizable difference indicates a jump.

In implementation, we consider returns at the 15-minute frequency, as this is the frequency at

which the percentage of jumps stabilizes in our data (as suggested by Dumitru and Urga (2012)).

We define simultaneous jumps as instances where both assets’ jump test statistics exceed the 5%

critical value (Jacod and Todorov (2009)). Our bootstrap exercise rejects the hypothesis of non-

simultaneous price jump movements with a p-value of 0.03. This evidence supports the notion that

jumps in the stock and bond markets are interconnected. Equally crucial, these simultaneous price

jumps are negatively associated.

Fixing notations, let (Ω,F , (Ft)0≤t≤T,P) be a filtered probability space, with T being a fixed

finite time. The filtration (Ft)0≤t≤T satisfies the usual conditions. Stochastic processes are assumed

to be right-continuous with left limits. Let P denote the real-world probability measure.

In the presence of price jumps, markets are not complete. Hence, there is neither a unique

risk-neutral measure nor a unique pricing kernel. We consider a risk-neutral measure, Q, consistent

with the absence of arbitrage. Let EP
t (•) ≡ EP(•|Ft) (E

Q
t (•) ≡ EQ(•|Ft)) denote expectation under

P (Q) conditional on Ft. The spot interest-rate, rt, is assumed to evolve stochastically and the

zero-coupon bond price, maturing at t+∆, is given by Bt+∆
t ≡ E

Q
t (e

−
∫ t+∆
t

rℓ dℓ).

For our analysis, let F s
t− (Fb

t−) denote the pre-jump futures price of the stock (bond). We note

that max(Ks − F s
t+∆, 0) = max(Ks − St+∆, 0) and max(F s

t+∆ −Ks, 0) = max(St+∆ −Ks, 0).

We assume that the dynamics of F s
t , under P, are as follows:
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dF s
t

F s
t−

= µs,P
t dt +

diffusive part︷ ︸︸ ︷√
V s
t dW s,P

t

+ (ex
s+ − 1) dN

[good],P
t︸ ︷︷ ︸

upside stock jump component

− λ
[good],P
t︸ ︷︷ ︸

stochastic

dt

∫ ∞

0
(ex

s+ − 1) p[xs+]︸ ︷︷ ︸
P density

dxs+

+ (e−xs− − 1) dN
[bad],P
t︸ ︷︷ ︸

downside stock jump component

− λ
[bad],P
t︸ ︷︷ ︸

stochastic

dt

∫ ∞

0
(e−xs− − 1) p[xs−]︸ ︷︷ ︸

P density

dxs−. (4)

In (4), µs,P
t is the time t (instantaneous) stock futures risk premium (allowed to vary stochastically),

√
V s
t is the diffusive stock stochastic volatility, and W s,P

t is a standard Brownian motion under P.

The following description is instructive in our context of small maturity options:

• λ
[good],P
t (λ

[bad],P
t ) denotes the intensity rate of the Poisson process N

[good],P
t producing up jumps

(N
[bad],P
t producing down jumps) in the stock futures price.

• Up jumps in the stock futures price are denoted by xs+, with xs+ > 0. Down jumps are given

by −xs−, with xs− > 0. This treatment implies that down jumps are of magnitude xs−. The

marginal density under P of up jumps is p[xs+], and that of down jumps is p[xs−].

•
∫∞
0 (ex

s+−1)p[xs+] dxs+ is the expected jump size under P, conditional on an up jump occur-

ring. Furthermore,
∫∞
0 (e−xs− − 1)p[xs−] dxs− is the expected jump size under P, conditional

on a down jump occurring in the stock futures price.

Correspondingly, we assume the following dynamics for Fb
t , under P:

dFb
t

Fb
t−

= µb,P
t dt +

diffusive part︷ ︸︸ ︷√
V b
t dWb,P

t

+ (ex
b+ − 1) dN

[bad],P
t︸ ︷︷ ︸

upside bond jump component

− λ
[bad],P
t dt

∫ ∞

0
(ex

b+ − 1) p[xb+]︸ ︷︷ ︸
P density

dxb+

+ (e−xb− − 1) dN
[good],P
t︸ ︷︷ ︸

downside bond jump component

− λ
[good],P
t dt

∫ ∞

0
(e−xb− − 1) p[xb−]︸ ︷︷ ︸

P density

dxb−. (5)

In (5), µb,P
t is the time t (instantaneous) bond futures risk premium.

Our distinction from the stock-bond literature is in the nature of the jumps induced by the

Poisson processes N
[bad],P
t and N

[good],P
t , explained as follows:

• The process N[bad],P
t drives down jumps in the stock futures prices, but it drives up jumps in

the bond futures prices. N[bad],P
t exerts a significant role in modeling economic phenomena.
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• Conversely, the process N
[good],P
t is responsible for up jumps in the stock futures prices, but it

tends to drive down jumps in the bond futures prices.

While, for example, down jumps in the stock futures prices occur simultaneously with up

jumps in the bond futures prices, their codependence is captured through the bivariate probability

distribution of the jump sizes (xs−, xb+) and that of the jump sizes (xs+, xb−). Analogous to

equation (4), xb+ > 0 and xb− > 0.

We denote by p[xs−, xb+] the bivariate probability density function, under P, of jumps of size

−xs− < 0 and xb+ > 0. The parametric forms of the two associated marginal densities are assumed

compatible with the parametric form of the bivariate density. For example, the marginal densities

satisfy the following relations: p[xs−] =
∫∞
0 p[xs−, xb+] dxb+ and p[xb+] =

∫∞
0 p[xs−, xb+] dxs−.

Analogously, we denote by p[xs+, xb−] the bivariate probability density, under P, of jumps of

size xs+ > 0 and −xb− < 0. The parametric forms of p[xs+] and p[xb−] align with the underlying

bivariate density p[xs+, xb−].

In sum, we model two — not four — Poisson processes. We assume independence of xs+ and xb+

and independence of xs− and xb−: p[xs+, xb+] = p[xs+]×p[xb+] and p[xs−, xb−] = p[xs−]×p[xb−].

Each of µs,P
t ,

√
V s
t , µ

b,P
t ,

√
V b
t , λ

[good],P
t , and λ

[bad],P
t can be stochastic, by, for example, being

functions of state variables, but we do not, for notational brevity, make such dependence explicit.

We assume that each quantity is predictable with respect to Ft. The standard Brownian motion

increments dW s,P
t and dWb,P

t can have a flexible correlation structure, as may
√

V s
t and

√
V b
t .

The dynamics of F s
t and Fb

t , under Q, have the same interpretations (and forms) as in (4) and

(5), with three adjustments (as is explicit in the context of equation (C3)). First, the risk-neutral

marginal densities of down and up jumps in the stock and bond are internally determined from the

system of risk-neutral bivariate densities q[xs−, xb+] and q[xs+, xb−]. Second, the futures prices

are martingales under Q. Finally, the time-varying jump intensities under P and Q are distinct,

specifically λ
[bad],P
t and λ

[bad],Q
t , as well as λ

[good],P
t and λ

[good],Q
t . Collectively, these jump intensities

drive fluctuations in stock-bond correlations, option prices, and return volatilities.4

4Our stock and bond modeling offers perspectives distinct from those of Carr and Wu (2007), who acknowledge
upward and downward jumps in their modeling of currency movements, using two separate Lévy processes.
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3.1 Implications of the model for option prices and state-contingent correlations

For our characterizations pertaining to small option maturity (∆) and correlations, we define

the asymptotic equivalence notation f(∆) ∼ g(∆) to mean lim
∆→0

f(∆)

g(∆)
= 1. (6)

We provide a proof of the following relations in Appendix A.

Result 1 In the limit of small option maturity ∆, the prices of OTM puts (k < 1) and OTM calls

(k > 1), expiring in ∆ years from t, have the following forms:

OTM call bond: callt[K
b] ∼ Fb

t Bt+∆
t λ

[bad],Q
t ∆

∫ ∞

0
max(ex

b+ − kb, 0)q[xb+] dxb+, (7)

OTM put stock: putt[K
s] ∼ F s

t B
t+∆
t λ

[bad],Q
t ∆

∫ ∞

0
max(ks − e−xs−

, 0)q[xs−] dxs−, (8)

OTM put bond: putt[K
b] ∼ Fb

t Bt+∆
t λ

[good],Q
t ∆

∫ ∞

0
max(kb − e−xb−

, 0)q[xb−] dxb−, (9)

OTM call stock: callt[K
s] ∼ F s

t B
t+∆
t λ

[good],Q
t ∆

∫ ∞

0
max(ex

s+ − ks, 0)q[xs+] dxs+.

︸ ︷︷ ︸
formulated from a parametric density assumption

(10)

For small ∆, option pricing is dominated by the possibility of jumps and are detached from diffusive

volatilities
√

V s
t and

√
V b
t . The pricing equations (7)–(10) hold for a broad class of jump densities.

The task of understanding the combined behaviors of claims on bond, stock, and volatility fu-

tures over a small horizon is not possible without applying an appropriate parametric framework.

We recognize that various alternative dynamics could conceivably reproduce the state-contingent

return associations. With that said, the upshot of Result 1 is that a model solely based on continu-

ous time dynamics as diffusions — without any jumps, simultaneous or otherwise — is inadequate

for explaining small maturity OTM option prices and related small maturity phenomena.

Our modeling approach, with downward and upward price jumps, is reasoned by the fact that

multi-asset options on stock and bond are not yet traded. That is to say, for a given small maturity,

option prices can be used to deduce the univariate risk-neutral distributions for bond and stock

returns but not their joint distributions. To answer questions related to the structure of bivariate

return moments pertinent to small maturity, we model simultaneous jumps in stock and bond with

each jump process having its own stochastic intensity rate. This link has the advantage of joint-

modeling the stock and bond returns under both P and Q while allowing flexibility in parameterizing

the jump size distributions. A notable insight of Result 1 is that λ
[bad],Q
t (respectively, λ

[good],Q
t ) drives
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the variation in both callt[Kb]

Fb
t

and putt[K
s]

F s
t

(respectively, putt[K
b]

Fb
t

and callt[Ks]
F s
t

). Viewed from these

standpoints, theoretical approaches equipped with simultaneous price jumps and separate jump

intensity rates are essential for capturing small maturity phenomena within estimated models.

3.2 Distinctions of our model from the literature and benchmarking

The distinguishing feature of our framework from other models lies in the incorporation of two

Poisson processes controlled by stochastic intensity rates (i.e., λ
[bad],P
t and λ

[good],P
t ). This aspect

plays a crucial role in explaining the imperfect and dynamic small maturity state-contingent stock

and bond return correlations, as illustrated in Table 3.

To benchmark our new evidence and model framework with down and up price jumps, the

analysis in Appendix B examines a modified version of the standard Merton (1976) model that

includes only one stochastic jump intensity. Specifically (analogously under Q),

dF i
t

F i
t−

= µi,P
t dt+

√
V i
t dW

i,P
t + (ex

i − 1) dNP
t︸ ︷︷ ︸

jump component

− λP
t︸︷︷︸

stochastic

dt

∫ ∞

−∞
(ex

i − 1)p[xi] dxi, i ∈ {s,b}. (11)

This model of stock and bond futures price dynamics encounters challenges in explaining the

imperfect small maturity state-contingent correlations and representing the joint dynamic nature

of OTM puts and call prices for stock and bond. In particular, all small maturity OTM option

prices are restricted by the single jump intensity rate λQ
t (as indicated by equations (B2)–(B3) of

Appendix B).

Viewed from the perspectives of our model for small maturity options and state-contingent

return correlations, Wachter (2013) develops an equilibrium framework influenced by variable rate

disasters. This model captures variations in the state-contingent stock and bond correlations that

are attributable to purely diffusive drivers (using Wachter (2013, equations (21) and (B3))). Rela-

tive to our approach, the derived bond price dynamics in this model are absent of price jump risks,

which is a consideration when analyzing data on small maturity options on bond futures.

Other approaches conduct their analysis at a quarterly frequency and employ general equilib-

rium models fitted to consumption data. For example, David and Veronesi (2013) present a model

that takes into account the learning process of agents regarding the growth rates of consumption and

inflation. This model shapes stock returns and bond returns whose volatilities transition, according

to the state of a Markov chain. However, this model does not incorporate price discontinuities.
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Campbell, Sunderam, and Viceira (2017) produce a squared Gaussian model for studying stock

and bond return relationships. Their assumption of constant volatility without discontinuous price

jump components presents a limitation when analyzing options. Thus, the scope of existing papers

promotes different inquiries, utilizes alternative samples, and operates at longer-spaced frequencies.

Adopting a New Keynesian framework to characterize stock and bond returns, Campbell,

Pflueger, and Viceira (2020) model the real pricing kernel, real and nominal interest-rates, ex-

pected cash flows, and inflation. Their formulations are absent of consumption disasters, which are

pertinent in the context of pricing state-contingent claims with small maturity. As a result, their

model with Gaussian shocks — while aligned with quarterly economic data — is not suitable for

addressing our evidence on small maturity phenomena and the relevance of bad news and good

news price jump intensities.

4 Bond and stock state-contingent returns in an estimated model

We examine the empirical consistency of model constructions with returns obtained from options

on bond and stock with a seven-day expiry. To do so, we introduce bivariate jump distributions and

assess whether our estimated model is compatible with the data from state-contingent returns and

option prices. Reconciling small maturity empirical phenomena over seven days (Friday to Friday),

we extract the time-series of bad and good jump intensities under P using Kalman filtering.

4.1 Bivariate distributions for jumps in bond and stock

To investigate the empirical implications of our model, we consider bivariate exponential densities

specific to down (up) jumps in stock and up (down) jumps in bond. For estimation, we suppose

that the bivariate density — see Balakrishnan and Lai (2009, Chapter 10) — of xs− and xb+ is

p[xs−, xb+]︸ ︷︷ ︸
bivariate density

=
1

(1 − ρbad)µs−µb+
exp

(
− xs−

µs−(1 − ρbad)
− xb+

µb+(1− ρbad)

)
I0[

2 (ρbad xs−xb+)
1
2

(1− ρbad)(µs−µb+)
1
2

], (12)

where I0[•] is the modified Bessel function of the first kind of order zero. The correlation coefficient

between xs− and xb+ is ρbad, and the mean jump size for stock (bond) is µs− (µb+).

Additionally, the bivariate density for up price jumps in stock (i.e., xs+) and down price jumps

in bond (i.e., xb−), namely, p[xs+, xb−], is assumed to be of the same form as in (12). The bivariate

density is distinguished by mean jump parameters (µs+, µb−) and correlation coefficient ρgood. This

jump structure for pricing representations in Result 1 sets the framework for tractable estimation.
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Two features guide our choice of the bivariate exponential densities under P and Q. First, the

joint moment-generating function has a closed-form representation (Balakrishnan and Lai (2009,

page 436)), as follows (for parameters φ ∈ R and ϕ ∈ R):
∫ ∞

0

∫ ∞

0

eφxs−+ϕxb+

p[xs−, xb+] dxs−dxb+ =
1

{1− (µs−)φ}{1− (µb+)ϕ} − ρbad µs− µb+φϕ
. (13)

The superscripts P and Q on the parameters are suppressed in (12) and (13). The parameters ρbad

and ρgood are unaltered under P and Q (i.e., no Girsanov change of measure transformation).

Second, pertinent to the measurement equations in the Kalman filtering procedure, the univari-

ate distributions of xb− (xb+) and xs− (xs+) inherit exponential marginals. Specifically,





p[xb−] =

bond jump density, P︷ ︸︸ ︷
1

µb−,P
e
− 1

µb−,P
xb−

,

p[xb+] = 1
µb+,P e

− 1

µb+,P xb+

,

and





q[xb−] =

bond jump density, Q︷ ︸︸ ︷
1

µb−,Q
e
− 1

µb−,Q xb−
,

q[xb+] = 1
µb+,Q e

− 1

µb+,Q
xb+

.

(14)

Accordingly, the mean jump sizes of positive price jumps in bond are 0 < µb+,P < 1 and 0 <

µb+,Q < 1 under P and Q, respectively. Likewise, the mean (absolute) jump size of negative price

jumps in bond are 0 < µb−,P < ∞ and 0 < µb−,Q < ∞.

The marginal price jump distributions of stock are analogously characterized — as in the stock

model of Kou (2002) — indicated by the form in equation (14), complying with aforementioned

parametric constraints on (µs−,P, µs−,Q) and (µs+,P, µs+,Q).

4.2 Measurement equations based on covariances, variances, and options

Simultaneous stock and bond movements are represented using two Poisson processes, both with

stochastic intensity rates. The magnitude of these jumps follows a bivariate distribution. The move-

ments categorized as bad jumps play a pivotal role in interpreting the observed market dynamics.

These jumps represent the flight-to-quality phenomenon, a situation often seen during market tur-

moil, where bonds experience an upward movement and stocks a downward movement. In our

model, bad jumps are those in which stock prices decrease while bond prices increase. Conversely,

good jumps align with an increase in stock prices while bond prices decrease.

To establish our results and empirically assess model implications, we extract the time-series of

zt
(4×1)

≡ [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
, for t = 1, . . . , 630, (15)
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through Kalman filtering and quasi-maximum likelihood. We scrutinize the distinguishing features

of good and bad jump intensities and how they impact stock and bond markets. Furthermore, we

examine the evolution of diffusive volatilities in the presence of price jumps and jump intensities.

For the estimation procedure, we utilize information from return covariances and variances.

The following relations are derived (proof available from authors):

1

∆
covPt (log(

F s
t+∆

F s
t

), log(
Fb
t+∆

Fb
t

)) ∼ a

{rs},{rb}
good × λ[good],P

t + a

{rs},{rb}
bad × λ[bad],P

t , (16)

1

∆
covPt ({log(

F s
t+∆

F s
t

)}2, {log(F
b
t+∆

Fb
t

)}2) ∼ a

{rs}2,{rb}2
good × λ[good],P

t + a

{rs}2,{rb}2
bad × λ[bad],P

t . (17)

These covariances illustrate that the impact of diffusion-related factors is minimal in the small time

limit of ∆ → 0. It holds that

a

{rs},{rb}
good ≡ −(µs+,P)(µb−,P)(1 + ρgood) and a

{rs},{rb}
bad ≡ −(µs−,P)(µb+,P)(1 + ρbad), (18)

a

{rs}2,{rb}2

good ≡ 4(µs+,P)2(µb−,P)2
{
(ρgood)2 + 4 ρgood + 1

}
, and (19)

a

{rs}2,{rb}2

bad ≡ 4(µs−,P)2(µb+,P)2
{
(ρbad)2 + 4 ρbad + 1

}
. (20)

Aligning measurements with the model, we employ returns sampled at five-minute synchronized

observations. That is, for rst,ℓ = log(F s

t, ℓ
N

)− log(F s

t, ℓ−1
N

) and rbt,ℓ = log(Fb

t, ℓ
N

)− log(Fb

t, ℓ−1
N

),

covar{r
s}i,{rb}i,P

{t→t+∆} ≡ 52×
I∑

ℓ=1

{rst,ℓ × rbt,ℓ}i, for i = 1, 2, (21)

where I is the number of observations in a trading week (i.e., I = 12×6.5×5). In so doing, we are

guided by the theory on building seven-day moments from high-frequency returns (e.g., Amaya,

Christoffersen, Jacobs, and Vasquez (2015, Section 2) and Liu, Patton, and Sheppard (2015)). We

additionally incorporate realized variances in our measurements, as follows:

{rvb,P{t→t+∆}}
2 ≡ realized variance from five-minute return intervals (Friday to Friday). (22)

Analogously, we construct {rvs,P{t→t+∆}}2 (expressed as annualized decimals). We stack these realized

covariances and return variances in the 4× 1 vector, as follows:

ycovar/var

t = [covar{r
s},{rb},P

{t→t+∆} , covar{r
s}2,{rb}2,P

{t→t+∆} , {rvb,P{t→t+∆}}
2, {rvs,P{t→t+∆}}

2]′. (23)

Our measurements also combine information from options markets, as follows:

yoptions
t︸ ︷︷ ︸
10×1

= [
put[Kb]

Fb
t B

t+∆
t ∆

,
call[Kb]

Fb
t B

t+∆
t ∆

,
put[Ks]

F s
t B

t+∆
t ∆

,
call[Ks]

F s
t B

t+∆
t ∆︸ ︷︷ ︸

scaled 7DTE bond and stock option prices (± 7 and ± 20 delta)

, {VIXb
t }2, {VIXs

t}2︸ ︷︷ ︸
seven-day VIX

]′. (24)
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Specifically, we utilize scaled 7DTE OTM option prices. As evidenced by equations (9)–(10), these

prices reflect the expected size of jumps, taking into account whether they are up or down.

Next, the seven-day VIX is created using {VIXb
t }2 = E

Q
t ({−2

∆ } e−
∫ t+∆
t

rℓ dℓ

Bt+∆
t

log(
Fb
t+∆

Fb
t

)) from 7DTE

option prices (analogously for seven-day {VIXs
t}2):

{VIXb
t }2︸ ︷︷ ︸

annualized decimals

=
2

Bt+∆
t ∆

∫ Fb
t

0

1

K2
putt[K] dK +

2

Bt+∆
t ∆

∫ ∞

Fb
t

1

K2
callt[K] dK. (25)

We assume that the stock and bond diffusive variances evolve as follows (with i ∈ {s,b}):

dV i
t =





(θPi − κPi V
i
t ) dt+ σi

√
V i
t

{
ρi dW

i,P
t +

√
1− ρ2i dW

i•,P
t

}
, (under P)

(θQ
i
− κQ

i
V i
t ) dt+ σi

√
V i
t

{
ρi dW

i,Q
t +

√
1− ρ2

i
dW i•,Q

t

}
, (under Q)

(26)

for independent standard Brownian motions (W i,P
t ,W i•,P

t ) and (W i,Q
t ,W i•,Q

t ). Furthermore, we

assume that both the good and bad jump intensities follow mean-reverting processes:

dλ
[h],P
t = (θPh − κPh λ

[h],P
t ) dt + σh

√
λ
[h],P
t dW h,P

t , for h ∈ {good,bad}. (27)

All standard Brownian motions are mutually independent. We favor tractable estimation and map

the risk premiums for jump intensities as follows:

log(
λ
[good],P
t

λ
[good],Q
t

)

︸ ︷︷ ︸
risk premium

= −χgood < 0 and log(
λ
[bad],P
t

λ
[bad],Q
t

)

︸ ︷︷ ︸
risk premium

= −χbad < 0, (28)

where χgood and χbad are constants. Thus, λ
[good],Q
t = eχ

good
λ
[good],P
t and λ

[bad],Q
t = eχ

bad
λ
[bad],P
t .

The essence of model specification (28) is to inflate the jump intensities under Q in relation to P.5

Our approach is guided by the amenability of measurement equations, given our formulation of

option prices, volatilities, and stock and bond return covariances over small maturity. Compared

to models with constant jump intensity, models with two stochastic jump intensities offer a more

favorable alignment with the actual behavior of small maturity options and return volatilities.

4.3 Kalman filtering estimation

The model in state-space form for the vector yt ≡ [(ycovar/var

t )′, (yoptions

t )′]′ is

5We recognize that there is no unique pricing kernel (when markets are not complete) and that other risk premium
specifications for jump intensities are possible (e.g., Shreve (2003, Chapter 11.6) and Bollerslev and Todorov (2023)).
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yt
(14×1)

= α + β zt + ǫ̃t, where ǫ̃t is distributed Normal(0,℧℧℧). (29)

The representation in equation (29) allows for deviations due to the asymptotic equivalence ap-

proach for determining OTM option prices. Equations (7)–(10), in conjunction with (14), establish

the form of the 7DTE put[Kb]

Fb
t Bt+∆

t ∆
, call[Kb]

Fb
t Bt+∆

t ∆
, put[Ks]

F s
t B

t+∆
t ∆

, and call[Ks]

F s
t B

t+∆
t ∆

(each for ±7 and ±20 delta).

Hence, our pricing formulas for options with small maturity in Result 1 — which avoid Fourier

inversion methods — crucially facilitate estimation and computation with Kalman filtering.

Our estimation approach accounts for interdependencies between bond and stock option re-

turns and volatilities through variations in λ
[good],P
t and λ

[bad],P
t . Incorporating covar{r

s},{rb},P
{t→t+∆} and

covar{r
s}2,{rb}2,P

{t→t+∆} in measurements is essential to the estimation of ρgood and ρbad.

In equation (29), ǫ̃t is a vector of i.i.d. Gaussian errors with a constant diagonal matrix repre-

sented by ℧℧℧. We assume that the measurement errors are cross-sectionally uncorrelated. Moreover,

the variance of the measurement errors is captured by one free parameter for the two small matu-

rity covariances, one for the two realized return variances, one each for the 7 delta bond and stock

option prices, one each for the 20 delta bond and stock option prices, and one each for the bond

and stock VIX. This specification entails eight elements in ℧℧℧. The model-based quantities α and

β in equation (29) are determined from (26)–(28), as follows:

α
(14×1)

=




0

0

0

0

0

0

0

0

0

0

0

0

0

0




, β
(14×4)

=




a

{rs},{rb}
good a

{rs},{rb}
bad 0 0

a

{rs}2,{rb}2

good a

{rs}2,{rb}2

bad 0 0

{µb−,P}2 {µb+,P}2 1 0

{µs+,P}2 {µs−,P}2 0 1

eχ
good {e

( 1
µb−,Q

+1) log(kb)
}

1

µb−,Q +1
0 0 0

· · · 0 0 0

0 eχ
bad {e

−( 1
µb+,Q

−1) log(kb)
}

1

µb+,Q −1
0 0

0 · · · 0 0

0 eχ
bad {e

( 1
µs−,Q

+1) log(ks)
}

1

µs−,Q +1
0 0

0 · · · 0 0

eχ
good {e

−( 1
µs+,Q

−1) log(ks)
}

1

µs+,Q −1
0 0 0

· · · 0 0 0

2 eχ
good{ 1

1+µb−,Q − 1 + µb−,Q} 2 eχ
bad{ 1

1−µb+,Q − 1− µb+,Q} 1 0

2 eχ
good{ 1

1−µs+,Q − 1− µs+,Q} 2 eχ
bad{ 1

1+µs−,Q − 1 + µs−,Q} 0 1




. (30)
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The model expressions for {rvb,P{t→t+∆}}2 = 1
∆EP

t (
∫ t+∆
t { 1

dℓvar
P
t [d log(F

b
ℓ )]}dℓ and {VIXb

t }2 appearing

in rows 3 and 13 of equation (30) are standard, likewise for {rvs,P{t→t+∆}}2.

The 7DTE horizon — as opposed to 1DTE — is unique due to the fact that we maintain a seven

day expiration without the possibility of irregular time-series gaps in the estimation procedure.

Each measurement is linear in the 4× 1 vector zt = [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
, and we apply the

Kalman filter. The transition equations link the discrete-time evolution of zt, as follows:

zt+∆ = C + Dzt + ẽt+∆ and ẽt+∆ is distributed Normal(0,Λt+∆). (31)

Although the exact transition density of zt under P is not known, we can determine its mean and

variance. We approximate the transition density as a Gaussian density with the same mean and

variance. The structure of C, D, and Λt for the estimation is specified in (C4)–(C5) of Appendix C.

Using the Kalman filter, we can generate one-step-ahead forecasts for yt, denoted by ŷt|t−1,

along with their corresponding error covariance matrices, Σt|t−1. The log-likelihood function is

L[Θ] = −1

2

630∑

t=1

{
14× log(2π) + log(Σt|t−1) + (yt − ŷt|t−1)

′ Σ−1
t|t−1 (yt − ŷt|t−1)

}
, (32)

where Θ is the 32×1 vector of unknown parameters with the quasi-maximum-likelihood estimator,

Θ̂ = arg maxΘ L[Θ].6

5 Replicating interrelated small maturity phenomena in markets

Our investigation reveals that the small maturity stock and bond markets exhibit unequal state-

contingent returns correlation: a strong relationship between state-contingent returns on the down-

side of stock and upside of bond, whereas the upside of stock and downside of bond have negligible

correlation. Despite ongoing discussions about the forces driving these markets, there are few esti-

mated models of small maturity pricing that analyze the economic implications that are consistent

with empirical results across bond and stock options markets. What is new is that we appraise

whether the estimated model captures essential characteristics of small maturity bond and stock

markets, such as realized volatilities, VIX, option prices, and stock-bond return association.

6Our inferences about correlations are under the P measure, and jump sizes are under both P and Q. Andersen,
Fusari, and Todorov (2017, equation (6)) design a different objective function for their estimation compared to
ours. They utilize the squared differences between the Black-Scholes-implied volatility and include a penalty term
to account for estimation error in diffusive variance. They break down the estimation process into two steps: first
optimizing over the state vector on each day t, and then optimizing over the model parameters using the overarching
objective function. Andersen, Fusari, and Todorov do not estimate jump sizes under P.
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Additionally, 7DTE VIX futures — denoted by F vix
t — and VIX of VIX — denoted by CBOE

as VVIXt — can be integrated into small maturity S&P 500 index claims pricing. Guided by

this reasoning, we include Friday-to-Friday data from F vix
t and synthesized 11-day VVIXt in our

analysis. The 11-day VVIXt arises as 7DTE options on VIX futures expire on Tuesday close (settle

Wednesday AM). This approach enables us to distinguish between data that was used to create the

model and new data on VIX options and 7DTE VIX futures that the model has not yet encountered.

5.1 Properties of [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
anchored to small maturity phenomena

Although there are studies that consider the relationship between stock and bond returns within

macrofinance models and consumption growth dynamics, we expand and improve beyond this

connection. We aim to understand the mechanisms that drive the variation in small maturity

state-contingent returns of stock and bond, as well as small maturity stock and bond VIX. To this

end, using the Kalman filtering approach based on small maturity data as captured in equation

(29), we extract the time-series of [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
to describe the time-series and cross-

sectional properties of the 7DTE options data. Our methodology quantifies the properties of

diffusive variances, good and bad jump intensities, and estimated jump sizes under P and Q.

Table 7 presents the descriptive statistics for the small maturity data moments for extant

models to match. One notable feature is the essentially symmetric pricing for OTM puts and calls

for bond (i.e., putt[K
b]

Fb
t Bt+∆

t ∆
versus callt[Kb]

Fb
t Bt+∆

t ∆
). There is also a significant difference between the actual

average VIXs
t (16.2%) and VIXb

t (4.6%), which highlights the considerable asymmetry in the cost

of protection in stock and bond markets. Additionally, there is a significant difference between

realized stock returns variability at 11.3% and bond futures returns variability at 3.4%.

Reported parameter estimates in Table 8 reflect the distinction between stock and bond mar-

kets. Figure 1 emphasizes this contrast, showing time-series estimates of the filtered diffusive

variances. The bond market consistently maintains a low diffusive variance, whereas the stock

market experiences spikes during periods of market turmoil, such as Black Monday in August 2011,

the coronavirus outbreak in March 2020, and the 41-year high-inflation realization in June 2022.

On average, the annualized
√

V b
t × 100 and

√
V s
t × 100 are 0.04% and 10.64%, respectively.

Figure 1 also shows the time-series estimates of the good and bad jump intensity rates, which

seem to peak during market stress events. It is evident that the taper tantrum in June 2013,
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while leading to increased jump intensities, did not have a significant impact on diffusive variances,

indicating that jump risks and diffusive risks evolve distinctly. The mean values for λ
[good],P
t and

λ
[bad],P
t are 0.72 and 0.08, respectively.

Table 8 also displays the parameters affecting the bivariate densities p[xs−, xb+] and p[xs+, xb−]

together with those of q[xs−, xb+] and q[xs+, xb−]. They show that the mean jump size to the

downside of stock under Q is higher in comparison to that of the upside under Q, whereas the size

of down and up bond jumps appears symmetric under Q.

Jump intensity rates are characterized by positive Girsanov jump parameters, with χgood = 3.01

and χbad = 5.23, indicating a higher perceived probability of jumps under the Q-measure compared

to the P-measure, particularly for bad jumps. In economic terms, news about good and bad events

drive risk premiums that introduce a wedge between total variances of stock and bond returns

under P and Q. Taken all together, the good and bad jump components play an outsized role in

determining the volatility of stock and bond returns and option prices, as well as small maturity

VIXs
t and VIXb

t , as seen from their relatively higher values compared to diffusive variances.

Our framework offers conditional jump size formulations, such as EP(xb+
∣∣xs−) = (1−ρbad)µb++

ρbad{µb+

µs− }xs− and EP(xb−
∣∣xs+) = (1 − ρgood)µb− + ρgood{µb−

µs+ }xs+. In our estimation, we obtain

near-zero estimates of ρgood and ρbad, which has twofold implications. First, when stock jumps

down (up), the size of the corresponding up (down) bond jump is determined by the estimated

unconditional mean jump size. Second, the stock and bond return covariations can then be plausibly

attributed to variations in good and bad stochastic jump intensity rates.

As a robust theoretical structure, the four variable model presents a viable approach, utilizing

the concept of good and bad jump intensities to capture the patterns in stock and bond return

distributions. The estimated values of the model parameters and [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
reflect

the characteristics of volatilities and option prices. In particular, the stochastic jump intensities

mirror the frequency of price jumps observed in stock and bond markets, and this estimated model

provides a baseline understanding of the behavior and traits of small maturity option prices.

5.2 Assessing empirical consistency with small maturity bond and stock options

Extant research has not yet examined the effectiveness of models for weekly option prices for both

bond futures and stock, nor the empirical characteristics of state-contingent bond and stock returns.
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To address this gap, we investigate the relevance of our model by analyzing its ability to match

quantitative features of volatilities, VIX indices, and option prices for both bond and stock markets.

Table 9 (for volatility and VIX) and Table 10 (for options implied-volatility) present model and

actual descriptive statistics for these variables. To assess the dynamic performance of the model, we

conduct regressions with actual (log) values against model-predicted values. For realized volatility

and VIX, the R
2
model values range from 65% to 100%, with slope coefficients between 0.84 and 1.08,

indicating the model’s ability to explain a significant portion of their variations (Table 9).

Bond option-implied volatility variations — inferred from option prices — are also well-captured,

with R
2
model ranging from 86% to 92% (Table 10). These results indicate that the model effectively

captures time-series variation across a multitude of data dimensions. However, the model appears

less valuable in tracking actual stock option prices, with R
2
model values between 28% and 47%.

These results are consistent with the errors computed using the log percentage fitting method,

calculated as log(modelt
actualt

). We observe that the mean absolute percentage errors (MAEs) for re-

turn volatilities and VIX indices are within the range of 0% and 32% for both bond and stock.

Furthermore, bond options show MAEs between 7% and 11%.

While this model tracks the dynamic nature of volatilities and 7DTE OTM options for bonds,

it also reveals some tension in pricing 7DTE deep OTM options for stocks. Stock put options

have MAEs between 20% and 23%, and stock call options have MAEs between 31% to 33%.

This indicates the model’s difficulties in pricing such small maturity stock options and replicating

fluctuations during tail episodes such as COVID-19 weekly cycles. A comparison with the closest

small maturity stock option model, Andersen, Fusari, and Todorov (2017), is limited, as they do

not benchmark to absolute error fit statistics.

Although this is not a formal hypothesis test, we demonstrate that 11 out of 12 model-implied

means bracket the 95% stationary bootstrap confidence intervals of the actual means in Tables 9

and 10, indicating a close correspondence.

By incorporating good and bad jump intensities, the model offers a theoretical basis to explain

several observed small maturity phenomena. Its strength lies in its ability to establish the economic

fundamentals behind the empirical observations. The estimated model recognizes the impact of

positive and negative news on mitigating and exacerbating risk and uncertainty in financial markets.
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5.3 Characterizing consistency with small maturity phenomena in markets

We now examine whether our model can account for the small maturity characteristics of the

market for traded stock volatility and small maturity correlations that are at the center of stock

and bond markets. This analysis, pursued in Tables 11 and 12, is new to the literature.

5.3.1 Small maturity phenomena and model estimated VVIX to stock VIX ratio

To further assess the effectiveness of the model, we evaluate its performance using data that was

not included during the estimation and development process. This evaluation examines the ability

of the model to adjust to fluctuations in volatility and stock fundamentals during periods of market

turmoil, as characterized by a decrease in the small maturity VVIXt

VIXs

t

ratio. Such a measure reflects

the changing cost relationship between small maturity VIX futures options and S&P 500 index

options, with a lower ratio typically coinciding with an increase in VIX futures prices.

We first generate the 7DTE VIX futures prices, F vix
t ≡ E

Q
t

(√
{VIXs

t+∆}2
)
— a forward-looking

measure of traded stock volatility, capturing small maturity volatility expectations. The model-

based F vix
t is derived from the integral representation of the square root function (e.g., Schürger

(2002)) with integration parameter ν, as follows:

F vix
t =

1

2
√
π

∫ ∞

0

1− E
Q
t (e

−ν {VIXs
t+∆}2)

ν
3
2

dν, (33)

with {VIXs
t}2 = wconstant + wv × V s

t + wgood × λ[good],Q
t + wbad × λ[bad],Q

t , (34)

where the constants wconstant, wv, wgood, and wbad are shown in equations (D7)–(D10) of Appendix D.

The expression for E
Q
t (e

−ν {VIXs
t+∆}2) is shown in (D11) of Appendix D. We construct the actual

7DTE F vix
t by interpolating VIX futures contract prices of different maturities at Friday close.

Each Friday, we also construct the actual 11-day VVIXt, as the 7DTE VIX options expiration

cycle spans Tuesday to Tuesday. The first (last) weekly cycle for options on VIX futures is October

16, 2015 (February 17, 2023), for a total of 384 observations. The 11-day VVIXt is

{VVIXt}2︸ ︷︷ ︸
annualized decimals

=
2

Bt+∆
t ∆

∫ Fvix
t

0

1

K2
putvixt [K]︸ ︷︷ ︸

VIX put

dK +
2

Bt+∆
t ∆

∫ ∞

Fvix
t

1

K2
callvixt [K]︸ ︷︷ ︸

VIX call

dK, ∆ =
11

365
. (35)

Appendix D shows that the model-based {VVIXt}2 ≡ E
Q
t ({−2

∆ } log(F
vix
t+∆

F vix
t

)) is of the form

{VVIXt}2 =
1

π

∫ ∞

0
Re

[(
Ct[φ]×

2 log(F vix
t ) + log(i φ) + γeuler

∆ i φ

) ∣∣∣
φ=a+i b

]
da. (36)

25



The characteristic function Ct[φ] ≡ E
Q
t (e

i φ {VIXs
t+∆}2) is presented in equation (D12). Equation

(36) enforces Re[i φ] > 0, and γeuler is Euler’s constant with a numerical value ≈ 0.577216.

The consideration of the VVIXt

VIXs

t

ratio and 7DTE F vix
t enables us to examine the impact of

stochastic intensity rates and diffusive volatility on traded stock volatility and VIX option prices.

Furthermore, this analysis helps determine the robustness and out-of-sample applicability of our

model to a traded stock volatility benchmark and VIX option prices, featuring two Poisson pro-

cesses, each governed by independent jump intensity rates.

Table 11 shows the comparison between model and actual VVIXt

VIXs

t

and 7DTE F vix
t . We evaluate

the dynamic performance via the regression log(actualt) = a+ b log(modelt) + ẽt. The estimated

b is 0.32 for VVIXt

VIXs

t

and 0.66 for F vix
t , both with a NW[p] of 0.00. The regressions support an

R
2
model of 49% and 56%, respectively. The 95% confidence interval on the actual mean log(VVIXt

VIXs

t

)

is [1.6 1.9] whereas the model mean is 1.7, with an MAE of 46% for VVIXt

VIXs

t

. Furthermore, the 95%

confidence interval on actual mean F vix
t is [16.2 22.7] and the model mean is 16.1, yielding an MAE

of 26%.7 Thus, being developed independently of information on VIX futures options, the model

shows its quantitative correspondence through external validation.

Figure 3 indicates that the model captures the behavior of traded stock volatility and the VVIXt

VIXs

t

ratio, with the exception of some periods of extreme market movements. These discrepancies are

likely caused by limitations in the model’s ability to forecast spikes in volatility and VIX call option

prices during times of adverse market-wide events. Crucial to our themes, the model consistently

reflects a decline in VVIXt

VIXs

t

during periods of market stress, as seen, for example, during the four

weekly cycles of the COVID-19 pandemic in March 2020.

Table 11 additionally conducts a regression analysis analogous to Table 6, followed by the

predictability regressions using model-implied and actual log(VVIXt

VIXs

t

), respectively, as dependent

variables. We investigate whether our model can replicate small maturity phenomena founded in

safety in that VVIXt

VIXs

t

tends to go down during periods of heightened uncertainty. Our results

are consistent with the notion that the model-generated log(VVIXt

VIXs

t

) aligns with the data pattern

by being lower in pessimistic states and higher in optimistic states. Furthermore, variations in

7The formula for VVIXt in equation (36) is new to the literature. Additionally, our small maturity approach
and dynamic consistency exercises differ from, among others, Zhu and Lian (2012) and Bardgett, Gourier, and
Leippold (2019), who model constant jump intensity rate, and Eraker and Yang (2022), who rely on equilibrium
model calibrations. Bacon, Bégin, and Gauthier (2024) employ jump intensities that depend on the return variances.
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the model-based log(VVIXt

VIXs

t

) can be forecasted by a group of variables that also anticipate a

negative stock-bond correlation. A key finding is the adherence in the model’s and actual predictive

slope coefficients’ signs. Notably, this analysis corroborates the relevance of understanding market

reactions to negative events and their impact on investor behavior.

In closing, our model characterizations examine the observed attributes of VVIXt

VIXs

t

in relation to

estimated jump intensities and diffusive stock volatility. Previous research has analyzed volatility-

of-volatility expectations using monthly VVIXt, but the quantitative implications of small maturity

VVIXt have remained unexplored. We reconcile by quantifying the VVIXt

VIXs

t

ratio, which reflects the

manner in which the cost of volatility protection differs from the cost of downside stock risk pro-

tection. This new empirical and modeling angle helps us understand the interconnected dynamics

of small maturity volatility protection and safety phenomena evident in stock and bond markets.

5.3.2 Model-implied predictions of small maturity stock-bond association

Can the model predict subsequent interdependencies between the bond and stock markets? Con-

necting to flight-to-quality effects, this exercise focuses on the small maturity correlation between

stock returns and bond returns. Our objective is to analyze and contrast the model forecast with

the empirical data, taking into account the predictive capabilities of variables in Tables 6 and 11.

The following model-based forecasts are generated over t and t+∆, computed at time-t:

ρr
s,rb

t = covPt (log(
F s
t+∆

F s
t

), log(
Fb
t+∆

Fb
t

))/

√

varPt (log(
F s
t+∆

F s
t

))× varPt (log(
Fb
t+∆

Fb
t

)). (37)

The manner in which ρr
s,rb

t is linked to [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′
is

1

∆
covPt (log(

F s
t+∆

F s
t

), log(
Fb
t+∆

Fb
t

))

︸ ︷︷ ︸
in equation (16)

, where (38)

1

∆
varPt (log(

F s
t+∆

F s
t

)) ∼ V s
t + 2 {µs+,P}2 λ[good],P

t + 2 {µs−,P}2 λ[bad],P
t and (39)

1

∆
varPt (log(

Fb
t+∆

Fb
t

)) ∼ V b
t + 2 {µb−,P}2 λ[good],P

t + 2 {µb+,P}2 λ[bad],P
t . (40)

We benchmark model estimates to actual magnitudes of small maturity stock-bond association,

thereby posing a challenge for models. The gist of our investigation — in this section — is that

the estimated model captures a crucial data property observed in stock and bond markets.
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In this regard, Table 12 shows a comparison between the model-based forecasts and the actual

correlations calculated from intraday stock and bond return observations sampled at synchronized

five-minute intervals during t and t + ∆ (in line with the methods of, among others, Barndorff-

Nielsen and Shephard (2004) and Aı̈t-Sahalia, Fan, and Xiu (2010)). The model produces an

average negative stock-bond correlation of −0.20, while the data shows a cross-correlation of −0.28

(95% bootstrap confidence interval of [−0.35 − 0.21]), indicating a close anchoring. Furthermore,

the model correctly predicts the sign of the stock-bond correlation 86% of the time.

Despite the model identifying the general pattern, the reported R
2
of 5.3% from the predictive

regression, as shown in the R
2
model column, indicates a limitation in producing precise point-to-

point forecasts. To benchmark the model’s performance, we contrast this R
2
model to alternative

regression-based R
2
values. Specifically, we perform predictability regressions equivalent to those

in Table 6, using the actual ρr
s,rb

t as the dependent variable, and gauge the R
2
values based on

the 11 variables. This evaluation produces a highest R
2
of 14.8% (displayed under the R

2
highest

column), which suggests that predicting small maturity stock-bond correlations is not confined to

the model-based forecasts, but rather a difficulty with forecasting the data series itself.

6 Conclusion

Unifying patterns emerge pertinent to the modeling of small maturity phenomena. A key finding

is the asymmetry in correlations of small maturity option returns. Returns of OTM calls on bond

are positively correlated with returns of OTM puts on stock. In contrast, returns of OTM puts

on bond show little correlation with returns of OTM calls on stock. Our inferences are backed by

statistical assurances using the bootstrap method. Moreover, these effects align with a decrease in

the small maturity VVIX to the stock VIX ratio during market stress, indicating a higher cost for

downside stock risk protection compared to upside volatility risk protection. Reproducing these

small maturity data features may prove challenging for extant models.

Our study reveals the consequences of de-risking, a strategy employed by investors after sig-

nificant stock market declines to shift their funds from risky stocks to safer bonds. This shift

coincides with a rise in the demand for small maturity bond futures calls, which act as a safe-

guard against underperforming stocks. Additionally, this heightened uncertainty coincides with an
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increased demand for small maturity stock puts and VIX calls, highlighting the reasons behind

investors’ inclination toward purchasing bond futures calls.

In our investigation, we explore the role of small maturity options in asset pricing within a

framework that focuses on jump risks and safety considerations. This framework stands apart from

extant theories and considers simultaneous jumps in stock and bond dynamics, utilizing bivariate

jump distributions and two stochastic intensities. Critically, these model attributes distinguish

between good and bad jump intensity rates, which has implications for the joint dynamics of stock

and bond prices and the pricing of small maturity options.

Respecting our empirical findings, our framework suggests that downward stock price jumps

occur simultaneously with upward bond price jumps, and vice versa, each governed by distinct

jump size distributions. This theoretical structure enables us to capture salient empirical outcomes.

Furthermore, our framework incorporates bad and good stochastic jump intensity rates, along with

stochastic volatility and interest rates in the dynamics of both stock and bond prices, allowing us

to explore their role in capturing empirical phenomena in financial markets.

We employ the Kalman filter and quasi-maximum-likelihood estimation to estimate the model.

Our empirical evaluation shows progress in reproducing various aspects of financial markets. This

includes fitting stock and bond volatilities and small maturity bond futures VIX and stock VIX,

reflecting risk-neutral volatilities. The model performs well to the range of bond options while

tracking fluctuations in the ratio of small maturity VVIX to stock VIX. Our analysis highlights

the promises and difficulties of simultaneously fitting the cross-section of small maturity bond and

stock option prices.

The proposed model takes into account the connection between stock and bond returns, ev-

idenced by the correlation between them. Our estimated model mimics the observed data by

showing data-consistent negative values for the stock-bond correlation, capturing critical aspects

of the stock-bond relationship.
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Appendix

A Proof of (9)–(10) when option maturity ∆ is small

In what follows, we make the assumption that µs,P
ℓ , V s

ℓ , µ
b,P
ℓ , V b

ℓ , λ
[good],P
ℓ , λ

[bad],P
ℓ , λ

[good],Q
ℓ , and

λ
[bad],Q
ℓ (defined, for example, in (4) and (5)), are predictable with respect to the filtration Fℓ.

Importantly, we assume that they are bounded in some neighborhood of ℓ = t, and they are such

that the futures prices are always nonnegative.

Define the gross futures returns, for ℓ ≥ t, as follows:

Gs
ℓ ≡ F s

ℓ

F s
t︸︷︷︸

gross stock futures return

and Gb
ℓ ≡ Fb

ℓ

Fb
t

,

︸︷︷︸
gross bond futures return

for ℓ ≥ t. (A1)

By construction, Gs
t = 1 and Gb

t = 1. It holds that
dF s

ℓ

F s
ℓ−

=
dGs

ℓ

Gs
ℓ−
.

Tanaka’s formula for OTM call option payoffs implies that

option payoff︷ ︸︸ ︷
max(Gs

t+∆ − ks, 0) =

intrinsic value︷ ︸︸ ︷
[Gs

t − ks]+ +

trading strategy in futures︷ ︸︸ ︷∫ t+∆

t+
1{Gs

ℓ−>ks}dG
s
ℓ +

local time︷ ︸︸ ︷
Lt+∆
t [ks]

+
∑

t<ℓ≤t+∆

1{Gs
ℓ−≤ks} max(Gs

ℓ − ks, 0)

︸ ︷︷ ︸
jumps crossing the strike from below

+
∑

t<ℓ≤t+∆

1{Gs
ℓ−>ks} max(ks −Gs

ℓ , 0),

︸ ︷︷ ︸
jumps crossing the strike from above

(A2)

where 1{a} is an indicator function. Denote by [Gs, Gs]cℓ the path-by-path continuous part of the

quadratic variation (see Protter (2013, page 70)) and δ{•} as the Dirac delta function. Recognize

that d[Gs, Gs]cℓ = (
√

V s
ℓ Gs

ℓ−)
2 dℓ. In equation (A2), the term

Lt+∆
t [ks] =

1

2

∫ t+∆

t
δ{Gs

ℓ
− ks} d[G

s, Gs]cℓ =
1

2

∫ t+∆

t
δ{Gs

ℓ
− ks} (

√
V s
ℓ Gs

ℓ−)
2 dℓ (A3)

is the local time (Protter (2013, Theorem 71, page 221)). Intuitively, Lt+∆
t [ks] captures the variance

uncertainty associated with the times when Gs
ℓ is exactly equal to the level ks.

Since (Gs
ℓ) is a martingale under Q, it follows that EQ

t (
∫ t+∆
t+ 1{Gs

ℓ−>ks}dG
s
ℓ) = 0. Taking expec-

tations under Q of equation (A2) implies the following:
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E
Q
t ([G

s
t+∆ − ks]+) = [Gs

t − ks]+ +
1

2

∫ t+∆

t
E
Q
t (δ{Gs

ℓ
− ks} (

√
V s
ℓ Gs

ℓ−)
2) dℓ (A4)

+

∫ t+∆

t
E
Q
t (λ

[good],Q
ℓ

∫ ∞

0
1{Gs

ℓ−≤ks} max(Gs
ℓ−e

xs+ − ks, 0)q[xs+] dxs+) dℓ

+

∫ t+∆

t
E
Q
t (λ

[bad],Q
ℓ

∫ ∞

0
1{Gs

ℓ−>ks} max(ks −Gs
ℓ−e

−xs−
, 0)q[xs−] dxs−) dℓ.

In the second and third lines, we have substituted Gs
ℓ = Gs

ℓ−e
xs+

(for up price jumps) and Gs
ℓ =

Gs
ℓ−e

−xs−
(for down price jumps). Additionally, in the first line, we have used the definition of the

Dirac delta function and the sifting property, to write

E
Q
t (δ{Gs

ℓ
−ks} (

√
V s
ℓ Gs

ℓ−)
2) = E

Q
t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)× (ks)2 × qQt,ℓ[k
s]. (A5)

Hence, E
Q
t (L

t+∆
t [ks]) =

∆

2
{EQ

t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)} × (ks)2 × qQt,ℓ[k
s], (A6)

where qQt,ℓ[k
s] is the probability density function for the futures price to move from Gs

t at time t to

ks at time ℓ.

In the right side of equation (A4), we have that [Gs
t − ks]+ = 0 (since we consider OTM call

options). Now, we consider the limit of equation (A4) as ∆ → 0.

• In the limit, we can replace Gs
ℓ− by Gs

t ≡ 1 in the second and third lines.

• Thus, in the third line, 1{Gs
ℓ−>ks} is replaced by 1{1>ks}, but this is zero since we consider

only OTM call options and, hence, the third line vanishes.

• Similarly, 1{Gs
ℓ−≤ks} is replaced by 1{1≤ks}, which is one.

• The term λ
[good],Q
ℓ is replaced by λ

[good],Q
t since λ

[good],Q
ℓ is predictable with respect to the

filtration Fℓ.

Regarding the probability density function qQt,ℓ[k
s], we set

cQt ≡ (Gs
t − ks)2

2 E
Q
t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)
. (A7)

Following Carr and Wu (2003, page 2589), and references therein, in the small ∆ limit, qQt,ℓ[k
s]

becomes the Gaussian density function, expressed as follows:

qQt,ℓ[k
s] =

1
√
2π∆

√
E
Q
t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)
exp(−cQt /∆), for cQt in equation (A7). (A8)

35



Thus, considering the small ∆ limit, equation (A4) becomes

E
Q
t (max(Gs

t+∆ − ks, 0)) ∼ 1

2
(ks)2 {EQ

t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)}
√
∆ exp(−cQt /∆)

√
2π
√

E
Q
t ({
√

V s
ℓ }2 |Gs

ℓ− = ks)

+ ∆λ
[good],Q
t

∫ ∞

0
max(ex

s+ − ks, 0)q[xs+] dxs+. (A9)

Since, for small ∆,
√
∆ exp(−cQt /∆) ≪ ∆, we obtain the following (provided λ

[good],Q
t 6= 0):

E
Q
t (max(Gs

t+∆ − ks, 0)) ∼ λ
[good],Q
t ∆

∫ ∞

0
max(ex

s+ − ks, 0)q[xs+] dxs+. (A10)

Thus, the expectation under Q of max(Gs
t+∆ − ks, 0) is linear in ∆ and in λ

[good],Q
t .

Finally, using the definition of covariance, we can write

call[ks]

F s
t

= E
Q
t (e

−
∫ t+∆
t

rℓ dℓ max(Gs
t+∆ − ks, 0)) = Bt+∆

t E
Q
t (max(Gs

t+∆ − ks, 0))

+ Bt+∆
t CovQt (

e−
∫ t+∆
t

rℓdℓ

Bt+∆
t

,max(Gs
t+∆ − ks, 0))

︸ ︷︷ ︸
≈ 0 for small horizon ∆

= Bt+∆
t E

Q
t (max(Gs

t+∆ − ks, 0)). (A11)

In the second line, we recognize that, in the small ∆ limit, e−
∫ t+∆
t

rℓdℓ

Bt+∆
t

tends to a constant, and, thus,

the covariance vanishes. The proof of puts on stock and bond options (e.g., EQ
t (e

−
∫ t+∆
t

rℓ dℓ max(Gb
t+∆−

kb, 0))) is almost identical and, therefore, omitted (but available from authors). �

B Merton (1976) model modified for stochastic intensity rates

We assume that the dynamics of F s
t and Fb

t are as depicted in equation (11). Then, the covariance

between bond call payoff and stock put payoff, for small option maturity ∆, is

CovPt ([
Fb
t+∆

Fb
t

−kb]+, [ks−F s
t+∆

F s
t

]+) ∼ λP
t ∆

∫ ∞

log(kb)

∫ log(ks)

−∞
(ex

b−kb)(ks−ex
s

)p[xs, xb] dxs dxb.

(B1)
The term

∫∞
log(kb)

∫ log(ks)
−∞ (ex

b − kb)(ks − ex
s

)p[xs, xb] dxs dxb is of one sign since it is a constant.

Assuming that the jump size is distributed normal with mean µx − 1
2σ

2
x and variance σ2

x, the

analog of our Result 1 for OTM options, for small option maturity ∆, is
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putt[K
b] ∼ Fb

t Bt+∆
t λQ

t ∆ {kb N (−d2[k
b])− eµxN (−d1[k

b])} and (B2)

callt[K
b] ∼ Fb

t Bt+∆
t λQ

t ∆ {eµxN (d1[k
b])− kbN (d2[k

b])}, (B3)

where N (.) denotes the standard normal cumulative distribution function, and

d1[k
b] =

− log(kb) + µx +
1
2(σx)

2

σx
and d2[k

b] = d1[k
b] − σx. (B4)

Analogously for options on stock. Both OTM bond and stock option prices are driven by λQ
t .

This model is unable to capture the dynamic nature of small maturity stock and bond options

markets (see our findings featured in Table 3). This implies, for example, that callt[K
b]/Fb

t and

putt[K
s]/F s

t are perfectly correlated, which contradicts the evidence in Table 7 (Panel B). �

C Proof of measurement expressions used in the Kalman filter

With the form of the exponential density in equation (14) and log(k) > 0, an integration step yields

∫ ∞

0
max(ex − k, 0)q[x] dx =

∫ ∞

log(k)
(ex − k) µ−1 e−x/µ

︸ ︷︷ ︸
exponential

density

dx =
1

1
µ − 1

{e−( 1
µ
−1) log(k)}. (C1)

Noting that log(k) < 0 for OTM put on stock, we have

∫ ∞

0
max(k − e−x, 0)q[x] dx =

∫ ∞

− log(k)
(k − e−x)

1

µ
e−x/µ dx =

1

1 + 1
µ

{e(1+
1
µ
) log(k)}. (C2)

We obtain the forms of the OTM option price expressions in the measurement equation (29). �

Aligning with the form of the dynamics of F s
t under P in equation (4), we postulate the corre-

sponding Q dynamics — with zero drift — as follows:

dF s
t

F s
t−

=
√

V s
t dW s,Q

t + (ex
s+ − 1) dN

[good],Q
t − λ

[good],Q
t dt

∫ ∞

0
(ex

s+ − 1)q[xs+]dxs+

+ (e−xs− − 1) dN
[bad],Q
t︸ ︷︷ ︸

downside stock jump component, Q

− λ
[bad],Q
t︸ ︷︷ ︸

stochastic

dt

∫ ∞

0
(e−xs− − 1) q[xs−]︸ ︷︷ ︸

Q density

dxs−. (C3)

We then obtain the form of {VIXt}2 = E
Q
t ({−2

∆ } log(Ft+∆

Ft
)) using the moment-generating function

of the exponential density and the standard formulation of 1
∆

∫ t+∆
t E

Q
t (Vℓ)dℓ. See Appendix D. �

The expected integrated variance of futures return under P has two steps. First,

v

s
t =

1

dt
varPt [d log(F

s
t )] = {µs+}2λ[good],P

t + {µs−}2λ[bad],P
t + V s

t .
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We then have the expression in the limit of small ∆ for 1
∆EP

t

∫ t+∆
t vℓdℓ. �

By a calculation for the transition equations, it follows that

C =




θgood
κgood

(1− e−κgood∆)

θbad
κbad

(1− e−κbad∆)

θP
b

κP
b

(1− e−κP
b
∆)

θP
s

κP
s

(1− e−κP
s
∆)




, D =




e−κgood∆ 0 0 0

0 e−κbad∆ 0 0

0 0 e−κP
b
∆ 0

0 0 0 e−κP
s
∆




, and (C4)

Λt+∆ =




Λgood,good
t+∆ 0 0 0

0 Λbad,bad
t+∆ 0 0

0 0 Λb,b
t+∆ 0

0 0 0 Λs,s
t+∆,




, where (C5)

(
Λgood,good
t+∆

)2
=

σ2
good

κgood

(1 − e−κgood∆)

(
θgood
2κgood

(1− e−κgood∆) + e−κgood∆ × λ
[good],P
t

)
, (C6)

(
Λbad,bad
t+∆

)2
=

σ2
bad

κbad

(1− e−κbad∆)

(
θbad
2κbad

(1− e−κbad∆) + e−κbad∆ × λ
[bad],P
t

)
, (C7)

(
Λb,b
t+∆

)2
=

σ2
b

κP
b

(1− e−κP
b
∆)

(
θPb
2κP

b

(1− e−κP
b
∆) + e−κP

b
∆ × V b

t

)
, and (C8)

(
Λs,s
t+∆

)2
=

σ2
s

κP
s

(1− e−κP
s
∆)

(
θPs
2κP

s

(1− e−κP
s
∆) + e−κP

s
∆ × V s

t

)
. � (C9)

D Formulation of VVIXt

For integration parameter ν,
√

{VIXs
t+∆}2 = 1

2
√
π

∫∞
0

1−e
−ν {VIXs

t+∆}2

ν
3
2

dν. This leads to the form of

F vix
t ≡ E

Q
t

(√
{VIXs

t+∆}2
)
= 1

2
√
π

∫∞
0

1−E
Q
t (e

−ν {VIXs
t+∆}2

)

ν
3
2

dν.

The VIX futures contracts are tied to the 30-day VIX index. We first fix notations, as follows:

∆∗ =
30

365
. (D1)

Next, observe that

log(
Ss
t+∆∗

F s
t

) = log(
F s
t+∆∗

F s
t

). (D2)

Using equation (C3), it then follows that
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VIX2
t = E

Q
t ({

−2

∆∗ } log(
St+∆∗

F s
t

)) = E
Q
t ({

−2

∆∗ } log(
F s
t+∆∗

F s
t

)) (D3)

=
1

∆∗

∫ t+∆∗

t
E
Q
t (V

s
ℓ )dℓ

− {−2

∆∗ }E
Q
t (

∫ t+∆∗

t
λ
[good],Q
ℓ dℓ

∫ ∞

0
(ex

s+ − 1)q[xs+] dxs+) + {−2

∆∗ }E
Q
t (

N
[good],Q
t+∆∗∑

i=N
[good],Q
t

xs+i )

− {−2

∆∗ }E
Q
t (

∫ t+∆∗

t
λ
[bad],Q
ℓ dℓ

∫ ∞

0
(e−xs− − 1)q[xs−] dxs−) + {−2

∆∗ }E
Q
t (

N
[bad],Q
t+∆∗∑

i=N
[bad],Q
t

{−xs−i }).

It holds that
E
Q
t (e

xs+ − 1− xs+) =
1

1− µs+,Q
− 1− µs+,Q and (D4)

E
Q
t (e

−xs− − 1 + xs−) =
1

1 + µs−,Q
− 1 + µs−,Q. (D5)

Then the 30-day VIX formula, when there are both down and up price jumps, satisfies

VIX2
t = wconstant + wv × V s

t + wgood × λ
[good],Q
t + wbad × λ

[bad],Q
t , (D6)

where

wconstant ≡ 1

∆∗

(
∆∗ θQs
κQs

+
(1− e−κQ

s ∆∗
)

κQs
{− θQs

κQs
}
)

+ 2

(
θQgood

κQgood
+

(1 − e−κQ

good∆
∗
)

∆∗ κQgood
{− θQgood

κQgood
}
)
{EQ

t (e
xs+ − 1− xs+)}

+ 2

(
θQbad

κQbad
+

(1− e−κQ

bad∆
∗
)

∆∗ κQbad
{− θQbad

κQbad
}
)
{EQ

t (e
−xs− − 1 + xs−)}, (D7)

and

wv ≡ (1− e−κQ
s ∆∗

)

∆∗ κQs
, (D8)

wgood ≡ 2

(
(1− e−κQ

good∆
∗
)

∆∗ κQgood

)
{EQ

t (e
xs+ − 1− xs+)} and (D9)

wbad ≡ 2

(
(1− e−κQ

bad∆
∗
)

∆∗ κQbad

)
{EQ

t (e
−xs− − 1 + xs−)}. (D10)

Define the moment-generating functions mgfvt [u] ≡ E
Q
t (e

uV s
t+∆), mgfgoodt [u] ≡ E

Q
t (e

uλ
[good],Q
t+∆ ), and

mgfbadt [u] ≡ E
Q
t (e

uλ
[bad],Q
t+∆ ). Then,
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log(mgfgoodt [u]) =
2θQgood
σ2

good

{log ( 2κQgood

e∆κQ

good(2κQgood − uσ2
good) + uσ2

good

) + ∆κQgood}

+
2uκQgood

e∆κQ

good(2κQgood − uσ2
good) + uσ2

good

λ
[good],Q
t ,

log(mgfbadt [u]) =
2θQbad
σ2

bad

{log ( 2κQbad

e∆κQ

bad(2κQbad − uσ2
bad) + uσ2

bad

) + ∆κQbad}

+
2uκQbad

e∆κQ

bad(2κQbad − uσ2
bad) + uσ2

bad

λ
[bad],Q
t and

log(mgfvt [u]) =
2θQs
σ2
s

{log ( 2κQs

e∆κQ
s (2κQs − uσ2

s ) + uσ2
s

) + ∆κQs }+
2uκQs

e∆κQ
s (2κQs − uσ2

s) + uσ2
s

V s
t .

In the context of our model framework and seven-day VIX futures, we derive

F vix
t =

1

2
√
π

∫ ∞

0

1− E
Q
t (e

−ν {VIXs
t+∆}2)

ν
3
2

dν

=
1

2
√
π

∫ ∞

0

1− E
Q
t (e

−ν {wconstant+w
v×V s

t+∆+w
good×λ

[good],Q
t+∆ +w

bad×λ
[bad],Q
t+∆ })

ν
3
2

dν (D11)

=
1

2
√
π

∫ ∞

0

1− e−ν {wconstant} ×mgfvt [u]
∣∣
u=−ν wv ×mgfgoodt [u]

∣∣
u=−ν wgood ×mgfbadt [u]

∣∣
u=−ν wbad

ν
3
2

dν.

Consequently, the characteristic function of {VIXs
t+∆}2 equates to the following:

Ct[φ] ≡ E
Q
t (e

iφ {VIXs
t+∆}2) = E

Q
t (e

iφ {wconstant + wv×V s
t + wgood×λ

[good],Q
t + wbad×λ

[bad],Q
t })

= eiφw
constant ×mgfvt [u]

∣∣
u=i φwv ×mgfgoodt [u]

∣∣
u=i φwgood ×mgfbadt [u]

∣∣
u=i φwbad . (D12)

Next we formulate {VVIXt}2. Using the Fourier inversion, the density of ht+∆ ≡ {VIXs
t+∆}2 is

qvix[ht+∆] =
1
π

∫∞
0 Re

[
e−i φ ht+∆

Ct[φ]
]
dφ, noting F vix

t+∆ =
√

{VIXs
t+∆}2 =

√
ht+∆ and ∆ = 11

365 .

Hence, we show, for {VVIXt}2 ≡ E
Q
t ({−2

∆ } log(F
vix
t+∆

F vix
t

)), that

{VVIXt}2 ≡
∫ ∞

0

qvix[ht+∆] {
−2

∆
} log(

√
ht+∆

F vix
t

) dht+∆

=

∫ ∞

0

1

π

∫ ∞

0

Re
[
e−i φ ht+∆

Ct[φ]
]
dφ {−2

∆
} log(

√
ht+∆

F vix
t

) dht+∆

=
1

π

∫ ∞

0

Re

[
Ct[φ]

∫ ∞

0

e−i φ ht+∆ {−2

∆
} log(

√
ht+∆

F vix
t

) dht+∆

]
dφ (Fubini)

=
1

π

∫ ∞

0

Re

[
Ct[φ]

∫ ∞

0

e−ξ u {−2

∆
} log(

√
u

F vix
t

) du

]
dφ (Re[ξ] > 0)

=
1

π

∫ ∞

0

Re

[(
Ct[φ]×

2 log (F vix
t ) + log(i φ) + γeuler

∆ i φ

) ∣∣∣
φ=a+i b

]
da. (D13)

We embed the constraint Re[ξ] > 0 for complex-valued ξ, and γeuler is the Euler’s constant. �
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Table 1: Properties of weekly excess returns of buying options on the 10-year Treasury
bond futures and the S&P 500 index

This table is based on matched weekly options (Friday PM initiation to Friday PM expiration) on futures on the 10-
year Treasury bond and the S&P 500 index. The sample period is January 28, 2011, to February 24, 2023, comprising
630 expiration cycles. Excess returns for buying options on the S&P 500 index (and bond futures) are calculated
according to equations (1)–(2). Option returns are based on non-overlapping weekly holding periods. Reported 95%
stationary bootstrap confidence intervals rely on 10,000 bootstrap draws. The unit of the reported average option
excess return is a weekly percentage. We compute the excess returns of buying OTM options on bond (stock) with
fixed-option delta, denoted δb (δs). For the standard normal cumulative distribution function, N [.], we compute

put (call) delta for S&P 500 as −N [−d1] (N [d1]), where d1 = 1

σ
√
∆
{− log(k) + {Rrf

t − 1}∆+ 1
2
σ2∆},

put (call) delta for bond futures as −e−{Rrf
t −1}∆N [−d1] (e

−{Rrf
t −1}∆N [d1]), where d1 = 1

σ
√
∆
{− log(k) + 1

2
σ2∆}.

Reported 1{r>0} refers to the number of weekly expiration cycles in which the excess return of the option is positive.
σ is the average option-implied volatility computed at the beginning of the expiration cycle. The reported dollar
open interest (respectively, volume) is the number of contracts outstanding (respectively, traded) multiplied by the
underlier on Friday of each expiration cycle, averaged across the 630 expiration cycles. Stationary bootstrap confidence
intervals that do not bracket zero are indicated by “*.”

Panel A: Buying options on the 10-year Treasury bond futures

Puts on bond Bond Calls on bond Futures

Bond option delta: δb (%) -7 -20 straddle 20 7 return:︸ ︷︷ ︸
OTM moneyness (%) 1 0.5 0.5 1 10-year bond

Average options excess return (weekly, %) -30∗ -17∗ -6∗ -18∗ -68∗ 0.036∗

Bootstrap CI: [Lower Upper] [-57 -14] [-24 -12] [-9 -3] [-29 -6] [-82 -66] [0.01 0.07]
1{r>0} (out of 630) 42 103 258 124 37 351

Average option price $61.2 $147.1 $144.3 $58.4
Dollar open interest (Friday, millions) $2095 $2070 $1870 $1701
Dollar volume (Friday, millions) $795 $1097 $953 $602

Panel B: Buying options on the S&P 500 index

Puts on stock Stock Calls on stock Index
Stock option delta: δs (%) -7 -20 straddle 20 7 return:︸ ︷︷ ︸
OTM moneyness (%) 3 1.5 1.5 3 S&P 500

Average options excess return (weekly, %) -54∗ -32∗ -6∗ -6 -61∗ 0.228∗

Bootstrap CI: [Lower Upper] [-78 -32] [-46 -24] [-13 -0] [-22 9] [-85 -55] [0.20 0.32]
1{r>0} (out of 630) 35 88 259 120 37 370

Average option price $6.0 $10.9 $7.0 $2.5
Dollar open interest (Friday, millions) $1284 $1265 $1353 $958
Dollar volume (Friday, millions) $499 $490 $591 $286

Panel C: Differences between option returns of the 10-year bond and the S&P 500 index

Difference in options excess return (weekly, %) 23.2∗ 15.6∗ -12.3 -7.2
Bootstrap CI: [Lower Upper] [0 30] [6 27] [-37 11] [-16 7]
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Table 2: Small maturity exceedance correlation statistics

Data used in the table comprise seven-day returns of S&P 500 E-mini futures and those of 10-year Treasury bond
futures, spanning the sample period of January 5, 1990, to February 23, 2023 (1,781 return observations (Friday to
Friday)). For reference, the unconditional stock-bond correlation in this extended sample is −0.11, with a stationary
bootstrap confidence interval of [−0.34 − 0.07].

In the context of the exceedance correlation of Ang and Chen (2002, page 464), we cover two outcomes of return
strategies for the variables log(F s

t+∆/F s
t ) and {− log(Fb

t+∆/Fb
t )} and report the following associated H− and H+

statistics:

− Correlation for negative sigma events (H−) in row (a): The exceedance correlation in this case corresponds to the
pairing of simultaneous downward movements in the stock and gains on the Treasury bond futures position
(as reflected in the losses on the short position).

− Correlation for positive sigma events (H+) in row (b): The exceedance correlation in this case captures the pairing
of upward movements in the stock and losses on the Treasury bond futures position (as reflected in the gains
on the short position).

These H− and H+ statistics represent the distinction between the data-implied correlations versus those implied by a
bivariate normal distribution. The downside (upside) exceedance correlation is the correlation when both series are
below (above) a threshold.

We show the stationary bootstrap test for the hypothesis of H− < H+, with low p-value implying test rejection.
Additionally, we report the Hong, Tu, and Zhou (2006, equation (8)) p-value for the hypothesis of equal extreme
correlation ρ

− = ρ
+ (vector-valued), with p-value lower than 0.1, implying test rejection.

Correlation between Sigma event Ang-Chen asymmetric
return strategies threshold correlation statistic

row (a) log(F s
t+∆/F s

t ) and {− log(Fb
t+∆/Fb

t )} Negative H− = 23%

row (b) log(F s
t+∆/F s

t ) and {− log(Fb
t+∆/Fb

t )} Positive H+ = 18%

• Bootstrap p-value for H− < H+ is 0.02

• Hong, Tu, and Zhou (2006, equation (8)) two-sided p-value for ρ− = ρ
+ is 0.07
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Table 3: Correlations between returns of options on bond and options on stock

This table shows the 7DTE and 1DTE correlations between (i) the excess returns of calls on bond and excess returns of puts
on stock, (ii) the excess returns of puts on bond and excess returns of calls on stock, (iii) the excess returns of puts on bond
and excess returns of puts on stock, and (iv) the excess returns of calls on bond and excess returns of calls on stock. Presented
are the full sample correlations and 52-week rolling window correlations, updated weekly. Reported 95% bootstrap confidence
intervals rely on 10,000 stationary bootstrap draws. Bootstrap confidence intervals that do not bracket zero are indicated by
“*.” The fixed-option deltas of bond and stock are denoted by δb and δs, respectively.

I: Option maturity is seven-day II: Option maturity is one-day

January 28, 2011, to February 24, 2023 January 28, 2011, to February 24, 2023
630 weekly cycles 630 daily cycles

(Friday PM initiation to Friday PM expiration) (Thursday PM initiation to Friday PM expiration)
Full sample 52-week rolling Full sample 52-week rolling

correlation correlation correlation correlation

Option delta Mean Mean 5th 95th Mean Mean 5th 95th

δb δs [95% CI] [95% CI]

Panel A: Correlation between returns of buying calls on bond and puts on stock

20 -20 0.34∗
[0.13 0.52]

0.25 -0.11 0.65 0.24∗
[0.05 0.47]

0.22 -0.09 0.74

20 -7 0.28∗
[0.02 0.48]

0.26 -0.12 0.63 0.20∗
[0.00 0.44]

0.25 -0.06 0.70

7 -20 0.45∗
[0.12 0.68]

0.34 -0.08 0.92 0.25∗
[0.02 0.49]

0.20 -0.08 0.79

7 -7 0.47∗
[0.05 0.73]

0.43 -0.06 1.00 0.21
[−0.02 0.46]

0.23 -0.07 0.78

Panel B: Correlation between returns of buying puts on bond and calls on stock

-20 20 0.04
[−0.02 0.14]

0.08 -0.12 0.61 0.03
[−0.04 0.13]

0.04 -0.11 0.32

-20 7 0.13
[−0.01 0.28]

0.13 -0.07 0.61 0.06
[−0.04 0.23]

0.04 -0.09 0.41

-7 20 0.02
[−0.02 0.11]

0.07 -0.11 0.54 0.06
[−0.05 0.20]

0.04 -0.11 0.45

-7 7 0.07
[−0.02 0.26]

0.11 -0.08 0.67 0.18
[−0.03 0.48]

0.05 -0.09 0.65

Panel C: Correlation between returns of buying puts on bond and puts on stock

-20 -20 -0.02
[−0.07 0.07]

-0.04 -0.15 0.19 -0.04∗
[−0.06 −0.03]

-0.06 -0.10 -0.02

-20 -7 0.00
[−0.05 0.09]

-0.03 -0.10 0.21 -0.03∗
[−0.04 −0.02]

-0.05 -0.08 -0.02

-7 -20 -0.02
[−0.03 0.02]

0.01 -0.10 0.19 -0.03∗
[−0.04 −0.02]

-0.04 -0.08 0.00

-7 -7 -0.01
[−0.03 0.01]

-0.01 -0.07 0.14 -0.02∗
[−0.03 −0.01]

-0.04 -0.07 -0.02

Panel D: Correlation between returns of buying calls on bond and calls on stock

20 20 -0.08∗
[−0.12 −0.05]

-0.08 -0.23 0.16 -0.11∗
[−0.14 −0.07]

-0.12 -0.23 0.00

20 7 -0.05∗
[−0.08 −0.02]

-0.06 -0.14 0.13 -0.06∗
[−0.09 −0.03]

-0.09 -0.16 -0.01

7 20 -0.04
[−0.06 0.00]

-0.02 -0.14 0.47 -0.10∗
[−0.13 −0.07]

-0.12 -0.19 -0.06

7 7 -0.01
[−0.04 0.04]

-0.02 -0.09 0.28 -0.06∗
[−0.08 −0.03]

-0.09 -0.15 -0.04
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Table 4: Bootstrap-based comparison of correlation magnitudes across (i) returns of
bond and stock option pairs and (ii) standardized option payoff pairs

This table evaluates the correlation magnitudes computed in Table 3 or Table 5, against those in Panels B, C, and D
of the same table. The underlying hypothesis presumes a lower correlation between seven-day (or one-day) returns
of bond calls and stock puts compared to (i) returns of bond puts and stock calls, (ii) returns of bond puts and
stock puts, and (iii) returns of bond calls and stock calls. Reported p-value, presented, represents the occurrences
of stationary bootstraps where the correlation in the first pair is lower in comparison to other pairs. A low p-value
suggests a rejection of the test. The fixed-option deltas of bond and stock are denoted by δb and δs, respectively.

Panel A: Based on Table 3 Panel B: Based on Table 5
Seven-day One-day Seven-day One-day
expiration expiration expiration expiration

Hypothesis Bootstrap Bootstrap Bootstrap Bootstrap
p-value p-value p-value p-value

ρ[δb = 20, δs = −20] < ρ[δb = −20, δs = 20] 0.00 0.15 0.00 0.00

ρ[δb = 20, δs = −20] < ρ[δb = −20, δs = −20] 0.00 0.00 0.00 0.00
ρ[δb = 20, δs = −20] < ρ[δb = 20, δs = 20] 0.00 0.00 0.00 0.00

ρ[δb = 20, δs = −7] < ρ[δb = −20, δs = 7] 0.00 0.32 0.00 0.02

ρ[δb = 20, δs = −7] < ρ[δb = −20, δs = −7] 0.00 0.00 0.00 0.00

ρ[δb = 20, δs = −7] < ρ[δb = 20, δs = 7] 0.00 0.00 0.00 0.00

ρ[δb = 7, δs = −20] < ρ[δb = −7, δs = 20] 0.00 0.13 0.00 0.00

ρ[δb = 7, δs = −20] < ρ[δb = −7, δs = −20] 0.00 0.00 0.01 0.01
ρ[δb = 7, δs = −20] < ρ[δb = 7, δs = 20] 0.00 0.00 0.00 0.00

ρ[δb = 7, δs = −7] < ρ[δb = −7, δs = 7] 0.00 0.40 0.00 0.00

ρ[δb = 7, δs = −7] < ρ[δb = −7, δs = −7] 0.00 0.00 0.00 0.00

ρ[δb = 7, δs = −7] < ρ[δb = 7, δs = 7] 0.00 0.00 0.00 0.00
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Table 5: Correlations between standardized option payoff outcomes for bond and stock

This table shows the 7DTE and 1DTE correlations between (i) the standardized payoffs of upside of bond and
standardized payoffs of downside of stock, (ii) the standardized payoffs of downside of bond and standardized payoffs
of upside of stock, (iii) the standardized payoffs of downside of bond and standardized payoffs of downside of stock,
(iv) the standardized payoffs of upside of bond and standardized payoffs of upside of stock. Presented are the full
sample correlations and 52-week rolling window correlations, updated weekly. Reported 95% stationary bootstrap
confidence intervals rely on 10,000 bootstrap draws. Bootstrap confidence intervals that do not bracket zero are
indicated by “*.” The fixed-option deltas of bond and stock are denoted by δb and δs, respectively.

I: Option maturity is seven-day II: Option maturity is one-day

January 5, 1992, to February 23, 2024 January 5, 1992, to February 23, 2024
1,781 weekly cycles 1,781 daily cycles

(Friday PM initiation to Friday PM expiration) (Thursday PM initiation to Friday PM expiration)
Full sample 52-week rolling Full sample 52-week rolling

correlation correlation correlation correlation

Option delta Mean Mean 5th 95th Mean Mean 5th 95th

δb δs [95% CI] [95% CI]

Panel A: Correlation between standardized payoffs
[Fb

t+∆−Kb]+

Fb
t

and
[Ks−St+∆]+

St

20 -20 0.14∗
[0.09 0.19]

0.12 -0.19 0.46 0.12∗
[0.07 0.17]

0.10 -0.31 0.50

20 -7 0.16∗
[0.11 0.21]

0.18 -0.13 0.43 0.12∗
[0.08 0.16]

0.10 -0.21 0.37

7 -20 0.14∗
[0.09 0.19]

0.14 -0.15 0.43 0.15∗
[0.10 0.21]

0.15 -0.16 0.48

7 -7 0.18∗
[0.11 0.25]

0.23 -0.13 0.70 0.17∗
[0.10 0.24]

0.19 -0.10 0.57

Panel B: Correlation between standardized payoffs
[Kb−Fb

t+∆]+

Fb
t

and
[St+∆−Ks]+

St

-20 20 0.05∗
[0.00 0.10]

0.06 -0.27 0.48 0.08∗
[0.03 0.13]

0.08 -0.32 0.42

-20 7 0.07∗
[0.02 0.12]

0.07 -0.18 0.39 0.08∗
[0.04 0.13]

0.09 -0.19 0.39

-7 20 0.04
[−0.01 0.09]

0.05 -0.18 0.38 0.07∗
[0.02 0.12]

0.06 -0.19 0.38

-7 7 0.07∗
[0.01 0.13]

0.06 -0.16 0.38 0.09∗
[0.04 0.16]

0.11 -0.13 0.49

Panel C: Correlation between standardized payoffs
[Kb−Fb

t+∆]+

Fb
t

and
[Ks−St+∆]+

St

-20 -20 0.00
[−0.04 0.05]

-0.01 -0.29 0.38 -0.03
[−0.07 0.02]

-0.03 -0.32 0.40

-20 -7 -0.05∗
[−0.09 −0.01]

-0.07 -0.22 0.25 -0.05∗
[−0.09 −0.01]

-0.05 -0.26 0.27

-7 -20 0.09∗
[0.04 0.14]

0.09 -0.17 0.51 0.03
[−0.02 0.08]

0.03 -0.21 0.48

-7 -7 0.01
[−0.04 0.06]

0.01 -0.14 0.51 0.00
[−0.04 0.05]

0.02 -0.18 0.47

Panel D: Correlation between standardized payoffs
[Fb

t+∆−Kb]+

Fb
t

and
[St+∆−Ks]+

St

20 20 -0.05
[−0.09 0.00]

-0.06 -0.40 0.36 -0.03
[−0.08 0.01]

-0.03 -0.40 0.37

20 7 -0.01
[−0.06 0.03]

-0.03 -0.29 0.36 -0.05
[−0.09 0.00]

-0.06 -0.34 0.27

7 20 0.01
[−0.04 0.06]

-0.01 -0.27 0.38 0.00
[−0.04 0.05]

-0.01 -0.24 0.48

7 7 0.05
[−0.00 0.11]

0.01 -0.17 0.43 0.02
[−0.03 0.06]

0.01 -0.17 0.36



Table 6: Stock-bond correlations and links to unfavorable economic uncertainty

This table reports estimates of the correlation (denoted ρt+∆) between stock and bond returns over weekly intervals,
ranging from Friday to Friday. The data used includes five-minute synchronized return observations of E-mini S&P
500 index futures and 10-year Treasury bond futures. For the two return series, rst,ℓ = log(F s

t, ℓ
N

) − log(F s

t,
ℓ−1
N

) and

r

b
t,ℓ = log(Fb

t, ℓ
N

)− log(Fb

t,
ℓ−1
N

), the covariances and variances are computed as follows:

covar
{rs},{rb},P
{t→t+∆} = 52×

I∑

ℓ=1

{rst,ℓ} × {rbt,ℓ}, var
{rs},P
{t→t+∆} = 52×

I∑

ℓ=1

{rst,ℓ}
2 and var

{rb},P
{t→t+∆} = 52×

I∑

ℓ=1

{rbt,ℓ}
2,

where I is the number of return observations in a trading week (i.e., I = 12× 6.5 × 5). The data is from Barchart.
The indicator function 1{positive} shows the fraction of positive weekly stock-bond correlations. The reported 95%
bootstrap confidence interval, shown in square bracket, relies on 10,000 bootstrap draws.

Reported is the correlation between stress variable Ft and ρt+∆ (these magnitudes are shown in the column CORR)
and results based on the regression in equation (3). The Office of Financial Research stress indices are taken from
https://www.financialresearch.gov/financial-stress-index/, using values to account for the two-day reporting lag:

− OFRsafe asset
t : Times of stress coincide with higher valuations of safe assets. Investors are migrating from risky

assets into safer holdings.

− CDXhigh yield
t : Markit’s North American High Yield CDX Index. Composed of 100 liquid North American entities

with high yield credit ratings that trade in the CDS market. This index is low during financial stress.

− CDXinvestment grade
t : Markit’s North American Investment Grade Index. Composed of 125 liquid North American

entities.

− Inflation swapt: One-year inflation swap rates (source: Bloomberg).

− OFRequity valuation
t : Reflects investor confidence and risk appetite, with lower values indicating times of stress.

− Volatilityvix futures
{t−∆→t} : This volatility measure is constructed by analyzing the five-minute returns of VIX futures

during the previous weekly expiration cycle.

− OFRcredit
t : Higher values (pessimistic state) indicate that credit market functioning is disrupted.

− log(Stock VIXt): CBOE VIX index (30-day). Reflects the cost of S&P 500 put protection.

The “Wald” column refers to the one-sided p-value from the test of the hypothesis ρ{Ft∈sbad} = ρ{Ft∈sgood} versus

ρ{Ft∈sbad} > ρ{Ft∈sgood}. There are a total of 630 expiration cycles from January 28, 2011, to February 24, 2023.

Bootstrap confidence intervals that do not bracket zero are indicated by “*” and statistical significance of predictive
coefficients are indicated by “•.”

Mean 1{positive} Min. Max.
(%)

Stock-bond correlation (ρt+∆) −0.28∗
[−0.35 −0.21]

13.5 -0.78 0.57

Predictive regressions

Regression specification in equation (3) ρt+∆ = c0 + c× Ft + et+∆

Ft variable CORR ρ{Ft∈sbad} ρ{Ft∈snormal} ρ{Ft∈sgood} Wald c NW[p] R
2
predictive

p-val. (%)

OFRsafe asset
t -0.39 -0.38 -0.33 -0.14 (0.00) -0.45• (0.00) 14.8

log(1/CDXhigh yield
t ) -0.38 -0.43 -0.32 -0.24 (0.00) -1.81• (0.00) 14.7

log(CDXinvestment grade
t ) -0.37 -0.43 -0.29 -0.27 (0.00) -0.31• (0.00) 13.6

Minus of inflation swapt -0.27 -0.38 -0.31 -0.27 (0.00) -0.07• (0.00) 7.0
log(VIX futurest) -0.21 -0.37 -0.34 -0.26 (0.00) -0.15• (0.00) 4.0

OFRequity valuation
t -0.20 -0.31 -0.31 -0.23 (0.09) -0.13• (0.01) 4.0

Volatilityvix futures
{t−∆→t} -0.19 -0.36 -0.27 -0.22 (0.00) -0.21• (0.00) 3.4

OFRcredit
t -0.14 -0.32 -0.28 -0.25 (0.10) -0.06 (0.12) 1.7

log(Stock VIXt) -0.05 -0.30 -0.29 -0.26 (0.18) -0.03 (0.53) 0.1
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Table 7: Small maturity data moments for extant models to match

This table displays the summary statistics of the data used in the Kalman filtering estimation. All reported summary
statistics are based on matched weekly expiring options (Friday PM initiation to subsequent Friday PM expiration)
on futures on the 10-year Treasury bond and the S&P 500 index. For absolute delta fixed to 7 and 20, we compute
putt[K

b]

Fb
t B

t+∆
t ∆

, callt[K
b]

Fb
t B

t+∆
t ∆

, putt[K
s]

F s
t B

t+∆
t ∆

, and callt[K
s]

F s
t B

t+∆
t ∆

. Additionally, we construct seven-day VIX as in equation (25). The

realized volatilities (annualized, %) are based on high-frequency futures return data as in equation (22). The sample
period is January 28, 2011, to February 24, 2023, comprising 630 expiration cycles.

Panel A: Descriptive statistics of data

Percentiles

δ Mean SD Min. 5th 50th 95th Max.

putt[K
b]

Fb
t B

t+∆
t ∆

-7 0.025 0.026 0.006 0.006 0.013 0.081 0.152

putt[K
b]

Fb
t B

t+∆
t ∆

-20 0.061 0.042 0.006 0.013 0.049 0.149 0.277

callt[K
b]

Fb
t B

t+∆
t ∆

20 0.060 0.043 0.006 0.013 0.047 0.142 0.348

callt[K
b]

Fb
t B

t+∆
t ∆

7 0.024 0.026 0.003 0.006 0.013 0.074 0.271

putt[K
s]

F s
t B

t+∆
t ∆

-7 0.123 0.173 0.009 0.015 0.067 0.384 1.839

putt[K
s]

F s
t B

t+∆
t ∆

-20 0.221 0.218 0.024 0.044 0.155 0.586 2.092

callt[K
s]

F s
t B

t+∆
t ∆

20 0.139 0.193 0.003 0.009 0.071 0.483 2.070

callt[K
s]

F s
t B

t+∆
t ∆

7 0.050 0.122 0.002 0.002 0.010 0.228 1.681

VIXb
t (%) 4.6 1.8 1.8 2.6 4.2 8.0 14.2

VIXs
t (%) 16.2 9.4 5.7 7.6 13.7 32.1 115.6

rvb,P

{t→t+∆} (%) 3.4 1.3 1.4 2.0 3.0 5.7 12.3

rvs,P

{t→t+∆} (%) 11.3 7.4 2.9 4.8 9.4 22.3 85.9

Panel B: Correlation matrix

put[Kb]

Fb
t B

t+∆
t ∆

putt[K
b]

Fb
t B

t+∆
t ∆

callt[K
b]

Fb
t B

t+∆
t ∆

callt[K
b]

Fb
t B

t+∆
t ∆

putt[K
s]

F s
t B

t+∆
t ∆

putt[K
s]

F s
t B

t+∆
t ∆

callt[K
s]

F s
t B

t+∆
t ∆

callt[K
s]

F s
t B

t+∆
t ∆

VIXb
t VIXs

t rv
b,P

{t→t+∆}

δ -7 -20 20 7 -7 -20 20 7

putt[K
b]

Fb
t B

t+∆
t ∆

-20 0.92

callt[K
b]

Fb
t B

t+∆
t ∆

20 0.88 0.91

callt[K
b]

Fb
t B

t+∆
t ∆

7 0.85 0.84 0.90

putt[K
s]

F s
t B

t+∆
t ∆

-7 0.42 0.41 0.47 0.53

putt[K
s]

F s
t B

t+∆
t ∆

-20 0.46 0.45 0.52 0.56 0.98

callt[K
s]

F s
t B

t+∆
t ∆

20 0.48 0.46 0.52 0.57 0.96 0.97

callt[K
s]

F s
t B

t+∆
t ∆

7 0.41 0.39 0.45 0.50 0.94 0.91 0.95

VIXb
t 0.92 0.94 0.94 0.90 0.48 0.52 0.53 0.46

VIXs
t 0.49 0.48 0.53 0.58 0.95 0.97 0.97 0.91 0.55

rvb,P

{t→t+∆} 0.74 0.73 0.75 0.72 0.45 0.49 0.48 0.43 0.77 0.51

rvs,P

{t→t+∆} 0.45 0.44 0.50 0.56 0.81 0.82 0.80 0.75 0.49 0.82 0.63



Table 8: Estimation results by Kalman filtering and quasi-maximum likelihood

This table presents the results obtained from estimating the model using the quasi-maximum likelihood and Kalman
filter methods. Each estimate is accompanied by its corresponding asymptotic t-statistic, which is calculated based
on a central finite difference approach. The model is described by equation (30), which includes 14 measurement
equations. There are eight standard deviations that account for the measurement errors. The data used for estimation
consists of weekly option prices, ranging from Friday to Friday, for the 10-year Treasury bond and the S&P 500 index.
The sample period spans 630 expiration cycles, starting on January 28, 2011, and ending on February 24, 2023.

Panel A: Estimated time-series of [λ
[good],P
t , λ

[bad],P
t , V b

t , V s
t ]

′

Percentiles

Mean Min. 25th 50th 75th Max.

λ
[good],P
t 0.72 0.12 0.32 0.53 0.93 3.58

λ
[bad],P
t 0.08 0.02 0.04 0.06 0.10 0.62√
V b
t × 100 0.04 0.00 0.00 0.00 0.00 3.37√

V s
t × 100 10.64 1.33 6.29 8.78 12.84 85.49

Panel B: Model parameters

µb−,Q µb+,Q µs−,Q µs+,Q

Estimate 0.0072 0.0069 0.0260 0.0180
t-statistic [2.16] [9.59] [7.49] [1.95]

µb−,P µb+,P µs−,P µs+,P

Estimate 0.0207 0.1241 0.1257 0.0000
t-statistic [3.99] [7.10] [25.07] [6.96]

θPgood κP
good σgood θPbad κP

bad σbad

Estimate 2.03 0.03 1.06 1.17 12.83 1.06
t-statistic [3.07] [7.15] [2.38] [16.08] [11.21] [30.81]

θPb κP
b σb θPs κP

s σs

Estimate 0.000 80.0 0.43 0.000 80.0 0.43
t-statistic [0.12] [3.92] [3.02] [1.56] [5.26] [2.37]

χgood χbad ρgood ρbad

Estimate 3.01 5.23 2.5E-06 1.5E-06 L[Θ]
t-statistic [1.60] [4.08] [0.00] [0.00] 23,034

Ωcov
1 Ωrv

2 Ω7bond
3 Ω7stock

4 Ω20bond
5 Ω20stock

6 Ωbondvix
7 Ωstockvix

8

Estimate 0.0018 0.0010 0.0099 0.1216 0.0184 0.1631 0.0005 0.0517
t-statistic [82.19] [71.77] [35.66] [35.18] [69.01] [32.43] [18.24] [71.64]
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Table 9: Dynamic model performance for stock and bond volatilities

This table shows properties of the actual and model-implied variables. Dynamic model performance is measured
by the regression log(actualt) = a + b log(modelt) + ẽt, with the inclusion of a constant term (not reported in
table). Reported statistics are based on matched weekly expiring options (Friday initiation to subsequent Friday
expiration). We compute the 95% confidence intervals on the mean of the variable, displayed in square brackets,
using the stationary bootstrap procedure. The sample period is January 28, 2011, to February 24, 2023, comprising
630 expiration cycles. The units of volatility and VIX are annualized percentages.

Percentiles MAE Regression in logs

Mean 25th 50th 75th | log(modelt
actualt

)| b NW[p] R
2
model

×100 (%)

Bond futures volatility actual 3.4
[3.0 3.7]

2.5 3.0 3.9

model 3.7 2.7 3.4 4.4 18 0.84 (0.00) 65

Stock volatility actual 11.3
[9.6 13.1]

6.9 9.4 13.5

model 11.3 6.9 9.4 13.5 0 1.00 (0.00) 100

Bond futures VIX actual 4.6
[4.1 5.2]

3.3 4.2 5.5

model 5.1 3.8 4.7 6.1 12 1.07 (0.00) 95

Stock VIX actual 16.2
[13.8 18.8]

10.3 13.7 18.8

model 19.9 14.6 17.8 22.8 32 1.08 (0.00) 66
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Table 10: Dynamic model performance and absolute pricing errors (| log(modelt
actualt

)|)
This table displays results based on the actual and model-implied volatilities derived from the weekly options prices.
Dynamic model performance is measured by the regression log(actualt) = a+ b log(modelt) + ẽt, with the inclusion
of a constant term (not reported in table). Reported statistics are based on matched weekly expiring options (Friday
PM initiation to subsequent Friday PM expiration) on futures on the 10-year Treasury bond and the S&P 500 index.
The sample period is January 28, 2011, to February 24, 2023, comprising 630 expiration cycles.

Percentiles MAE Regression in logs

Mean 25th 50th 75th | log(modelt
actualt

)| b NW[p] R
2
model

×100 (%)

Panel A: Options on the 10-year Treasury bond futures

-7 delta put: implied volatility actual 5.7
[5.1 6.4]

4.5 5.3 6.4

model 5.8 4.8 5.7 6.6 7 1.09 (0.00) 92

-20 delta put: implied volatility actual 5.4
[4.7 6.0]

4.0 5.0 6.3

model 5.0 3.7 4.4 5.8 10 0.91 (0.00) 92

20 delta call: implied volatility actual 5.3
[4.7 5.8]

4.0 4.9 6.2

model 4.9 3.8 4.4 5.6 11 0.99 (0.00) 86

7 delta call: implied volatility actual 5.6
[5.2 6.1]

4.5 5.3 6.4

model 5.8 5.0 5.6 6.5 8 1.16 (0.00) 90

Panel B: Options on the S&P 500 index

-7 delta put: implied volatility actual 20.1
[17.8 22.3]

14.9 17.8 22.8

model 20.2 16.8 18.9 22.2 20 1.03 (0.00) 45

-20 delta put: implied volatility actual 17.6
[15.2 20.1]

12.2 15.3 20.7

model 17.3 12.8 15.3 19.4 23 0.85 (0.00) 47

20 delta call: implied volatility actual 13.6
[11.2 16.1]

8.4 11.2 16.0

model 13.3 10.1 12.0 15.1 33 0.85 (0.00) 28

7 delta call: implied volatility actual 14.0
[12.2 15.8]

10.2 11.6 15.1

model 15.9 13.5 15.2 17.6 31 0.99 (0.00) 30
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Table 11: Small maturity phenomena and model versus actual log(VVIXt

VIXs
t
) and 7DTE

VIX futures

The sample period covers 384 VIX option expiration cycles, from October 16, 2015, to February 17, 2023, with

calculations performed from Friday close to Friday close. Each Friday, we construct the 11-day VVIXt, according

to (35), as the weekly VIX options expiration cycle is Tuesday to Tuesday. The model-based F vix
t and VVIXt are

computed using (33) and (36), with input values obtained from the Kalman filtering estimation. Dynamic model

performance is measured by the regression log(actualt) = a+b log(modelt)+ ẽt, with the inclusion of a constant term

(not reported in table). The following regression decomposes log(
VVIXt+∆

VIXs

t+∆
) into its components in different economic

states:

log(
VVIXt+∆

VIXs
t+∆

) = ω{Ft∈sbad}
×1{Ft∈sbad}

+ω{Ft∈snormal}
×1{Ft∈snormal}

+ω{Ft∈sgood}
× 1{Ft∈sgood}︸ ︷︷ ︸

indicator variable

+ ǫ{t+∆}.︸ ︷︷ ︸
error term

The “Wald” column refers to the one-sided p-value from the test of the hypothesis ω{Ft∈sbad} = ω{Ft∈sgood} versus
ω{Ft∈sbad} > ω{Ft∈sgood}. The variable definitions for the predictive variables are described in the note to Table 6.

Percentiles MAE Regression in logs

Mean 25th 50th 75th | log(modelt
actualt

)| b NW[p] R
2
model

(%) (%)

log(VVIXt

VIXs
t
) actual 1.8

[1.6 1.9]
1.6 1.8 2.0

model 1.7 1.2 1.9 2.3 46 0.32 (0.00) 49

F vix
t actual 19.4

[16.2 22.7]
13.9 17.6 23.4

model 16.1 11.0 13.5 18.9 26 0.66 (0.00) 56

Predictive regressions

Regression specification log(
VVIXt+∆

VIXs

t+∆
) = c0 + c ×Ft + et+∆

Ft variable ω{Ft∈sbad} ω{Ft∈snormal} ω{Ft∈sgood} Wald c NW[p] R
2

p-val. (%)

OFRcredit actual 1.45 1.87 1.99 (0.00) -0.48 (0.00) 45.2
model 1.20 1.91 2.06 (0.00) -0.86 (0.00) 30.3

log(VIX futures) actual 1.63 1.85 2.06 (0.00) -0.62 (0.00) 44.8
model 1.40 1.87 2.33 (0.00) -1.44 (0.00) 43.5

log(1/CDXhigh yield) actual 1.63 1.93 1.97 (0.00) -4.61 (0.00) 29.6
model 1.48 2.03 2.18 (0.00) -10.76 (0.00) 29.9

log(CDXinvestment grade) actual 1.66 1.92 1.95 (0.00) -0.73 (0.00) 28.5
model 1.51 2.05 2.13 (0.00) -1.64 (0.00) 26.4

OFRequity valuation actual 1.49 1.92 1.89 (0.00) -0.33 (0.00) 15.5
model 1.30 1.80 2.06 (0.00) -0.76 (0.00) 17.5

Minus of inflation swap actual 1.67 1.93 1.94 (0.00) -0.10 (0.01) 11.2
model 1.57 2.08 1.92 (0.04) -0.12 (0.36) 2.4

Volatilityvix futures actual 1.72 1.80 1.78 (0.38) -0.17 (0.22) 1.1
model 1.33 1.90 1.93 (0.00) -1.36 (0.00) 18.2

OFRsafe asset actual 1.74 1.90 1.67 (0.48) 0.10 (0.57) 0.1
model 1.66 2.08 1.43 (0.23) 0.19 (0.63) 0.0
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Table 12: Model-based and actual stock-bond association

All reported summary statistics are based on matched weekly expiring options (Friday PM initiation to subsequent
Friday PM expiration) on futures on the 10-year Treasury bond and the S&P 500 index. The sample period is January
28, 2011, to February 24, 2023, comprising 630 expiration cycles. In this table, et = modelt − actualt. The model

calculations for ρr
s,rb

t are based on (38)–(40). 1{same} is the frequency that the actual and model values have the
same sign. We employ predictive regressions with actual (model) values as the dependent (explanatory) variable and

report the R
2
model. For the purpose of comparison, we perform respective predictability regression tests equivalent to

those in Table 6. We use the actual ρr
s,rb

t as the dependent variable and identify the highest R
2
value (as R

2
highest)

amongst the 11 variables.

Percentiles Predictive regressions

Mean 25th 50th 75th |et| 1{same} R
2
model R

2
highest

(%) (%) (%)

ρr
s,rb

t actual −0.28
[−0.35 −0.21]

-0.47 -0.32 -0.13 14.8

model −0.20 -0.25 -0.20 -0.16 0.24 86 5.3

52



Figure 1: Time-series of estimates of stochastic jump intensities and diffusive variances

This plot is based on matched weekly options (Friday to Friday) on futures on the 10-year Treasury bond and
the S&P 500 index. The sample period is January 28, 2011, to February 24, 2023, comprising 630 expiration
cycles. The model in state-space form is presented in equation (29).



actual model

Figure 2: Time-series of model fit to quantities in the measurement equations

This plot is based on matched weekly options (Friday to Friday) on futures on the 10-year Treasury bond and
the S&P 500 index. The sample period is January 28, 2011, to February 24, 2023, comprising 630 expiration
cycles. The model in state-space form is presented in equation (29), and the corresponding model-based
quantities are shown in equation (30).



Figure 3: Time-series of model fit to VIX futures price and log(VVIXt

VIXs
t
)

This plot is based on 7DTE VIX futures and log(VVIXt

VIXs
t
). The actual VVIXt calculation is based on 11-day

VIX option prices. We compute model-based F vix
t and {VVIXt}2 according to (33) and (35), respectively.



Table Internet I-1: Properties of excess returns of buying one-day options on the 10-year
Treasury bond futures and the S&P 500 index

This table is based on matched one-day options (Thursday to Friday) on futures on the 10-year Treasury bond and
the S&P 500 index. The sample period is January 28, 2011, to February 24, 2023, comprising 630 expiration cycles.
Excess returns for buying options on the S&P 500 index (and bond futures) are calculated according to equations (1)–
(2). Option returns are based on one-day holding period. Reported 95% stationary bootstrap confidence intervals rely
on 10,000 bootstrap draws. The unit of reported average option excess return is one-day percentage. We compute
the excess returns of buying OTM options on bond (stock) with fixed-option delta, denoted δb (δs). Reported
1{r>0} refers to the number of one-day expiration cycles in which the excess return of the option is positive. σ is the
average option-implied volatility computed at the beginning of the expiration cycle. The reported dollar open interest
(respectively, volume) is the number of contracts outstanding (respectively, traded) multiplied by the underlier on
Thursday close, averaged across the 630 expiration cycles. Stationary bootstrap confidence intervals that do not
bracket zero are indicated by “*.”

Panel A: Buying one-day options on the 10-year Treasury bond futures

Puts on bond Bond Calls on bond
Bond option delta: δb (%) -7 -20 straddle 20 7
OTM moneyness (%) 1 0.5 0.5 1

Average options excess return (one-day, %) -77∗ -73∗ -29∗ -21∗ -31∗

Bootstrap CI: [Lower Upper] [-89 -62] [-84 -60] [-40 -16] [-35 -5] [-44 -16]
1{r>0} (out of 630) 21 35 170 166 141

Average option price $18.8 $29.5 $116.2 $106.8
Dollar open interest (Thursday, million) $2149 $1866 $1807 $1906
Dollar volume (Thursday, million) $1306 $1495 $1478 $1236

Option-implied volatility (σ, %) 8.1 8.0 6.4 4.8 5.0

Panel B: Buying one-day options on the S&P 500 index

Puts on stock Stock Calls on stock
Stock option delta: δs (%) -7 -20 straddle 20 7
OTM moneyness (%) 3 1.5 1.5 3

Average options excess return (one-day, %) -49∗ -40∗ -20∗ -20 -60∗

Bootstrap CI: [Lower Upper] [-74 -20] [-59 -18] [-29 -10] [-39 0] [-81 -37]
1{r>0} (out of 630) 35 67 211 94 34

Average option price $2.2 $4.3 $3.2 $1.3
Dollar open interest (Thursday, million) $1640 $1476 $1728 $1689
Dollar volume (Thursday, million) $1403 $1674 $1732 $1068

Option-implied volatility (σ, %) 23.3 20.5 18.2 17.3 18.2


