Data-Driven Measures of High-Frequency Trading

Gbenga Ibikunle **, Ben Moews %°, Dmitriy Muravyev ¢¢, Khaladdin Rzayev *%&"
*Edinburgh Centre for Financial Innovations, The University of Edinburgh
®RoZetta Institute, Sydney
“Centre for Statistics, The University of Edinburgh
dDepartment of Finance, University of Illinois at Urbana-Champaign
*Canadian Derivatives Institute
fKog University
ESystemic Risk Centre, London School of Economics

Abstract

We introduce data-driven measures of high-frequency trading (HFT) that distinguish between
liquidity-supplying and liquidity-demanding strategies. We train machine learning models on a
proprietary dataset with observed HFT activity, then apply these models to public intraday data
to generate HFT measures across all U.S. stocks during 2010-2023. Our measures outperform
conventional proxies, which struggle to capture HFT’s temporal dynamics. Consistent with
theory, our measures respond to a quasi-exogenous speed bump introduction and a data feed
upgrade. The measures help uncover HFT’s differential impact on information acquisition.
Liquidity-supplying HFT improves price informativeness around earnings announcements,

while liquidity-demanding HFT impedes it.
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1. Introduction

High-frequency trading (HFT) firms execute a large share of equity trading volume,
focusing on nanoseconds and processing millions of orders through automated algorithms (e.g.,
surveys by Jones 2013; Menkveld 2016). Their dominance has sparked extensive research into
their market impact, revealing an important distinction between strategies that take versus
provide liquidity. Many HFT firms operate as market makers, leveraging their speed advantage
to provide liquidity, lowering trading costs, and enhancing liquidity (e.g., Hendershott et al.
2011; Menkveld 2013; Brogaard et al. 2015). Conversely, liquidity-demanding HFTs
aggressively consume liquidity, potentially increasing adverse selection costs and amplifying
price volatility (e.g., Easley et al. 2011; Biais et al. 2015; Foucault et al. 2017).

Measuring HFT activity is challenging because standard market feeds do not identify
it. Researchers have pursued two approaches, each with important limitations. Some studies
employ private datasets, which identify HFT, most notably NASDAQ’s 120-stock sample from
2008-2009, but these cover relatively few stocks over short periods.! Others propose proxies
from public data, such as the quote-to-trade ratio (e.g., Hendershott et al. 2011) or odd-lot
volume (e.g., Weller 2018). However, these proxies capture HFT and algorithmic trading
jointly. They also do not distinguish between liquidity-demanding and liquidity-supplying HF T
strategies (Boehmer et al. 2018; Chakrabarty et al. 2023) and as we show, mainly reflect cross-
stock rather than temporal variation in HFT.

We introduce novel measures of liquidity-supplying and liquidity-demanding HFT
activity (HFT_S and HFT_D). Using machine learning (ML) techniques, our method combines
a proprietary dataset of directly observed HFT activity with concurrent public intraday data.

Specifically, we train ensemble models to predict NASDAQ’s HFT activity using 24 same-day

' NASDAQ’s 120 stock sample from 2008-2009 that we use is the most popular, but prior studies also used
proprietary data from the Investment Industry Regulatory Organization of Canada (IIROC)’s S&P/TSX 60 stocks,
and the National Stock Exchange of India (NSE)’s 100-stock dataset from 2015.



measures of trading activity, liquidity, and volatility from WRDS Intraday Indicators.
NASDAQ HFT remains the most widely used HFT dataset, while WRDS Intraday Indicators
enable us to aggregate public intraday data to the daily level. This data-driven approach aims
to capture nonlinear patterns in HFT behavior as well as relevant variable interactions.
Moreover, because our approach is trained directly on HFT data, it can better distinguish
between HFT and broader algorithmic trading, which is a limitation of conventional measures.
Once the models are trained on a NASDAQ HFT dataset, we apply them to generate HFT
measures for the entire TAQ universe of 8,314 common stocks from 2010 to 2023.

We evaluate our HFT measures against five popular HFT proxies: quote-to-trade ratio,
mid-quote volatility, odd-lot volume, quoted price and depth changes, and the trade and quote
message count. Importantly, quote data and these measures are not among the 24 intraday
training variables. Using NASDAQ HFT data from January-June 2009 for training and July-
December 2009 for out-of-sample evaluation, we find that while conventional proxies predict
HFT activity individually, our measures largely subsume their predictive power in joint
regressions. Moreover, standard measures capture cross-sectional but struggle to capture
temporal HFT variation, while our measures reflect both dimensions. Thus, our measures
capture a dimension of HFT that other measures largely miss.

We validate the measures using two natural experiments: one from years after the
training sample and another occurring near the training period. The first event is NYSE Amex’s
introduction of speed bumps discouraging fast trading in 2017 (Khapko and Zoican 2021; Ait-
Sahalia and Saglam 2024). The speed bump introduction is linked to declines of 2.8% and 4.6%
in HFT_D and HFT_S, respectively. The second is NASDAQ’s 2011 data feed upgrade, which
benefits HFT strategies (Ye et al. 2013). Both of our HFT measures increase in response to the
event, though less than for the speed bump’s negative effects. We also analyze how the HFT

measures respond to latency arbitrage. Theory predicts that such arbitrage opportunities



encourage liquidity demand and discourage liquidity supply (Budish et al. 2015; Foucault et
al. 2017; Aquilina et al. 2022). Indeed, we find that as the number of latency arbitrage
opportunities increases, HFT_D activity increases as fast traders exploit stale quotes, while
HFT_S activity decreases as market makers withdraw to avoid being picked off.

Our HFT measures can be useful in a wide range of applications. We focus on one such
application and examine how HFT activity affects fundamental information acquisition, a core
market function. Our measures distinguish between HFT strategies, allowing us to test
competing theories. Do HFTs enhance information acquisition by providing liquidity and
reducing trading costs (e.g., Menkveld 2013; Stiglitz 2014; Brogaard et al. 2015; Ait-Sahalia
and Saglam 2024), or do they impair it by adversely selecting informed investors (e.g., Van
Kervel and Menkveld 2019; Yang and Zhu 2020; Hirschey 2021)?

To answer this question, we study information acquisition around earnings
announcements following Weller (2018). To measure information acquisition, he compares
announcement returns to pre-announcement returns, with higher ratios indicating information
was not discovered until publicly revealed. He finds that algorithmic trading reduces price
informativeness (see also Gider et al. 2019). In contrast, we show that liquidity-supplying HFTs
enhance information acquisition while liquidity-demanding strategies impede it. We also
confirm this conclusion using an alternative measure of price informativeness: the future
earnings response coefficient (Lundholm and Myers 2002). Our results are potentially
consistent with Weller (2018), as we find that his proxies (quote-to-trade ratio and odd-lot
volume) primarily capture liquidity-demanding HFT in his sample. Overall, this application

highlights the advantages of our measures over existing alternatives.>

2 Another approach would be to employ datasets with directly observed HFT; however, existing proprietary
datasets are too small for the analysis, e.g., NASDAQ’s dataset contains only several hundred earnings
announcements.



Several other results further validate our approach. First, adding quote-level
information to the model training only marginally improves model performance, consistent
with a strong correlation between quote and trade activity. Second, we measure HFT activity
as HFT volume divided by total volume in the main analysis; however, the results hold when
we use unscaled HFT volume. Third, the HFT measures exhibit nonlinear relationships that are
consistent with theory and highlight the value of ML methods. HFT liquidity demand responds
strongly to intermarket sweep orders and decreases convexly with market depth, while HFT
liquidity supply increases concavely with depth (Klein 2020; Goldstein et al. 2023). Finally,
both HFT types increase around news events, with larger responses for liquidity suppliers.

Our approach assumes that the relationships between HFT activity and intraday
variables in the 2009 NASDAQ dataset can be extrapolated beyond this training sample.
Consistent with this assumption, prior literature finds that the results based on this widely-used
HFT dataset typically hold for other U.S. exchanges (e.g., Shkilko and Sokolov 2020) including
in the post-2009 period in the U.S. (e.g., Ait-Sahalia and Saglam 2024; Brogaard et al. 2025)
and internationally (e.g., Benos and Sagade 2016; Malceniece et al. 2019; Chakrabarty et al.
2025). Indeed, core HFT strategies have remained stable despite technological advances
(Brogaard et al. 2014; Malceniece et al. 2019).> Moreover, our results for the 2011 and 2017
natural experiments demonstrate that the measures capture meaningful variation in HFT
activity near and far from the training period.

This study advances the HFT literature stream in several ways. First, we develop novel
measures that separate liquidity-demanding and liquidity-supplying HFT strategies, which
outperform popular alternatives. We compute the measures for the entire U.S. equity market

from 2010 to 2023 and plan to share them. Second, prior research shows that public HFT

3 The features of HFT strategies developed in recent theories (Li et al. 2021a) are similar to those from a decade
ago (e.g., Biais et al. 2015; Foucault et al. 2017), suggesting continuity in these core approaches. Also, many
recent studies continue to rely on datasets from 2009-2012 (e.g., Boehmer et al. 2018; Goldstein et al. 2023;
Nimalendran et al. 2024).



proxies combine liquidity supply and demand (Boehmer et al. 2018; Chakrabarty et al. 2023),
while we separate the two and show that this distinction matters. Specifically, liquidity-
supplying HFT facilitates information acquisition while liquidity-demanding strategies hurt
this process. This explains why Weller (2018) finds that HFTs harm information acquisition,
as his measures capture mainly liquidity-demanding trades, not the full picture. Finally, we
find that conventional HFT measures struggle to capture temporal variation in HFT, while our
measures are more successful.

Our work also provides an example of the successful application of machine learning
in market microstructure. Recent studies show ML’s effectiveness in analyzing informed
trading (Bogousslavsky et al. 2023), hidden liquidity (Bartlett and O'Hara 2024), price
discovery (Kwan et al. 2021), and volatility (Easley et al. 2021). We show that ML methods
also effectively capture HFT, quantitatively and qualitatively outperforming the common HFT

measures. Given its prevalence, we must measure HFT to understand how markets work.

2. Data and Variable Definitions
Our approach combines two primary datasets. The first is the widely used NASDAQ

dataset that labels each trade transaction as executed by HFT or non-HFT for 120 stocks in
2009 (e.g., Brogaard et al. 2014). It also provides detailed trade attributes including the date
and time (to the millisecond), volume, price, direction, and the counterparty type, identified as
HH (both parties are HFTs), HN (an HFT demanding liquidity from a non-HFT), NH (a non-
HFT demanding liquidity from an HFT), and NN (both parties are non-HFTs). NASDAQ
identifies liquidity supply as all passive limit-order submissions by HFTs and liquidity demand
as all aggressive order executions by HFTs (e.g., Brogaard et al. 2014). The main dependent
variables are the shares of trading volume attributed to liquidity-demanding and liquidity-

supplying HFTs. Specifically, NASD_HFT_D;, (NASD_HFT_S; ) is calculated as the sum of



HH and HN (HH and NH) volume divided by the total trading volume for stock i on day ¢ in
the Nasdaq dataset.

The second dataset is the WRDS TAQ’s Intraday Indicators covering the same period.
We select 24 variables previously identified as associated with HFT activity. Table 1 describes
the variables, which include various measures related to price, trading volume, trading costs,
liquidity, and volatility. Following Bogousslavsky et al. (2023), we use pre-computed WRDS
variables to enhance replicability and avoid data mining concerns. We train an ML model to
predict true HFT activity in the proprietary NASDAQ dataset by variables from WRDS
Intraday Indicators that aggregate TAQ data. We describe the ML model in Section 3 below.

INSERT TABLE 1 HERE

To validate our data-driven HFT measures, we obtain multiple complementary
datasets. We calculate commonly used HFT proxies using quote-level data from the
Millisecond TAQ database and benchmark our measures against them. We obtain intraday
transaction data and corresponding bid-ask quotes from Refinitiv DataScope. Corporate event
dates (specifically earnings and merger and acquisition (M&A) announcements) are from
I/B/E/S and the Thomson Reuters Securities Data Company (SDC) database, respectively.
Stock returns and trading volume are from the Center for Research in Security Prices (CRSP).

INSERT TABLE 2 HERE

Table 2 describes and provides summary statistics for the original NASDAQ HFT
variables, our data-driven HFT measures, and other variables used in the paper’s analyses. The
liquidity-demanding (NASD_HFT_D; .) and liquidity-supplying HFT (NASD_HFT_S;,) HFT
activities average 0.331 and 0.250, respectively. The difference is statistically significant at the
0.01 level. These two shares add up to about half of total volume, consistent with HFTs’
participation. The distribution of NASD_HFT_D; , is right-skewed, while NASD_HFT_S; ; is

left-skewed. Our ML-generated HFT measures (HFT_D;, and HFT_S;,) exhibit similar



patterns: liquidity-demanding HFT activity is, on average, higher than liquidity-supplying
activity, and the former is left-skewed while the latter is right-skewed. The bid-ask spread
shows a mean of 0.142% with a wide range up to 0.885%, implying diverse liquidity conditions
across the sampled stocks. Our sample includes 8,314 stocks, spanning the universe of US

stocks in the TAQ database.

3. Methodology
In this section, we describe our machine learning methodology. Machine learning
methods are optimized to select the best model among numerous predictors and account for
their non-linearities and interactions. In our case, these methods help identify intraday variables
in public data that are most related to HFT activity and aggregate these relationships semi-
parametrically. We first train the models on Nasdaq HFT dataset with observed HFT trading.
We then apply the trained model to compute estimated HFT activity for each stock-day with

available public intraday data.

3.1. Ensemble methods for HFT prediction

We employ ensemble learning to predict HFT activity. Ensemble methods combine
multiple predictive models to create a stronger collective predictor than any individual model.
This approach delivers two key benefits for HFT applications. First, ensemble models reduce
overfitting risk by averaging predictions across multiple weak learners. This improves out-of-
sample performance when trading conditions change. Second, the component models remain
simpler than complex single-model alternatives. Ensemble methods have proven particularly
effective for non-linear financial prediction problems, where traditional econometric models
often fail to capture complex relationships between order flow and price movements (Parker

2013; Moews et al. 2021; Cao 2022).



Three ensemble methods that build multiple simple decision rules and average their
predictions are used, specifically decision trees, random forests and extremely randomized
trees. Decision trees (Breiman et al. 1984) create if-then rules to classify market conditions —
for example, “if bid-ask spread > 0.01 and volume < 1000, then predict price decline.” Random
forests (Ho 1995) combine and average over many of these trees, each trained on different data
samples, which reduces prediction errors that are common in volatile HFT environments
(Easley et al. 2021; Bogousslavsky et al. 2023). Extremely randomized trees (Geurts et al.
2006) further randomize tree construction. All models use mean squared error optimization and
the 24 input variables from Table 2 to predict two HFT outcomes: HFT_D and HFT_S.

We design model training to handle HFT’s large datasets efficiently. Each model is
trained on 10,000 random stock-days, offering a sufficient sample size for tree-based models
to learn reliable patterns while keeping runtimes feasible (Genuer et al. 2017). We repeat each
training iteration 10 times to test how consistently models predict across different data samples,
to account for changing market conditions. Monte Carlo cross-validation randomly divides data
into 75% for training and 25% for testing model accuracy out-of-sample. This approach
handles large HFT datasets more efficiently than k-fold methods, which require training on
nearly all data multiple times and become computationally prohibitive (Hastie et al. 2009).
Monte Carlo validation reduces the randomness in our performance measures (Li et al. 2010).

We optimize two key parameters: ensemble size (number of trees) and minimum
samples per node split. Using grid search, we test 8 values for each parameter across 64
combinations, repeating each 10 times to measure consistency. We test ensemble sizes from
10 to 500 trees and minimum node splits from 2 to 50 samples. While more sophisticated
optimization methods exist, grid search proves sufficient for our tree-based models (Probst and
Boulesteix 2018). Results in Online Appendix Table OA.B.1 show that larger ensembles with

finer splits consistently achieve better out-of-sample R’ values. The top five performers all use



the smallest node split threshold. Standard deviations across repeated runs confirm these
configurations produce stable predictions when tested on different random samples.

We also benchmark our preferred ensemble method against standard machine learning
models with varying levels of complexity, including LASSO, support vector machines, and
neural networks. Of our ensemble methods, extra trees achieve the highest prediction accuracy
with low variance, outperforming simpler (e.g., support vector machines) and more complex
alternatives (neural networks). These results hold across different prediction setups (multi-
target versus single target) and justify our model choice. Full model specifications and

performance comparisons are reported in Online Appendix Subsection OA.B.2.

3.2.Comparison with common HFT proxies

In this section, we show that the proposed data-driven HFT measures outperform
popular HFT measures on the NASDAQ dataset with directly observed HFT. The conventional
HFT measures include the flickering quotes count (Flick;.), odd-lot volume (OLV;), quote
intensity (Quotelnt; ), quote-to-trade volume ratio (QT;.), and message count (MG;.). We
compute these measures from the Millisecond TAQ database. Motivated by Hasbrouck (2018),
Flick; . measures quote volatility by first calculating the standard deviation of quote midpoints
over 100ms intervals, and then averaging these deviations by stock-day. OLV;, captures the
daily sum of trades smaller than 100 shares (Weller 2018). Quotelnt;, counts daily changes
in best quotes or quote depth (Conrad et al. 2015); QT; ; is the ratio of quoted shares to traded
shares (Hendershott et al. 2011; Weller 2018). Finally, MG; ; is defined as the sum of the daily
number of trade and quote messages (Hendershott et al. 2011; Boehmer et al. 2018).

In this test, we train the ML model using only data from January to June 2009 and then
evaluate their performance out-of-sample against the other measures from July to December

2009. Specifically, we estimate the following stock-day regressions using the observable



liquidity-supplying and liquidity-demanding shares in NASDAQ HFT data on HFT_D and
HFT_S measures, popular HFT proxies, and stock and time fixed effects:
NASD_HFT_D;, = a; + B¢ + y1HFT_D; + y,Flick;; + y30LV; + y,Quotelnt; , +
+vsQTir + VMGt + € (1)
NASD_HFT_S;; = a; + B¢ + y1HFT_S;, + v Flick;, + y30LV; + y,Quotelnt; , +
+¥sQTir + VMGt + € (2),
We first estimate univariate regressions for each HFT measure as independent variables and
then evaluate them in a joint regression following Equations (1) and (2). We double-cluster
standard errors by stock and date and standardize all dependent variables to make coefficients
easier to compare.
INSERT TABLE 3 HERE

Panel A of Table 3 shows the results for liquidity-supplying HFT. Among all measures,
HFT_S delivers the strongest association with liquidity-supplying HFT based on the highest
coefficient, z-statistics, and within-R?. Other measures are positively associated with HFT
liquidity supply, but flickering quotes and odd-lot volume are not statistically significant. In a
joint regression, HFT_S’s coefficient magnitude and #-statistics decrease very little. It also
dominates predictability as the other measures jointly add only 0.3% to within-R?.

The results for liquidity-demanding HFT activity are broadly consistent with those for
liquidity-supplying HFT, except that predicting liquidity demand is harder, as reflected in the
lower R’ estimates. HFT_D consistently shows the highest coefficient magnitude and -
statistics, along with the highest within-R?. In the univariate regressions with fixed effects, of
the conventional HFT proxies, only the quote-to-trade ratio predicts NASD_HFT_D positively.

Panels A and B in Table 3’s estimates account for stock and day fixed effects. The
consistently strong and statistically significant relationships between data-driven HFT

measures and actual HFT activity demonstrate the predictive power of the ML-generated

10



proxies across both cross-sectional and time-series dimensions. In contrast, conventional HFT
measures show relatively weak associations when both fixed effects are included. We
hypothesize that these conventional measures predominantly capture cross-sectional but not
time-series variation. To test this hypothesis, we re-estimated Equations (1) and (2) using only
day fixed effects and report them in Panels C and D of Table 3.

The results in Panels C and D confirm that when controlling solely for day fixed effects,
three conventional measures (Quotelnt;,, QT;;, and MG;,) display substantially stronger
correlations with both liquidity-supplying and liquidity-demanding HF T activities. This pattern
suggests that conventional HFT measures primarily capture cross-sectional variation. Notably,
our HFT measures still outperform in this specification, showing much higher #-statistics and
within-R?. Also, our metrics subsume the information content of conventional HFT measures
in joint regressions.

Overall, these findings show that the advantages of our data-driven measures over
traditional HFT proxies. Our measures predict both liquidity-demanding and -supplying
strategies with larger coefficients, t-statistics, and R2. Furthermore, while our measures
effectively capture both cross-sectional and time-series dimensions, conventional measures

predominantly reflect cross-sectional variation.

3.3.Model assessment and extrapolation to U.S. stocks

Once we estimate our main model on a (relatively small) NASDAQ dataset with
observed HFT, we apply this model to estimate HFT activity from observed intraday input
variables. On each day and for each stock, we observe the 24 input variables listed in Table 1
and feed them into the model, whose parameters have been estimated on the training data. This
is akin to first estimating regression coefficients in a linear regression (e.g., betas) and then
applying them to current data (e.g., computing abnormal returns). Thus, we assume that the

relationships in the training data are sufficiently general to be extrapolated to the broader
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market and later periods. The final sample covers 9,440,600 stock-days from January 4% 2010
to October 18™ 2023.

A key strength of ML over traditional linear models lies in its ability to capture the
nonlinearity between input and output variables. This aspect is important for us, given the
nonlinear relationship between HFT and market characteristics. For instance, Foucault et al.
(2017) show that whether HFT arbitrage strategies enhance or impair liquidity is contingent on
the nature of latency arbitrage opportunities (e.g., Rzayev et al. 2023).

We analyze partial dependence plots to determine if our ML modeling framework
captures nonlinear interactions between HFT activity and its predictors. We start by assessing
the feature importance plot to identify key drivers of HFT activity. Next, we explore the
relationships between HFT and these key drivers through partial dependence plots, focusing
on the nature and shape of the interactions.

INSERT FIGURE 1 HERE

Figure 1 shows that most input variables significantly predict HFT activity. Trading
volume, market depth, and intermarket sweep orders (ISOs) matter the most. Trading volume
and market depth are important because HFT's need counterparts to trade with and deep markets
to operate in. ISOs are designed for large institutional traders; nonetheless, HFTs exploit them
to adversely select slower traders/market participants.* Indeed, Li et al. (2021b) show that ISO
order sizes have shrunk below typical institutional sizes, and fast traders now dominate ISO
usage.

INSERT FIGURE 2 HERE
Having pinpointed the key drivers of HFT activity, we further explore the shape of the

relationships between these determinants and HFT activity using partial dependence plots.

4 https://tabbforum.com/opinions/why-hfts-have-an-advantage-part-3-intermarket-sweep-orders/
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Figure 2 documents the non-linear relationship between HFT activity and various input
variables. For instance, liquidity-demanding and -supplying HFT activity both show an
increasing and concave relationship with the total trade count. This positive correlation with
trading volume is consistent with Brogaard et al. (2014), who show that HFTs favor trading in
larger stocks, which tend to be more liquid.

Liquidity-demanding HFT spikes when ISO volume increases, following a concave
curve that shows ISOs significantly influence these aggressive strategies. Liquidity-supplying
HFT barely responds to ISOs as the relationship stays flat with only marginal increases as ISO
dollar amounts rise. This differential response aligns with academic findings. Li et al. (2021b)
show that HFTs use ISOs to target stale quotes, a tactic that defines liquidity-demanding
strategies. Klein (2020) finds that aggressive HFT strategies deploy ISOs when new
information arrives. An alternative explanation suggests HFTs respond to institutional traders
who use ISOs to avoid getting front-run. Chakravarty et al. (2012) explain that regulators
created the ISO exemption to Rule 611/Order Protection Rule of Reg NMS to give institutional
investors timely access to liquidity at multiple price levels. This allows institutions to execute
large block orders by submitting orders across multiple trading platforms simultaneously.

Market depth generates opposite effects on the two HFT measures. Liquidity-supplying
HFT increases as markets deepen, following a concave curve that shows HFTs provide more
liquidity when order books thicken. Liquidity-demanding HFT does the reverse — it decreases
as depth increases, creating a convex pattern that shows HFTs demand less liquidity in deep
markets. This makes economic sense. Goldstein et al. (2023) demonstrate that HFTs supply
liquidity in deeper markets where order books are thick and demand liquidity in shallower
markets where order books are thin.

These findings lead to two key implications. First, the nonlinear relationships between

HFT activity and market quality show why ML models outperform simple proxies for
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measuring HFT activity. Linear models fail to reflect these curves and inflection points.
Second, liquidity-demanding and liquidity-supplying HFT respond differently to market
conditions, which matches ongoing academic debates about HFT’s varied effects. This
confirms our ML-derived metrics capture real HFT strategies rather than noise. We next

validate these metrics and examine their empirical significance in detail.

4. Results
4.1.HFT during exogenous technological changes.

We show above that the data-driven HFT measures significantly outperform
conventional measures. We now examine how HFT_D and HFT_S respond to exogenous
shocks affecting HFT activity through two natural experiments: one occurring near the training
sample period and another occurring years afterward. If data-driven metrics capture HFT
activity, they should respond significantly to these HFT-specific market structure changes.

In the first quasi exogenous shock, Nasdaq introduces a technology upgrade that
reduces trading data dissemination latency from 3 to 1 millisecond on October 10, 2011 (e.g.,
Ye et al. 2013). The upgrade is implemented in stages: stocks with ticker symbols beginning
with A and B were upgrade on October 10, while the remaining stocks upgrade on October 17.
Ye et al. (2013) employ this staggered implementation to study HFT’s impact on market
quality. We expect that the reduced latency encourages more HFT and test this hypothesis in
the stock-day regressions:

HFT D;y = a; + B¢ + v1Postir + Yi—y SiI,CtCi’,(t + &i¢ (3)
HFT_S;; = a; + By + voPostiy + Yoy 65CE + & 4),
where HFT_D; , and HFT_S;; are our measures of liquidity-demanding and -supplying HFT
activity, respectively. Stock (@;) and day (B;) fixed effects account for individual stock
characteristics and daily variations, respectively. Post; ; is an indicator variable equal to 1 after

October 10, 2011, for NASDAQ-listed stocks with tickers beginning with A and B, and after
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October 17, 2011, for other NASDAQ-listed stocks, and 0 otherwise. We also include NYSE
and Amex-listed stocks as control stocks (Post;, = 0 for these stocks throughout the sample
period) to implement a DiD framework (e.g., Malceniece et al. 2019). The standard errors are
double clustered by firm and day. Similar to Ye et al. (2013), we employ a 10-working day
window around the implementation dates to zoom in on the effect. Ci'ft includes a range of
control variables, such as volatility (Volatility; ,), relative quoted spread (Spread; ;), inverse
price (InvPrice; ), and trading volume in dollars (Volume; ). Volatility;, is calculated as
the daily (¢) standard deviation of the transactional-level returns for stock i. Spread,; ; is the
daily average of transaction-level bid-ask spreads. The transaction-level bid-ask spread is
calculated as the difference between ask and bid prices divided by the average of ask and bid
prices for each transaction. All these variables are obtained from the TAQ database.

In our second natural experiment, Amex introduces a speed bump. In January 2017, the
Amex files a request with the SEC to introduce a deliberate delay in the communication
between traders and the exchange. This proposed delay is designed to impact both inbound
(from traders to the exchange) and outbound (from the exchange to traders) communications,
establishing a total round-trip latency delay of 700 microseconds. The SEC approves this
request, leading to the trading delay’s activation on July 24, 2017. Given that the introduction
of a speed bump increases trading latency, it is expected to reduce HFT activity. Therefore, if
our data-driven HFT metrics capture the dynamics of HFT activity, we should observe a
reduction in the metrics on Amex post the speed bump implementation. To formally test this
hypothesis, we employ the following stock-day regression:

HFT_D;; = a; + By + y,Post;, * Amex;, + Zizl 5{2(]{3 + &¢ (5)

HFT_S;; = a; + By + yvoPost;, » Amex; + Yoy ail,ctCiI,ct + &t (6),
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where Post; , is an indicator variable, taking the value of 1 on July 24, 2017, when the speed
bump was implemented and thereafter, and 0 before, while Amex; , corresponds to 1 for NYSE
Amex-listed stocks and 0 for NYSE- and NASDAQ-listed firms. Our models do not explicitly
include Post;, and Amex;, indicator variables, as their effects are already accounted for
through the inclusion of time and stock fixed effects. All other variables are as defined above.
Similar to Models (3) and (4), we double-cluster standard errors by firm and day, and analyze
a 10-day window around the implementation dates.

Before discussing the results from the estimation of Equations (3 — 6), we provide an
important methodological clarification. Our HFT measures (HFT_D and HFT_S) are computed
at the firm-day level, aggregating activity across all exchanges. This raises a potential concern:
if HFTs redirect their orders from the treated exchanges (NASDAQ in Models (3) — (4) and
Amex in Models (5) — (6)) to alternative venues, the impact of technological changes on overall
HFT activity might be dampened. However, this concern is likely minimal because HFTs
typically prefer a stock’s primary listing exchange due to superior market quality. For instance,
2023 statistics show Amex leading in terms of quote quality (time at best prices), quoted depth
(size at best prices), and spread tightness for its listed stocks.’> These market quality advantages
create strong incentives for HFTs to maintain their activity on the primary exchange,
suggesting that technological changes should meaningfully impact HFT behavior.

INSERT TABLE 4 HERE

Table 4 reports the estimation results for Models (3) through (6). Columns (i) and (ii)
present the findings for NASDAQ’s latency reduction upgrade, while columns (ii1) and (iv)
show the results for Amex’s speed bump implementation. Consistent with our predictions, the
HFT measures show significantly higher activity following NASDAQ’s upgrade and lower

activity after Amex’s speed bump implementation, relative to stocks listed on other exchanges.

5 https://www.nyse.com/markets/nyse-american
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We next explore the economic magnitudes of the observed changes. The Amex speed
bump is a stronger shock to HFT activity because it is a direct speed impact. In contrast,
Nasdaq’s improvement in trading data dissemination is an indirect shock, as it only reduces
latency for the consolidated feed while HFTs can access direct and faster feeds. As Ye et al.
(2013) note, changes to consolidated feed latency affect HFT activity since HFTs utilize these
feeds; however, the impact is relatively modest. Our results support this distinction. Following
the speed bump introduction, Amex-listed stocks experience decreases of 2.8% and 4.6% in
HFT_D and HFT_S, respectively, relative to their pre-speed bump averages. In comparison,
Nasdaq’s technological upgrade leads to more modest increases of 0.7% and 1.1% in HFT_D
and HFT_S for NASDAQ-listed stocks, respectively, relative to their pre-upgrade averages.

These results have three main implications. First, our HFT metrics effectively capture
HFT activity, validated by their response to HFT-relevant shocks and the varying response
magnitudes between direct (speed bump) and indirect (trading data latency upgrade) shocks.
Notably, while Nasdaq’s trading data dissemination technology upgrade occurs in 2011, near
the period the data we use to train our ML model (2009) is obtained, our measures also respond
to the 2017 speed bump effects, suggesting the model’s temporal robustness. Thus, the patterns
learned by our ML model during the training stage remain applicable to later periods.

Second, in line with theoretical predictions, changes in data dissemination speed and
speed bump introductions significantly affect HFT activity. Therefore, similar to colocation
upgrades (e.g., Brogaard et al. 2015; Boehmer et al. 2021a), these technological changes
provide exogenous shocks that can be used to examine HFT’s impact on financial markets.

Third, our speed bump findings complement Ait-Sahalia and Saglam (2024), who
document that the speed bump caused wider quoted spreads and reduced liquidity. Their
theoretical framework links speed changes to market-making HFT activity. We extend their

analysis by showing that the speed bump affects both market-making and market-taking HFTs,
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with market makers experiencing stronger effects, explaining the overall negative liquidity
impact in their study. Moreover, the alignment between our findings tentatively suggests that
our liquidity-demanding and liquidity-supplying HFT metrics effectively capture supply and

demand dynamics, we formally investigate this in the next section.

4.2.HFT and latency arbitrage opportunities.

Our analyses thus far provide evidence that our ML-generated measures capture the
distinct characteristics of liquidity-demanding and -supplying HFT strategies. To further
validate this insight, we examine “latency arbitrage” opportunities. Latency arbitrage involves
fast traders using their superior response speeds to exploit newly available public information
and execute against stale quotes before slower traders can (e.g., Budish et al. 2015; Foucault et
al. 2017; Shkilko and Sokolov 2020; Aquilina et al. 2022). Aquilina et al. (2022) show that in
most latency arbitrage scenarios, HFTs often aggressively take liquidity. The profitability of
aggressive HFT strategies is enhanced by the emergence of latency arbitrage opportunities;
hence, HFTs are encouraged to engage more in such strategies (e.g., Baldauf and Mollner
2020). Therefore, latency arbitrage events offer a context to distinguish between the specific
characteristics of liquidity-demanding and -supplying HFT activity. In particular, we expect
increase in liquidity-demanding HFT activity as the number of latency arbitrage opportunities
increases, in line with predictions by Baldauf and Mollner (2020) and the findings of Aquilina
etal. (2022). This increase in aggressive trading and sniping activity increases adverse selection
risk on endogenous liquidity-supplying HFTs; hence, we expect liquidity-supplying HFT
activity to decline (e.g., Foucault et al. 2017; Menkveld and Zoican 2017).

To formally test these arguments, we estimate the following stock-day models:

HFT Dy = a; + P+ yiNLAO; + Xio1 655Cl: + & ()

HFT_S;y = a; + Br+ V2NLAO; + Yi_1 85CE + &, (8),
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where NLAO; ; is the number of latency arbitrage opportunities. We identify latency arbitrage
opportunities following Budish et al. (2015), who suggest examining the mid-price changes to
identify “stale” quotes. Specifically, a quote at time T — 1 is stale if the absolute difference in
mid-price from time T — 1 to T exceeds the half spread. We adopt a more conservative
methodology by calculating the jump size based on the difference between the mid-price at
time 7 and the ask and bid quotes at time 7 — 1. If Midprice, > (Ask,_, + TickSize), where
TickSize is setto 0.018, it suggests a profitable latency arbitrage opportunity. HFTs can exploit
it by placing a limit buy order at Ask,_; + TickSize at time 7. Similarly, if Midprice, >
(Bid;_1 — TickSize), HFTs can submit a limit sell order at Bid,_, — TickSize at time T.

We identify latency arbitrage opportunities using the first-level quote data from
Refinitiv DataScope. The data is enormous, which makes it computationally prohibitive to
examine our full 8,314 stock sample. Therefore, we narrow the sample to the 120 firms in the
original NASDAQ HFT data. We calculate NLAO;, for these 120 firms across our entire
sample period, from 2010 to 2023. Table 2 includes the average number of latency arbitrage
opportunities per stock-day is 68. The standard deviation is 169 and the maximum value is
1211, indicating large variation in these opportunities across stocks and days.

INSERT TABLE 5 HERE

The results from the estimation of Equations (7) and (8), as presented in Table 5, show
a positive and statistically significant (at the 0.01 level) relationship between HFT_D;, and
NLAO; ¢, whereas the relationship between HFT_S; ; and NLAO; . is negative and significant
(at the 0.05 level). The relationship between HFT_D;./HFT_S;; and NLAO;, is also
economically significant. A one-standard-deviation increase in NLAO;, (169) is associated
with a 1% rise in HFT_D and 1.6% decrease in HFT_S. These results indicate that latency
arbitrage opportunities affect various HFT strategies. Prior literature suggests that arbitrage-

seeking HFTs often adopt aggressive trading strategies during latency arbitrage opportunities
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(e.g., Aquilina et al. 2022), and endogenous liquidity-supplying HFTs are, thus, inclined to
scale back on their liquidity provision (e.g., Foucault et al. 2017). Our findings align with these
arguments and validate HFT_D and HFT_S in their ability to capture the liquidity-demanding

and -supplying activities of HFTs.

5. HFT’s effect on information acquisition

Our data-driven HFT measures that separate liquidity supply and demand can be used
in many important applications. In this section, we examine one such application focusing on
price discovery, one of the fundamental functions of markets. Specifically, we show a crucial
distinction between liquidity-supplying and liquidity-demanding HFT’s effect on information
acquisition.

Price discovery characterizes how stock prices reflect information (O'Hara 2003). This
process includes both integrating existing information into asset prices and generating or
acquiring new fundamental information (Brunnermeier 2005; Weller 2018; Brogaard and Pan
2022). Market microstructure researchers have extensively studied the relationship between
HFT and price discovery. This growing literature primarily focuses on how existing
information gets incorporated into stock prices (Menkveld 2016), often concluding that HFT
enhances the speed at which existing information reaches stock prices, contributing to more
efficient price discovery mechanisms.

HFTs’ role in acquiring new fundamental information remains understudied. First,
information acquisition happens at low frequencies rather than tick-by-tick. Second, theory
implies that studying HFTs’ impact on information acquisition requires separating liquidity
supply and demand. Existing datasets that make this distinction, such as the Nasdaq HFT data,
work well for high-frequency market quality studies. However, their limited sample periods

and small stock coverage make them unsuitable for studying fundamental information
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acquisition. In the case of the Nasdaq data, it covers 120 firms and thus results in just 480 firm-
quarter earnings announcement events per year.

Our measures offer comprehensive coverage, avoiding this problem and enabling a
comprehensive analysis of how different HFT strategies influence information acquisition.
HFTs can improve information acquisition by providing liquidity and thus reduce trading costs
(Menkveld 2013; Brogaard et al. 2015; Ait-Sahalia and Saglam 2024). As lower trading costs
increase net profits, investors are incentivized to seek and trade on new information, and this
facilitates information acquisition and dissemination. But HFTs also use aggressive strategies
that weaken information acquisition. They employ order anticipation tactics, such as back-
running and latency arbitrage to predict and profit from informed institutional trades (Van
Kervel and Menkveld 2019; Yang and Zhu 2020; Hirschey 2021). These strategies increase
trading costs for informed investors, creating a crowding-out effect that discourages
information seeking and reduces overall information acquisition.

Weller (2018) studies HFT’s effect on information acquisition using a novel metric
“price jump ratio.” This ratio divides the return at public information release by the cumulative
return during the lead-up period. Bigger price jumps during announcements signal weaker
information acquisition beforehand. When information gets reflected in prices only upon public
release rather than gradually, it means fewer investors acquired information early. Thus, higher
price jump ratios indicate lower information acquisition. Weller (2018) finds that HFT harms
information acquisition.

While Weller (2018) advances our understanding of how HFTs affect information
acquisition, it relies on MIDAS data that aggregates all HFT activity without separating
specific trading strategies. This matters because theory suggests that different HFT strategies
affect information acquisition differently. With MIDAS data, Weller (2018) shows that HFT

presence reduces information acquisition, while unable to facilitate a deeper investigation.
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Weller (2018) acknowledges this issue, concluding (p.2217) that future research must “assess
the precise mechanisms by which improved trading technology reduces the information content
of prices.”

Responding to this call, we exploit the unique proprieties of our HFT measures to
investigate how HFT affects information acquisition. In our main specification, we estimate

the following regression model:

JUMP;q = a; + Big + ViHFT _Dig + vo,HFT_S; g + Yiy 85,CF0 + ir, ),

where JUMP, ; is the ratio of cumulative abnormal returns during trading days [-1, 1] relative
to earnings announcements, divided by the cumulative abnormal returns during days [-21, 1].
Daily abnormal returns are calculated as the raw return minus the expected return from the
market model. We calculate HFT_D; ; and HFT_S; ,by averaging the daily HFT values over
the 21 trading days [-21, -1] before earnings announcements. Control variables (Ci’fq) include
volatility (Volatility; q), relative quoted spread (Spread, 4), market value (MValue; 4), and
institutional order imbalance (OIB20k; ;). We obtain O1B20k; , directly from TAQ, capturing
the price impact of trades exceeding $20,000, and compute MV alue; , by averaging the daily
market values over the same 21-day window. The remaining control variables represent 21-
day averages of their daily counterparts before earnings announcements [-21, -1]. Following
Weller (2018), we include stock and month fixed effects and apply his filters.

We include both HFT_D and HFT_S in Equation (9) to examine their comparative
effects on information acquisition. These metrics correlate at 0.52, so multicollinearity will not
distort results. Since higher JUMP; ; values mean less information acquisition, we expect
opposite effects from the two HFT types. HFT_D should increase JUMP; ;, because aggressive

strategies raise trading costs and discourage information seeking. HFT_S should decrease
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JUMP; ; because liquidity-provision strategies lower trading costs and make information
acquisition more profitable.
INSERT TABLE 6 HERE

The results in Table 6 show that HFT_D; , has a positive and statistically significant
relationship with JUMP; ;. An increase in a firm’s HFT_D; , from the 25th percentile (0.222)
to the 75th percentile (0.414) is associated with a 6.6% increase in JUMP; ; relative to its mean
value. Conversely, HFT_S; ;, shows a negative and statistically significant relationship with
JUMP; ;, where an increase from the 25th percentile (0.131) to the 75th percentile (0.259)
corresponds to a 3.3% decrease in JUMP,; 4 relative to its mean.

Our findings suggest that the positive relationship between common HFT measures and
JUMP; ; shown in Weller (2018) may be driven by the measures primarily capturing liquidity-

demanding HFT activity during the sample period. To examine this hypothesis, we analyze the
relationship between Weller’s (2018) main HFT measures and our HFT measures. Weller’s
(2018) measures, obtained directly from MIDAS, include cancel-to-trade ratio (CT; 4), odd-lot
rate (OLR; 4), and trade-to-order ratio (T0; 4). CT; 4 is the ratio of cancelled messages to trade
messages, OLR; ; measures the proportion of trades below 100 shares, and TO; , is calculated
as the ratio of executed shares to submitted shares.
INSERT TABLE 7 HERE

The results in Table 7 help reconcile our findings with Weller’s (2018). CT;, and
OLR;, are positively linked with HFT_D; 4, while TO;, (an inverse measure of HFT) is
negatively related. Conversely, the metrics display opposite relationships with HFT_S; ,. The
directions of the relationships remain consistent in simple univariate correlation analysis. Thus,

observed relationships, combined with Weller’s (2018) findings of positive relationships

between CT;,/OLR;, and JUMP; ,, and negative correlation between TO;, and JUMP; g,

23



suggest that the HFT measures in Weller (2018) predominantly capture liquidity-demanding
HFT activity.

To further explore the relationship between HFT and information acquisition, we
employ the future earnings response coefficient (FERC) (e.g., Lundholm and Myers 2002;
Ettredge et al. 2005; Brogaard and Pan 2022) as an alternative measure. Specifically, we
estimate FERC through the following model:

Return;, = a; + B4 + Z}Lz_l(ynEarningi,qu + 9 Earning; g4n * HFT_D; 4 +
OnEarning; qin * HFT_S; ;) + ptHFT_D;, + p,HFT_S; ;, + psReturn; 5,1 +
paReturn; ,_; + Y-y quCi'fq + €4 (10),
where Return, 4 is the quarterly stock return for firm i in quarter q, and is measured as the
percentage change in closing prices between quarters ¢ — 1 and q. The subscript n ranges from
-1 to 1, capturing the temporal relationships in the model. Earning; 4., denotes quarterly
earnings (net income) normalized by the market value of equity at the start of quarter g + n. In
this specification, y, reflects FERC; a positive value will suggest that current returns
incorporate future earnings information, which indicates heightened fundamental information
acquisition. We employ the same set of control variables used in the jump ratio model,
averaged at the quarterly frequency.

The coefficients of interest in Model (10) are 9,, and 6,,, which indicate whether HFT
enhances (positive coefficient) or impairs (negative coefficient) the incorporation of future
earnings information into current returns. Based on our jump ratio findings, where HFT_D; ,
(H F T_Sl-,q) is negatively (positively) associated with information acquisition, we expect U,
and 6,, to be negative and positive, respectively.

INSERT TABLE 8 HERE
Table 8 reports results that corroborate our findings from the jump ratio analysis. 8, is

positive and statistically significant at the 0.01 level, while ¥, is negative and also significant
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at the 0.01 level, indicating a positive (negative) relationship between liquidity-supplying (-
demanding) HFT activity and information acquisition.

We extend our baseline results in two directions. First, we test whether existing HFT
datasets that separate trading strategies can investigate HFT’s role in information acquisition.
This matters because if they could, it would call the need for our new measures into question.
Notwithstanding, this question becomes somewhat moot since no publicly available datasets
currently separate HFT strategies. We therefore employ the proprietary Nasdaq HFT dataset
covering 120 stocks in 2009 in the replication of the jump ratio and FERC analyses. Table
OA.C.1 shows that using the Nasdaq dataset produces no statistically significant relationship
between HFT strategies and information acquisition due to limited sample size. This
corroborates the relevance of our ML-generated measures. They let researchers examine how
HFT affects low-frequency market outcomes that matter for real economic decisions.

The second extension addresses concerns about training our ML model on 2009 data.
Researchers continue to use the Nasdaq HFT dataset because the core distinction between
liquidity-demanding and liquidity-supplying strategies remains fundamental to HFT behavior
(Boehmer et al. 2018; Goldstein et al. 2023; Nimalendran et al. 2024). Section 4.1 shows that
our measures respond to technological shocks both near and far from the training period. We
provide additional validation by examining the HFT-information acquisition relationship close
to our training sample. Similar results between this restricted sample and our full sample would
show that temporal distance from training data does not affect our findings. Table OA.C.2
presents results using data from January 2010 to December 2012. Both jump ratio and FERC
analyses mirror our baseline results. Liquidity-demanding strategies hurt information
acquisition while liquidity-supplying strategies help it.

We explore information acquisition as an important application of our novel approach

to measuring HFT. While it is challenging to establish causality, our results show that our HFT
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measures provide valuable tools for investigating how HFT affects low-frequency economic
outcomes that require large samples to study. This data-driven approach matters because
econometric approaches using exogenous shocks cannot examine how different HFT strategies
affect real outcomes. These shocks hit both liquidity-demanding and liquidity-supplying
strategies equally, so difference-in-differences frameworks cannot separate their distinct
effects. Data-driven distinction between HFT strategies becomes essential for understanding
their different economic impacts. Our findings complement Weller (2018) by providing

empirical evidence of specific mechanisms through which HFT affects information acquisition.

6. Extensions and further robustness analyses

In this section, we provide additional tests as a validation of the ML-generated HFT
measures, and extend our baseline ML framework. First, we extend earlier exploration of the
dynamics of liquidity-demanding and liquidity-supplying HFT activity around scheduled and
unscheduled information announcements. Foucault (2016) and Brogaard et al. (2014) argue
that HFT's rapidly respond to major information events. Hence, a detailed examination of how
our ML-generated HFT measures react around these events, therefore tests their empirical
validity.

INSERT FIGURE 3 HERE

Figure 3 shows how liquidity-supplying and liquidity-demanding HFT activity change
around (scheduled) earnings announcements. We plot both measures over a 20-day window
spanning ten days before and after announcements, with 95% confidence intervals. Both HFT
types spike starting three days before and peak on announcement day. We measure this effect
by comparing average HFT activity during the three-day event window (days ¢, #+;, and ¢+2)
with pre-announcement levels. This three-day period follows previous research on short-term
earnings effects (Ball and Shivakumar 2008). Both measures increase significantly during
announcement windows. HFT_S jumps 6.3% (from 0.208 to 0.221) while HFT_D rises 2.8%.
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Figure OA.A.1 presents the corresponding plots for HFT behavior around
(unscheduled) M&A announcements, which contain higher information content than earnings
announcements (Bogousslavsky et al. 2023). Our ML-generated HFT measures start increasing
just one day before M&A announcements or on announcement day itself, compared to three
days for earnings. This is consistent with the stream of the literature showing that HFTs
primarily trade on public information by processing it rapidly (Budish et al. 2015; Aquilina et
al. 2022) rather than exploiting private information as informed traders do (Bogousslavsky et
al. 2023). The unscheduled nature of M&A announcements limits exploitable information
beforehand. We therefore find less HFT activity before M&A announcements than before
earnings announcements.

We extend our baseline ML framework by first expanding the feature space. Selecting
ML input features involves competing considerations. More granular data could improve
prediction precision; however, they are likely to be more expensive and challenging to access
and process. More accessible datasets may sacrifice predictive power, nevertheless enable
wider application and replication. Our baseline model, using daily input features derived
directly from TAQ’s Intraday Indicators, prioritizes accessibility, a key contribution in
developing HFT measures from non-proprietary data.

These indicators lack quote-level granularity, such as message counts or quote update
frequencies, which could limit ML training effectiveness. The baseline model’s 82% R?
substantially mitigates this concern by showing that our input variables capture the
predominant variation in HFT activity. This suggests limited gains from incorporating more
granular quote-level data. We test this empirically by adding quote-level data from the
Millisecond TAQ database to evaluate potential performance improvements. The additional
features, which the literature indicates are linked to HFT activity (Chakrabarty et al. 2023),

include message counts, quote update frequencies, small trade volumes (under 100 shares), and
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high-frequency midpoint variations over 100-millisecond intervals. We calculate these
measures for 2009, our training period. Using January-June 2009 data, we train a pair of
models: one using only original daily features from TAQ’s Intraday Indicators, another
incorporating both daily indicators and granular quote features from TAQ’s Millisecond
database. Based on the trained models, we generate HFT measures for July-December 2009,
enabling out-of-sample comparison between the two models — with and without quote
information.

The analysis offers three main observations. First, adding quote-related information
only marginally improves model performance, raising R’ from 82% to 84%. Second, the
corresponding pairs of ML-generated HFT measures — with and without quote information —
are highly correlated. The correlation coefficients for the liquidity-supplying and -demanding
HFT metrics are 0.99 and 0.96, respectively. Third, when we regress the Nasdaq HFT values
on the ML measures generated with quote-level information, coefficient estimates and -
statistics differ only marginally from those presented in Table 3. Hence, the TAQ intraday
indicator features used in the baseline ML framework sufficiently capture HFT activity. These
findings are unsurprising given that our baseline feature engineering incorporates variables
strongly tied to quote-level activity, such as market depth and bid-ask spreads. The levels of
correlation between quote-related and trade-related features emphasize the strength of these
relationships. For example, total trades and message count have a correlation coefficient of
0.90, while message count has correlation coefficients of above 0.65 with both ISO trades and
market depth. Quote revision frequency correlates strongly (above 0.70) with trade frequency,
ISO trades, and market depth.

Our second extension addresses HFT measure scaling. We have shown that data-driven
HFT measures effectively capture both liquidity-demanding and liquidity-supplying strategies

and help address important economic questions. All our tests use scaled HFT measures, where
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HFT trading volume gets normalized by total trading volume. This scaling matters to account
for total trading volume when examining HFTs’ role (Hendershott et al. 2011). However, since
our ML algorithm trains on scaled HFT values, it may capture variation in total trading volume
rather than HFT trading volume. We address this by using the ML model to predict unscaled
HFT trading volume using the same input variables. The key target variables become unscaled
liquidity-demanding and liquidity-supplying trading volumes, calculated as the sum of HH and
HN (HH and NH) volumes for stock i and day ¢ from NASDAQ HFT data. We then replicate
all tests using these unscaled values.

Our main findings remain robust when using unscaled target variables, with the
complete set of results presented in the Online Appendix. We confirm that: (1) data-driven
unscaled HFT measures outperform conventional HFT proxies (Table OA.D.1); (2) HFT
activity responds systematically to both events in our natural experimental set up (Table
OA.D.2) and scheduled and unscheduled announcements (Figures OA.D.1 and OA.D.2); (3)
HFT shows distinct responses to latency arbitrage opportunities (Table OA.D.3); and (4) the
two HFT types have contrasting effects on information acquisition. Liquidity-demanding
strategies impair it while liquidity-supplying strategies enhance it (Tables OA.D.4 and

OA.D.5).

7. Conclusion
The impact of HFT on market quality has been one of the central questions for market
microstructure research over the past fifteen years. However, the literature faces a key
limitation in those studies either examine short-term market effects using detailed HFT data or
investigate longer-term impacts using generic HFT measures that fail to differentiate between
liquidity-demanding and liquidity-supplying strategies. This constraint has hampered our

understanding of the mechanisms driving HFTs’ effects over longer horizons.
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We address this limitation by developing a data-driven approach that generates distinct
measures for liquidity-demanding and liquidity-supplying HFT activity using ML techniques.
By training ensembles on NASDAQ HFT data and TAQ variables, we create comprehensive
HFT measures covering the entire U.S. stock universe over an extended period.

Our validation tests demonstrate that these ML-generated measures outperform
traditional HFT measures and capture theoretically predicted HFT behavior. The measures
respond to exogenous technological changes. Similarly, as latency arbitrage opportunities
become more prevalent, liquidity-demanding HFTs increase their activity while liquidity-
supplying HFTs reduce it.

We show the importance of differentiating HFT strategies by examining their role in
fundamental information acquisition that requires a large sample to test. Our findings suggest
that liquidity-supplying HFT activity is positively associated with information acquisition,
while liquidity-demanding activity is negatively related to it. This result clarifies how different
HFT strategies affect price informativeness in financial markets, highlighting the core

advantages of our ML-generated proxies and empirical framework.
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Figure 1
Feature importance plot.
This figure shows the feature importance of each input variable in terms of how relevant it is to the construction of the model, meaning how much each feature contributes to

the predictions made. Using the Gini impurity, importance values are calculated through the mean decrease and standard deviation in node impurity for tree-based models as
the normalized total reduction of the measurement because of this feature.
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Figure 2
Partial dependence plots of ML-generated HFT proxies on selected variables.
This figure shows the marginal effect that input variables have on model predictions, and whether these relationships are nonlinear. Predictions are marginalized over the

distribution of input variables resulting in a function that includes other variables and depends solely on the features of interest. This provides the average marginal effect on

predictions for given values of these features.
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Figure 3

HFT around earnings announcements

This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval
surrounding scheduled events, specifically earnings announcements. The event window spans 10 days before and
after the announcement dates, which are sourced from the I/B/E/S database. The analysis encompasses all U.S.
listed common stocks, with the sample period extending from 2010 to 2023.
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Table 1

Input and output variables in the ML model training process

This table presents the variables used to train the ML model, including their notation, descriptions, and data sources. Panel A contains output variables from NASDAQ HFT
data. Panel B details input variables derived from the TAQ database, with variable labels matching the WRDS TAQ Data Manual for easy reference.

Variable Description Data source
Panel A: Output variables used in the ML model.
NASD_HFT_D;, Liquidity-demanding HF T activities for stock i in day t is computed as the daily number of shares traded by NASDAQ HFT

liquidity - demanding HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN)
trading in day ¢.

NASD_HFT_S;, Liquidity-supplying HF T activities for stock i in day t is computed as the daily number of shares traded by NASDAQ HFT
liquidity - supplying HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN)
trading in day ¢.

Panel B: Input variables (features) used in the ML model.

AVG_PRICE_M;, Average trade price during market hours (Open to Close) for stock i in day t. TAQ

RET_MKT_M;, Open to close return for stock i in day t is computed as the log return of the official opening price over the TAQ
official closing price.

TOTAL_TRADE;, The total number of trades for stock i in day t. TAQ
NBOQTY_BEFORE_CLOSE; The best offer size of the last quote before market close for stock i in day t. TAQ
NBBQTY_BEFORE_CLOSE;, The best bid size of the last quote before market close for stock i in day t. TAQ
TOTAL_DOLLAR_M;, The total trade value in dollars during market hours for stock i in day . TAQ
ISO_DOLLAR; The sum of intermarket sweep order trade dollar value (during market hours) for stock i in day t. TAQ
QUOTEDSPREAD_PERCENT_TW;, The time-weighted percentage quoted spread (during market hours) for stock i in day t. The quoted spread TAQ

is calculated as the difference between ask and bid prices for each transaction divided by the mid-price (the
average of ask and bid prices).

BESTOFRDEPTH_DOLLAR_TW; The time-weighted best offer dollar depth (during market hours) for stock i in day t is determined based on TAQ
the size of the best ask price.

(continued)
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BESTBIDDEPTH _DOLLAR_TW,,
BESTOFRDEPTH _SHARE TW;,
BESTBIDDEPTH _SHARE _TW;,

EFFECTIVESPREAD_PERCENT_DW; .

PERCENTREALIZEDSPREAD_LR_DW,

PERCENTPRICEIMPACT _LR_DW; ,

BS_RATIO VOL;,

TSIGNSQRTDVOL1,;,

IVOL_Q;

The time-weighted best bid dollar depth (during market hours) for stock i in day t is determined as the size
of the best bid price.

The time-weighted best offer share depth (during market hours) for stock i in day t is determined based on
the size of the best ask price.

The time-weighted best bid share depth (during market hours) for stock i in day t is determined based on the
size of the best bid price.

The dollar value-weighted percentage effective spread for stock i in day t. The effective spread is calculated
using the following equation: Ef fective Spread = 2D, (P, — M, )/M,,, where k denotes transaction, D,
denotes the sign of transaction (-1 for sale and +1 for buy), P, is the transaction price, and M, is the prevailing
mid-price for each transaction. Lee and Ready (1991) algorithm is used for trade classification.

The dollar value-weighted percentage realized spread for stock i in day t. The realized spread is calculated
using the following equation: Realized Spread = 2Dy (P, — My,5)/M;, where M, s is the bid-ask mid-
point five minutes after the kth trade, and all other variables are as previously defined. Lee and Ready (1991)
algorithm is used for trade classification.

The dollar value-weighted percentage price impact for stock i in day t. The price impact is calculated using
the following equation: Percent Price Impact = 2D, (My,s — My)/M,, where all variables are as
previously defined. Lee and Ready (1991) algorithm is used for trade classification.

The absolute percentage order imbalance for stock i in day ¢ is calculated as the absolute value of buy volume
minus sell volume divided by the total trade volume. Lee and Ready (1991) algorithm is used for trade
classification.

The lambda (price impact coefficient) with intercept for stock i in day t is calculated using the following
equation: Ln# = a + A+ SSqrtDvol + €, where SSqrtDvol = Sgn(X5_3,0 BuyDollar —

i,s—300

S_s00SellDollar) X \[|X5_s00 BuyDollar — ¥3_50,SellDollar |, where M ; is the mid-price for stock
i at second s.

The quote-based intraday volatility for stock iin day t is calculated using the following equation:

»5_.(Ret; s—Ret, 5)? M;
== % where Ret; ¢ = Ln—=-

Intraday Volatility = - =
- is-1

and M; ; is the mid-price for stock i at

second s.

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ

(continued)
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HINDEX;,

VAR_RATIO3;,

TOTAL_DV_RETAIL;,
BS_RATIO_RETAIL_VOL;,

TOTAL_DV_INST20K;,

BS_RATIO_INST20K_VOL;,

The Herfindahl index calculated across 30-minute time units for stock i in day t is calculated using the
5529° S=q (PiXSHR)*
(R38O R, PrxSHR)?

following equation: HIndex = where SHR,, is the shares of trade for transaction k.

The variance ratio for stock iin day t is calculated using the following equation: Variance Ratio =
Var(Retsgot)

SxVar(Retecs) 1|, where Var (Ret3q0;) is the variance of 5-minute log returns.

The total dollar value of retail trades for stock i in day ¢. Retail trades are identified by using the methodology
described in Boehmer et al. (2021Db).

The absolute percentage order imbalance for retail trading volume for stock i in day t. Retail trades are
identified by using the methodology described in Boehmer et al. (2021b).

The total dollar value of $20,000 institutional trades for stock i in day t. $20,000 cutoff is based on Lee and
Radhakrishna (2000).

The absolute percentage order imbalance for $20,000 institutional trades’ trading volume for stock i in day
t. $20,000 cutoff is based on Lee and Radhakrishna (2000).

TAQ

TAQ

TAQ

TAQ

TAQ

TAQ
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Table 2

Regression variables and summary statistics

This table provides summary statistics and definitions of variables used in our regression analyses. Variable names in the first column are followed by their measurement units
in parentheses. For variables used in multiple regressions with different frequencies (daily, quarterly, etc.), we report summary statistics corresponding to their first appearance
in our analyses. All variables are winsorized at the 1st and 99th percentiles. For the original NASDAQ dataset variables (NASD_HFT_D;, and NASD_HFT_S; ), the sample
covers the year 2009 and includes 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. For all other variables, the sample includes all U.S.-
listed common stocks from 2010 to 2023.

Variable Definition Mean Std Min p.25 p-50 p.75 Max
NASD_HFT_D;, Liquidity-demanding HFT activities for stock i in day t is computed as the 0.331 0.160 0.013  0.202 0342 0.453 0.662
daily number of shares traded by liquidity - demanding HFTs (HH and HN)
divided by the total number of shares (HH, HN, NH, and NN) trading in day ¢.
NASD_HFT_S;; Liquidity-supplying HFT activities for stock i in day t is computed as the daily 0.250  0.169  0.010 0.110 0.206  0.375 0.636
number of shares traded by liquidity - supplying HFTs (HH and HN) divided
by the total number of shares (HH, HN, NH, and NN) trading in day ¢.
HFT_D;, The liquidity-demanding HFT activity for stock i on day ¢, estimated using the 0.316  0.112  0.025 0.222 0.335 0.414 0.602
ML model outlined in Section 3.
HFT_S;, The liquidity-supplying HFT activity for stock i on day ¢, estimated using the 0.208  0.101  0.036  0.131  0.174  0.259 0.626
ML model outlined in Section 3.
Volatility; , (1/00,000)  Daily volatility for stock i on day ¢, measured as the standard deviation of 0.008 0.018 0.000  0.000 0.001  0.007 0.123
transaction-level returns.
Spread; ; (%) Daily average of transaction-level spreads for stock i on day ¢, where each  0.142  0.154  0.012  0.037 0.090 0.189 0.885
transaction-level spread is calculated as (ask price - bid price)/(0.5 x (ask price
+ bid price)).
InvPrice;, The inverse of stock price for stock i on day ¢. 0.039  0.050 0.001 0.013 0.024 0.047 0.344
Volume; , Daily trading volume in dollars for stock i on day ¢. 2.614 6305 0.007 0.070 0.330 2.556  47.392
($°000,000,00)
NLAO;, (000) The number of latency arbitrage opportunities for stock i on day ¢, identified 0.068  0.169  0.001  0.006 0.017  0.047 1.211
using the methodology detailed in Section 4.2.
Flick;, (0) Quote volatility for stock i on day 7, measured as the daily average of standard 6.942  42.24  0.000 0.009 0.021 0.086 365.523
deviations of quote midpoints calculated over 100 ms intervals.
OLV;, Daily average of trades smaller than 100 shares for stock i on day . 3.040 12.47 0.000 0.000 0.000 1.000 80.000
Quotelnt;, (000,000)  Daily count of changes in best quotes or quote depth for stock i on day . 0.191 0.264 0.002 0.031 0.059 0.253 2.775
QT The ratio of quoted shares to traded shares for stock i on day . 1582 16.23 2.19 5.88 9.51 18.71 85.70
MG;, (000,000) The total number of messages (trade and quote) for stock 7 on day ¢. 2111 2.864 0.078 0.332 0.643 2.853 12.637
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JUMP; ,

Information acquisition proxy for stock 7 in quarter ¢, measured as the ratio of
cumulative abnormal returns over [-1, 1] to cumulative abnormal returns over
[-21, 1] around earnings announcements.

0.517

0.427

-0.543

0.227

0.510

0.794

1.663

MValue; ,
(8°000,000,000)

Market value for stock 7 in quarter g, calculated as the average of daily market
values over [-21, -1] around earnings announcements, where daily market
value is closing price times shares outstanding.

0.567

1.652

0.001

0.024

0.089

0.330

12.474

0IB20k;

Institutional order imbalance for stock 7 in quarter g, measured as the price
impact of trades exceeding $20,000 over [-21, -1] around earnings
announcements, obtained from TAQ.

0.351

0.183

0.050

0.200

0.333

0.494

0.763

CT;q

The natural logarithm of the cancel-to-trade ratio for stock 7 in quarter ¢, where
the ratio is calculated as the average of daily (cancel messages/trade messages)
over [-21, -1] around earnings announcements, obtained from MIDAS
database.

0.507

0.540

-0.548

0.150

0.462

0.810

2.227

OLR;,

The natural logarithm of the odd-lot ratio for stock i in quarter ¢, where the
ratio is calculated as the average of daily proportions of trades below 100
shares over [-21, -1] around earnings announcements, obtained from MIDAS
database.

1.202

0.664

-0.430

0.777

1.288

1.735

2.212

TO;

The natural logarithm of the trade-to-order ratio for stock i in quarter ¢, where
the ratio is calculated as the average of daily (executed shares/submitted
shares) over [-21, -1] around earnings announcements, obtained from MIDAS
database.

-1.064

0.639

-2.972

-1.450

-1.017

-0.628

0.194
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Table 3
Comparative analysis of HFT measures
This table evaluates our ML-generated HFT measures against alternative proxies using the following models:
NASD_HFT_S;, = a; + By + V1HFT_S;; + v Flick; + v30LV; + v,Quotelnt;, + ysQT;; + yeMG; ¢ + &t

NASD_HFT D;y = a; + py + y1HFT_D; + v, Flick; + v30LV; + v,QuoteInt;, + ysQT;+ + YeMG; + &+

where NASD_HFT_D;, and NASD_HFT_S;, are NASDAQ’s liquidity-demanding and -supplying HFT measures, and HFT_D;, and HFT_S; . are our ML-generated proxies
(trained on January-June 2009 data), and alternative proxies from TAQ: quote volatility (Flick; ., average standard deviation of quote midpoints over 100 ms intervals), OLV; .
(OLV; ¢, sum of sub-100 share trades), quote intensity (Quotelnt; ¢, count of quote/depth changes), quote-to-trade ratio (QT; ¢, quoted shares/traded shares), and the number of
messages (MG;.). All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while Panels B and D focus on
liquidity-demanding HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The sample covers July-
December 2009 for 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and day, with t-statistics
in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

Panel A: NASD_HFT_S;,

(1) (i1) (ii1) (iv) v) (vi) (vii)
HFT_S;, 0.104%** 0.096%**
(8.52) (7.52)
Flick;, 0.002* 0.001
(1.79) (1.00)
OLV;, 0.001 0.001
(0.84) (0.80)
Quotelnt; 0.015** -0.020%%**
(2.26) (-3.16)
QT; 0.008** 0.008**
(2.10) (2.37)
MG;, 0.021%** 0.032%**
(3.21) (3.10)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 3% 0.1% 0% 0.4% 0.2% 0.7% 3.3%
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Panel B: NASD_HFT_D; ,

) (i1) (iii) (iv) ) (vi) (vii)
HFT_D;, 0.068%** 0.083%**
(3.70) (4.38)
Flick;, -0.003*** -0.003***
(-3.27) (-3.24)
OLV;, -0.000 -0.000
(-0.31) (-0.07)
Quotelnt; -0.002 0.030%**
(-0.42) (2.60)
QT;: 0.016%** 0.019%**
(3.34) (3.91)
MG;, -0.006 -0.040%***
(-1.16) (-2.82)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 0.8% 0.1% 0% 0.5% 0.5% 0.3% 1.4%
Panel C: NASD_HFT_S;,
(@) (i) (iii) (iv) ) (vi) (vii)
HFT_S;, 0.246%** 0.239%**
(38.28) (23.27)
Flick;, -0.009%** 0.001
(-2.69) (0.06)
OLV;, -0.004 0.002*
(-0.91) (1.68)
Quotelnt;, 0.140%** -0.006
(14.02) (-0.62)
QT;, 0.084*** 0.005
(5.41) (1.12)
MG, 0.144%** 0.010
(15.97) (0.79)
Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 74% 0.3% 0% 51% 15% 53% 74%
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Panel D: NASD_HFT_D; ,

HFT_D;,
Flick;,
OLV;,
Quotelnt;
QT

MG,

Day FE

N obs.
RZ

(M)

(i)

(iii)

(iv) v) (vi)

0.423%%%
(23.23)

Yes
14,238
50%

-0.003
(-0.41)

Yes
14,238
0.1%

0.000
(0.24)

Yes
14,238
0%

(vii)

0.091%#*
(7.92)
0.021%*
(2.04)
0.092%#*
(8.37)
Yes Yes Yes
14,238 14,238 14,238
23% 1.0% 24%

0.383%**
(17.93)
-0.003
(-0.93)

0.002%**
(1.99)
0.013
(0.92)

0.014***
(2.69)

0.015

(0.94)
Yes

14,238
54%
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Table 4

Impact of exchange technological changes on HFT activity

This table examines how our ML-generated HFT measures respond to two technological changes: NASDAQ’s
reduced data dissemination latency and Amex’s speed bump implementation. We estimate the following
difference-in-difference models:

HFT_D;; = a; + B + v,1Posti + Yoy 6/CH + €54 4.1
HFT_S;; = a; + B¢ + yoPosti, + Tio1 6CH5 + €4 4.2)
HFT_D;; = a; + B, + v,Post; x Amex;, + Yjiey 65CH + €1 4.3)
HFT_S;; = a; + By + y,Post;, » Amex;, + Yi_, 65CE + &, 4.4

where HFT_D; , and HFT_S; . represent the ML — generated liquidity — demanding and — supplying HFT activities
for stock i on day t. a; and 3, capture stock and day fixed effects, respectively. For the NASDAQ upgrade analysis
(Models 4.1 and 4.2), Post;, equals 1 after October 10, 2011, for NASDAQ-listed stocks with tickers A-B, and
after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as control groups in these
models. For the Amex speed bump analysis (Models 4.3 and 4.4), Post; , equals 1 after July 24,2017, and Amex; ;
equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control groups in these models. Control
variables (Ci’ft) include daily volatility (Volatility; ., standard deviation of transaction-level returns), relative
quoted spread (Spread; ., daily average of (ask-bid)/mid-quote for each transaction), inverse price (InvPrice; ),
and dollar trading volume (Volume; ;). The analysis uses 10-working day windows around implementation dates.
Panel A reports results for the NASDAQ upgrade and Panel B for the Amex speed bump. Standard errors are
double-clustered by stock and day, with t-statistics in brackets. *, ** and *** indicate significance at 10%, 5%,
and 1%. R? values are within-R?2.

Panel A: NASDAQ upgrade Panel B: Amex speed bump
O] (ii) (iif) (iv)
HFT_D;, HFT_S;, HFT_D;, HFT_S;,
Post;, 0.002%* 0.002%**
(2.12) (2.10)
Post;, x Amex; -0.005%* -0.007***
(-2.34) (-3.31)
Volatility; 0.013** 0.000 0.001 0.001
(2.19) (0.07) (1.29) (1.33)
Spread; -0.066*** -0.024*** -0.015%** -0.006***
(-12.58) (-5.58) (-10.96) (-6.05)
InvPrice;, -0.151*** 0.037 -0.026 -0.023*
(-3.08) (0.92) (-1.57) (-1.96)
Volume; ; 0.001 0.020%** 0.001** 0.005%**
(1.30) (17.75) (2.25) (4.24)
Stock and Day FE Yes Yes Yes Yes
N obs. 43,234 43,234 45,530 45,530
R? 5% 11% 1.3% 3.5%
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Table 5

HFT response to latency arbitrage opportunities

This table examines how our ML-generated HFT measures respond latency arbitrage opportunities using the
following OLS models:

4
HFT_D;; = a; + B + v1NLAO; + Z SECE + &,
k=1

4
HFT_S;; = a;+ B; + y,NLAO;, + Z SECE + &y
k=1

where HFT_D; , and HFT_S; , represent our liquidity-demanding and -supplying HFT activity measures for stock
i and day t. a; and S, capture stock and day fixed effects, respectively. NLAO; , is the number of latency arbitrage
opportunities, identified using the methodology detailed in Section 4.2. Control variables (Ci’ft) include daily
volatility (Volatility; ., standard deviation of transaction-level returns), relative quoted spread (Spread; , daily
average of (ask-bid)/mid-quote for each transaction), inverse price (InvPrice;,), and dollar trading volume
(Volume; ;). Columns (i) and (ii) present the results for HFT_D; , and HFT_S; ;, respectively. The sample consists
of 120 randomly selected NASDAQ- and NYSE-listed firms. Standard errors are double-clustered by stock and
day, with t-statistics in brackets. *, **_ and *** indicate significance at 10%, 5%, and 1%. R? values are within-
R?.

(1) (i)
HFT_D;, HFT_S;,
NLAO;, 0.018%** -0.020%*
(3.78) (-2.02)
Volatility; -0.302%** -0.353***
(-5.91) (-4.50)
Spread; , -0.069%** -0.033%*
(-4.66) (-2.09)
InvPrice;, -0.390*** 0.428%***
(-6.04) (7.98)
Volume; , -0.002%** 0.003 %
(-3.81) (7.96)
Stock and Day FE Yes Yes
N obs. 246,139 246,139
R? 17% 12%
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Table 6
HFT activity and information acquisition — jump ratio
This table examines how HFT activity affects information acquisition using the following OLS model:

4
JUMP;; = a; + Bmgq + v1HFT _D;q + v,HFT_S; ; + Zk_lagfq Cl + €

where JUMP; ; measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1,
1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (¢g). HFT_D; , and
HFT_S; ; are our liquidity-demanding and liquidity-supplying HFT activities, measured as averages of daily
values over [-21, -1] around earnings announcements. Models include stock («;) and month (8, ) fixed effects,
respectively. Control variables (Cl-'fq) all measured as averages of daily values over [-21, -1] around earnings
announcements, include volatility (Volatility; ,), relative quoted spread (Spread; ;), market value (MValue; 4,
price times shares outstanding), and institutional order imbalance (OIB20k; 4, price impact of trades over $20,000
from TAQ). Columns (i) and (ii) present results from models without and with control variables, respectively. The
sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock
and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. R? values are
within-R?2.

) (i1)
JUMP,, JUMP,,
HFT_D;, 0.208*** 0.178***
(5.42) (4.57)
HFT_S; 4 -0.162%** -0.133%***
(-3.32) (-2.71)
Volatility; , -0.048%%%
(-2.87)
Spread, 4 -0.106***
(-6.45)
MValue; , -0.009%**
(-3.52)
OIBZOkl-,q (.13 %%
(7.26)
Stock and Month FE Yes Yes
N obs. 49,515 49,515
R? 0.1% 0.4%
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Table 7

Comparing our HFT measures with Weller (2018) measures

This table analyzes the relationship between our ML-generated HFT measures and Weller’s (2018) HFT proxies
using the following OLS models:

4

CTiq = @i+ Bmg+ v1HFT_Diq + y,HFT_S; , + Z 85,CE + Eie
k=1
4

OLR;; = &; + Pmg + V1HFT_D;, + y,HFT_S;, + Z 85 CE + &
k=1
4

TO;jq = & + Pmg+ ViHFT_D;q + v,HFT S;; + Z 85,CE + €
k=1

The dependent variables are Weller’s (2018) HFT proxies obtained from the MIDAS database: CT;, (natural
logarithm of cancel-to-trade ratio), OLR;, (natural logarithm of odd-lot ratio), and TO; 4 (natural logarithm of
trade-to-order ratio), where each ratio is calculated as the average of daily values over [-21, -1] around earnings
announcements. The key independent variables are HFT_D; ; and HFT_S; , are liquidity-demanding and liquidity-
supplying HFT activities, measured as averages of daily values over [-21, -1] around earnings announcements.
Models include stock (@;) and month (8, ;) fixed effects, respectively. Control variables (Ci’fq) all measured as
averages of daily values over [-21, -1] around earnings announcements, include volatility (Volatility; ,), relative
quoted spread (Spread, ,), market value (MValue, 4, price times shares outstanding), and institutional order
imbalance (OIB20k; 4, price impact of trades over $20,000 from TAQ). The sample includes all U.S.-listed
common stocks from 2012 to 2023. Standard errors are double-clustered by stock and quarter, with t-statistics in
brackets. *, **_ and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

(1) (i1) (i1)
CTi'q OLRL-_q TOl-_q
HFT_D;, 0.839%** 2.714%%* -1.208%%%*
(10.64) (24.76) (-15.71)
HFT_S; 4 -1.133%** -2.343%** 1.340%**
(-12.01) (-26.72) (13.38)
Volatility; , 0.036 -0.476*** 0.492%**
(0.74) (-11.05) (10.05)
Spread,; 4 -0.005 0.727%** -0.190%**
(-0.17) (12.03) (-5.76)
MValue; , 0.050%** 0.120%** -0.071%%*
(7.52) (11.74) (-8.63)
OIB20k; 4 0.152%** -0.111%** 0.063*
(5.24) (-3.22) (1.81)
Stock and Month FEs Yes Yes Yes
N obs. 43,091 43,091 43,091
R? 2% 19% 4%
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Table 8
HFT activity and information acquisition — FERC alternative measure
This table examines how HFT activity affects information acquisition using the following model:

Return;q = a; + 4 + Z}lz_l(ynEarningi,qM +d,Earning; g.n * HFT_D; 4 +
OnEarning; qon * HFT_D;4) + ptHFT_D;q + p,HFT_S; 4 + p3Return; 4,4 +
paReturn; o1 + Yio1 65,Cl + g

where Return, , is quarterly stock returns for firm i in quarter q, measured as the percentage change in closing
prices between quarters ¢ — 1 and q. Earning; 4., denotes quarterly earnings (net income) normalized by the
market value of equity at the start of quarter ¢ + n. The subscript n ranges from -1 to 1. HFT_D; , and HFT_S; ,
are our liquidity-demanding and liquidity-supplying HFT activity measures, measured as the quarterly averages
of daily values. Control variables (Ci’fq) all measured as quarterly averages of daily values, include volatility
(Volatility; ,), relative quoted spread (Spread; ,), market value (MValue; 4, price times shares outstanding), and
institutional order imbalance (0IB20k; 4, price impact of trades over $20,000 from TAQ). Columns (i) and (ii)
present results from models without and with control variables, respectively. The sample includes all U.S.-listed
common stocks from 2010 to 2023. Standard errors are double-clustered by stock and quarter, with t-statistics in
brackets. *, **_ and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

(1) (i1)
Return, g Return; 4
Earning; 4.1 * HFT_D; 4 -2.035%** -2.018%**
(4.59) (4.56)
Earning; .1 * HFT_S; 4 2.690%** 2.676%**
(5.30) (5.25)
HFT_D;, -0.060 -0.059
(-1.58) (-1.59)
HFT_S;, 0.011 0.010
(0.19) (0.08)
Earning; 4.4 0.575%*%* 0.573%**
(9.38) (9.67)
Additional Controls No Yes
Stock and Quarter FE Yes Yes
N obs. 157,343 157,343
R? 4% 4%
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Introduction

This online appendix provides supplementary results to the findings presented in

Ibikunle et al. (2025). The content is as follows:

e Online Appendix A. HFT Activity Around M&A Announcements.

e Online Appendix B. Model Optimization and Machine Learning Comparisons
e Online Appendix C. Additional Tests on HFT and Information Acquisition

e Online Appendix D. Using Unscaled HFT Measures



Online Appendix A. HFT activity around M&A announcements

Figure OA.1

HFT around M&A announcements

This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval
surrounding unscheduled events, specifically mergers and acquisitions (M&A) announcements. The event
window spans 10 days before and after the announcement dates, which are sourced from the Thomson Reuters
Securities Data Company (SDC) database. The analysis encompasses all U.S. listed common stocks, with the
sample period extending from 2010 to 2023.
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Online Appendix B. Model optimization and machine learning comparisons

Table OA.B.1

Parameter optimization results

The table lists the arithmetic mean and standard deviation for R? values across 10 iterations for different parameter
combinations regarding the number of samples requires to split a tree node and the number of trees determining
the ensemble size. Results are ranked by the Mean column.

Rank Mean Std. Split samples Ensemble size
1 0.814442 0.008260 5 640
2 0.813941 0.008360 5 320
3 0.813713 0.008455 5 160
4 0.812587 0.008609 5 80
5 0.810152 0.008016 5 40
60 0.659040 0.027015 640 160
61 0.658566 0.022346 640 80
62 0.657760 0.022598 640 320
63 0.655796 0.023405 640 10
64 0.654791 0.027320 640 5




OA.B.2. Comparison to simple machine learning methods

We compare our ensemble methods against standard single-model alternatives to
validate our approach. Since we predict continuous HFT outcomes rather than classify discrete
categories, we test four benchmark models: LASSO (which is a linear regression that shrinks
coefficients to zero), Support Vector Machines (which capture non-linear patterns), and neural
networks with three hidden layers (which can learn complex relationships but require more
data and computation time). We configure each model with standard parameters: LASSO uses
alpha=0.1 and tolerance=0.0001, SVM employs radial basis kernels, and neural networks use
rectified linear activation with mean absolute error optimization. This allows us to benchmark
whether tree ensembles truly outperform simpler methods (LASSO, SVM) and more complex
alternatives (deep learning) for HFT prediction.

Our dataset spans 29,880 stock-days. We drop 2,184 observations (7%) with missing
dependent or independent variables. We standardize each variable using z-score scaling to
prevent variables with larger ranges from dominating predictions and to convert predictors to
comparable units. We choose z-score over min-max scaling because HFT data contains
extreme outliers that would distort min-max normalization. these initial experiments apply z-

score scaling, also commonly called standardization, in which, for a dataset, D,

__ D;-D

=2 (OA.1),

Zp

We test two prediction approaches: multi-model (separate models for each target)

versus multi-target (one model predicting both outcomes simultaneously). Multi-target models

can capture relationships between our two dependent variables, potentially improving

accuracy. However, LASSO and SVM require separate models by design, while neural
networks can handle both approaches.

Online Appendix Table OA.B.2 reports mean R? values and standard deviations across

10 iterations for all methods, comparing single-target versus multi-target performance where



applicable. Extra trees deliver the highest mean R? performance with low standard deviation,
outperforming both simpler methods (LASSO, SVM) and complex neural networks. While
neural networks can theoretically approximate any function, they struggle to learn optimal
parameters from our HFT dataset—a common challenge when financial data contains high
noise relative to signal strength (Zhang et al. 2017).

Our optimized extra trees model achieves an average R? of 0.825 with standard
deviation of 0.005 across multiple runs. We no longer apply z-score scaling since tree-based
models handle unscaled inputs effectively through their splitting mechanism. Optimization cuts
prediction variance in half compared to our baseline model while improving accuracy.
Therefore, we select extra trees as our primary method because they achieve superior prediction

accuracy while remaining interpretable and computationally efficient.



Table OA.B.2

Machine learning comparison

The table lists the arithmetic mean and standard deviation for R? values across 10 iterations for least absolute
shrinkage and selection operator (LASSO), support vector regression (SVR), feed-forward artificial neural
networks (ANN), random forests for multi-model (RF-MM) and multi-target (RF) setups, and extremely
randomized trees for multi-model (ET-MM) and multi-target (ET) setups. Results are inversely ranked by the

Mean column.

Method Mean Std.
LASSO 0.625 0.013
SVR 0.684 0.058
ANN 0.783 0.0229
RF-MM 0.784 0.055
RF 0.790 0.043
ET-MM 0.804 0.036
ET 0.805 0.035




Online Appendix C. Additional tests on HFT and information acquisition

Table OA.C.1

HFT activity and information acquisition using Nasdaq HFT data

This table replicates the analyses from Tables 6 and 8 using NASDAQ’s original HFT measures instead of our
ML-generated proxies. NASD_HFT_D;, and NASD_HFT_S;, are NASDAQ’s liquidity-demanding and -
supplying HFT measures. The sample consists of 120 randomly selected stocks for which NASDAQ provided
HFT data in 2009. All other specifications, including variable definitions, measurement periods, control variables,
and fixed effects, remain identical to those in Tables 9 and 11.

(1) (ii)
JUMP, , Return, ,
NASD_HFT_D;, 0.997
(0.52)
NASD_HFT_S; 4 -0.903
(-0.56)
Earning; g41 * NASD_HFT_D; , 0.521
(0.06)
Earning; g+1 * NASD_HFT_S; , -3.246
(-0.59)
Controls As in Table 6 As in Table 8
Stock and Month FEs Yes Yes
N obs. 466 401
R? 0.7% 40%




Table OA.C.2

HFT activity and information acquisition: analysis of 2010-2012 period

This table replicates the analyses from Tables 6 and 8 using data from 2010 to 2012, a period immediately
following our ML model’s training sample (2009). All other specifications, including variable definitions,

measurement periods, control variables, and fixed effects, remain identical to those in Tables 9 and 11.

HFT_D;,

HFT_S;,

Earning; .1 * HFT_D; 4

Earning; 4.1 * HFT_S; 4

Controls

Stock and Month FEs

N obs.
RZ

(1) (i1)
JUMP, Return; ,
0.114%***

(2.59)
-0.101**
(-2.10)
-3.982%**
(-3.41)
3.666***
(2.81)
As in Table 6 As in Table 8
Yes Yes
9,915 30,048
0.4% 5%




Online Appendix D. Using unscaled HFT measures

Figure OA.D.1

HFT around earnings announcements

This figure illustrates the evolution of ML-generated unscaled HFT measures (U_HFT_S; , and U_HFT_D; ;) with
their 95% confidence interval surrounding scheduled events, specifically earnings announcements. The event
window spans 10 days before and after the announcement dates, which are sourced from the I/B/E/S database.
The analysis encompasses all U.S. listed common stocks, with the sample period extending from 2010 to 2023.
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Figure OA.D.2

HFT around M&A announcements

This figure illustrates the evolution of ML-generated unscaled HFT measures (U_HFT_S; , and U_HFT_D; ;) with
their 95% confidence interval surrounding unscheduled events, specifically mergers and acquisitions (M&A)
announcements. The event window spans 10 days before and after the announcement dates, which are sourced
from the Thomson Reuters Securities Data Company (SDC) database. The analysis encompasses all U.S. listed
common stocks, with the sample period extending from 2010 to 2023.
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Table OA.D.1
Comparative analysis of HFT measures
This table evaluates our ML-generated unscaled HFT measures against alternative proxies using the following models:

NASD_U_HFT_D;y = a; + By + yiU_HFT_D;, + y,Flick; + v30LV;, + v,QuoteInt;, + ysQT;; + YeMG; + &;¢
NASD_U_HFT_S;, = a; + B + v1U_HFT_S; + v,Flick; + y30LV;; + v,Quotelnt;; + ysQT; ¢ + YeMG; + &;¢

where NASD_U_HFT_D;; and NASD_U_HFT_S; ; are NASDAQ’s unscaled liquidity-demanding and -supplying HFT measures, and U_HFT_D; , and U_HFT_S; ;are our ML-
generated unscaled HFT proxies, trained on January-June 2009 data) and alternative proxies from TAQ: quote volatility (Flick; ,, average standard deviation of quote midpoints
over 100 ms intervals), OLV; ; (OLV; ¢, sum of sub-100 share trades), quote intensity (Quotelnt; ;, count of quote/depth changes), quote-to-trade ratio (QT; ;, quoted shares/traded
shares), and the number of messages (MG; ).. All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while
Panels B and D focus on liquidity-demanding HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The
sample covers July-December 2009 for 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and
day, with t-statistics in brackets. *, **_ and *** indicate significance at 10%, 5%, and 1%. R? values are within-R?.

Panel A: NASD_U_HFT_S;,

(1) (i1) (ii1) (iv) v) (vi) (vii)
UHFT_S;, 1.349%%* 1.163%**
(10.93) (9.14)
Flick;, 0.002 -0.002
(0.78) (-0.87)
OLV;, 0.012* 0.005%**
(1.80) (2.59)
Quotelnt; 0.793%#* -0.073
(5.89) (-0.67)
QT; -0.253*** -0.133**
(-3.16) (-3.92)
MG, 0.940%** 0.440%**
(5.88) (2.88)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 68% 0.1% 0.5% 24% 4.5% 27% 72%
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Panel B: NASD_U_HFT_D;

) (i1) (iii) (iv) ) (vi) (vii)
UHFT_D;, 1.045%** 0.849%**
(11.47) (9.75)
Flick;, 0.002 -0.005***
(0.09) (-3.14)
OLV;, 0.008 0.004**
(1.31) (2.45)
Quotelnt; 0.672%*%* 0.090
(6.12) (1.15)
QT;: -0.179*** -0.100***
(-3.27) (-4.67)
MG;, 0.788%** 0.246**
(6.08) (2.07)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 64% 0% 0.5% 31% 4% 33% 69%
Panel C: NASD_U_HFT_S;,
@) (ii) (iii) (iv) v) (vi) (vii)
UHFT_S;, 1.552%** 1.534%*%*
(31.38) (23.86)
Flick;, -0.085%** -0.001
(-3.57) (-0.49)
OLV;, -0.052 -0.006
(-1.21) (-0.79)
Quotelnt;, 1.439%%* 0.082
(6.04) (0.50)
QT; 1.054%** 0.022
(3.47) (0.71)
MG, 1.458%*** -0.070
(6.01) (-0.39)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 90% 0.3% 0.1% 60% 25% 61% 95%
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Panel D: NASD_U_HFT_D;;

) (i1) (iii) (iv) ) (vi) (vii)
UHFT_D;, 1.167*** 1.146%**
(27.10) (16.68)
Flick;, -0.067*** -0.002
(-3.82) (-1.62)
OLV;, -0.038 -0.005
(-1.06) (-0.28)
Quotelnt; 1.130%%*%* 0.245
(7.68) (1.55)
QT;; 0.710%** 0.022
(3.33) (0.95)
MG;, 1.144%%* -0.226
(7.63) (-1.32)
Stock and Day FE Yes Yes Yes Yes Yes Yes Yes
N obs. 14,238 14,238 14,238 14,238 14,238 14,238 14,238
R? 92% 0.4% 0.1% 70% 22% 71% 94%
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Table OA.D.2

Impact of exchange technological changes on HFT activity

This table examines how our ML-generated unscaled HFT measures respond to two technological changes:
NASDAQ’s reduced data dissemination latency and Amex’s speed bump implementation. We estimate the
following difference-in-difference models:

UHFT_D;; = a; + B+ v1Post, + Yio1 65CS + € (0A.6.1)
UHFT_S;; = a; + By + v,Posti, + Yoy 6CH + €4 (0A.6.2)
UHFT_D;; = a; + B + v,Post;, x Amex;, + Yioq 6;,CH + €4 (0A.6.3)
UHFT_S;, = a; + By + y,Post;, » Amex;, + Yi_, 65CE + &, (0A.6.4)

where U_HFT_D; ; and U HFT_S; ; represent the ML — generated unscaled liquidity — demanding and — supplying
HFT activities for stock i on day t. @; and S, capture stock and day fixed effects, respectively. For the NASDAQ
upgrade analysis (Models OA.6.1 and OA.6.2), Post;, equals 1 after October 10, 2011, for NASDAQ-listed
stocks with tickers A-B, and after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as
control groups in these models. For the Amex speed bump analysis (Models OA.6.3 and OA.6.4), Post; , equals
1 after July 24, 2017, and Amex; , equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control
groups in these models. Control variables (Ci’ft) include daily volatility (Volatility;,, standard deviation of
transaction-level returns), relative quoted spread (Spread; ., daily average of (ask-bid)/(0.5x(ask+bid) for each
transaction), inverse price (InvPrice;.), and dollar trading volume (Volume;,). The analysis uses 10-working
day windows around implementation dates. Panel A reports results for the NASDAQ upgrade and Panel B for the
Amex speed bump. Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, **, and
##% indicate significance at 10%, 5%, and 1%. R? values are within-R?.

Panel A: NASDAQ upgrade Panel B: Amex speed bump
O] (ii) (iif) (iv)
UHFT_D;, UHFT_S;, U_HFT_D;, U_HFT_S;;
Post;, 1.055%*%* 1.347**
(2.79) (2.27)
Post;, x Amex; -0.977** -0.696**
(-2.27) (-1.98)
Controls Yes Yes Yes Yes
Stock and Day FE Yes Yes Yes Yes
N obs. 43,234 43,234 45,530 45,530
R? 29% 18% 59% 49%
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Table OA.D.3
HFT response to latency arbitrage opportunities
This table examines how our ML-generated unscaled HFT measures respond latency arbitrage opportunities using
the following OLS models:
UHFT D;y = a; + By + y1NLAO;, + Yie=1 5il,(tCiI,€t t &
UHFT S = a;+ P+ Y2NLAOyc + o 65Cly + &3

where U HFT_D;, and U_HFT_S; . represent the ML — generated unscaled liquidity — demanding and — supplying
HFT activities for stock i and day t. a; and S, capture stock and day fixed effects, respectively. NLAO; . is the
number of latency arbitrage opportunities, identified using the methodology detailed in Section 4.2. Control
variables (Cl-’ft) include daily volatility (Volatility; ., standard deviation of transaction-level returns), relative
quoted spread (Spread;,, daily average of (ask-bid)/(0.5%(ask+bid) for each transaction), inverse price
(InvPrice; ), and dollar trading volume (Volume; ). Columns (i) and (ii) present the results for U HFT_D; , and
U HFT_S;,, respectively. The sample consists of 120 randomly selected NASDAQ- and NYSE-listed firms.
Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, ** and *** indicate
significance at 10%, 5%, and 1%. R? values are within-RZ.

(1) (i1)
UHFT_D;, UHFT_S;,
NLAO;, 66.266%** -150.518%*
(3.21) (-2.04)
Controls Yes Yes
Stock and Day FE Yes Yes
N obs. 246,139 246,139
R? 39% 38%
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Table OA.D.4
HFT activity and information acquisition — jump ratio
This table examines how HFT activity affects information acquisition using the following OLS model:

4
JUMP;; = a; + Bmg + v1U_HFT_D; , + y,U_HFT_S; , + Zk_lagchi’fq + &

where JUMP; , measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1,
1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (¢). U_HFT_D; 4 and
U_HFT_S; 4 are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as
averages of daily values over [-21, -1] around earnings announcements. Models include stock («;) and month
(Bm,q) fixed effects, respectively. Control variables (Ci’fq) all measured as averages of daily values over [-21, -1]
around earnings announcements, include volatility (Volatility; q), relative quoted spread (Spread; ), market
value (MValue; 4, price times shares outstanding), and institutional order imbalance (0/B20k; 4, price impact of
trades over $20,000 from TAQ). The sample includes all U.S.-listed common stocks from 2010 to 2023. Standard
errors are double-clustered by stock and quarter, with t-statistics in brackets. *, **, and *** indicate significance
at 10%, 5%, and 1%. R? values are within-R?.

JUMP,,

U_HFT_D;, 0.042%**

(9.82)
U_HFT_S; 4 -0.022%**

(-5.99)
Controls Yes
Stock and Month FE Yes
N obs. 49,515
R2 1%
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Table OA.D.5

HFT activity and information acquisition — FERC
This table examines how HFT activity affects information acquisition using the following model:

Return;q = a; + 4 + Z}lz_l(ynEarningi,qM +J,Earning; g.n * U_HFT_D; 4 +
OnEarning; q.n * U_HFT_S; 4) + pyU_HFT_D; , + p,U_HFT_S; ; + p3Return; 4.4 +

4 <k rk
psReturn; q_; + Yy, 8iqCiq t+ €ig

where Return, 4 is quarterly stock returns for firm i in quarter q, measured as the percentage change in closing
prices between quarters ¢ — 1 and q. Earning; 44, denotes quarterly earnings (net income) normalized by the
market value of equity at the start of quarter g + n. The subscript n ranges from -1 to 1. U_HFT_D;4 and
U_HFT_S; ; are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as
the quarterly averages of daily values. Control variables (C i’_‘q) all measured as quarterly averages of daily values,
include volatility (Volatility; ,), relative quoted spread (Spread; 4), market value (MValue; 4, price times shares
outstanding), and institutional order imbalance (0IB20k; 4, price impact of trades over $20,000 from TAQ). The
sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock
and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. R? values are
within-R?2.

Return; ,

Earning; g41 * U_HFT_D, 4 -0.003%**

(6.56)
Earning; g1 * U_HFT_S; 4 0.003***

(7.26)
Controls Yes
Stock and Quarter FE Yes
N obs. 157,343
R? 4%
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