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Abstract 

 

We introduce data-driven measures of high-frequency trading (HFT) that distinguish between 

liquidity-supplying and liquidity-demanding strategies. We train machine learning models on a 

proprietary dataset with observed HFT activity, then apply these models to public intraday data 

to generate HFT measures across all U.S. stocks during 2010-2023. Our measures outperform 

conventional proxies, which struggle to capture HFT’s temporal dynamics. Consistent with 

theory, our measures respond to a quasi-exogenous speed bump introduction and a data feed 

upgrade. The measures help uncover HFT’s differential impact on information acquisition. 

Liquidity-supplying HFT improves price informativeness around earnings announcements, 

while liquidity-demanding HFT impedes it. 

 

 

JEL classification: G10, G12, G14 

Keywords: High-frequency trading, machine learning, liquidity, information acquisition. 

 

 

 

* Corresponding author. Emails: gbenga.ibikunle@ed.ac.uk (Gbenga Ibikunle), ben.moews@ed.ac.uk (Ben 

Moews), dmuravy2@illinois.edu (Dmitriy Muravyev), khaladdin.rzayev@ed.ac.uk (Khaladdin Rzayev). 

We thank Phil Mackintosh and Heinrich Lutjens at NASDAQ for providing data 

 

 

 

mailto:gbenga.ibikunle@ed.ac.uk
mailto:ben.moews@ed.ac.uk
mailto:khaladdin.rzayev@ed.ac.uk


 

 

1 

 

1. Introduction 

 

High-frequency trading (HFT) firms execute a large share of equity trading volume, 

focusing on nanoseconds and processing millions of orders through automated algorithms (e.g., 

surveys by Jones 2013; Menkveld 2016). Their dominance has sparked extensive research into 

their market impact, revealing an important distinction between strategies that take versus 

provide liquidity. Many HFT firms operate as market makers, leveraging their speed advantage 

to provide liquidity, lowering trading costs, and enhancing liquidity (e.g., Hendershott et al. 

2011; Menkveld 2013; Brogaard et al. 2015). Conversely, liquidity-demanding HFTs 

aggressively consume liquidity, potentially increasing adverse selection costs and amplifying 

price volatility (e.g., Easley et al. 2011; Biais et al. 2015; Foucault et al. 2017). 

Measuring HFT activity is challenging because standard market feeds do not identify 

it. Researchers have pursued two approaches, each with important limitations. Some studies 

employ private datasets, which identify HFT, most notably NASDAQ’s 120-stock sample from 

2008-2009, but these cover relatively few stocks over short periods.1 Others propose proxies 

from public data, such as the quote-to-trade ratio (e.g., Hendershott et al. 2011) or odd-lot 

volume (e.g., Weller 2018). However, these proxies capture HFT and algorithmic trading 

jointly. They also do not distinguish between liquidity-demanding and liquidity-supplying HFT 

strategies (Boehmer et al. 2018; Chakrabarty et al. 2023) and as we show, mainly reflect cross-

stock rather than temporal variation in HFT. 

We introduce novel measures of liquidity-supplying and liquidity-demanding HFT 

activity (𝐻𝐹𝑇_𝑆 and 𝐻𝐹𝑇_𝐷). Using machine learning (ML) techniques, our method combines 

a proprietary dataset of directly observed HFT activity with concurrent public intraday data. 

Specifically, we train ensemble models to predict NASDAQ’s HFT activity using 24 same-day 

 
1 NASDAQ’s 120 stock sample from 2008-2009 that we use is the most popular, but prior studies also used 

proprietary data from the Investment Industry Regulatory Organization of Canada (IIROC)’s S&P/TSX 60 stocks, 

and the National Stock Exchange of India (NSE)’s 100-stock dataset from 2015. 
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measures of trading activity, liquidity, and volatility from WRDS Intraday Indicators. 

NASDAQ HFT remains the most widely used HFT dataset, while WRDS Intraday Indicators 

enable us to aggregate public intraday data to the daily level. This data‑driven approach aims 

to capture nonlinear patterns in HFT behavior as well as relevant variable interactions. 

Moreover, because our approach is trained directly on HFT data, it can better distinguish 

between HFT and broader algorithmic trading, which is a limitation of conventional measures. 

Once the models are trained on a NASDAQ HFT dataset, we apply them to generate HFT 

measures for the entire TAQ universe of 8,314 common stocks from 2010 to 2023.   

We evaluate our HFT measures against five popular HFT proxies:  quote-to-trade ratio, 

mid-quote volatility, odd-lot volume, quoted price and depth changes, and the trade and quote 

message count. Importantly, quote data and these measures are not among the 24 intraday 

training variables. Using NASDAQ HFT data from January-June 2009 for training and July-

December 2009 for out-of-sample evaluation, we find that while conventional proxies predict 

HFT activity individually, our measures largely subsume their predictive power in joint 

regressions. Moreover, standard measures capture cross-sectional but struggle to capture 

temporal HFT variation, while our measures reflect both dimensions. Thus, our measures 

capture a dimension of HFT that other measures largely miss. 

We validate the measures using two natural experiments: one from years after the 

training sample and another occurring near the training period. The first event is NYSE Amex’s 

introduction of speed bumps discouraging fast trading in 2017 (Khapko and Zoican 2021; Aït-

Sahalia and Sağlam 2024). The speed bump introduction is linked to declines of 2.8% and 4.6% 

in 𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆, respectively. The second is NASDAQ’s 2011 data feed upgrade, which 

benefits HFT strategies (Ye et al. 2013). Both of our HFT measures increase in response to the 

event, though less than for the speed bump’s negative effects. We also analyze how the HFT 

measures respond to latency arbitrage. Theory predicts that such arbitrage opportunities 
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encourage liquidity demand and discourage liquidity supply (Budish et al. 2015; Foucault et 

al. 2017; Aquilina et al. 2022). Indeed, we find that as the number of latency arbitrage 

opportunities increases, 𝐻𝐹𝑇_𝐷 activity increases as fast traders exploit stale quotes, while 

𝐻𝐹𝑇_𝑆 activity decreases as market makers withdraw to avoid being picked off. 

Our HFT measures can be useful in a wide range of applications. We focus on one such 

application and examine how HFT activity affects fundamental information acquisition, a core 

market function. Our measures distinguish between HFT strategies, allowing us to test 

competing theories. Do HFTs enhance information acquisition by providing liquidity and 

reducing trading costs (e.g., Menkveld 2013; Stiglitz 2014; Brogaard et al. 2015; Aït-Sahalia 

and Sağlam 2024), or do they impair it by adversely selecting informed investors (e.g., Van 

Kervel and Menkveld 2019; Yang and Zhu 2020; Hirschey 2021)? 

To answer this question, we study information acquisition around earnings 

announcements following Weller (2018). To measure information acquisition, he compares 

announcement returns to pre-announcement returns, with higher ratios indicating information 

was not discovered until publicly revealed. He finds that algorithmic trading reduces price 

informativeness (see also Gider et al. 2019). In contrast, we show that liquidity-supplying HFTs 

enhance information acquisition while liquidity-demanding strategies impede it. We also 

confirm this conclusion using an alternative measure of price informativeness: the future 

earnings response coefficient (Lundholm and Myers 2002). Our results are potentially 

consistent with Weller (2018), as we find that his proxies (quote-to-trade ratio and odd-lot 

volume) primarily capture liquidity-demanding HFT in his sample. Overall, this application 

highlights the advantages of our measures over existing alternatives.2 

 
2 Another approach would be to employ datasets with directly observed HFT; however, existing proprietary 

datasets are too small for the analysis, e.g., NASDAQ’s dataset contains only several hundred earnings 

announcements.  
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Several other results further validate our approach. First, adding quote-level 

information to the model training only marginally improves model performance, consistent 

with a strong correlation between quote and trade activity. Second, we measure HFT activity 

as HFT volume divided by total volume in the main analysis; however, the results hold when 

we use unscaled HFT volume. Third, the HFT measures exhibit nonlinear relationships that are 

consistent with theory and highlight the value of ML methods. HFT liquidity demand responds 

strongly to intermarket sweep orders and decreases convexly with market depth, while HFT 

liquidity supply increases concavely with depth (Klein 2020; Goldstein et al. 2023). Finally, 

both HFT types increase around news events, with larger responses for liquidity suppliers. 

Our approach assumes that the relationships between HFT activity and intraday 

variables in the 2009 NASDAQ dataset can be extrapolated beyond this training sample. 

Consistent with this assumption, prior literature finds that the results based on this widely-used 

HFT dataset typically hold for other U.S. exchanges (e.g., Shkilko and Sokolov 2020) including 

in the post-2009 period in the U.S. (e.g., Aït-Sahalia and Sağlam 2024; Brogaard et al. 2025) 

and internationally (e.g., Benos and Sagade 2016; Malceniece et al. 2019; Chakrabarty et al. 

2025). Indeed, core HFT strategies have remained stable despite technological advances 

(Brogaard et al. 2014; Malceniece et al. 2019).3 Moreover, our results for the 2011 and 2017 

natural experiments demonstrate that the measures capture meaningful variation in HFT 

activity near and far from the training period.  

This study advances the HFT literature stream in several ways. First, we develop novel 

measures that separate liquidity-demanding and liquidity-supplying HFT strategies, which 

outperform popular alternatives. We compute the measures for the entire U.S. equity market 

from 2010 to 2023 and plan to share them. Second, prior research shows that public HFT 

 
3 The features of HFT strategies developed in recent theories (Li et al. 2021a) are similar to those from a decade 

ago (e.g., Biais et al. 2015; Foucault et al. 2017), suggesting continuity in these core approaches. Also, many 

recent studies continue to rely on datasets from 2009-2012 (e.g., Boehmer et al. 2018; Goldstein et al. 2023; 

Nimalendran et al. 2024). 
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proxies combine liquidity supply and demand (Boehmer et al. 2018; Chakrabarty et al. 2023), 

while we separate the two and show that this distinction matters. Specifically, liquidity-

supplying HFT facilitates information acquisition while liquidity-demanding strategies hurt 

this process. This explains why Weller (2018) finds that HFTs harm information acquisition, 

as his measures capture mainly liquidity-demanding trades, not the full picture. Finally, we 

find that conventional HFT measures struggle to capture temporal variation in HFT, while our 

measures are more successful.  

Our work also provides an example of the successful application of machine learning 

in market microstructure. Recent studies show ML’s effectiveness in analyzing informed 

trading (Bogousslavsky et al. 2023), hidden liquidity (Bartlett and O'Hara 2024), price 

discovery (Kwan et al. 2021), and volatility (Easley et al. 2021). We show that ML methods 

also effectively capture HFT, quantitatively and qualitatively outperforming the common HFT 

measures. Given its prevalence, we must measure HFT to understand how markets work.  

 

2. Data and Variable Definitions 

Our approach combines two primary datasets. The first is the widely used NASDAQ 

dataset that labels each trade transaction as executed by HFT or non-HFT for 120 stocks in 

2009 (e.g., Brogaard et al. 2014). It also provides detailed trade attributes including the date 

and time (to the millisecond), volume, price, direction, and the counterparty type, identified as 

HH (both parties are HFTs), HN (an HFT demanding liquidity from a non-HFT), NH (a non-

HFT demanding liquidity from an HFT), and NN (both parties are non-HFTs). NASDAQ 

identifies liquidity supply as all passive limit‑order submissions by HFTs and liquidity demand 

as all aggressive order executions by HFTs (e.g., Brogaard et al. 2014). The main dependent 

variables are the shares of trading volume attributed to liquidity-demanding and liquidity-

supplying HFTs. Specifically, 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 (𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡) is calculated as the sum of 
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HH and HN (HH and NH) volume divided by the total trading volume for stock i on day t in 

the Nasdaq dataset. 

The second dataset is the WRDS TAQ’s Intraday Indicators covering the same period. 

We select 24 variables previously identified as associated with HFT activity. Table 1 describes 

the variables, which include various measures related to price, trading volume, trading costs, 

liquidity, and volatility. Following Bogousslavsky et al. (2023), we use pre-computed WRDS 

variables to enhance replicability and avoid data mining concerns.  We train an ML model to 

predict true HFT activity in the proprietary NASDAQ dataset by variables from WRDS 

Intraday Indicators that aggregate TAQ data. We describe the ML model in Section 3 below. 

INSERT TABLE 1 HERE 

  To validate our data-driven HFT measures, we obtain multiple complementary 

datasets. We calculate commonly used HFT proxies using quote-level data from the 

Millisecond TAQ database and benchmark our measures against them. We obtain intraday 

transaction data and corresponding bid-ask quotes from Refinitiv DataScope. Corporate event 

dates (specifically earnings and merger and acquisition (M&A) announcements) are from 

I/B/E/S and the Thomson Reuters Securities Data Company (SDC) database, respectively. 

Stock returns and trading volume are from the Center for Research in Security Prices (CRSP).  

INSERT TABLE 2 HERE 

 Table 2 describes and provides summary statistics for the original NASDAQ HFT 

variables, our data-driven HFT measures, and other variables used in the paper’s analyses. The 

liquidity-demanding (𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡) and liquidity-supplying HFT (𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡) HFT 

activities average 0.331 and 0.250, respectively. The difference is statistically significant at the 

0.01 level. These two shares add up to about half of total volume, consistent with HFTs’ 

participation. The distribution of 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 is right-skewed, while 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡 is 

left-skewed. Our ML-generated HFT measures (𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡) exhibit similar 
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patterns: liquidity-demanding HFT activity is, on average, higher than liquidity-supplying 

activity, and the former is left-skewed while the latter is right-skewed. The bid-ask spread 

shows a mean of 0.142% with a wide range up to 0.885%, implying diverse liquidity conditions 

across the sampled stocks. Our sample includes 8,314 stocks, spanning the universe of US 

stocks in the TAQ database.  

 

3. Methodology 

In this section, we describe our machine learning methodology. Machine learning 

methods are optimized to select the best model among numerous predictors and account for 

their non-linearities and interactions. In our case, these methods help identify intraday variables 

in public data that are most related to HFT activity and aggregate these relationships semi-

parametrically. We first train the models on Nasdaq HFT dataset with observed HFT trading. 

We then apply the trained model to compute estimated HFT activity for each stock-day with 

available public intraday data. 

3.1. Ensemble methods for HFT prediction 

We employ ensemble learning to predict HFT activity. Ensemble methods combine 

multiple predictive models to create a stronger collective predictor than any individual model. 

This approach delivers two key benefits for HFT applications. First, ensemble models reduce 

overfitting risk by averaging predictions across multiple weak learners. This improves out-of-

sample performance when trading conditions change. Second, the component models remain 

simpler than complex single-model alternatives. Ensemble methods have proven particularly 

effective for non-linear financial prediction problems, where traditional econometric models 

often fail to capture complex relationships between order flow and price movements (Parker 

2013; Moews et al. 2021; Cao 2022).  
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Three ensemble methods that build multiple simple decision rules and average their 

predictions are used, specifically decision trees, random forests and extremely randomized 

trees. Decision trees (Breiman et al. 1984) create if-then rules to classify market conditions – 

for example, “if bid-ask spread > 0.01 and volume < 1000, then predict price decline.” Random 

forests (Ho 1995) combine and average over many of these trees, each trained on different data 

samples, which reduces prediction errors that are common in volatile HFT environments 

(Easley et al. 2021; Bogousslavsky et al. 2023). Extremely randomized trees (Geurts et al. 

2006) further randomize tree construction. All models use mean squared error optimization and 

the 24 input variables from Table 2 to predict two HFT outcomes: 𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆. 

We design model training to handle HFT’s large datasets efficiently. Each model is 

trained on 10,000 random stock-days, offering a sufficient sample size for tree-based models 

to learn reliable patterns while keeping runtimes feasible (Genuer et al. 2017). We repeat each 

training iteration 10 times to test how consistently models predict across different data samples, 

to account for changing market conditions. Monte Carlo cross-validation randomly divides data 

into 75% for training and 25% for testing model accuracy out-of-sample. This approach 

handles large HFT datasets more efficiently than k-fold methods, which require training on 

nearly all data multiple times and become computationally prohibitive (Hastie et al. 2009). 

Monte Carlo validation reduces the randomness in our performance measures (Li et al. 2010). 

We optimize two key parameters: ensemble size (number of trees) and minimum 

samples per node split. Using grid search, we test 8 values for each parameter across 64 

combinations, repeating each 10 times to measure consistency. We test ensemble sizes from 

10 to 500 trees and minimum node splits from 2 to 50 samples. While more sophisticated 

optimization methods exist, grid search proves sufficient for our tree-based models (Probst and 

Boulesteix 2018).  Results in Online Appendix Table OA.B.1 show that larger ensembles with 

finer splits consistently achieve better out-of-sample R2 values. The top five performers all use 
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the smallest node split threshold. Standard deviations across repeated runs confirm these 

configurations produce stable predictions when tested on different random samples. 

We also benchmark our preferred ensemble method against standard machine learning 

models with varying levels of complexity, including LASSO, support vector machines, and 

neural networks. Of our ensemble methods, extra trees achieve the highest prediction accuracy 

with low variance, outperforming simpler (e.g., support vector machines) and more complex 

alternatives (neural networks). These results hold across different prediction setups (multi-

target versus single target) and justify our model choice. Full model specifications and 

performance comparisons are reported in Online Appendix Subsection OA.B.2. 

3.2.Comparison with common HFT proxies 

In this section, we show that the proposed data-driven HFT measures outperform 

popular HFT measures on the NASDAQ dataset with directly observed HFT. The conventional 

HFT measures include the flickering quotes count (𝐹𝑙𝑖𝑐𝑘𝑖,𝑡), odd-lot volume (𝑂𝐿𝑉𝑖,𝑡), quote 

intensity (𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡), quote-to-trade volume ratio (𝑄𝑇𝑖,𝑡), and message count (𝑀𝐺𝑖,𝑡). We 

compute these measures from the Millisecond TAQ database. Motivated by Hasbrouck (2018), 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 measures quote volatility by first calculating the standard deviation of quote midpoints 

over 100ms intervals, and then averaging these deviations by stock-day. 𝑂𝐿𝑉𝑖,𝑡 captures the 

daily sum of trades smaller than 100 shares (Weller 2018). 𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 counts daily changes 

in best quotes or quote depth (Conrad et al. 2015); 𝑄𝑇𝑖,𝑡 is the ratio of quoted shares to traded 

shares (Hendershott et al. 2011; Weller 2018). Finally, 𝑀𝐺𝑖,𝑡 is defined as the sum of the daily 

number of trade and quote messages (Hendershott et al. 2011; Boehmer et al. 2018).  

In this test, we train the ML model using only data from January to June 2009 and then 

evaluate their performance out-of-sample against the other measures from July to December 

2009. Specifically, we estimate the following stock-day regressions using the observable 
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liquidity-supplying and liquidity-demanding shares in NASDAQ HFT data on 𝐻𝐹𝑇_𝐷 and 

𝐻𝐹𝑇_𝑆 measures, popular HFT proxies, and stock and time fixed effects: 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 +  

                                                                                                       +𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡 + 𝜀𝑖,𝑡             (1)                                     

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾1𝐻𝐹𝑇_𝑆𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 +  

                                                                                          +𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡 + 𝜀𝑖,𝑡              (2), 

We first estimate univariate regressions for each HFT measure as independent variables and 

then evaluate them in a joint regression following Equations (1) and (2). We double-cluster 

standard errors by stock and date and standardize all dependent variables to make coefficients 

easier to compare.  

INSERT TABLE 3 HERE 

Panel A of Table 3 shows the results for liquidity-supplying HFT. Among all measures, 

𝐻𝐹𝑇_𝑆 delivers the strongest association with liquidity-supplying HFT based on the highest 

coefficient, t-statistics, and within-𝑅2. Other measures are positively associated with HFT 

liquidity supply, but flickering quotes and odd-lot volume are not statistically significant. In a 

joint regression, 𝐻𝐹𝑇_𝑆’s coefficient magnitude and t-statistics decrease very little. It also 

dominates predictability as the other measures jointly add only 0.3% to within-R2. 

The results for liquidity-demanding HFT activity are broadly consistent with those for 

liquidity-supplying HFT, except that predicting liquidity demand is harder, as reflected in the 

lower R2 estimates. 𝐻𝐹𝑇_𝐷 consistently shows the highest coefficient magnitude and t-

statistics, along with the highest within-𝑅2. In the univariate regressions with fixed effects, of 

the conventional HFT proxies, only the quote-to-trade ratio predicts 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷 positively.  

Panels A and B in Table 3’s estimates account for stock and day fixed effects. The 

consistently strong and statistically significant relationships between data-driven HFT 

measures and actual HFT activity demonstrate the predictive power of the ML-generated 
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proxies across both cross-sectional and time-series dimensions. In contrast, conventional HFT 

measures show relatively weak associations when both fixed effects are included. We 

hypothesize that these conventional measures predominantly capture cross-sectional but not 

time-series variation. To test this hypothesis, we re-estimated Equations (1) and (2) using only 

day fixed effects and report them in Panels C and D of Table 3. 

The results in Panels C and D confirm that when controlling solely for day fixed effects, 

three conventional measures (𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡, 𝑄𝑇𝑖,𝑡, and 𝑀𝐺𝑖,𝑡) display substantially stronger 

correlations with both liquidity-supplying and liquidity-demanding HFT activities. This pattern 

suggests that conventional HFT measures primarily capture cross-sectional variation. Notably, 

our HFT measures still outperform in this specification, showing much higher t-statistics and 

within-𝑅2. Also, our metrics subsume the information content of conventional HFT measures 

in joint regressions.  

 Overall, these findings show that the advantages of our data-driven measures over 

traditional HFT proxies. Our measures predict both liquidity-demanding and -supplying 

strategies with larger coefficients, t-statistics, and 𝑅2. Furthermore, while our measures 

effectively capture both cross-sectional and time-series dimensions, conventional measures 

predominantly reflect cross-sectional variation.  

3.3.Model assessment and extrapolation to U.S. stocks 

Once we estimate our main model on a (relatively small) NASDAQ dataset with 

observed HFT, we apply this model to estimate HFT activity from observed intraday input 

variables. On each day and for each stock, we observe the 24 input variables listed in Table 1 

and feed them into the model, whose parameters have been estimated on the training data. This 

is akin to first estimating regression coefficients in a linear regression (e.g., betas) and then 

applying them to current data (e.g., computing abnormal returns). Thus, we assume that the 

relationships in the training data are sufficiently general to be extrapolated to the broader 
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market and later periods. The final sample covers 9,440,600 stock-days from January 4th 2010 

to October 18th 2023. 

A key strength of ML over traditional linear models lies in its ability to capture the 

nonlinearity between input and output variables. This aspect is important for us, given the 

nonlinear relationship between HFT and market characteristics. For instance, Foucault et al. 

(2017) show that whether HFT arbitrage strategies enhance or impair liquidity is contingent on 

the nature of latency arbitrage opportunities (e.g., Rzayev et al. 2023).  

We analyze partial dependence plots to determine if our ML modeling framework 

captures nonlinear interactions between HFT activity and its predictors. We start by assessing 

the feature importance plot to identify key drivers of HFT activity. Next, we explore the 

relationships between HFT and these key drivers through partial dependence plots, focusing 

on the nature and shape of the interactions. 

INSERT FIGURE 1 HERE 

Figure 1 shows that most input variables significantly predict HFT activity. Trading 

volume, market depth, and intermarket sweep orders (ISOs) matter the most. Trading volume 

and market depth are important because HFTs need counterparts to trade with and deep markets 

to operate in. ISOs are designed for large institutional traders; nonetheless, HFTs exploit them 

to adversely select slower traders/market participants.4 Indeed, Li et al. (2021b) show that ISO 

order sizes have shrunk below typical institutional sizes, and fast traders now dominate ISO 

usage.  

INSERT FIGURE 2 HERE 

Having pinpointed the key drivers of HFT activity, we further explore the shape of the 

relationships between these determinants and HFT activity using partial dependence plots. 

 
4 https://tabbforum.com/opinions/why-hfts-have-an-advantage-part-3-intermarket-sweep-orders/ 

 

https://tabbforum.com/opinions/why-hfts-have-an-advantage-part-3-intermarket-sweep-orders/
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Figure 2 documents the non-linear relationship between HFT activity and various input 

variables. For instance, liquidity-demanding and -supplying HFT activity both show an 

increasing and concave relationship with the total trade count. This positive correlation with 

trading volume is consistent with Brogaard et al. (2014), who show that HFTs favor trading in 

larger stocks, which tend to be more liquid. 

Liquidity-demanding HFT spikes when ISO volume increases, following a concave 

curve that shows ISOs significantly influence these aggressive strategies. Liquidity-supplying 

HFT barely responds to ISOs as the relationship stays flat with only marginal increases as ISO 

dollar amounts rise. This differential response aligns with academic findings. Li et al. (2021b) 

show that HFTs use ISOs to target stale quotes, a tactic that defines liquidity-demanding 

strategies. Klein (2020) finds that aggressive HFT strategies deploy ISOs when new 

information arrives. An alternative explanation suggests HFTs respond to institutional traders 

who use ISOs to avoid getting front-run. Chakravarty et al. (2012) explain that regulators 

created the ISO exemption to Rule 611/Order Protection Rule of Reg NMS to give institutional 

investors timely access to liquidity at multiple price levels. This allows institutions to execute 

large block orders by submitting orders across multiple trading platforms simultaneously. 

 Market depth generates opposite effects on the two HFT measures. Liquidity-supplying 

HFT increases as markets deepen, following a concave curve that shows HFTs provide more 

liquidity when order books thicken. Liquidity-demanding HFT does the reverse – it decreases 

as depth increases, creating a convex pattern that shows HFTs demand less liquidity in deep 

markets. This makes economic sense. Goldstein et al. (2023) demonstrate that HFTs supply 

liquidity in deeper markets where order books are thick and demand liquidity in shallower 

markets where order books are thin. 

These findings lead to two key implications. First, the nonlinear relationships between 

HFT activity and market quality show why ML models outperform simple proxies for 
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measuring HFT activity. Linear models fail to reflect these curves and inflection points. 

Second, liquidity-demanding and liquidity-supplying HFT respond differently to market 

conditions, which matches ongoing academic debates about HFT’s varied effects. This 

confirms our ML-derived metrics capture real HFT strategies rather than noise. We next 

validate these metrics and examine their empirical significance in detail. 

 

4. Results 

4.1.HFT during exogenous technological changes.  

We show above that the data-driven HFT measures significantly outperform 

conventional measures. We now examine how 𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆 respond to exogenous 

shocks affecting HFT activity through two natural experiments: one occurring near the training 

sample period and another occurring years afterward. If data-driven metrics capture HFT 

activity, they should respond significantly to these HFT-specific market structure changes.  

In the first quasi exogenous shock, Nasdaq introduces a technology upgrade that 

reduces trading data dissemination latency from 3 to 1 millisecond on October 10, 2011 (e.g., 

Ye et al. 2013). The upgrade is implemented in stages: stocks with ticker symbols beginning 

with A and B were upgrade on October 10, while the remaining stocks upgrade on October 17. 

Ye et al. (2013) employ this staggered implementation to study HFT’s impact on market 

quality. We expect that the reduced latency encourages more HFT and test this hypothesis in 

the stock-day regressions: 

             𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                  (3) 

             𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡
4
𝑘=1                                   (4), 

where 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡 are our measures of liquidity-demanding and -supplying HFT 

activity, respectively. Stock (𝛼𝑖) and day (𝛽𝑡) fixed effects account for individual stock 

characteristics and daily variations, respectively. 𝑃𝑜𝑠𝑡𝑖,𝑡 is an indicator variable equal to 1 after 

October 10, 2011, for NASDAQ-listed stocks with tickers beginning with A and B, and after 
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October 17, 2011, for other NASDAQ-listed stocks, and 0 otherwise. We also include NYSE 

and Amex-listed stocks as control stocks (𝑃𝑜𝑠𝑡𝑖,𝑡 = 0 for these stocks throughout the sample 

period) to implement a DiD framework (e.g., Malceniece et al. 2019). The standard errors are 

double clustered by firm and day. Similar to Ye et al. (2013), we employ a 10-working day 

window around the implementation dates to zoom in on the effect. 𝐶𝑖,𝑡
𝑘  includes a range of 

control variables, such as volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡), inverse 

price (𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡), and trading volume in dollars (𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡). 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 is calculated as 

the daily (t) standard deviation of the transactional-level returns for stock i. 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the 

daily average of transaction-level bid-ask spreads. The transaction-level bid-ask spread is 

calculated as the difference between ask and bid prices divided by the average of ask and bid 

prices for each transaction. All these variables are obtained from the TAQ database. 

In our second natural experiment, Amex introduces a speed bump. In January 2017, the 

Amex files a request with the SEC to introduce a deliberate delay in the communication 

between traders and the exchange. This proposed delay is designed to impact both inbound 

(from traders to the exchange) and outbound (from the exchange to traders) communications, 

establishing a total round-trip latency delay of 700 microseconds. The SEC approves this 

request, leading to the trading delay’s activation on July 24, 2017. Given that the introduction 

of a speed bump increases trading latency, it is expected to reduce HFT activity. Therefore, if 

our data-driven HFT metrics capture the dynamics of HFT activity, we should observe a 

reduction in the metrics on Amex post the speed bump implementation. To formally test this 

hypothesis, we employ the following stock-day regression: 

            𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                   (5) 

             𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                   (6), 
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where 𝑃𝑜𝑠𝑡𝑖,𝑡 is an indicator variable, taking the value of 1 on July 24, 2017, when the speed 

bump was implemented and thereafter, and 0 before, while 𝐴𝑚𝑒𝑥𝑖,𝑡 corresponds to 1 for NYSE 

Amex-listed stocks and 0 for NYSE- and NASDAQ-listed firms. Our models do not explicitly 

include 𝑃𝑜𝑠𝑡𝑖,𝑡 and 𝐴𝑚𝑒𝑥𝑖,𝑡 indicator variables, as their effects are already accounted for 

through the inclusion of time and stock fixed effects. All other variables are as defined above. 

Similar to Models (3) and (4), we double-cluster standard errors by firm and day, and analyze 

a 10-day window around the implementation dates. 

Before discussing the results from the estimation of Equations (3 – 6), we provide an 

important methodological clarification. Our HFT measures (𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆) are computed 

at the firm-day level, aggregating activity across all exchanges. This raises a potential concern: 

if HFTs redirect their orders from the treated exchanges (NASDAQ in Models (3) – (4) and 

Amex in Models (5) – (6)) to alternative venues, the impact of technological changes on overall 

HFT activity might be dampened. However, this concern is likely minimal because HFTs 

typically prefer a stock’s primary listing exchange due to superior market quality. For instance, 

2023 statistics show Amex leading in terms of quote quality (time at best prices), quoted depth 

(size at best prices), and spread tightness for its listed stocks.5 These market quality advantages 

create strong incentives for HFTs to maintain their activity on the primary exchange, 

suggesting that technological changes should meaningfully impact HFT behavior. 

INSERT TABLE 4 HERE 

Table 4 reports the estimation results for Models (3) through (6). Columns (i) and (ii) 

present the findings for NASDAQ’s latency reduction upgrade, while columns (iii) and (iv) 

show the results for Amex’s speed bump implementation. Consistent with our predictions, the 

HFT measures show significantly higher activity following NASDAQ’s upgrade and lower 

activity after Amex’s speed bump implementation, relative to stocks listed on other exchanges. 

 
5 https://www.nyse.com/markets/nyse-american 

https://www.nyse.com/markets/nyse-american
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We next explore the economic magnitudes of the observed changes. The Amex speed 

bump is a stronger shock to HFT activity because it is a direct speed impact. In contrast, 

Nasdaq’s improvement in trading data dissemination is an indirect shock, as it only reduces 

latency for the consolidated feed while HFTs can access direct and faster feeds. As Ye et al. 

(2013) note, changes to consolidated feed latency affect HFT activity since HFTs utilize these 

feeds; however, the impact is relatively modest. Our results support this distinction. Following 

the speed bump introduction, Amex-listed stocks experience decreases of 2.8% and 4.6% in 

𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆, respectively, relative to their pre-speed bump averages. In comparison, 

Nasdaq’s technological upgrade leads to more modest increases of 0.7% and 1.1% in 𝐻𝐹𝑇_𝐷 

and 𝐻𝐹𝑇_𝑆 for NASDAQ-listed stocks, respectively, relative to their pre-upgrade averages. 

These results have three main implications. First, our HFT metrics effectively capture 

HFT activity, validated by their response to HFT-relevant shocks and the varying response 

magnitudes between direct (speed bump) and indirect (trading data latency upgrade) shocks. 

Notably, while Nasdaq’s trading data dissemination technology upgrade occurs in 2011, near 

the period the data we use to train our ML model (2009) is obtained, our measures also respond 

to the 2017 speed bump effects, suggesting the model’s temporal robustness. Thus, the patterns 

learned by our ML model during the training stage remain applicable to later periods. 

Second, in line with theoretical predictions, changes in data dissemination speed and 

speed bump introductions significantly affect HFT activity. Therefore, similar to colocation 

upgrades (e.g., Brogaard et al. 2015; Boehmer et al. 2021a), these technological changes 

provide exogenous shocks that can be used to examine HFT’s impact on financial markets.   

Third, our speed bump findings complement Aït-Sahalia and Sağlam (2024), who 

document that the speed bump caused wider quoted spreads and reduced liquidity. Their 

theoretical framework links speed changes to market-making HFT activity. We extend their 

analysis by showing that the speed bump affects both market-making and market-taking HFTs, 
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with market makers experiencing stronger effects, explaining the overall negative liquidity 

impact in their study. Moreover, the alignment between our findings tentatively suggests that 

our liquidity-demanding and liquidity-supplying HFT metrics effectively capture supply and 

demand dynamics, we formally investigate this in the next section. 

4.2.HFT and latency arbitrage opportunities.  

Our analyses thus far provide evidence that our ML-generated measures capture the 

distinct characteristics of liquidity-demanding and -supplying HFT strategies. To further 

validate this insight, we examine “latency arbitrage” opportunities. Latency arbitrage involves 

fast traders using their superior response speeds to exploit newly available public information 

and execute against stale quotes before slower traders can (e.g., Budish et al. 2015; Foucault et 

al. 2017; Shkilko and Sokolov 2020; Aquilina et al. 2022). Aquilina et al. (2022) show that in 

most latency arbitrage scenarios, HFTs often aggressively take liquidity. The profitability of 

aggressive HFT strategies is enhanced by the emergence of latency arbitrage opportunities; 

hence, HFTs are encouraged to engage more in such strategies (e.g., Baldauf and Mollner 

2020). Therefore, latency arbitrage events offer a context to distinguish between the specific 

characteristics of liquidity-demanding and -supplying HFT activity. In particular, we expect 

increase in liquidity-demanding HFT activity as the number of latency arbitrage opportunities 

increases, in line with predictions by Baldauf and Mollner (2020) and the findings of Aquilina 

et al. (2022). This increase in aggressive trading and sniping activity increases adverse selection 

risk on endogenous liquidity-supplying HFTs; hence, we expect liquidity-supplying HFT 

activity to decline (e.g., Foucault et al. 2017; Menkveld and Zoican 2017).  

To formally test these arguments, we estimate the following stock-day models: 

             𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑁𝐿𝐴𝑂𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                      (7) 

           𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾2𝑁𝐿𝐴𝑂𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                       (8), 
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where 𝑁𝐿𝐴𝑂𝑖,𝑡 is the number of latency arbitrage opportunities. We identify latency arbitrage 

opportunities following Budish et al. (2015), who suggest examining the mid-price changes to 

identify “stale” quotes. Specifically, a quote at time 𝜏 − 1 is stale if the absolute difference in 

mid-price from time 𝜏 − 1 to 𝜏 exceeds the half spread. We adopt a more conservative 

methodology by calculating the jump size based on the difference between the mid-price at 

time 𝜏 and the ask and bid quotes at time 𝜏 − 1. If 𝑀𝑖𝑑𝑝𝑟𝑖𝑐𝑒𝜏 > (𝐴𝑠𝑘𝜏−1 + 𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒), where 

𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒 is set to 0.01$, it suggests a profitable latency arbitrage opportunity. HFTs can exploit 

it by placing a limit buy order at 𝐴𝑠𝑘𝜏−1 + 𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒 at time 𝜏. Similarly, if 𝑀𝑖𝑑𝑝𝑟𝑖𝑐𝑒𝜏 >

(𝐵𝑖𝑑𝜏−1 − 𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒), HFTs can submit a limit sell order at 𝐵𝑖𝑑𝜏−1 − 𝑇𝑖𝑐𝑘𝑆𝑖𝑧𝑒 at time 𝜏. 

 We identify latency arbitrage opportunities using the first-level quote data from 

Refinitiv DataScope. The data is enormous, which makes it computationally prohibitive to 

examine our full 8,314 stock sample. Therefore, we narrow the sample to the 120 firms in the 

original NASDAQ HFT data. We calculate 𝑁𝐿𝐴𝑂𝑖,𝑡 for these 120 firms across our entire 

sample period, from 2010 to 2023. Table 2 includes the average number of latency arbitrage 

opportunities per stock-day is 68. The standard deviation is 169 and the maximum value is 

1211, indicating large variation in these opportunities across stocks and days.   

INSERT TABLE 5 HERE 

The results from the estimation of Equations (7) and (8), as presented in Table 5, show 

a positive and statistically significant (at the 0.01 level) relationship between 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 

𝑁𝐿𝐴𝑂𝑖,𝑡, whereas the relationship between 𝐻𝐹𝑇_𝑆𝑖,𝑡 and 𝑁𝐿𝐴𝑂𝑖,𝑡 is negative and significant 

(at the 0.05 level). The relationship between 𝐻𝐹𝑇_𝐷𝑖,𝑡/𝐻𝐹𝑇_𝑆𝑖,𝑡 and 𝑁𝐿𝐴𝑂𝑖,𝑡 is also 

economically significant. A one-standard-deviation increase in 𝑁𝐿𝐴𝑂𝑖,𝑡 (169) is associated 

with a 1% rise in 𝐻𝐹𝑇_𝐷 and 1.6% decrease in 𝐻𝐹𝑇_𝑆. These results indicate that latency 

arbitrage opportunities affect various HFT strategies. Prior literature suggests that arbitrage-

seeking HFTs often adopt aggressive trading strategies during latency arbitrage opportunities 
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(e.g., Aquilina et al. 2022), and endogenous liquidity-supplying HFTs are, thus, inclined to 

scale back on their liquidity provision (e.g., Foucault et al. 2017). Our findings align with these 

arguments and validate 𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆 in their ability to capture the liquidity-demanding 

and -supplying activities of HFTs.  

 

5. HFT’s effect on information acquisition 

Our data-driven HFT measures that separate liquidity supply and demand can be used 

in many important applications. In this section, we examine one such application focusing on 

price discovery, one of the fundamental functions of markets. Specifically, we show a crucial 

distinction between liquidity-supplying and liquidity-demanding HFT’s effect on information 

acquisition. 

Price discovery characterizes how stock prices reflect information (O'Hara 2003). This 

process includes both integrating existing information into asset prices and generating or 

acquiring new fundamental information (Brunnermeier 2005; Weller 2018; Brogaard and Pan 

2022). Market microstructure researchers have extensively studied the relationship between 

HFT and price discovery. This growing literature primarily focuses on how existing 

information gets incorporated into stock prices (Menkveld 2016), often concluding that HFT 

enhances the speed at which existing information reaches stock prices, contributing to more 

efficient price discovery mechanisms. 

HFTs’ role in acquiring new fundamental information remains understudied. First, 

information acquisition happens at low frequencies rather than tick-by-tick. Second, theory 

implies that studying HFTs’ impact on information acquisition requires separating liquidity 

supply and demand. Existing datasets that make this distinction, such as the Nasdaq HFT data, 

work well for high-frequency market quality studies. However, their limited sample periods 

and small stock coverage make them unsuitable for studying fundamental information 
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acquisition. In the case of the Nasdaq data, it covers 120 firms and thus results in just 480 firm-

quarter earnings announcement events per year. 

Our measures offer comprehensive coverage, avoiding this problem and enabling a 

comprehensive analysis of how different HFT strategies influence information acquisition. 

HFTs can improve information acquisition by providing liquidity and thus reduce trading costs 

(Menkveld 2013; Brogaard et al. 2015; Aït-Sahalia and Sağlam 2024). As lower trading costs 

increase net profits, investors are incentivized to seek and trade on new information, and this 

facilitates information acquisition and dissemination. But HFTs also use aggressive strategies 

that weaken information acquisition. They employ order anticipation tactics, such as back-

running and latency arbitrage to predict and profit from informed institutional trades (Van 

Kervel and Menkveld 2019; Yang and Zhu 2020; Hirschey 2021). These strategies increase 

trading costs for informed investors, creating a crowding-out effect that discourages 

information seeking and reduces overall information acquisition. 

Weller (2018) studies HFT’s effect on information acquisition using a novel metric 

“price jump ratio.” This ratio divides the return at public information release by the cumulative 

return during the lead-up period. Bigger price jumps during announcements signal weaker 

information acquisition beforehand. When information gets reflected in prices only upon public 

release rather than gradually, it means fewer investors acquired information early. Thus, higher 

price jump ratios indicate lower information acquisition. Weller (2018) finds that HFT harms 

information acquisition. 

While Weller (2018) advances our understanding of how HFTs affect information 

acquisition, it relies on MIDAS data that aggregates all HFT activity without separating 

specific trading strategies. This matters because theory suggests that different HFT strategies 

affect information acquisition differently. With MIDAS data, Weller (2018) shows that HFT 

presence reduces information acquisition, while unable to facilitate a deeper investigation. 
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Weller (2018) acknowledges this issue, concluding (p.2217) that future research must “assess 

the precise mechanisms by which improved trading technology reduces the information content 

of prices.” 

Responding to this call, we exploit the unique proprieties of our HFT measures to 

investigate how HFT affects information acquisition. In our main specification, we estimate 

the following regression model:   

         𝐽𝑈𝑀𝑃𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑚,𝑞 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑞 +  𝛾2𝐻𝐹𝑇_𝑆𝑖,𝑞 +  ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1 ,             (9), 

where 𝐽𝑈𝑀𝑃𝑖,𝑞 is the ratio of cumulative abnormal returns during trading days [-1, 1] relative 

to earnings announcements, divided by the cumulative abnormal returns during days [-21, 1]. 

Daily abnormal returns are calculated as the raw return minus the expected return from the 

market model.  We calculate 𝐻𝐹𝑇_𝐷𝑖,𝑞 and 𝐻𝐹𝑇_𝑆𝑖,𝑞by averaging the daily HFT values over 

the 21 trading days [-21, -1] before earnings announcements. Control variables (𝐶𝑖,𝑞
𝑘 ) include 

volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞), and 

institutional order imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞). We obtain 𝑂𝐼𝐵20𝑘𝑖,𝑞 directly from TAQ, capturing 

the price impact of trades exceeding $20,000, and compute 𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞 by averaging the daily 

market values over the same 21-day window. The remaining control variables represent 21-

day averages of their daily counterparts before earnings announcements [-21, -1]. Following 

Weller (2018), we include stock and month fixed effects and apply his filters.  

 We include both 𝐻𝐹𝑇_𝐷 and 𝐻𝐹𝑇_𝑆 in Equation (9) to examine their comparative 

effects on information acquisition. These metrics correlate at 0.52, so multicollinearity will not 

distort results. Since higher 𝐽𝑈𝑀𝑃𝑖,𝑞 values mean less information acquisition, we expect 

opposite effects from the two HFT types. 𝐻𝐹𝑇_𝐷 should increase 𝐽𝑈𝑀𝑃𝑖,𝑞 because aggressive 

strategies raise trading costs and discourage information seeking. 𝐻𝐹𝑇_𝑆 should decrease 
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𝐽𝑈𝑀𝑃𝑖,𝑞 because liquidity-provision strategies lower trading costs and make information 

acquisition more profitable. 

INSERT TABLE 6 HERE 

The results in Table 6 show that 𝐻𝐹𝑇_𝐷𝑖,𝑞 has a positive and statistically significant 

relationship with 𝐽𝑈𝑀𝑃𝑖,𝑞. An increase in a firm’s 𝐻𝐹𝑇_𝐷𝑖,𝑞 from the 25th percentile (0.222) 

to the 75th percentile (0.414) is associated with a 6.6% increase in 𝐽𝑈𝑀𝑃𝑖,𝑞 relative to its mean 

value. Conversely, 𝐻𝐹𝑇_𝑆𝑖,𝑞  shows a negative and statistically significant relationship with 

𝐽𝑈𝑀𝑃𝑖,𝑞, where an increase from the 25th percentile (0.131) to the 75th percentile (0.259) 

corresponds to a 3.3% decrease in 𝐽𝑈𝑀𝑃𝑖,𝑞 relative to its mean. 

Our findings suggest that the positive relationship between common HFT measures and 

𝐽𝑈𝑀𝑃𝑖,𝑞 shown in Weller (2018) may be driven by the measures primarily capturing liquidity-

demanding HFT activity during the sample period. To examine this hypothesis, we analyze the 

relationship between Weller’s (2018) main HFT measures and our HFT measures. Weller’s 

(2018) measures, obtained directly from MIDAS, include cancel-to-trade ratio (𝐶𝑇𝑖,𝑞), odd-lot 

rate (𝑂𝐿𝑅𝑖,𝑞), and trade-to-order ratio (𝑇𝑂𝑖,𝑞). 𝐶𝑇𝑖,𝑞 is the ratio of cancelled messages to trade 

messages, 𝑂𝐿𝑅𝑖,𝑞 measures the proportion of trades below 100 shares, and 𝑇𝑂𝑖,𝑞  is calculated 

as the ratio of executed shares to submitted shares. 

INSERT TABLE 7 HERE 

The results in Table 7 help reconcile our findings with Weller’s (2018). 𝐶𝑇𝑖,𝑞 and 

𝑂𝐿𝑅𝑖,𝑞 are positively linked with 𝐻𝐹𝑇_𝐷𝑖,𝑞, while 𝑇𝑂𝑖,𝑞 (an inverse measure of HFT) is 

negatively related. Conversely, the metrics display opposite relationships with 𝐻𝐹𝑇_𝑆𝑖,𝑞.  The 

directions of the relationships remain consistent in simple univariate correlation analysis. Thus, 

observed relationships, combined with Weller’s (2018) findings of positive relationships 

between 𝐶𝑇𝑖,𝑞/𝑂𝐿𝑅𝑖,𝑞 and 𝐽𝑈𝑀𝑃𝑖,𝑞, and negative correlation between 𝑇𝑂𝑖,𝑞 and 𝐽𝑈𝑀𝑃𝑖,𝑞, 
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suggest that the HFT measures in Weller (2018) predominantly capture liquidity-demanding 

HFT activity. 

To further explore the relationship between HFT and information acquisition, we 

employ the future earnings response coefficient (FERC) (e.g., Lundholm and Myers 2002; 

Ettredge et al. 2005; Brogaard and Pan 2022) as an alternative measure. Specifically, we 

estimate FERC through the following model: 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑞 + ∑ (𝛾𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 +1
𝑛=−1 𝜗𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝐻𝐹𝑇_𝐷𝑖,𝑞 +

                       𝜃𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝐻𝐹𝑇_𝑆𝑖,𝑞) + 𝜌1𝐻𝐹𝑇_𝐷𝑖,𝑞  + 𝜌2𝐻𝐹𝑇_𝑆𝑖,𝑞 + 𝜌3𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞+1 +

                                                                                            𝜌4𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞−1 + ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 + 𝜀𝑖,𝑞
4
𝑘=1  (10), 

where 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 is the quarterly stock return for firm 𝑖 in quarter 𝑞, and is measured as the 

percentage change in closing prices between quarters 𝑞 − 1 and 𝑞. The subscript 𝑛 ranges from 

-1 to 1, capturing the temporal relationships in the model. 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 denotes quarterly 

earnings (net income) normalized by the market value of equity at the start of quarter 𝑞 + 𝑛. In 

this specification, 𝛾𝑛 reflects FERC; a positive value will suggest that current returns 

incorporate future earnings information, which indicates heightened fundamental information 

acquisition. We employ the same set of control variables used in the jump ratio model, 

averaged at the quarterly frequency. 

The coefficients of interest in Model (10) are 𝜗𝑛 and 𝜃𝑛, which indicate whether HFT 

enhances (positive coefficient) or impairs (negative coefficient) the incorporation of future 

earnings information into current returns. Based on our jump ratio findings, where 𝐻𝐹𝑇_𝐷𝑖,𝑞 

(𝐻𝐹𝑇_𝑆𝑖,𝑞) is negatively (positively) associated with information acquisition, we expect 𝜗𝑛 

and 𝜃𝑛 to be negative and positive, respectively.  

INSERT TABLE 8 HERE 

 Table 8 reports results that corroborate our findings from the jump ratio analysis. 𝜃𝑛 is 

positive and statistically significant at the 0.01 level, while 𝜗𝑛 is negative and also significant 
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at the 0.01 level, indicating a positive (negative) relationship between liquidity-supplying (-

demanding) HFT activity and information acquisition.  

 We extend our baseline results in two directions. First, we test whether existing HFT 

datasets that separate trading strategies can investigate HFT’s role in information acquisition. 

This matters because if they could, it would call the need for our new measures into question. 

Notwithstanding, this question becomes somewhat moot since no publicly available datasets 

currently separate HFT strategies. We therefore employ the proprietary Nasdaq HFT dataset 

covering 120 stocks in 2009 in the replication of the jump ratio and FERC analyses. Table 

OA.C.1 shows that using the Nasdaq dataset produces no statistically significant relationship 

between HFT strategies and information acquisition due to limited sample size. This 

corroborates the relevance of our ML-generated measures. They let researchers examine how 

HFT affects low-frequency market outcomes that matter for real economic decisions. 

The second extension addresses concerns about training our ML model on 2009 data. 

Researchers continue to use the Nasdaq HFT dataset because the core distinction between 

liquidity-demanding and liquidity-supplying strategies remains fundamental to HFT behavior 

(Boehmer et al. 2018; Goldstein et al. 2023; Nimalendran et al. 2024). Section 4.1 shows that 

our measures respond to technological shocks both near and far from the training period. We 

provide additional validation by examining the HFT-information acquisition relationship close 

to our training sample. Similar results between this restricted sample and our full sample would 

show that temporal distance from training data does not affect our findings. Table OA.C.2 

presents results using data from January 2010 to December 2012. Both jump ratio and FERC 

analyses mirror our baseline results. Liquidity-demanding strategies hurt information 

acquisition while liquidity-supplying strategies help it. 

We explore information acquisition as an important application of our novel approach 

to measuring HFT. While it is challenging to establish causality, our results show that our HFT 
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measures provide valuable tools for investigating how HFT affects low-frequency economic 

outcomes that require large samples to study. This data-driven approach matters because 

econometric approaches using exogenous shocks cannot examine how different HFT strategies 

affect real outcomes. These shocks hit both liquidity-demanding and liquidity-supplying 

strategies equally, so difference-in-differences frameworks cannot separate their distinct 

effects. Data-driven distinction between HFT strategies becomes essential for understanding 

their different economic impacts. Our findings complement Weller (2018) by providing 

empirical evidence of specific mechanisms through which HFT affects information acquisition. 

6. Extensions and further robustness analyses 

In this section, we provide additional tests as a validation of the ML-generated HFT 

measures, and extend our baseline ML framework. First, we extend earlier exploration of the 

dynamics of liquidity-demanding and liquidity-supplying HFT activity around scheduled and 

unscheduled information announcements. Foucault (2016) and Brogaard et al. (2014) argue 

that HFTs rapidly respond to major information events. Hence, a detailed examination of how 

our ML-generated HFT measures react around these events, therefore tests their empirical 

validity.  

INSERT FIGURE 3 HERE 

Figure 3 shows how liquidity-supplying and liquidity-demanding HFT activity change 

around (scheduled) earnings announcements. We plot both measures over a 20-day window 

spanning ten days before and after announcements, with 95% confidence intervals. Both HFT 

types spike starting three days before and peak on announcement day. We measure this effect 

by comparing average HFT activity during the three-day event window (days t, t+1, and t+2) 

with pre-announcement levels. This three-day period follows previous research on short-term 

earnings effects (Ball and Shivakumar 2008). Both measures increase significantly during 

announcement windows. 𝐻𝐹𝑇_𝑆 jumps 6.3% (from 0.208 to 0.221) while 𝐻𝐹𝑇_𝐷 rises 2.8%. 
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Figure OA.A.1 presents the corresponding plots for HFT behavior around 

(unscheduled) M&A announcements, which contain higher information content than earnings 

announcements (Bogousslavsky et al. 2023). Our ML-generated HFT measures start increasing 

just one day before M&A announcements or on announcement day itself, compared to three 

days for earnings. This is consistent with the stream of the literature showing that HFTs 

primarily trade on public information by processing it rapidly (Budish et al. 2015; Aquilina et 

al. 2022) rather than exploiting private information as informed traders do (Bogousslavsky et 

al. 2023). The unscheduled nature of M&A announcements limits exploitable information 

beforehand. We therefore find less HFT activity before M&A announcements than before 

earnings announcements. 

We extend our baseline ML framework by first expanding the feature space. Selecting 

ML input features involves competing considerations. More granular data could improve 

prediction precision; however, they are likely to be more expensive and challenging to access 

and process. More accessible datasets may sacrifice predictive power, nevertheless enable 

wider application and replication. Our baseline model, using daily input features derived 

directly from TAQ’s Intraday Indicators, prioritizes accessibility, a key contribution in 

developing HFT measures from non-proprietary data. 

These indicators lack quote-level granularity, such as message counts or quote update 

frequencies, which could limit ML training effectiveness. The baseline model’s 82% R² 

substantially mitigates this concern by showing that our input variables capture the 

predominant variation in HFT activity. This suggests limited gains from incorporating more 

granular quote-level data. We test this empirically by adding quote-level data from the 

Millisecond TAQ database to evaluate potential performance improvements. The additional 

features, which the literature indicates are linked to HFT activity (Chakrabarty et al. 2023), 

include message counts, quote update frequencies, small trade volumes (under 100 shares), and 
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high-frequency midpoint variations over 100-millisecond intervals. We calculate these 

measures for 2009, our training period. Using January-June 2009 data, we train a pair of 

models: one using only original daily features from TAQ’s Intraday Indicators, another 

incorporating both daily indicators and granular quote features from TAQ’s Millisecond 

database. Based on the trained models, we generate HFT measures for July-December 2009, 

enabling out-of-sample comparison between the two models – with and without quote 

information. 

The analysis offers three main observations. First, adding quote-related information 

only marginally improves model performance, raising R² from 82% to 84%. Second, the 

corresponding pairs of ML-generated HFT measures – with and without quote information – 

are highly correlated. The correlation coefficients for the liquidity-supplying and -demanding 

HFT metrics are 0.99 and 0.96, respectively. Third, when we regress the Nasdaq HFT values 

on the ML measures generated with quote-level information, coefficient estimates and t-

statistics differ only marginally from those presented in Table 3. Hence, the TAQ intraday 

indicator features used in the baseline ML framework sufficiently capture HFT activity. These 

findings are unsurprising given that our baseline feature engineering incorporates variables 

strongly tied to quote-level activity, such as market depth and bid-ask spreads. The levels of 

correlation between quote-related and trade-related features emphasize the strength of these 

relationships. For example, total trades and message count have a correlation coefficient of 

0.90, while message count has correlation coefficients of above 0.65 with both ISO trades and 

market depth. Quote revision frequency correlates strongly (above 0.70) with trade frequency, 

ISO trades, and market depth. 

Our second extension addresses HFT measure scaling. We have shown that data-driven 

HFT measures effectively capture both liquidity-demanding and liquidity-supplying strategies 

and help address important economic questions. All our tests use scaled HFT measures, where 
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HFT trading volume gets normalized by total trading volume. This scaling matters to account 

for total trading volume when examining HFTs’ role (Hendershott et al. 2011). However, since 

our ML algorithm trains on scaled HFT values, it may capture variation in total trading volume 

rather than HFT trading volume. We address this by using the ML model to predict unscaled 

HFT trading volume using the same input variables. The key target variables become unscaled 

liquidity-demanding and liquidity-supplying trading volumes, calculated as the sum of HH and 

HN (HH and NH) volumes for stock i and day t from NASDAQ HFT data. We then replicate 

all tests using these unscaled values. 

Our main findings remain robust when using unscaled target variables, with the 

complete set of results presented in the Online Appendix. We confirm that: (1) data-driven 

unscaled HFT measures outperform conventional HFT proxies (Table OA.D.1); (2) HFT 

activity responds systematically to both events in our natural experimental set up (Table 

OA.D.2) and scheduled and unscheduled announcements (Figures OA.D.1 and OA.D.2); (3) 

HFT shows distinct responses to latency arbitrage opportunities (Table OA.D.3); and (4) the 

two HFT types have contrasting effects on information acquisition. Liquidity-demanding 

strategies impair it while liquidity-supplying strategies enhance it (Tables OA.D.4 and 

OA.D.5). 

7. Conclusion 

The impact of HFT on market quality has been one of the central questions for market 

microstructure research over the past fifteen years. However, the literature faces a key 

limitation in those studies either examine short-term market effects using detailed HFT data or 

investigate longer-term impacts using generic HFT measures that fail to differentiate between 

liquidity-demanding and liquidity-supplying strategies. This constraint has hampered our 

understanding of the mechanisms driving HFTs’ effects over longer horizons. 
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We address this limitation by developing a data-driven approach that generates distinct 

measures for liquidity-demanding and liquidity-supplying HFT activity using ML techniques. 

By training ensembles on NASDAQ HFT data and TAQ variables, we create comprehensive 

HFT measures covering the entire U.S. stock universe over an extended period. 

Our validation tests demonstrate that these ML-generated measures outperform 

traditional HFT measures and capture theoretically predicted HFT behavior. The measures 

respond to exogenous technological changes. Similarly, as latency arbitrage opportunities 

become more prevalent, liquidity-demanding HFTs increase their activity while liquidity-

supplying HFTs reduce it.  

We show the importance of differentiating HFT strategies by examining their role in 

fundamental information acquisition that requires a large sample to test. Our findings suggest 

that liquidity-supplying HFT activity is positively associated with information acquisition, 

while liquidity-demanding activity is negatively related to it. This result clarifies how different 

HFT strategies affect price informativeness in financial markets, highlighting the core 

advantages of our ML-generated proxies and empirical framework. 
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Figure 1 

Feature importance plot. 

This figure shows the feature importance of each input variable in terms of how relevant it is to the construction of the model, meaning how much each feature contributes to 

the predictions made. Using the Gini impurity, importance values are calculated through the mean decrease and standard deviation in node impurity for tree-based models as 

the normalized total reduction of the measurement because of this feature. 
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Figure 2 

Partial dependence plots of ML-generated HFT proxies on selected variables.  

This figure shows the marginal effect that input variables have on model predictions, and whether these relationships are nonlinear. Predictions are marginalized over the 

distribution of input variables resulting in a function that includes other variables and depends solely on the features of interest. This provides the average marginal effect on 

predictions for given values of these features. 
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Figure 3 

HFT around earnings announcements 

This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval 

surrounding scheduled events, specifically earnings announcements. The event window spans 10 days before and 

after the announcement dates, which are sourced from the I/B/E/S database. The analysis encompasses all U.S. 

listed common stocks, with the sample period extending from 2010 to 2023.  

 

Panel A: 𝐻𝐹𝑇_𝑆𝑖,𝑡 around earning announcements. 

 
 

Panel B: 𝐻𝐹𝑇_𝐷𝑖,𝑡 around earning announcements. 
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Table 1 

Input and output variables in the ML model training process 

This table presents the variables used to train the ML model, including their notation, descriptions, and data sources. Panel A contains output variables from NASDAQ HFT 

data. Panel B details input variables derived from the TAQ database, with variable labels matching the WRDS TAQ Data Manual for easy reference. 

 

Variable Description Data source 

Panel A: Output variables used in the ML model. 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡  Liquidity-demanding HFT activities for stock 𝑖 in day 𝑡 is computed as the daily number of shares traded by 

liquidity - demanding HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN) 

trading in day t.   

 

NASDAQ HFT 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡  Liquidity-supplying HFT activities for stock 𝑖 in day 𝑡 is computed as the daily number of shares traded by 

liquidity - supplying HFTs (HH and HN) divided by the total number of shares (HH, HN, NH, and NN) 

trading in day t.   

NASDAQ HFT 

Panel B: Input variables (features) used in the ML model.  

𝐴𝑉𝐺_𝑃𝑅𝐼𝐶𝐸_𝑀𝑖,𝑡 Average trade price during market hours (Open to Close) for stock 𝑖 in day 𝑡.  TAQ 

𝑅𝐸𝑇_𝑀𝐾𝑇_𝑀𝑖,𝑡 Open to close return for stock 𝑖 in day 𝑡 is computed as the log return of the official opening price over the 

official closing price.  

 

TAQ 

𝑇𝑂𝑇𝐴𝐿_𝑇𝑅𝐴𝐷𝐸𝑖,𝑡 

 

The total number of trades for stock 𝑖 in day 𝑡. 
 

TAQ 

𝑁𝐵𝑂𝑄𝑇𝑌_𝐵𝐸𝐹𝑂𝑅𝐸_𝐶𝐿𝑂𝑆𝐸𝑖,𝑡 The best offer size of the last quote before market close for stock 𝑖 in day 𝑡. TAQ 

𝑁𝐵𝐵𝑄𝑇𝑌_𝐵𝐸𝐹𝑂𝑅𝐸_𝐶𝐿𝑂𝑆𝐸𝑖,𝑡 The best bid size of the last quote before market close for stock 𝑖 in day 𝑡. TAQ 

𝑇𝑂𝑇𝐴𝐿_𝐷𝑂𝐿𝐿𝐴𝑅_𝑀𝑖,𝑡 The total trade value in dollars during market hours for stock 𝑖 in day 𝑡. TAQ 

𝐼𝑆𝑂_𝐷𝑂𝐿𝐿𝐴𝑅𝑖,𝑡 The sum of intermarket sweep order trade dollar value (during market hours) for stock 𝑖 in day 𝑡. TAQ 

𝑄𝑈𝑂𝑇𝐸𝐷𝑆𝑃𝑅𝐸𝐴𝐷_𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝑇𝑊𝑖,𝑡  The time-weighted percentage quoted spread (during market hours) for stock 𝑖 in day 𝑡. The quoted spread 

is calculated as the difference between ask and bid prices for each transaction divided by the mid-price (the 

average of ask and bid prices). 

TAQ 

𝐵𝐸𝑆𝑇𝑂𝐹𝑅𝐷𝐸𝑃𝑇𝐻_𝐷𝑂𝐿𝐿𝐴𝑅_𝑇𝑊𝑖,𝑡 The time-weighted best offer dollar depth (during market hours) for stock 𝑖 in day 𝑡 is determined based on 

the size of the best ask price. 

 

TAQ 

  (continued) 
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𝐵𝐸𝑆𝑇𝐵𝐼𝐷𝐷𝐸𝑃𝑇𝐻_𝐷𝑂𝐿𝐿𝐴𝑅_𝑇𝑊𝑖,𝑡 The time-weighted best bid dollar depth (during market hours) for stock 𝑖 in day 𝑡 is determined as the size 

of the best bid price. 

TAQ 

𝐵𝐸𝑆𝑇𝑂𝐹𝑅𝐷𝐸𝑃𝑇𝐻_𝑆𝐻𝐴𝑅𝐸_𝑇𝑊𝑖,𝑡 The time-weighted best offer share depth (during market hours) for stock 𝑖 in day 𝑡 is determined based on 

the size of the best ask price. 

TAQ 

𝐵𝐸𝑆𝑇𝐵𝐼𝐷𝐷𝐸𝑃𝑇𝐻_𝑆𝐻𝐴𝑅𝐸_𝑇𝑊𝑖,𝑡 The time-weighted best bid share depth (during market hours) for stock 𝑖 in day 𝑡 is determined based on the 

size of the best bid price. 

TAQ 

𝐸𝐹𝐹𝐸𝐶𝑇𝐼𝑉𝐸𝑆𝑃𝑅𝐸𝐴𝐷_𝑃𝐸𝑅𝐶𝐸𝑁𝑇_𝐷𝑊𝑖,𝑡 The dollar value-weighted percentage effective spread for stock 𝑖 in day 𝑡. The effective spread is calculated 

using the following equation: 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑝𝑟𝑒𝑎𝑑 = 2𝐷𝑘(𝑃𝑘 − 𝑀𝑘)/𝑀𝑘, where 𝑘 denotes transaction, 𝐷𝑘 

denotes the sign of transaction (-1 for sale and +1 for buy), 𝑃𝑘 is the transaction price, and 𝑀𝑘 is the prevailing 

mid-price for each transaction. Lee and Ready (1991) algorithm is used for trade classification.  

TAQ 

𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝑅𝐸𝐴𝐿𝐼𝑍𝐸𝐷𝑆𝑃𝑅𝐸𝐴𝐷_𝐿𝑅_𝐷𝑊𝑖,𝑡 The dollar value-weighted percentage realized spread for stock 𝑖 in day 𝑡. The realized spread is calculated 

using the following equation: 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑝𝑟𝑒𝑎𝑑 = 2𝐷𝑘(𝑃𝑘 − 𝑀𝑘+5)/𝑀𝑘, where 𝑀𝑘+5 is the bid-ask mid-

point five minutes after the 𝑘th trade, and all other variables are as previously defined. Lee and Ready (1991) 

algorithm is used for trade classification.  

 

TAQ 

𝑃𝐸𝑅𝐶𝐸𝑁𝑇𝑃𝑅𝐼𝐶𝐸𝐼𝑀𝑃𝐴𝐶𝑇_𝐿𝑅_𝐷𝑊𝑖,𝑡  The dollar value-weighted percentage price impact for stock 𝑖 in day 𝑡. The price impact is calculated using 

the following equation: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 𝐼𝑚𝑝𝑎𝑐𝑡 = 2𝐷𝑘(𝑀𝑘+5 − 𝑀𝑘)/𝑀𝑘, where all variables are as 

previously defined. Lee and Ready (1991) algorithm is used for trade classification.  

 

TAQ 

𝐵𝑆_𝑅𝐴𝑇𝐼𝑂_𝑉𝑂𝐿𝑖,𝑡 The absolute percentage order imbalance for stock 𝑖 in day 𝑡 is calculated as the absolute value of buy volume 

minus sell volume divided by the total trade volume. Lee and Ready (1991) algorithm is used for trade 

classification.  

 

TAQ 

𝑇𝑆𝐼𝐺𝑁𝑆𝑄𝑅𝑇𝐷𝑉𝑂𝐿1𝑖,𝑡 The lambda (price impact coefficient) with intercept for stock 𝑖 in day 𝑡 is calculated using the following 

equation: 𝐿𝑛
𝑀𝑖,𝑠

𝑀𝑖,𝑠−300
= 𝛼 + λ ∗ SSqrtDvol +  ϵ, where SSqrtDvol = 𝑆𝑔𝑛(∑ 𝐵𝑢𝑦𝐷𝑜𝑙𝑙𝑎𝑟 −𝑠

𝑠−300

 ∑ 𝑆𝑒𝑙𝑙𝐷𝑜𝑙𝑙𝑎𝑟) × √|∑ 𝐵𝑢𝑦𝐷𝑜𝑙𝑙𝑎𝑟 − ∑ 𝑆𝑒𝑙𝑙𝐷𝑜𝑙𝑙𝑎𝑟 𝑠
𝑠−300

𝑠
𝑠−300 | 𝑠

𝑠−300 , where 𝑀𝑖,𝑠 is the mid-price for stock 

𝑖 at second 𝑠. 

 

TAQ 

𝐼𝑉𝑂𝐿_𝑄𝑖,𝑡 The quote-based intraday volatility for stock 𝑖 in day 𝑡 is calculated using the following equation: 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
∑ (𝑆

𝑠=1 𝑅𝑒𝑡𝑖,𝑠−𝑅𝑒𝑡𝑖,𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅2

𝑆−1
, where 𝑅𝑒𝑡𝑖,𝑠 = 𝐿𝑛

𝑀𝑖,𝑠

𝑀𝑖,𝑠−1
 and 𝑀𝑖,𝑠 is the mid-price for stock 𝑖 at 

second 𝑠. 

TAQ 

  (continued) 
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𝐻𝐼𝑁𝐷𝐸𝑋𝑖,𝑡 The Herfindahl index calculated across 30-minute time units for stock 𝑖 in day 𝑡 is calculated using the 

following equation: 𝐻𝐼𝑛𝑑𝑒𝑥 =  
∑ ∑ (𝑃𝑘×𝑆𝐻𝑅𝑘

𝑁
𝑘=1 )21800

𝑠=1

(∑ ∑ 𝑃𝑘×𝑆𝐻𝑅𝑘
𝑁
𝑘=1 )21800

𝑠=1
, where 𝑆𝐻𝑅𝑘 is the shares of trade for transaction 𝑘. 

TAQ 

𝑉𝐴𝑅_𝑅𝐴𝑇𝐼𝑂3𝑖,𝑡 The variance ratio for stock 𝑖 in day 𝑡 is calculated using the following equation: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =

|
𝑉𝑎𝑟(𝑅𝑒𝑡300𝑡)

5×𝑉𝑎𝑟(𝑅𝑒𝑡60𝑡)
− 1|, where 𝑉𝑎𝑟(𝑅𝑒𝑡300𝑡) is the variance of 5-minute log returns.  

 

TAQ 

𝑇𝑂𝑇𝐴𝐿_𝐷𝑉_𝑅𝐸𝑇𝐴𝐼𝐿𝑖,𝑡 The total dollar value of retail trades for stock 𝑖 in day 𝑡. Retail trades are identified by using the methodology 

described in Boehmer et al. (2021b).  

TAQ 

𝐵𝑆_𝑅𝐴𝑇𝐼𝑂_𝑅𝐸𝑇𝐴𝐼𝐿_𝑉𝑂𝐿𝑖,𝑡 The absolute percentage order imbalance for retail trading volume for stock 𝑖 in day 𝑡. Retail trades are 

identified by using the methodology described in Boehmer et al. (2021b). 

TAQ 

𝑇𝑂𝑇𝐴𝐿_𝐷𝑉_𝐼𝑁𝑆𝑇20𝐾𝑖,𝑡 The total dollar value of $20,000 institutional trades for stock 𝑖 in day 𝑡. $20,000 cutoff is based on Lee and 

Radhakrishna (2000).  

 

TAQ 

𝐵𝑆_𝑅𝐴𝑇𝐼𝑂_𝐼𝑁𝑆𝑇20𝐾_𝑉𝑂𝐿𝑖,𝑡 The absolute percentage order imbalance for $20,000 institutional trades’ trading volume for stock 𝑖 in day 

𝑡. $20,000 cutoff is based on Lee and Radhakrishna (2000).  

TAQ 
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Table 2 

Regression variables and summary statistics 

This table provides summary statistics and definitions of variables used in our regression analyses. Variable names in the first column are followed by their measurement units 

in parentheses. For variables used in multiple regressions with different frequencies (daily, quarterly, etc.), we report summary statistics corresponding to their first appearance 

in our analyses. All variables are winsorized at the 1st and 99th percentiles. For the original NASDAQ dataset variables (𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡), the sample 

covers the year 2009 and includes 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. For all other variables, the sample includes all U.S.-

listed common stocks from 2010 to 2023. 

 

Variable Definition Mean Std Min p.25 p.50 p.75 Max 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡  Liquidity-demanding HFT activities for stock 𝑖 in day 𝑡 is computed as the 

daily number of shares traded by liquidity - demanding HFTs (HH and HN) 

divided by the total number of shares (HH, HN, NH, and NN) trading in day t.   

0.331 0.160 0.013 0.202 0.342 0.453 0.662 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡  Liquidity-supplying HFT activities for stock 𝑖 in day 𝑡 is computed as the daily 

number of shares traded by liquidity - supplying HFTs (HH and HN) divided 

by the total number of shares (HH, HN, NH, and NN) trading in day t.   

0.250 0.169 0.010 0.110 0.206 0.375 0.636 

𝐻𝐹𝑇_𝐷𝑖,𝑡 The liquidity-demanding HFT activity for stock i on day t, estimated using the 

ML model outlined in Section 3. 

0.316 0.112 0.025 0.222 0.335 0.414 0.602 

𝐻𝐹𝑇_𝑆𝑖,𝑡 The liquidity-supplying HFT activity for stock i on day t, estimated using the 

ML model outlined in Section 3. 

0.208 0.101 0.036 0.131 0.174 0.259 0.626 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 (1/00,000) Daily volatility for stock i on day t, measured as the standard deviation of 

transaction-level returns. 

0.008 0.018 0.000 0.000 0.001 0.007 0.123 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) Daily average of transaction-level spreads for stock i on day t, where each 

transaction-level spread is calculated as (ask price - bid price)/(0.5 × (ask price 

+ bid price)). 

0.142 0.154 0.012 0.037 0.090 0.189 0.885 

𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡 The inverse of stock price for stock i on day t. 0.039 0.050 0.001 0.013 0.024 0.047 0.344 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 

($’000,000,00) 

Daily trading volume in dollars for stock i on day t. 2.614 6.305 0.007 0.070 0.330 2.556 47.392 

𝑁𝐿𝐴𝑂𝑖,𝑡 (000) The number of latency arbitrage opportunities for stock i on day t, identified 

using the methodology detailed in Section 4.2. 

0.068 0.169 0.001 0.006 0.017 0.047 1.211 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 (0) Quote volatility for stock i on day t, measured as the daily average of standard 

deviations of quote midpoints calculated over 100 ms intervals. 

6.942 42.24 0.000 0.009 0.021 0.086 365.523 

𝑂𝐿𝑉𝑖,𝑡 Daily average of trades smaller than 100 shares for stock i on day t. 3.040 12.47 0.000 0.000 0.000 1.000 80.000 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 (000,000) Daily count of changes in best quotes or quote depth for stock i on day t. 0.191 0.264 0.002 0.031 0.059 0.253 2.775 

𝑄𝑇𝑖,𝑡 The ratio of quoted shares to traded shares for stock i on day t. 15.82 16.23 2.19 5.88 9.51 18.71 85.70 

𝑀𝐺𝑖,𝑡 (000,000) The total number of messages (trade and quote) for stock i on day t. 

 

2.111 2.864 0.078 0.332 0.643 2.853 12.637 
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𝐽𝑈𝑀𝑃𝑖,𝑞 Information acquisition proxy for stock i in quarter q, measured as the ratio of 

cumulative abnormal returns over [-1, 1] to cumulative abnormal returns over 

[-21, 1] around earnings announcements. 

0.517 0.427 -0.543 0.227 0.510 0.794 1.663 

𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞 

($’000,000,000) 

Market value for stock i in quarter q, calculated as the average of daily market 

values over [-21, -1] around earnings announcements, where daily market 

value is closing price times shares outstanding. 

0.567 1.652 0.001 0.024 0.089 0.330 12.474 

𝑂𝐼𝐵20𝑘𝑖,𝑞 Institutional order imbalance for stock i in quarter q, measured as the price 

impact of trades exceeding $20,000 over [-21, -1] around earnings 

announcements, obtained from TAQ. 

0.351 0.183 0.050 0.200 0.333 0.494 0.763 

𝐶𝑇𝑖,𝑞  The natural logarithm of the cancel-to-trade ratio for stock i in quarter q, where 

the ratio is calculated as the average of daily (cancel messages/trade messages) 

over [-21, -1] around earnings announcements, obtained from MIDAS 

database. 

0.507 0.540 -0.548 0.150 0.462 0.810 2.227 

𝑂𝐿𝑅𝑖,𝑞  The natural logarithm of the odd-lot ratio for stock i in quarter q, where the 

ratio is calculated as the average of daily proportions of trades below 100 

shares over [-21, -1] around earnings announcements, obtained from MIDAS 

database. 

1.202 0.664 -0.430 0.777 1.288 1.735 2.212 

𝑇𝑂𝑖,𝑞  The natural logarithm of the trade-to-order ratio for stock i in quarter q, where 

the ratio is calculated as the average of daily (executed shares/submitted 

shares) over [-21, -1] around earnings announcements, obtained from MIDAS 

database. 

-1.064 0.639 -2.972 -1.450 -1.017 -0.628 0.194 
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Table 3 

Comparative analysis of HFT measures 

This table evaluates our ML-generated HFT measures against alternative proxies using the following models: 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝐻𝐹𝑇_𝑆𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 + 𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡  + 𝜀𝑖,𝑡 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 + 𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡  + 𝜀𝑖,𝑡 

where 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡 are NASDAQ’s liquidity-demanding and -supplying HFT measures, and 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡 are our ML-generated proxies 

(trained on January-June 2009 data), and alternative proxies from TAQ: quote volatility (𝐹𝑙𝑖𝑐𝑘𝑖,𝑡, average standard deviation of quote midpoints over 100 ms intervals), 𝑂𝐿𝑉𝑖,𝑡 

(𝑂𝐿𝑉𝑖,𝑡, sum of sub-100 share trades), quote intensity (𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡, count of quote/depth changes), quote-to-trade ratio (𝑄𝑇𝑖,𝑡, quoted shares/traded shares), and the number of 

messages (𝑀𝐺𝑖,𝑡). All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while Panels B and D focus on 

liquidity-demanding HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The sample covers July-

December 2009 for 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and day, with t-statistics 

in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2.  

 

Panel A: 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

𝐻𝐹𝑇_𝑆𝑖,𝑡  0.104*** 

(8.52) 

            0.096*** 

(7.52) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     0.002* 

(1.79) 

          0.001 

(1.00) 

𝑂𝐿𝑉𝑖,𝑡      0.001 

(0.84) 

        0.001 

(0.80) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         0.015** 

(2.26) 

      -0.020*** 

(-3.16) 

𝑄𝑇𝑖,𝑡           0.008** 

(2.10) 

    0.008** 

(2.37) 

𝑀𝐺𝑖,𝑡              0.021*** 

(3.21) 

 0.032*** 

(3.10) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   3%  0.1%  0%  0.4%  0.2%   0.7%  3.3% 
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Panel B: 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

𝐻𝐹𝑇_𝐷𝑖,𝑡  0.068*** 

(3.70) 

            0.083*** 

(4.38) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     -0.003*** 

(-3.27) 

          -0.003*** 

(-3.24) 

𝑂𝐿𝑉𝑖,𝑡      -0.000 

(-0.31) 

        -0.000 

(-0.07) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         -0.002 

(-0.42) 

      0.030*** 

(2.60) 

𝑄𝑇𝑖,𝑡           0.016*** 

(3.34) 

    0.019*** 

(3.91) 

𝑀𝐺𝑖,𝑡              -0.006 

(-1.16) 

 -0.040*** 

(-2.82) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   0.8%  0.1%  0%  0.5%  0.5%   0.3%  1.4% 

 

Panel C: 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

𝐻𝐹𝑇_𝑆𝑖,𝑡  0.246*** 

(38.28) 

            0.239*** 

(23.27) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     -0.009*** 

(-2.69) 

          0.001 

(0.06) 

𝑂𝐿𝑉𝑖,𝑡      -0.004 

(-0.91) 

        0.002* 

(1.68) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         0.140*** 

(14.02) 

      -0.006 

(-0.62) 

𝑄𝑇𝑖,𝑡           0.084*** 

(5.41) 

    0.005 

(1.12) 

𝑀𝐺𝑖,𝑡              0.144*** 

(15.97) 

 0.010 

(0.79) 

Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   74%  0.3%  0%  51%  15%   53%  74% 
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Panel D: 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

𝐻𝐹𝑇_𝐷𝑖,𝑡  0.423*** 

(23.23) 

            0.383*** 

(17.93) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     -0.003 

(-0.41) 

          -0.003 

(-0.93) 

𝑂𝐿𝑉𝑖,𝑡      0.000 

(0.24) 

        0.002** 

(1.99) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         0.091*** 

(7.92) 

      0.013 

(0.92) 

𝑄𝑇𝑖,𝑡           0.021** 

(2.04) 

    0.014*** 

(2.69) 

𝑀𝐺𝑖,𝑡              0.092*** 

(8.37) 

 0.015 

(0.94) 

Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   50%  0.1%  0%  23%  1.0%   24%  54% 
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Table 4 

Impact of exchange technological changes on HFT activity 

This table examines how our ML-generated HFT measures respond to two technological changes: NASDAQ’s 

reduced data dissemination latency and Amex’s speed bump implementation. We estimate the following 

difference-in-difference models: 

                 𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                                     (4.1) 

                𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡
4
𝑘=1                                                      (4.2) 

                𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                     (4.3) 

                𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡
4
𝑘=1                                      (4.4) 

where 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡 represent the ML – generated liquidity – demanding and – supplying HFT activities 

for stock 𝑖 on day 𝑡. 𝛼𝑖 and 𝛽𝑡 capture stock and day fixed effects, respectively. For the NASDAQ upgrade analysis 

(Models 4.1 and 4.2), 𝑃𝑜𝑠𝑡𝑖,𝑡 equals 1 after October 10, 2011, for NASDAQ-listed stocks with tickers A-B, and 

after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as control groups in these 

models. For the Amex speed bump analysis (Models 4.3 and 4.4), 𝑃𝑜𝑠𝑡𝑖,𝑡 equals 1 after July 24, 2017, and 𝐴𝑚𝑒𝑥𝑖,𝑡 

equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control groups in these models. Control 

variables (𝐶𝑖,𝑡
𝑘 ) include daily volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡, standard deviation of transaction-level returns), relative 

quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, daily average of (ask-bid)/mid-quote for each transaction), inverse price (𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡), 

and dollar trading volume (𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡). The analysis uses 10-working day windows around implementation dates. 
Panel A reports results for the NASDAQ upgrade and Panel B for the Amex speed bump. Standard errors are 

double-clustered by stock and day, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, 

and 1%. 𝑅2 values are within-𝑅2. 

 

  Panel A: NASDAQ upgrade  Panel B: Amex speed bump 

  (i) 

𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (ii) 

𝐻𝐹𝑇_𝑆𝑖,𝑡 

 (iii) 

 𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (iv) 

 𝐻𝐹𝑇_𝑆𝑖,𝑡 

𝑃𝑜𝑠𝑡𝑖,𝑡 

 

 0.002** 

(2.12) 

 0.002** 

(2.10) 

    

𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 

 

     -0.005** 

(-2.34) 

 -0.007*** 

(-3.31) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡   0.013** 

(2.19) 

 0.000 

(0.07) 

 0.001 

(1.29) 

 0.001 

(1.33) 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  -0.066*** 

(-12.58) 

 -0.024*** 

(-5.58) 

 -0.015*** 

(-10.96) 

 -0.006*** 

(-6.05) 

𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡   -0.151*** 

(-3.08) 

 0.037 

(0.92) 

 -0.026 

(-1.57) 

 -0.023* 

(-1.96) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡   0.001 

(1.30) 

 0.020*** 

(17.75) 

 0.001** 

(2.25) 

 0.005*** 

(4.24) 

Stock and Day FE  Yes  Yes  Yes  Yes 

N obs.  43,234  43,234  45,530  45,530 

𝑅2   5%  11%  1.3%  3.5% 
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Table 5 

HFT response to latency arbitrage opportunities 

This table examines how our ML-generated HFT measures respond latency arbitrage opportunities using the 

following OLS models: 

𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾1𝑁𝐿𝐴𝑂𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡

4

𝑘=1
 

𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾2𝑁𝐿𝐴𝑂𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡

4

𝑘=1
 

where 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡 represent our liquidity-demanding and -supplying HFT activity measures for stock 

𝑖 and day 𝑡. 𝛼𝑖 and 𝛽𝑡 capture stock and day fixed effects, respectively. 𝑁𝐿𝐴𝑂𝑖,𝑡 is the number of latency arbitrage 

opportunities, identified using the methodology detailed in Section 4.2. Control variables (𝐶𝑖,𝑡
𝑘 ) include daily 

volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡, standard deviation of transaction-level returns), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, daily 

average of (ask-bid)/mid-quote for each transaction), inverse price (𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡), and dollar trading volume 

(𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡). Columns (i) and (ii) present the results for 𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝐻𝐹𝑇_𝑆𝑖,𝑡, respectively. The sample consists 

of 120 randomly selected NASDAQ- and NYSE-listed firms. Standard errors are double-clustered by stock and 

day, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-

𝑅2. 

 

  (i) 

𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (ii) 

𝐻𝐹𝑇_𝑆𝑖,𝑡 

 

𝑁𝐿𝐴𝑂𝑖,𝑡  0.018*** 

(3.78) 

 -0.020** 

(-2.02) 

 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡   -0.302*** 

(-5.91) 

 -0.353*** 

(-4.50) 

 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  -0.069*** 

(-4.66) 

 -0.033** 

(-2.09) 

 

𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡   -0.390*** 

(-6.04) 

 0.428*** 

(7.98) 

 

𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡   -0.002*** 

(-3.81) 

 0.003*** 

(7.96) 

 

Stock and Day FE  Yes  Yes  

N obs.  246,139  246,139  

𝑅2   17%  12%  
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Table 6 

HFT activity and information acquisition – jump ratio 

This table examines how HFT activity affects information acquisition using the following OLS model: 

𝐽𝑈𝑀𝑃𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑚,𝑞 + 𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑞 +  𝛾2𝐻𝐹𝑇_𝑆𝑖,𝑞 + ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 +  𝜀𝑖,𝑡

4

𝑘=1
 

where 𝐽𝑈𝑀𝑃𝑖,𝑞 measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1, 

1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (q). 𝐻𝐹𝑇_𝐷𝑖,𝑞 and 

𝐻𝐹𝑇_𝑆𝑖,𝑞 are our liquidity-demanding and liquidity-supplying HFT activities, measured as averages of daily 

values over [-21, -1] around earnings announcements. Models include stock (𝛼𝑖) and month (𝛽𝑚,𝑞) fixed effects, 

respectively. Control variables (𝐶𝑖,𝑞
𝑘 ) all measured as averages of daily values over [-21, -1] around earnings 

announcements, include volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞, 

price times shares outstanding), and institutional order imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞, price impact of trades over $20,000 

from TAQ). Columns (i) and (ii) present results from models without and with control variables, respectively. The 

sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock 

and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are 

within-𝑅2. 

 

  (i) 

𝐽𝑈𝑀𝑃𝑖,𝑞 

 (ii) 

𝐽𝑈𝑀𝑃𝑖,𝑞 

𝐻𝐹𝑇_𝐷𝑖,𝑞  0.208*** 

(5.42) 

 0.178*** 

(4.57) 

𝐻𝐹𝑇_𝑆𝑖,𝑞   -0.162*** 

(-3.32) 

 -0.133*** 

(-2.71) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞    -0.048*** 

(-2.87) 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞    -0.106*** 

(-6.45) 

𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞     -0.009*** 

(-3.52) 

𝑂𝐼𝐵20𝑘𝑖,𝑞     0.132*** 

(7.26) 

Stock and Month FE  Yes  Yes 
N obs.  49,515  49,515 

𝑅2   0.1%  0.4% 
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Table 7 

Comparing our HFT measures with Weller (2018) measures 

This table analyzes the relationship between our ML-generated HFT measures and Weller’s (2018) HFT proxies 

using the following OLS models: 

𝐶𝑇𝑖,𝑞 = 𝛼𝑖 + 𝛽𝑚,𝑞 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑞 + 𝛾2𝐻𝐹𝑇_𝑆𝑖,𝑞 + ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 +  𝜀𝑖,𝑡

4

𝑘=1
 

𝑂𝐿𝑅𝑖,𝑞 = 𝛼𝑖 + 𝛽𝑚,𝑞 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑞 + 𝛾2𝐻𝐹𝑇_𝑆𝑖,𝑞 +  ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 +  𝜀𝑖,𝑡

4

𝑘=1
 

𝑇𝑂𝑖,𝑞 = 𝛼𝑖 + 𝛽𝑚,𝑞 +  𝛾1𝐻𝐹𝑇_𝐷𝑖,𝑞 + 𝛾2𝐻𝐹𝑇_𝑆𝑖,𝑞 +  ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 + 𝜀𝑖,𝑡

4

𝑘=1
 

The dependent variables are Weller’s (2018) HFT proxies obtained from the MIDAS database: 𝐶𝑇𝑖,𝑞 (natural 

logarithm of cancel-to-trade ratio), 𝑂𝐿𝑅𝑖,𝑞   (natural logarithm of odd-lot ratio), and 𝑇𝑂𝑖,𝑞 (natural logarithm of 

trade-to-order ratio), where each ratio is calculated as the average of daily values over [-21, -1] around earnings 

announcements. The key independent variables are 𝐻𝐹𝑇_𝐷𝑖,𝑞 and 𝐻𝐹𝑇_𝑆𝑖,𝑞 are liquidity-demanding and liquidity-

supplying HFT activities, measured as averages of daily values over [-21, -1] around earnings announcements. 

Models include stock (𝛼𝑖) and month (𝛽𝑚,𝑞) fixed effects, respectively. Control variables (𝐶𝑖,𝑞
𝑘 ) all measured as 

averages of daily values over [-21, -1] around earnings announcements, include volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative 

quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞, price times shares outstanding), and institutional order 

imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞, price impact of trades over $20,000 from TAQ). The sample includes all U.S.-listed 

common stocks from 2012 to 2023. Standard errors are double-clustered by stock and quarter, with t-statistics in 

brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2. 

 

  (i) 

𝐶𝑇𝑖,𝑞 

 (ii) 

𝑂𝐿𝑅𝑖,𝑞 

 (ii) 

𝑇𝑂𝑖,𝑞 

𝐻𝐹𝑇_𝐷𝑖,𝑞  0.839*** 

(10.64) 

 2.714*** 

(24.76) 

 -1.208*** 

(-15.71) 

𝐻𝐹𝑇_𝑆𝑖,𝑞  -1.133*** 

(-12.01) 

 -2.343*** 

(-26.72) 

 1.340*** 

(13.38) 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞  0.036 

(0.74) 

 -0.476*** 

(-11.05) 

 0.492*** 

(10.05) 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞  -0.005 

(-0.17) 

 0.727*** 

(12.03) 

 -0.190*** 

(-5.76) 

𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞   0.050*** 

(7.52) 

 0.120*** 

(11.74) 

 -0.071*** 

(-8.63) 

𝑂𝐼𝐵20𝑘𝑖,𝑞   0.152*** 

(5.24) 

 -0.111*** 

(-3.22) 

 0.063* 

(1.81) 

Stock and Month FEs  Yes  Yes  Yes 

N obs.  43,091  43,091  43,091 

𝑅2   2%  19%  4% 
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Table 8 

HFT activity and information acquisition – FERC alternative measure 

This table examines how HFT activity affects information acquisition using the following model: 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑞 +  ∑ (𝛾𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 +1
𝑛=−1 𝜗𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝐻𝐹𝑇_𝐷𝑖,𝑞 +

                                𝜃𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝐻𝐹𝑇_𝐷𝑖,𝑞) +  𝜌1𝐻𝐹𝑇_𝐷𝑖,𝑞  + 𝜌2𝐻𝐹𝑇_𝑆𝑖,𝑞 + 𝜌3𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞+1 +

                                                                                                                                    𝜌4𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞−1 +  ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 + 𝜀𝑖,𝑞
4
𝑘=1                                  

where 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 is quarterly stock returns for firm 𝑖 in quarter 𝑞, measured as the percentage change in closing 

prices between quarters 𝑞 − 1 and 𝑞. 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 denotes quarterly earnings (net income) normalized by the 

market value of equity at the start of quarter 𝑞 + 𝑛. The subscript 𝑛 ranges from -1 to 1. 𝐻𝐹𝑇_𝐷𝑖,𝑞 and 𝐻𝐹𝑇_𝑆𝑖,𝑞 

are our liquidity-demanding and liquidity-supplying HFT activity measures, measured as the quarterly averages 

of daily values. Control variables (𝐶𝑖,𝑞
𝑘 ) all measured as quarterly averages of daily values, include volatility 

(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞, price times shares outstanding), and 

institutional order imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞, price impact of trades over $20,000 from TAQ). Columns (i) and (ii) 

present results from models without and with control variables, respectively. The sample includes all U.S.-listed 

common stocks from 2010 to 2023. Standard errors are double-clustered by stock and quarter, with t-statistics in 

brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2. 

 

  (i) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 

 (ii) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝐻𝐹𝑇_𝐷𝑖,𝑞   -2.035*** 

(4.59) 

 -2.018*** 

(4.56) 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝐻𝐹𝑇_𝑆𝑖,𝑞  2.690*** 

(5.30) 

 2.676*** 

(5.25) 

𝐻𝐹𝑇_𝐷𝑖,𝑞  -0.060 

(-1.58) 

 -0.059 

(-1.59) 

𝐻𝐹𝑇_𝑆𝑖,𝑞   0.011 

(0.19) 

 0.010 

(0.08) 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1  0.575*** 

(9.38) 

 0.573*** 

(9.67) 

Additional Controls  No  Yes 

Stock and Quarter FE  Yes  Yes 
N obs.  157,343  157,343 

𝑅2   4%  4% 
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Introduction 

 

 This online appendix provides supplementary results to the findings presented in 

Ibikunle et al. (2025). The content is as follows: 

• Online Appendix A. HFT Activity Around M&A Announcements. 

• Online Appendix B. Model Optimization and Machine Learning Comparisons 

• Online Appendix C. Additional Tests on HFT and Information Acquisition 

• Online Appendix D. Using Unscaled HFT Measures 
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Online Appendix A. HFT activity around M&A announcements 

Figure OA.1 

HFT around M&A announcements 

This figure illustrates the evolution of ML-generated HFT measures with their 95% confidence interval 

surrounding unscheduled events, specifically mergers and acquisitions (M&A) announcements. The event 

window spans 10 days before and after the announcement dates, which are sourced from the Thomson Reuters 

Securities Data Company (SDC) database. The analysis encompasses all U.S. listed common stocks, with the 

sample period extending from 2010 to 2023.  

Panel A: 𝐻𝐹𝑇_𝑆𝑖,𝑡  around M&A announcements. 

 
Panel B: 𝐻𝐹𝑇_𝐷𝑖,𝑡 around M&A announcements. 
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Online Appendix B. Model optimization and machine learning comparisons 
Table OA.B.1 

Parameter optimization results 
The table lists the arithmetic mean and standard deviation for 𝑅² values across 10 iterations for different parameter 

combinations regarding the number of samples requires to split a tree node and the number of trees determining 

the ensemble size. Results are ranked by the Mean column. 

 

Rank Mean Std. Split samples Ensemble size 

1 0.814442 0.008260 5 640 

2 0.813941 0.008360 5 320 

3 0.813713 0.008455 5 160 

4 0.812587 0.008609 5 80 

5 0.810152 0.008016 5 40 

... ... ... ... ... 

60 0.659040 0.027015 640 160 

61 0.658566 0.022346 640 80 

62 0.657760 0.022598 640 320 

63 0.655796 0.023405 640 10 

64 0.654791 0.027320 640 5 
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OA.B.2. Comparison to simple machine learning methods 

We compare our ensemble methods against standard single-model alternatives to 

validate our approach. Since we predict continuous HFT outcomes rather than classify discrete 

categories, we test four benchmark models: LASSO (which is a linear regression that shrinks 

coefficients to zero), Support Vector Machines (which capture non-linear patterns), and neural 

networks with three hidden layers (which can learn complex relationships but require more 

data and computation time). We configure each model with standard parameters: LASSO uses 

alpha=0.1 and tolerance=0.0001, SVM employs radial basis kernels, and neural networks use 

rectified linear activation with mean absolute error optimization. This allows us to benchmark 

whether tree ensembles truly outperform simpler methods (LASSO, SVM) and more complex 

alternatives (deep learning) for HFT prediction. 

Our dataset spans 29,880 stock-days. We drop 2,184 observations (7%) with missing 

dependent or independent variables. We standardize each variable using z-score scaling to 

prevent variables with larger ranges from dominating predictions and to convert predictors to 

comparable units. We choose z-score over min-max scaling because HFT data contains 

extreme outliers that would distort min-max normalization. these initial experiments apply 𝑧-

score scaling, also commonly called standardization, in which, for a dataset, 𝐷, 

                                          𝑧𝐷𝑖
=

𝐷𝑖−𝐷̅

σ(𝐷)
                                                                  (OA.1), 

We test two prediction approaches: multi-model (separate models for each target) 

versus multi-target (one model predicting both outcomes simultaneously). Multi-target models 

can capture relationships between our two dependent variables, potentially improving 

accuracy. However, LASSO and SVM require separate models by design, while neural 

networks can handle both approaches.  

Online Appendix Table OA.B.2 reports mean R² values and standard deviations across 

10 iterations for all methods, comparing single-target versus multi-target performance where 
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applicable. Extra trees deliver the highest mean R² performance with low standard deviation, 

outperforming both simpler methods (LASSO, SVM) and complex neural networks. While 

neural networks can theoretically approximate any function, they struggle to learn optimal 

parameters from our HFT dataset—a common challenge when financial data contains high 

noise relative to signal strength (Zhang et al. 2017). 

Our optimized extra trees model achieves an average R² of 0.825 with standard 

deviation of 0.005 across multiple runs. We no longer apply z-score scaling since tree-based 

models handle unscaled inputs effectively through their splitting mechanism. Optimization cuts 

prediction variance in half compared to our baseline model while improving accuracy. 

Therefore, we select extra trees as our primary method because they achieve superior prediction 

accuracy while remaining interpretable and computationally efficient. 
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Table OA.B.2 

Machine learning comparison 
The table lists the arithmetic mean and standard deviation for 𝑅² values across 10 iterations for least absolute 

shrinkage and selection operator (LASSO), support vector regression (SVR), feed-forward artificial neural 

networks (ANN), random forests for multi-model (RF-MM) and multi-target (RF) setups, and extremely 

randomized trees for multi-model (ET-MM) and multi-target (ET) setups. Results are inversely ranked by the 

Mean column. 

 

Method Mean Std. 

LASSO 0.625 0.013 

SVR 0.684 0.058 

ANN 0.783 0.0229 

RF-MM 0.784 0.055 

RF 0.790 0.043 

ET-MM 0.804 0.036 

ET 0.805 0.035 
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Online Appendix C. Additional tests on HFT and information acquisition 

Table OA.C.1 

HFT activity and information acquisition using Nasdaq HFT data 

This table replicates the analyses from Tables 6 and 8 using NASDAQ’s original HFT measures instead of our 

ML-generated proxies. 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑞 and 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑞  are NASDAQ’s liquidity-demanding and -

supplying HFT measures. The sample consists of 120 randomly selected stocks for which NASDAQ provided 

HFT data in 2009. All other specifications, including variable definitions, measurement periods, control variables, 

and fixed effects, remain identical to those in Tables 9 and 11. 

 

  (i) 

𝐽𝑈𝑀𝑃𝑖,𝑞 

 (ii) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑞  0.997 

(0.52) 

  

𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑞   -0.903 

(-0.56) 

  

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝐷𝑖,𝑞    0.521 

(0.06) 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝑁𝐴𝑆𝐷_𝐻𝐹𝑇_𝑆𝑖,𝑞    -3.246 

(-0.59) 

Controls  As in Table 6  As in Table 8 
Stock and Month FEs  Yes  Yes 
N obs.  466  401 

𝑅2   0.7%  40% 
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Table OA.C.2 

HFT activity and information acquisition: analysis of 2010-2012 period 

This table replicates the analyses from Tables 6 and 8 using data from 2010 to 2012, a period immediately 

following our ML model’s training sample (2009). All other specifications, including variable definitions, 

measurement periods, control variables, and fixed effects, remain identical to those in Tables 9 and 11. 

 

  (i) 

𝐽𝑈𝑀𝑃𝑖,𝑞 

 (ii) 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 

𝐻𝐹𝑇_𝐷𝑖,𝑞  0.114*** 

(2.59) 

  

𝐻𝐹𝑇_𝑆𝑖,𝑞  -0.101** 

(-2.10) 

  

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝐻𝐹𝑇_𝐷𝑖,𝑞     -3.982*** 

(-3.41) 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝐻𝐹𝑇_𝑆𝑖,𝑞    3.666*** 

(2.81) 

Controls  As in Table 6  As in Table 8 
Stock and Month FEs  Yes  Yes 
N obs.  9,915  30,048 

𝑅2   0.4%  5% 
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Online Appendix D. Using unscaled HFT measures 

Figure OA.D.1 

HFT around earnings announcements 

This figure illustrates the evolution of ML-generated unscaled HFT measures (𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 and 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡) with 

their 95% confidence interval surrounding scheduled events, specifically earnings announcements. The event 

window spans 10 days before and after the announcement dates, which are sourced from the I/B/E/S database. 

The analysis encompasses all U.S. listed common stocks, with the sample period extending from 2010 to 2023.  

 

Panel A: 𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 around earning announcements. 

 
 

Panel B: 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 around earning announcements. 

 

 



 

 

11 

 

Figure OA.D.2 

HFT around M&A announcements 

This figure illustrates the evolution of ML-generated unscaled HFT measures (𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 and 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡) with 

their 95% confidence interval surrounding unscheduled events, specifically mergers and acquisitions (M&A) 

announcements. The event window spans 10 days before and after the announcement dates, which are sourced 

from the Thomson Reuters Securities Data Company (SDC) database. The analysis encompasses all U.S. listed 

common stocks, with the sample period extending from 2010 to 2023.  

Panel A: 𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 around M&A announcements. 

 
 

Panel B: 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 around M&A announcements. 
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Table OA.D.1 

Comparative analysis of HFT measures 

This table evaluates our ML-generated unscaled HFT measures against alternative proxies using the following models: 

𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾1𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 + 𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡  + 𝜀𝑖,𝑡 

𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 + 𝛾2𝐹𝑙𝑖𝑐𝑘𝑖,𝑡 + 𝛾3𝑂𝐿𝑉𝑖,𝑡 + 𝛾4𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡 + 𝛾5𝑄𝑇𝑖,𝑡 + 𝛾6𝑀𝐺𝑖,𝑡  + 𝜀𝑖,𝑡 

where 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 are NASDAQ’s unscaled liquidity-demanding and -supplying HFT measures, and 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 and 𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡are our ML-

generated unscaled HFT proxies, trained on January-June 2009 data) and alternative proxies from TAQ: quote volatility (𝐹𝑙𝑖𝑐𝑘𝑖,𝑡, average standard deviation of quote midpoints 

over 100 ms intervals), 𝑂𝐿𝑉𝑖,𝑡 (𝑂𝐿𝑉𝑖,𝑡, sum of sub-100 share trades), quote intensity (𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡, count of quote/depth changes), quote-to-trade ratio (𝑄𝑇𝑖,𝑡, quoted shares/traded 

shares), and the number of messages (𝑀𝐺𝑖,𝑡).. All dependent variables are standardized. The analysis presents results for liquidity-supplying HFT in Panels A and C, while 

Panels B and D focus on liquidity-demanding HFT. Panels A and B incorporate both stock and day fixed effects, whereas Panels C and D employ only day fixed effect. The 

sample covers July-December 2009 for 120 randomly selected NASDAQ- and NYSE-listed firms with NASDAQ HFT data. Standard errors are double-clustered by stock and 

day, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2.  

 

Panel A: 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

U_𝐻𝐹𝑇_𝑆𝑖,𝑡  1.349*** 

(10.93) 

            1.163*** 

(9.14) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     0.002 

(0.78) 

          -0.002 

(-0.87) 

𝑂𝐿𝑉𝑖,𝑡      0.012* 

(1.80) 

        0.005*** 

(2.59) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         0.793*** 

(5.89) 

      -0.073 

(-0.67) 

𝑄𝑇𝑖,𝑡           -0.253*** 

(-3.16) 

    -0.133** 

(-3.92) 

𝑀𝐺𝑖,𝑡              0.940*** 

(5.88) 

 0.440*** 

(2.88) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   68%  0.1%  0.5%  24%  4.5%   27%  72% 
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Panel B: 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

U_𝐻𝐹𝑇_𝐷𝑖,𝑡  1.045*** 

(11.47) 

            0.849*** 

(9.75) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     0.002 

(0.09) 

          -0.005*** 

(-3.14) 

𝑂𝐿𝑉𝑖,𝑡      0.008 

(1.31) 

        0.004** 

(2.45) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         0.672*** 

(6.12) 

      0.090 

(1.15) 

𝑄𝑇𝑖,𝑡           -0.179*** 

(-3.27) 

    -0.100*** 

(-4.67) 

𝑀𝐺𝑖,𝑡              0.788*** 

(6.08) 

 0.246** 

(2.07) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   64%  0%  0.5%  31%  4%   33%  69% 

 

Panel C: 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

U_𝐻𝐹𝑇_𝑆𝑖,𝑡  1.552*** 

(31.38) 

            1.534*** 

(23.86) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     -0.085*** 

(-3.57) 

          -0.001 

(-0.49) 

𝑂𝐿𝑉𝑖,𝑡      -0.052 

(-1.21) 

        -0.006 

(-0.79) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         1.439*** 

(6.04) 

      0.082 

(0.50) 

𝑄𝑇𝑖,𝑡           1.054*** 

(3.47) 

    0.022 

(0.71) 

𝑀𝐺𝑖,𝑡              1.458*** 

(6.01) 

 -0.070 

(-0.39) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   90%  0.3%  0.1%  60%  25%   61%  95% 
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Panel D: 𝑁𝐴𝑆𝐷_𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡      

  (i) 

 

 (ii) 

 

 (iii) 

 

 (iv) 

 

 (v)    (vi)  (vii) 

U_𝐻𝐹𝑇_𝐷𝑖,𝑡  1.167*** 

(27.10) 

            1.146*** 

(16.68) 

𝐹𝑙𝑖𝑐𝑘𝑖,𝑡     -0.067*** 

(-3.82) 

          -0.002 

(-1.62) 

𝑂𝐿𝑉𝑖,𝑡      -0.038 

(-1.06) 

        -0.005 

(-0.28) 

𝑄𝑢𝑜𝑡𝑒𝐼𝑛𝑡𝑖,𝑡         1.130*** 

(7.68) 

      0.245 

(1.55) 

𝑄𝑇𝑖,𝑡           0.710*** 

(3.33) 

    0.022 

(0.95) 

𝑀𝐺𝑖,𝑡              1.144*** 

(7.63) 

 -0.226 

(-1.32) 

Stock and Day FE  Yes  Yes  Yes  Yes  Yes   Yes  Yes 

N obs.  14,238  14,238  14,238  14,238  14,238   14,238  14,238 

𝑅2   92%  0.4%  0.1%  70%  22%   71%  94% 
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Table OA.D.2 

Impact of exchange technological changes on HFT activity 

This table examines how our ML-generated unscaled HFT measures respond to two technological changes: 

NASDAQ’s reduced data dissemination latency and Amex’s speed bump implementation. We estimate the 

following difference-in-difference models: 

  
                        U_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡

𝑘 𝐶𝑖,𝑡
𝑘 +  𝜀𝑖,𝑡

4
𝑘=1                                                    (OA.6.1) 

                       U_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                                      (OA.6.2) 

     U_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑡 +  𝛾1𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 + ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡
4
𝑘=1                                     (OA.6.3) 

     U_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾2𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1                                      (OA.6.4) 

 

where U_𝐻𝐹𝑇_𝐷𝑖,𝑡 and U_𝐻𝐹𝑇_𝑆𝑖,𝑡 represent the ML – generated unscaled liquidity – demanding and – supplying 

HFT activities for stock 𝑖 on day 𝑡. 𝛼𝑖 and 𝛽𝑡 capture stock and day fixed effects, respectively. For the NASDAQ 

upgrade analysis (Models OA.6.1 and OA.6.2), 𝑃𝑜𝑠𝑡𝑖,𝑡 equals 1 after October 10, 2011, for NASDAQ-listed 

stocks with tickers A-B, and after October 17, 2011, for other NASDAQ stocks. NYSE and Amex stocks serve as 

control groups in these models. For the Amex speed bump analysis (Models OA.6.3 and OA.6.4), 𝑃𝑜𝑠𝑡𝑖,𝑡 equals 

1 after July 24, 2017, and 𝐴𝑚𝑒𝑥𝑖,𝑡 equals 1 for Amex-listed stocks. NYSE and NASDAQ stocks serve as control 

groups in these models. Control variables (𝐶𝑖,𝑡
𝑘 ) include daily volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡, standard deviation of 

transaction-level returns), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, daily average of (ask-bid)/(0.5×(ask+bid) for each 

transaction), inverse price (𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡), and dollar trading volume (𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡). The analysis uses 10-working 

day windows around implementation dates. Panel A reports results for the NASDAQ upgrade and Panel B for the 

Amex speed bump. Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, **, and 

*** indicate significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2. 

 

  Panel A: NASDAQ upgrade  Panel B: Amex speed bump 

  (i) 

U_𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (ii) 

 U_𝐻𝐹𝑇_𝑆𝑖,𝑡 

 (iii) 

 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (iv) 

  𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑡 

𝑃𝑜𝑠𝑡𝑖,𝑡 

 

 1.055*** 

(2.79) 

 1.347** 

(2.27) 

    

𝑃𝑜𝑠𝑡𝑖,𝑡 ∗ 𝐴𝑚𝑒𝑥𝑖,𝑡 

 

     -0.977** 

(-2.27) 

 -0.696** 

(-1.98) 

Controls  Yes  Yes  Yes  Yes 

Stock and Day FE  Yes  Yes  Yes  Yes 

N obs.  43,234  43,234  45,530  45,530 

𝑅2   29%  18%  59%  49% 
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Table OA.D.3 

HFT response to latency arbitrage opportunities 

This table examines how our ML-generated unscaled HFT measures respond latency arbitrage opportunities using 

the following OLS models: 

U_𝐻𝐹𝑇_𝐷𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 +  𝛾1𝑁𝐿𝐴𝑂𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 +  𝜀𝑖,𝑡
4
𝑘=1  

                                       U_𝐻𝐹𝑇_𝑆𝑖,𝑡 = 𝛼𝑖 +  𝛽𝑡 + 𝛾2𝑁𝐿𝐴𝑂𝑖,𝑡 +  ∑ 𝛿𝑖,𝑡
𝑘 𝐶𝑖,𝑡

𝑘 + 𝜀𝑖,𝑡
4
𝑘=1  

where U_𝐻𝐹𝑇_𝐷𝑖,𝑡 and U_𝐻𝐹𝑇_𝑆𝑖,𝑡 represent the ML – generated unscaled liquidity – demanding and – supplying 

HFT activities for stock 𝑖 and day 𝑡. 𝛼𝑖 and 𝛽𝑡 capture stock and day fixed effects, respectively. 𝑁𝐿𝐴𝑂𝑖,𝑡 is the 

number of latency arbitrage opportunities, identified using the methodology detailed in Section 4.2. Control 

variables (𝐶𝑖,𝑡
𝑘 ) include daily volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡, standard deviation of transaction-level returns), relative 

quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡, daily average of (ask-bid)/(0.5×(ask+bid) for each transaction), inverse price 

(𝐼𝑛𝑣𝑃𝑟𝑖𝑐𝑒𝑖,𝑡), and dollar trading volume (𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡). Columns (i) and (ii) present the results for U_𝐻𝐹𝑇_𝐷𝑖,𝑡 and 

U_𝐻𝐹𝑇_𝑆𝑖,𝑡, respectively. The sample consists of 120 randomly selected NASDAQ- and NYSE-listed firms. 

Standard errors are double-clustered by stock and day, with t-statistics in brackets. *, **, and *** indicate 

significance at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2. 

 

  (i) 

U_𝐻𝐹𝑇_𝐷𝑖,𝑡 

 (ii) 

U_𝐻𝐹𝑇_𝑆𝑖,𝑡 

 

𝑁𝐿𝐴𝑂𝑖,𝑡  66.266*** 

(3.21) 

 -150.518** 

(-2.04) 

 

Controls  Yes  Yes  

Stock and Day FE  Yes  Yes  

N obs.  246,139  246,139  

𝑅2   39%  38%  
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Table OA.D.4 

HFT activity and information acquisition – jump ratio 

This table examines how HFT activity affects information acquisition using the following OLS model: 

𝐽𝑈𝑀𝑃𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑚,𝑞 + 𝛾1𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞 +  𝛾2𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞 + ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 +  𝜀𝑖,𝑡

4

𝑘=1
 

where 𝐽𝑈𝑀𝑃𝑖,𝑞 measures information acquisition for stock i as the ratio of cumulative abnormal returns over [-1, 

1] to cumulative abnormal returns over [-21, 1] around quarterly earnings announcements (q). 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞 and 

𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞 are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as 

averages of daily values over [-21, -1] around earnings announcements. Models include stock (𝛼𝑖) and month 

(𝛽𝑚,𝑞) fixed effects, respectively. Control variables (𝐶𝑖,𝑞
𝑘 ) all measured as averages of daily values over [-21, -1] 

around earnings announcements, include volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market 

value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞, price times shares outstanding), and institutional order imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞, price impact of 

trades over $20,000 from TAQ). The sample includes all U.S.-listed common stocks from 2010 to 2023. Standard 

errors are double-clustered by stock and quarter, with t-statistics in brackets. *, **, and *** indicate significance 

at 10%, 5%, and 1%. 𝑅2 values are within-𝑅2. 

 

  𝐽𝑈𝑀𝑃𝑖,𝑞 

𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞   0.042*** 

(9.82) 

𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞   -0.022*** 

(-5.99) 

Controls  Yes 
Stock and Month FE  Yes 
N obs.  49,515 

𝑅2   1% 
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Table OA.D.5 

HFT activity and information acquisition – FERC 

This table examines how HFT activity affects information acquisition using the following model: 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 = 𝛼𝑖 +  𝛽𝑞 +  ∑ (𝛾𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 +1
𝑛=−1 𝜗𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞 +

                                𝜃𝑛𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 ∗  𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞) + 𝜌1𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞 + 𝜌2𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞 + 𝜌3𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞+1 +

                                                                                                                                    𝜌4𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞−1 +  ∑ 𝛿𝑖,𝑞
𝑘 𝐶𝑖,𝑞

𝑘 + 𝜀𝑖,𝑞
4
𝑘=1                                  

where 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 is quarterly stock returns for firm 𝑖 in quarter 𝑞, measured as the percentage change in closing 

prices between quarters 𝑞 − 1 and 𝑞. 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+𝑛 denotes quarterly earnings (net income) normalized by the 

market value of equity at the start of quarter 𝑞 + 𝑛. The subscript 𝑛 ranges from -1 to 1. 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞 and 

𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞 are ML-generated unscaled liquidity-demanding and liquidity-supplying HFT activities, measured as 

the quarterly averages of daily values. Control variables (𝐶𝑖,𝑞
𝑘 ) all measured as quarterly averages of daily values, 

include volatility (𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑞), relative quoted spread (𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑞), market value (𝑀𝑉𝑎𝑙𝑢𝑒𝑖,𝑞, price times shares 

outstanding), and institutional order imbalance (𝑂𝐼𝐵20𝑘𝑖,𝑞, price impact of trades over $20,000 from TAQ). The 

sample includes all U.S.-listed common stocks from 2010 to 2023. Standard errors are double-clustered by stock 

and quarter, with t-statistics in brackets. *, **, and *** indicate significance at 10%, 5%, and 1%. 𝑅2 values are 

within-𝑅2. 

 

  𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑞 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝑈_𝐻𝐹𝑇_𝐷𝑖,𝑞  -0.003*** 

(6.56) 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑖,𝑞+1 ∗ 𝑈_𝐻𝐹𝑇_𝑆𝑖,𝑞  0.003*** 

(7.26) 

Controls  Yes 

Stock and Quarter FE  Yes 
N obs.  157,343 

𝑅2   4% 

 


