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Abstract

This paper develops a unified framework that links firm-level predictive signals,

cross-asset spillovers, and the stochastic discount factor (SDF). Signals and spillovers

are jointly estimated by maximizing the Sharpe ratio, yielding an interpretable SDF

that both ranks characteristic relevance and uncovers the direction of predictive in-

fluence across assets. Out-of-sample, the SDF consistently outperforms self-predictive

and expected-return benchmarks across investment universes and market states. The

inferred information network highlights large, low-turnover firms as net transmitters.

The framework offers a clear, economically grounded view of the informational archi-

tecture underlying cross-sectional return dynamics.
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1 Introduction

The central objective of empirical asset pricing is to identify firm-level signals that ex-
plain the cross-section of expected stock returns—whether through exposure to risk factors
or persistent mispricing. The dominant paradigm, grounded in the assumption of self-
predictability, asserts that a firm’s own characteristics forecast its own returns (see, e.g.,
Cochrane (2011); Harvey et al. (2016)). Complementing this view is a growing literature
on cross-predictability—the idea that the characteristics or returns of one asset can help
forecast the returns of others (see, e.g., Lo and MacKinlay (1990); Hou (2007); Cohen and
Frazzini (2008); Cohen and Lou (2012); Huang et al. (2021, 2022)). A key mechanism un-
derpinning this phenomenon is the presence of lead–lag effects, whereby price movements
or information from one firm precede and predict those of related firms. Such effects can
stem from staggered information diffusion, peer influence within industries, supply chain
linkages, or correlated trading by institutional investors that induces price pressure across
related assets.

Despite recent methodological advances in modeling cross-stock predictability, sev-
eral foundational questions remain unresolved. Chief among them is how a mean–variance
investor can analytically integrate multiple predictive signals when returns are intercon-
nected across assets. Equally crucial is developing a framework that jointly captures both
the relevance of individual signals and the structure of return spillovers—enhancing port-
folio performance while preserving interpretability.

This paper addresses these questions by proposing a unified and systematic frame-
work for constructing maximum–Sharpe ratio strategies. We combine firm-level signals
through a flexible weighting vector (the signal-aggregation vector Λ) and model cross-
asset spillovers using a structured connection matrix (the spillover matrix Ψ). The resulting
optimal strategy admits a transparent analytical characterization. This formulation natu-
rally connects to the stochastic discount factor (SDF; see Hansen and Jagannathan (1991);
Cochrane (2009); Back (2017)), which, in this context, takes the form of a single factor that
prices the cross-section of returns.

An important distinction in the asset pricing literature lies between conditional and
unconditional Sharpe ratio optimization. As emphasized by Hansen and Richard (1987),
conditional optimization targets the best return–risk trade-off at each point in time us-
ing the information then available, whereas unconditional optimization maximizes this
trade-off in expectation using long-run moments.1 Our framework follows the latter ap-

1See also Lewellen and Nagel (2006), who emphasize the distinction between conditional and uncondi-
tional beta pricing.
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proach: while it incorporates time-varying signals—such as firm characteristics and cross-
asset linkages—the stochastic discount factor is optimized to perform well on average over
time. This orientation prioritizes long-horizon performance over period-by-period effi-
ciency, yielding strategies that are transparent, robust, and empirically grounded.

While the analytical formulation provides a population-level characterization of the
Sharpe-optimal SDF, our empirical implementation uses a regression-based procedure tai-
lored for high-dimensional applications. We build on the approach of Britten-Jones (1999)
and employ ridge-type regularization—with a single tuning parameter λ chosen by five-
fold cross-validation—to estimate both the signal weights and the connection matrix. This
method converges to the theoretical solution in large samples while enhancing numeri-
cal stability and interpretability. Unlike expected return-maximization—which, under cer-
tain specifications, can lead to extreme concentration in a single predictor—Sharpe ratio-
maximization encourages diversification across signals, thereby enhancing robustness and
practical relevance.

To build intuition, we start with a low-dimensional toy example using five well-known
firm characteristics and nine portfolios sorted by size and book-to-market. This simplified
setting enables us to illustrate the estimated signal weights, cross-asset linkages, and result-
ing trading strategy in full detail. We evaluate performance with a rolling out-of-sample
procedure, re-estimating the strategy each month using the prior 10 years of data. Even
in this controlled environment, the maximum–Sharpe ratio strategy based on cross-stock
predictability attains an annualized Sharpe ratio of 1.22, compared with 0.60 for the self-
predictive benchmark—an improvement driven simultaneously by cross-asset spillovers,
shifts in signal relevance, and their interaction.

We then scale the framework to a comprehensive empirical setting using 138 firm-
level signals from the Jensen et al. (2023) dataset. Our primary investment universe con-
sists of 138 univariate spread portfolios spanning 1963–2023. We also consider a broader
set of 544 bivariate portfolios sorted by firm size and a secondary characteristic. Apply-
ing the same rolling 10-year estimation scheme, the maximum–Sharpe ratio (MS) strategy
attains annualized Sharpe ratios of 2.21 and 3.32 on the spread and bi-sort portfolios, re-
spectively—consistently outperforming both self-predictive benchmarks and maximum-
expected return (MR) strategies. Specifically, the Sharpe ratio of our cross-predictive SDF
strategy exceeds that of a self-predictive Sharpe ratio–maximizing benchmark by 0.79 on
spread portfolios and more than 1.26 on bi-sorted portfolios—translating into economi-
cally meaningful gains in certainty-equivalent returns. Moreover, compared to expected
return–maximizing strategies, our Sharpe ratio–maximizing SDF improves risk-adjusted
performance by factors of 4–10, depending on the investment universe and market regime.
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To assess robustness, we evaluate performance across different market environments.
We split the test sample by investor sentiment and by volatility regimes based on the VIX
index. The Sharpe ratio–maximizing strategy maintains strong performance across all sub-
samples. For example, in high-sentiment periods, the strategy delivers a Sharpe ratio of
2.19 on spread portfolios and 3.58 on bi-sort portfolios. Even in low-sentiment or high-
volatility regimes—conditions that typically challenge individual anomaly-based strate-
gies—the strategy sustains Sharpe ratios above 2. These results contrast with the more
state-dependent performance of expected return–maximizing portfolios.

The SDF defines a single factor that, ex ante, prices the cross-sectional variation in
expected returns of the test assets. We evaluate whether this factor’s payoffs are priced
by leading asset pricing models and find sizable, statistically significant alphas relative
to a broad set of benchmarks. These include the liquidity factor Pastor and Stambaugh
(2003), the Fama–French five-factor model Fama and French (2015), the q-factors Hou et al.
(2015), the mispricing factors Stambaugh and Yuan (2017), the behavioral factors Daniel
et al. (2020), and a comprehensive fourteen-factor model. Across all specifications, the
strategy delivers alphas of about 0.25% per month with t-statistics above 11, indicating
that the return variation embedded in cross-asset spillovers is not captured by existing
models.

Upon optimizing the Sharpe ratio, we uncover the underlying economic drivers of
return predictability. By examining the estimated weights assigned to firm-level charac-
teristics, we find that the most influential predictors cluster in the categories of invest-
ment, value, and profitability, with signals such as liquidity of book assets, dividend yield,
and return on equity consistently receiving the highest weights. In contrast, return-based
signals—including momentum, short-term reversal, and seasonality—exhibit persistently
low weights. This pattern suggests that the cross-predictive SDF is primarily anchored in
stable firm fundamentals rather than transitory market signals.

In optimizing the Sharpe ratio, we also obtain a connection matrix, denoted by Ψ, that
encodes the predictive relationships across stocks. Each entry Ψi,j reflects the extent to
which signals from asset i forecast the returns of asset j, while diagonal elements represent
self-predictive strength. Empirically, the average off-diagonal entry is substantial—often
exceeding the average diagonal—indicating that cross-asset predictive linkages carry more
information than self-predictive signals alone. Aggregating rows and columns of the ma-
trix following Diebold and Yılmaz (2014), we uncover a directional structure: certain stocks
consistently act as net transmitters of predictive signals, while others serve primarily as net
receivers. Transmitters are typically large and low-turnover, whereas receivers tend to be
smaller, high-turnover stocks with characteristics such as value orientation, high profitabil-
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ity, low investment activity, and strong past returns.
It is worth noting that the Sharpe ratio of the cross-predictive strategy is time-varying

and declines notably after 2000. In the 1990s, the strategy delivers exceptional performance,
with Sharpe ratios exceeding 2 on spread portfolios and above 4 on bi-sort portfolios. How-
ever, performance attenuates in the post-2000 period, mirroring the broader decline in self-
predictability. For instance, Green et al. (2017) document that many anomaly portfolios
become less profitable after 2003, attributing the decline to the widespread adoption of
anomaly-based strategies, improved market liquidity, and the growth of passive ETF in-
vesting.

Despite this attenuation, the proposed strategy maintains strong performance from
2000 to 2023, achieving Sharpe ratios of 1.58 (spread portfolios) and 2.21 (bi-sort portfo-
lios)—substantially higher than those of standard benchmark factors: 0.41 (market), 0.27
(size), 0.20 (value), 0.54 (profitability), 0.43 (investment), and 0.09 (momentum). By the
end of 2023, five-year trailing Sharpe ratios decline to approximately 1.2 for the spread and
bi-sort strategies, yet both remain consistently superior to traditional benchmarks even in
recent years.

The paper proceeds as follows. Section 2 presents the econometric framework. Sec-
tion 3 outlines the estimation methodology. Section 4 describes the data. Section 5 reports
the empirical findings. Section 6 concludes.

2 Econometric Framework

We consider an investment universe consisting of N risky assets. At each time t, the
investor observes a signal matrix St ∈ RN×M , where each row corresponds to one asset
and contains M predictive characteristics (e.g., size, valuation, profitability, investment,
past returns). Each column of St is cross-sectionally standardized to have zero mean and
unit variance. Although our framework allows for a time-varying number of assets, the
empirical analysis focuses on a fixed cross-section of sorted portfolios. We define t = 1 as
the first period in which signals are observed, and t = T + 1 as the final period in which
asset returns are realized.

2.1 Trading Strategy

A linear strategy that incorporates multiple signals and cross-predictability is specified
as

ω′
t = Λ′ S ′

tΨ, (1)
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where ωt ∈ RN denotes the portfolio weights, Λ ∈ RM assigns loadings to each signal,
and Ψ ∈ RN×N encodes how signals from one asset influence positions across all assets.
Specifically, the weight on asset i is determined by multiplying Λ′, S ′

t, and the ith column
of Ψ, allowing all signals in St to contribute to each asset’s position. The element Ψi,j

quantifies the predictive impact of asset i’s signals on asset j.
Relative to Brandt et al. (2009), who model portfolio weights as a function of firm-

specific attributes, our framework generalizes the approach by allowing economically mean-
ingful cross-asset spillovers to shape portfolio allocations. Moreover, although we focus on
linear strategies, the framework readily accommodates nonlinear extensions by enriching
the signal matrix with polynomial or Fourier-based transformations. For instance, one can
construct an expanded signal matrix of dimension N×MP , where the first N×M block cor-
responds to the original St, the second to its elementwise square, and subsequent blocks to
higher-order transformations up to the P th power. Importantly, such extensions preserve
the dimension of the Ψ matrix, while the Λ vector expands accordingly to accommodate
the enlarged set of predictors—including higher-order powers of the original signals. We
leave the formal development and empirical implementation of such nonlinear extensions
to future research.

We construct managed-portfolio returns in excess of the risk-free rate by interacting
future returns with the current values of predictive signals:

Πs =
(
IN ⊗ rs

)
St, (2)

where Πs is an N2 × M matrix of managed-portfolio returns, IN is the N × N identity
matrix, rs is a vector of N excess returns realized at time s > t, and ⊗ denotes the Kronecker
product.

The expected returns on these managed-portfolios are then defined as Π = E
[
Πs

]
.

Additionally, define
Φ = vec

(
Ψ′), (3)

so that Φ ∈ RN2 . The vectorized Φ and the matrix Π streamline later expressions for port-
folio outcomes.

To aid interpretation, limit extreme equity positions, and stabilize estimation, we im-
pose Euclidean norm constraints on key parameters. Specifically, we set

Λ′Λ = 1, Φ′Φ = 1, (4)

where the Euclidean norm constraint on the vector Φ is equivalent to a Frobenius norm
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constraint on the matrix Ψ. From a Bayesian perspective, these constraints correspond to
zero-mean Gaussian priors on Λ and Φ, inducing ridge-type regularization that penalizes
large parameter values.

Proposition 1 formulates the realized return of the strategy in a convenient form, along
with the expected return and Sharpe ratio. Appendix A provides the proof.

Proposition 1. The investment metrics are as follows:

• The realized and expected returns can be expressed as

πs = Λ′ΠsΦ, (5)

E(πs) = Λ′ΠΦ. (6)

• The square of the Sharpe Ratio (SR2) is given by the following two equivalent expressions:

SR2 =
Λ′AΦΛ

Λ′BΦΛ
, (7)

SR2 =
Φ′AΛΦ

Φ′BΛΦ
. (8)

Here, AΦ = Π′ΦΦ′Π, BΦ = (Φ′ ⊗ IM)ΣΦ(Φ⊗ IM), ΣΦ is the covariance matrix of vec(Π′
s),

and IM is the identity matrix of order M . Similarly, AΛ = ΠΛΛ′Π′, BΛ = (Λ′ ⊗ IN2) ΣΛ (Λ⊗ IN2),
ΣΛ is the covariance matrix of vec(Πs), and IN2 is the identity matrix of order N2.

We offer several remarks regarding Proposition 1.
First, our empirical analysis primarily focuses on maximizing the Sharpe ratio, using

expected return-maximization as a benchmark for comparison. While both objectives rely
on the same expressions for expected returns, they lead to different optimal estimates for
the signal weight vector Λ and the vectorized connection matrix Ψ. In particular, expected
return-maximization reduces to a bilinear optimization problem with closed-form solu-
tions, whereas Sharpe ratio-maximization entails solving a generalized eigenvalue prob-
lem via an iterative procedure.

Importantly, maximizing the squared Sharpe ratio necessitates the use of both repre-
sentations of the Sharpe ratio provided in Proposition 1 when estimating the optimal val-
ues of Λ and Φ. Explicit solutions for both the expected return and Sharpe ratio-maximization
problems are presented later in the paper.

Second, Proposition 1 makes extensive use of the vectorized form of Ψ, which fully
retains the cross-predictive structure embedded in Ψ. As a result, the information con-
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tent relevant for cross-predictability is entirely preserved in Φ, ensuring that the resulting
strategy remains grounded in the same underlying predictive relationships.

Third, the expression for investment return offers an intuitive economic interpretation
of our trading strategy. Recall that Π denotes the matrix of managed-portfolio expected
returns, with each of its N2 rows representing the expected value of one asset’s return
multiplied by one of the M signals across the N assets. Under the normalization E[St] = 0,
Π simplifies to the covariance matrix between future asset returns and contemporaneous
signal values. If characteristic m of stock j helps predict the future return of stock i, the
corresponding element of Π will be nonzero, reflecting this predictability.

Thus, in this framework, Λ assigns relative weights to signals, Φ encodes cross-asset
interactions, and together they operate on the matrix Π to optimize investment metrics.

Fourth, the expected return of the trading strategy can alternatively be expressed as

E(πs) =
M∑

m=1

Λmµm, (9)

where µm =
∑N2

p=1ΠpmΦp represents a weighted combination of portfolio expected returns,
with Πpm denoting the expected return of the corresponding managed-portfolio and Φp

capturing the strength of the p-th relationship within the strategy.
This expected-return expression is informative because it demonstrates that, whether

subject to an L1 constraint or left unconstrained, the optimal solution is a corner solution:
the trading strategy is entirely driven by the predictor with the largest absolute value of µm,
denoted predictor j, with |Λj| = 1 and all other elements of Λ equal to zero. In contrast,
under an L2 constraint, the optimal Λ (given Φ) is proportional to the M -vector that collects
the µm values. By comparison, Sharpe ratio-maximization effectively harnesses the benefits
of diversification across predictors, assigning meaningful weight to multiple signals.

In the context of expected return-maximization, He et al. (2024) extend the principal
portfolios framework of Kelly et al. (2023) from a single-signal to a multi-signal setting by
introducing a three-dimensional prediction tensor. Our study should not be viewed as a
multi-predictor extension of principal portfolios. Rather, we propose a framework that dif-
fers in both econometric structure and economic objective. From a modeling standpoint,
we focus on a two-dimensional matrix Π, where one dimension captures multiple signals
and the other encodes cross-predictive relationships across assets. From an economic per-
spective, the proposed methodology is explicitly designed to flexibly optimize the Sharpe
ratio.

Fifth, the realized return πs of the maximum-Sharpe ratio portfolio is proportional to
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the stochastic discount factor (SDF), as implied by the fundamental asset pricing identity
(Hansen and Jagannathan, 1991; Cochrane, 2009; Back, 2017):

Ms = 1− ω′rs, with E[Msrs] = 0, (10)

where Ms denotes the pricing kernel and ω is the vector of slope coefficients. Identifying
the true ω is challenging in finite samples due to the “limits to learning” highlighted by
Didisheim et al. (2024). While the literature has proposed various estimators of the SDF,
our approach introduces a novel proxy that explicitly captures cross-asset spillovers, dis-
tinguishing it from prior work.

Sixth, Kelly et al. (2023) focus on expected return-maximization and propose an alpha-
beta decomposition: the antisymmetric and symmetric components of the prediction ma-
trix yield the principal alpha and principal exposure portfolios, respectively. Although
our expected return-maximizing strategy can be cast within this framework, our Sharpe
ratio-maximizing strategy—by construction—excludes alpha, consistent with the SDF in-
terpretation in Equation (10).

Empirically, we demonstrate that expected return-maximizing and Sharpe ratio-maximizing
strategies—both accounting for cross-asset spillovers—lead to substantially different out-
comes. The Sharpe ratio-maximizing strategy consistently delivers significantly higher
Sharpe ratios across the full sample, as well as during both expansion and contraction
periods.

Next, sorting assets by the estimated weights surfaces the portfolio’s informational
backbone: it ranks assets by how much they raise the strategy’s risk-adjusted payoff. High-
ranked (large-weight) assets are those that sharpen the payoff of the pricing kernel in three
complementary ways: they carry economically meaningful fundamentals; they occupy ad-
vantageous positions in the web of cross-asset co-movements that let the portfolio harness
spillovers; and they help balance the residual risks created elsewhere in the strategy. An as-
set can rank highly even if its own return is not strongly predictable—when it acts as a con-
duit that improves how the portfolio captures cross-asset structure or when it completes the
diversification needed to express valuable payoff directions more cleanly. Lower-ranked
assets contribute less to efficiency either because their information is largely redundant or
because they add volatility without commensurate benefit.

Finally, as shown in Appendix B, the connection matrix Ψ closely aligns with the pro-
jection of stock returns onto the distinct elements of the signals.
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2.2 Zero-Cost and Leverage Constraints

Up to this point, we have only imposed norm constraints on the strategy’s positions.
However, empirical asset pricing typically requires a trading strategy, factor, or anomaly
to take the form of a long-short portfolio—that is, to be zero-cost with total leverage equal
to two.

The following proposition imposes this zero-cost constraint on the strategy.

Proposition 2. A zero-cost trading strategy can be expressed as follows:

ω′
t = Λ′S ′

tΨ− 1

N
Λ′S ′

tΨA, (11)

= Λ′S ′
tΨΘ, (12)

where A is an N ×N matrix, with each element set to one, and Θ = IN − 1
N
A.

Notice that ω′
tιN = 0, where ιN is an N -vector of ones. Fortunately, all previous deriva-

tions remain valid under the zero-cost constraint.
The necessary modifications are as follows. Define Πsi = Θ(rsS

′
it) for each i = 1, 2, . . . , N ,

and construct Πs by vertically stacking Πsi. All investment metrics in Proposition 1 can then
be re-derived under the zero-cost constraint.

In Appendix C, we demonstrate that the zero-cost constraint reduces the expected
profitability of the trading strategy. However, this constraint is essential for ensuring com-
parability across strategies.

In our empirical analyses, we primarily focus on zero-cost strategies, where the long
and short positions are of equal magnitude by construction. To further ensure comparabil-
ity, we rescale these positions so that total portfolio leverage equals two. This adjustment
aligns our strategies with standard practice in the literature (e.g., Fama and French, 1993).

3 Estimating the Unknown Parameters

We provide methods for estimating the unknown parameters underlying the trading
strategy.

3.1 Maximizing Expected Return

The following proposition presents the solution for the strategy that maximizes ex-
pected return.
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Proposition 3. By the Singular Value Decomposition (SVD), Π can be decomposed as

Π = UΛΠV
′, (13)

where U is an N2 × N2 orthogonal matrix, ΛΠ is an N2 ×M diagonal matrix of singular values,
and V ′ is an M ×M orthogonal matrix.

The estimated parameters that maximize expected returns are given by

Λ̂ = V (:, 1), (14)

Φ̂ = U(:, 1). (15)

These estimates correspond to the first singular vectors from the matrices V and U ,
respectively. This choice ensures that the optimal trading strategy leverages the directions
that capture the greatest variance in the prediction matrix Π, thereby extracting the most
informative signal structure. Importantly, Λ̂ and Φ̂ are obtained from the singular value
decomposition of the sample-based matrix Π, and should therefore be interpreted as em-
pirical estimators rather than population parameters.

3.2 Maximizing Sharpe Ratio

The following propositions formulate the estimates that maximize the squared Sharpe
ratio. Appendix D provides the proof and detailed derivations.

Proposition 4. Assume that Φ is given. Based on (7), define

CΦ = B−1
Φ AΦ. (16)

The optimal Λ is the principal eigenvector Λmax of the eigenvalue problem

CΦ Λ = λΛ. (17)

Similarly, assume Λ is given. Based on Equation (8), define CΛ = B−1
Λ AΛ. The optimal value

for Φ is the largest eigenvector Φmax of the following eigenvalue problem:

CΛΦ = λΦ. (18)

The optimal solutions for Λ and Φ are obtained by iteratively applying these two equations
until convergence. We further rescale each solution to have unit norm.
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In this way, we utilize both alternative expressions for the Sharpe ratio in Proposition
1 to iteratively estimate the optimal parameters Λ and Φ. However, the eigenvalue prob-
lems in (17) and (18) require computing the inverse of large matrices, which is challenging
in high-dimensional settings. To address this, we propose the following proposition to
iteratively estimate Λ and Ψ.

Proposition 5. Consider a set of managed-portfolios χΦ of dimension T ×M :

χΦ =


(χΦ)

′
2

(χΦ)
′
3

...
(χΦ)

′
T+1

 , (19)

where
(χΦ)s = Π′

sΦ. (20)

The problem in (17) is essentially an asset-allocation exercise: it seeks to maximize the squared
Sharpe ratio by investing in χΦ composed of M assets. This is equivalent to estimating Λ as the
mean-variance efficient portfolio weights.

Following Britten-Jones (1999), the estimate of Λ is obtained from the following regression:

1 = χΦΛ + u, (21)

where 1 is a T -vector of ones and T denotes the sample size. To handle high-dimensional settings,
we adopt ridge regression (Kelly and Xiu, 2023; Shen and Xiu, 2024). The estimator for Λ is then
given by:

Λ̂ = (χ′
ΦχΦ + λIM)−1χ′

Φ1, (22)

where λ is a Ridge-type parameter that shrinks the regression coefficients towards zero.
Similarly, we define a set of managed-portfolios χΛ of dimension T ×N2:

χΛ =


(χΛ)

′
2

(χΛ)
′
3

...
(χΛ)

′
T+1

 , (23)

where
(χΛ)s = ΠsΛ. (24)
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The problem in (18) is another asset allocation exercise: it seeks to maximize the squared Sharpe
ratio by investing in χΛ. The estimator for Φ is

Φ̂ = (χ′
ΛχΛ + λIN2)−1χ′

Λ1. (25)

We highlight several key aspects of Sharpe ratio-maximization.
First, the preceding propositions recast the problem as a managed-portfolio optimiza-

tion, yielding the optimal weights for the tangency portfolio—or equivalently, for the stochas-
tic discount factor (SDF).

Second, we impose a common ridge penalty λ when estimating both Λ and Φ, thereby
enforcing uniform shrinkage across all components. This shared regularization parameter
simplifies exposition, enhances replicability, and mitigates overfitting in finite samples. We
implement the five-fold cross-validation scheme to select λ dynamically.

Third, although the generalized eigenvalue solution provides a population-level char-
acterization of the Sharpe ratio-maximizer, in practice we replace the unknown moment
matrices with their sample analogues and apply the same ridge penalty. Rather than solv-
ing a generalized eigenvalue problem directly, we cast the estimation as a single ridge-
penalized regression. This approach recovers the optimal SDF direction in finite samples,
improves numerical stability by shrinking weights on weak or collinear signals, and avoids
the computational burden of eigendecomposition. The resulting weight vector exactly co-
incides with the theoretical maximizer under the ridge-regularized sample formulation.

Fourth, the solution to the Sharpe ratio-maximizing strategy can be interpreted as a
regularized linear combination of the principal components (PCs) of the matrix Π, with
both Λ and Φ estimated via ridge regressions on projected versions of Π. Unlike expected
return-maximizing approaches that primarily load on the leading PCs, this strategy opti-
mizes portfolio weights across the full spectrum of PCs. As a result, it captures predictive
signals even in low-variance directions—consistent with the findings of Kelly et al. (2025)—
and achieves superior risk-adjusted performance.

Fifth, our methodology for estimating the stochastic discount factor offers a distinct
contribution to recent advances that emphasize firm characteristics (e.g., Kelly et al. (2019);
Lettau and Pelger (2020); Chen et al. (2024); Feng et al. (2024); Didisheim et al. (2024); Cong
et al. (2025); Liu et al. (2025)). Unlike these approaches that treat assets independently, we
incorporate structured cross-asset dependencies. This not only enhances empirical perfor-
mance in out-of-sample tests but also yields a more interpretable economic narrative for
how information propagates across securities.

Cross-asset dependencies are also central to recent transformer-based approaches in
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asset pricing, which leverage multi-headed attention mechanisms to extract and aggregate
predictive signals across assets. For instance, Cong et al. (2022) introduce AlphaPortfolio, a
deep reinforcement learning framework with cross-asset attention networks (CAAN) that
model interdependencies among securities. Similarly, the AIPM framework of Kelly et al.
(2024) embeds transformer architectures within the SDF, showing that nonlinear informa-
tion sharing across assets can significantly improve empirical performance.

While these transformer models offer substantial modeling flexibility, our framework
provides a complementary linear alternative that emphasizes transparency and interpretabil-
ity. We capture cross-asset spillovers through a connection matrix Ψ, where each element
Ψi,j quantifies the predictive influence of asset i’s signals on asset j’s returns. Although
related to the linear surrogate of the transformer, our approach differs in a key respect. The
linear transformer models the attention matrix as a function of asset-level signals, requir-
ing estimation of O(M3) parameters, where M denotes the number of characteristics. In
such setups, signal relevance and cross-asset dependencies are entangled within the signal
space.

By contrast, we disentangle these two components: signal relevance is captured by
a vector Λ, while cross-asset connections are modeled separately via Ψ. This separation
reduces parameter complexity to O(M + N2), promotes computational efficiency, enables
straightforward replication, and delivers an economically interpretable decomposition of
predictive strength and cross-asset signal spillovers.

4 Data

Our dataset combines monthly stock returns from the Center for Research in Security
Prices (CRSP), accounting variables from Compustat, and analyst coverage and earnings
forecasts from the Institutional Brokers’ Estimate System (IBES). We assume that quarterly
and annual financial statements from Compustat become publicly available four months
after the end of the corresponding fiscal quarter. The full sample spans January 1963 to De-
cember 2023. Out-of-sample evaluation begins in February 1973, with estimation windows
based on rolling samples of the most recent 120 monthly observations.

4.1 Predictive Characteristics

We employ 138 firm-level signals across 13 characteristic themes: Accruals, Debt Is-
suance, Investment, Leverage, Low Risk, Momentum, Profit Growth, Profitability, Quality,
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Seasonality, Size, Short-Term Reversal, and Value. These signals originate from Jensen et al.
(2023).2

4.2 Spread Portfolios

For each of the 138 signals, we sort stocks into terciles each month and compute high-
minus-low factor returns. To form factor-level signals, we aggregate stock-level signals
into corresponding factor portfolios. Returns and signals are value-weighted by market
equity, with individual market-equity weights winsorized at the 80th percentile of NYSE
capitalization, following the data providers’ recommendations.

4.3 Bivariate Sorting on Size and Other Characteristics

We also construct bivariate sorted portfolios to serve as alternative investment uni-
verse. First, stocks are sorted into two size groups (big vs. small) based on market equity.
Independently, each signal sorts stocks into three groups (high, medium, low). Cross-
classifying these sorts produces six portfolios; we retain only the high and low portfolios
for each size group, resulting in four portfolios per signal. As with the spread portfo-
lios, returns and signals are capped-value-weighted by winsorized market equity. We omit
the bivariate portfolios for the characteristic ami_126d due to missing returns in 2023.
Moreover, since size already plays a role in the sorting procedure, we consider a total of
136× 4 = 544 portfolios.

Thus, we consider two investment universes: one constructed from univariate sorts
comprising 138 spread portfolios, and the other from bivariate sorts comprising 544 port-
folios. Each portfolio is associated with a time series of returns and 138 signal observations.

2We use the “Global Stock Returns and Characteristics” dataset under “Contributed Data Forms” on
WRDS: https://wrds-www.wharton.upenn.edu/pages/get-data/contributed-data-forms/
global-factor-data/. Table IA.II of Jensen et al. (2023) details the signal definitions and references. Of
the original 153 signals, we exclude 15 that begin after 1963 to satisfy the sample-coverage requirements of
Kelly et al. (2023). We apply standard filters to retain only observations with: (i) excntry = “USA”, (ii) CRSP
shrcd ∈ {10, 11}, (iii) CRSP exchcd ∈ {1, 2, 3}, and (iv) non-missing monthly excess return (ret_exc) and
next-month excess return (ret_exc_lead1m). Each characteristic is standardized to have a mean of zero
and a standard deviation of one.
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5 Results

5.1 An Illustrative Toy Example

To build intuition for the proposed framework, we construct a low-dimensional toy
dataset comprising five firm characteristics—market equity (ME), book-to-market ratio
(BM), operating profits to lagged book equity (OP), asset growth (INV), and 12-month mo-
mentum (MOM)—and nine portfolios formed by a 3× 3 sort on ME and BM (ranging from
ME1×BM1 to ME3×BM3).

This simplified setup allows us to explicitly report the estimated low-dimensional pa-
rameters Λ and Ψ, as well as the weight vector ω. It also enables a comparison of key
performance metrics for: (i) strategies subject to unit-norm constraints without an explicit
zero-cost requirement; and (ii) zero-cost strategies with total leverage constrained to two.

We implement expected return and Sharpe ratio-maximizing strategies, as formulated
in sections 2 and 3. These strategies, which target different objectives, yield notable differ-
ences in parameter estimates and performance outcomes. Table 1 summarize the monthly
average returns, monthly standard deviations, and annualized Sharpe ratios for each strat-
egy over the out-of-sample period from February 1973 to December 2023.

The first two rows of the table consider the case in which the zero-cost assumption is
not imposed. The results show that the strategy maximizing expected return (MR Cross)
delivers a high average monthly return of 5.56%, but with substantial volatility (standard
deviation of 61.9%), yielding a Sharpe ratio of just 0.31.

The Sharpe ratio-maximizing strategy (MS Cross) attains a mean return of 2.36% and
a much lower volatility (9.78 %), yielding a Sharpe ratio of 0.84. Consequently, a mean–
variance investor would find the Sharpe ratio-maximizing strategy considerably more at-
tractive, whereas an investor solely targeting expected returns would prefer the expected
return-maximizing strategy. Thus far, the out-of-sample performance aligns closely with
the ex ante investment objectives.

Next, we consider a strategy that maximizes the Sharpe ratio using self-prediction to
isolate the incremental contribution of cross-predictive relations relative to self-predictive
relations. The key distinction between these two strategies lies in the structure of the
connection matrix Ψ. Under cross-prediction, Ψ is a full 9 × 9 matrix, capturing all pair-
wise interactions among the characteristics and returns of assets. In contrast, under self-
prediction, Ψ is restricted to its diagonal terms.

The second and third rows of Table 1 report the performance of the Sharpe ratio–maximizing
strategies under cross-prediction and self-prediction, respectively. The cross-prediction
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strategy (MS Cross) delivers a Sharpe ratio of 0.84 with a mean return of 2.36%, whereas
the self-prediction variant (MS Self) achieves a lower Sharpe ratio of 0.60 and the lowest
mean return of 1.31% . This gap in both risk-adjusted and absolute returns illustrates the
incremental benefit of incorporating cross-predictive relationships beyond self-prediction
alone, underscoring the pivotal role of cross-predictive dynamics in enhancing portfolio
performance.

To provide further economic perspective on the value of accounting for cross-stock
predictability, we compute the certainty equivalent return of the investment strategies. The
certainty equivalent is defined as CE = µ − γ

2
σ2, where µ and σ are the expected return

and volatility of the strategy, respectively, and the risk aversion parameter γ is set to 2.
Accounting for cross-predictability, the certainty equivalent rate of return is approximately
16.84% per year—8.00% higher than that of self-predictability—indicating economically
significant gains.

We next maximize expected return and Sharpe ratio under the zero-cost and leverage-
two constraints. The fourth and fifth rows of Table 1 report these constrained strategies,
confirming that imposing the zero-cost restriction reduces expected returns for both objec-
tives. Nevertheless, even with zero cost and fixed leverage, the Sharpe ratio–maximizing
strategy outperforms the expected-return–maximizing strategy, delivering a higher mean
return (0.50% vs. 0.49%) and a substantially higher Sharpe ratio (1.22 vs. 0.53).

To provide additional insight into cross-prediction and self-prediction strategies, Ta-
ble 2 reports the estimated values of Λ, Ψ, and ω for each approach without imposing
the zero-cost constraint. The estimation window spans 120 months, from December 2003
to November 2023, covering our last out-of-sample period. Panel A presents the Sharpe
ratio-maximizing cross-prediction strategy; Panel B presents the Sharpe ratio-maximizing
self-prediction strategy; and Panel C reports the differences in the portfolio weights ω be-
tween the two.

In Table 2, Panel A shows that the estimated Λ coefficient for book-to-market equity
(BM) is −0.34, whereas the coefficients for the other four characteristics are all positive,
with the smallest value at 0.21. This suggests that the Sharpe ratio–maximizing strategy
with cross-prediction is well balanced across the five characteristics. The full 9 × 9 matrix
Ψ exhibits substantial values both on and off the diagonal: the average absolute value of
its diagonal entries is 0.0068, compared to an average absolute off-diagonal entry of 0.0805,
indicating that cross-predictive relationships play an even more substantial role in defining
the trading strategy.

Panel B of Table 2 shows that under self-prediction the estimated Λ coefficients exhibit
greater dispersion—asset growth (INV) even turns negative—while Ψ is constrained to its
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diagonal (average absolute value of 0.0288, all off-diagonals zero). This contrast highlights
the structural effect of cross-predictability: including cross-predictive terms not only yields
nonzero off-diagonal elements of Ψ but also shifts the estimated Λ coefficients, altering the
relative importance of characteristics.

Panel C reports how the optimal weights ω shift between cross- and self-prediction:
under cross-prediction, long exposures to ME3 BM1 decrease, and shorts in ME1 BM2 deepen.
For example, the ME1 BM2 position is −0.27 under cross-prediction—driven by off-diagonal
Ψ entries of 0.24 and 0.25—whereas it is substantially smaller under self-prediction.

As noted earlier, the optimal trading strategy that accounts for cross-predictability
delivers a 8.00% higher certainty equivalent return, suggesting that the estimated Λ and Ψ,
which determine the portfolio weights ω, differ to an economically significant degree when
cross-predictability is incorporated, relative to the benchmark case of self-predictability.

In summary, the results in Tables 1 and 2 confirm that incorporating cross-predictive
relationships is valuable for constructing robust investment strategies, even in a low-dimensional
illustrative setting.

Table 1: Performance of Strategies of a Toy Example

This table reports the monthly average return (%), monthly standard deviation (%), and annualized Sharpe
ratio for five strategies in a low-dimensional toy example involving five characteristics and nine assets. The
strategies are:

1. Unconstrained expected return-maximization with cross-prediction;

2. Unconstrained Sharpe ratio-maximization with cross-prediction;

3. Unconstrained Sharpe ratio-maximization with self-prediction;

4. Zero-cost, leverage-two expected return-maximization with cross-prediction;

5. Zero-cost, leverage-two Sharpe ratio-maximization with cross-prediction.

µ σ SR Cost

MR Cross 5.56 61.9 0.31 Not Zero Cost
MS Cross 2.36 9.78 0.84 Not Zero Cost

MS Self 1.31 7.57 0.60 Not Zero Cost

MR Cross ZC 0.49 3.22 0.53 Zero Cost
MS Cross ZC 0.50 1.43 1.22 Zero Cost
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Table 2: Estimates for Λ and Ψ of a Toy Example

This tables reports the estimates for λ, Ψ, and ω of the Sharpe ratio-maximization strategies of the last rolling-
window estimation, with cross-prediction in Panel A and self-prediction in Panel B. These strategies are free
from zero-cost and leverage-two constraints. The Λ vector has five elements corresponding to five character-
istics: ME, BM, OP, INV, and MOM. There are nine assets for investment: the three-by-three sorted portfolios
on ME and BM. Specifically, they are ME1 BM1, ME1 BM2, ME1 BM3, ME2 BM1, ME2 BM2, ME2 BM3, ME3
BM1, ME3 BM2, ME3 BM3. The Ψ is a nine-by-nine matrix, where the element i,j corresponds to the strength
of the predictive relationship of the asset i’s signals to asset j’s returns. For cross-prediction in Panel A, the
Ψ has 81 values to estimate, while for self-prediction in Panel B, the Ψ is only active in 9 values in the diag-
onal. In addition, the following two rows of panels A and B report the absolute average of the diagonal and
off-diagonal terms of Ψ. Finally, Panel C shows the change of ω from cross- to self-prediction strategies.

Panel A: Cross-Prediction

Λ ME BM OP INV MOM
0.21 -0.34 0.29 0.53 0.69

Ψ 0.02 -0.05 0.01 -0.01 0.03 -0.03 -0.01 -0.04 0.02
0.03 -0.21 -0.05 0.06 0.16 -0.09 0.01 -0.06 0.15
0.03 0.24 -0.08 -0.02 -0.17 0.18 -0.04 0.09 -0.17
-0.12 0.15 0.06 0.02 0.12 -0.22 0.00 -0.03 0.07
0.09 -0.03 -0.09 -0.04 -0.01 0.04 0.02 0.10 -0.01
-0.03 -0.13 0.12 -0.05 -0.11 0.04 0.11 -0.07 0.07
0.13 -0.14 0.14 0.01 -0.26 0.23 0.08 0.00 -0.21
-0.14 0.25 -0.26 -0.05 0.13 0.00 -0.10 0.03 0.15
-0.02 -0.09 0.15 0.09 0.09 -0.14 -0.06 -0.02 -0.06

Absolute Average of Diagonal Terms Ψ 0.0068
Absolute Average of Off-Diagonal Terms Ψ 0.0805

ω -0.03 -0.27 0.20 0.00 -0.03 0.03 0.09 -0.06 -0.06

Panel B: Self-Prediction

Λ ME BM OP INV MOM
-0.09 -0.89 0.41 -0.14 0.12

Ψ -0.14 0 0 0 0 0 0 0 0
0 0.51 0 0 0 0 0 0 0
0 0 -0.13 0 0 0 0 0 0
0 0 0 -0.04 0 0 0 0 0
0 0 0 0 0.41 0 0 0 0
0 0 0 0 0 0.02 0 0 0
0 0 0 0 0 0 0.35 0 0
0 0 0 0 0 0 0 -0.63 0
0 0 0 0 0 0 0 0 -0.09

Absolute Average of Diagonal Terms Ψ 0.0288
Absolute Average of Off-Diagonal Terms Ψ 0

ω -0.14 -0.10 0.19 -0.03 0.00 -0.02 0.47 -0.32 0.08

Panel C: Change of Weights from Cross- to Self-Prediction

ID ME1 BM1 ME1 BM2 ME1 BM3 ME2 BM1 ME2 BM2 ME2 BM3 ME3 BM1 ME3 BM2 ME3 BM3

0.10 -0.17 0.00 0.03 -0.03 0.05 -0.37 0.26 -0.13
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Table 3: Performance of Cross-Predictive Strategies

This table reports the monthly average return (%), monthly standard deviation (%), and annualized Sharpe
ratio of cross-predictive strategies. The strategies are zero-cost and leverage two. MR and MS are strategies
to maximize expected return and Sharpe ratio, respectively. Panels A and C are for investing in 138 spread
portfolios, and Panels B and D are for 544 bivariate sorted portfolios. In Panels A and B, we report the results
of the whole out-of-sample period from February 1973 to December 2023 and the high and low sentiment
periods split by the sentiment median value over the sample periods from February 1973 to December 2023.
In Panels C and D, we report for January 1990 to December 2023, and the high and low VIX periods split by
the VIX median value over the sample periods from 1990 to 2023.

1973:02-2023:12 SENT High SENT Low
µ σ SR µ σ SR µ σ SR

Panel A: Spread Portfolios

MR 0.42 3.23 0.45 0.73 3.79 0.67 0.11 2.53 0.15
MS 0.29 0.45 2.21 0.30 0.47 2.19 0.27 0.43 2.22

Panel B: BiSort Portfolios

MR 0.45 3.02 0.52 0.48 3.35 0.49 0.42 2.66 0.54
MS 0.26 0.27 3.32 0.28 0.27 3.58 0.24 0.27 3.08

1990:01-2023:12 VIX High VIX Low
µ σ SR µ σ SR µ σ SR

Panel C: Spread Portfolios

MR 0.33 3.83 0.30 0.59 4.97 0.41 0.07 2.14 0.12
MS 0.24 0.43 1.92 0.30 0.52 2.02 0.18 0.31 1.98

Panel D: BiSort Portfolios

MR 0.39 3.20 0.42 0.57 3.87 0.51 0.20 2.33 0.30
MS 0.24 0.29 2.90 0.28 0.34 2.89 0.20 0.22 3.13
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5.2 Zero-Cost Linear Strategies

Table 3 reports the performance of linear cross-predictive strategies implemented as
zero-cost, leverage-two portfolios, comparable to common factor and anomaly implemen-
tations. MR and MS denote the strategies that maximize expected return and the Sharpe
ratio, respectively. In Panel A, we consider an investment universe with 138 spread port-
folios detailed in the data section. Over the full sample period, MR achieves a monthly
average return of 0.42% with an annualized Sharpe ratio of 0.45, whereas MS records a
lower monthly average return of 0.29% but a substantially higher annualized Sharpe ratio
of 2.21.

We further analyze performance during evolving market states by splitting the out-of-sample
period at the median of the investor sentiment index (Baker and Wurgler, 2006).3 Dur-
ing high-sentiment regimes, MR delivers an average monthly return of 0.73%, while in
low-sentiment regimes its return falls to 0.11%. The MS strategy exhibits robust Sharpe ra-
tios across both regimes: 2.19 in high-sentiment periods and 2.22 in low-sentiment periods.

In Panel B, we evaluate investments in 544 bi-variate sorted portfolios as detailed in
the data section. Over the full out-of-sample period (January 1973–December 2023), MR
delivers a monthly average return of 0.45% and an annualized Sharpe ratio of 0.52, whereas
MS achieves an exceptionally high annualized Sharpe ratio of 3.32. In sub-period analyses,
MR’s average return increases during high-sentiment regimes, while MS maintains Sharpe
ratios above 3 in both high- and low-sentiment periods.

In Panels C and D, we split the period January 1990–December 2023 at the median
of the VIX index.4 In Panel C (spread portfolios), MR’s average return is 0.59% dur-
ing high-VIX regimes and 0.07% during low-VIX regimes (0.33% full sample), while MS
records Sharpe ratios of 2.02 and 1.98 in high- and low-VIX regimes (1.92 full sample).

In Panel D (bi-variate sorted portfolios), MR attains a monthly average return of 0.39%
and an annualized Sharpe ratio of 0.42, while MS achieves a Sharpe ratio of 2.90. MR’s
return remains higher in high-VIX regimes, and MS sustains Sharpe ratios around 3 in
both high- and low-VIX regimes.

In summary, MR strategies deliver high expected returns during high-sentiment and
high-VIX regimes, but considerably lower expected returns otherwise. In contrast, MS
strategies consistently achieve superior Sharpe ratios across all market states.

3The sentiment data spans July 1965 to December 2023 and is obtained from the variable ‘SENT” on Jeffrey
Wurgler’s website: https://pages.stern.nyu.edu/~jwurgler/data/SENTIMENT.xlsx.

4The VIX data spans 1990 to 2023 and is obtained from the CBOE: http://www.cboe.com/products/
vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data/.
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5.2.1 Comparing with Principal Portfolios (PP)

We compare the principal portfolio-based trading strategies of Kelly et al. (2023) with
our own over the out-of-sample period from 1973 to 2019, as in their study. The results are
reported in Table 4.

Panel A, row 1 (PP–ME), reports the performance of the first principal portfolio on
the market-equity signal: a 3.27% monthly expected return, a 0.51 annualized Sharpe ratio,
and a sum of absolute equity positions equal to 23.22. Rows 2 and 3 present the first princi-
pal portfolios for the book-to-market and momentum signals, which achieve Sharpe ratios
of 0.60 and 0.48, respectively, with similarly high leverage. The principal portfolio can be
applied to only one signal at a time. We also consider to take the 1/N equal-weighted strat-
egy of the first principal portfolios across all 138 signals, namely the PPEW strategy, which
delivers a 2.83% monthly expected return and a 0.56 annualized Sharpe ratio. Notably,
the leverage of PPEW is only 1.35, reflecting substantial diversification benefits by equal
weighted average across predictors.

Our maximum-expected return strategy achieves an 135.14% monthly expected re-
turn and a 0.52 annualized Sharpe ratio, with leverage of 537.70. Overall, the maximum-
expected return strategy slightly underperforms the principal portfolios in Sharpe ratio,
albeit remains reasonably close to them.

By contrast, the MS strategy harnesses multiple predictors to diversify exposures and
optimize risk-adjusted returns, achieving an annualized Sharpe ratio of 2.22 with a lever-
age factor of 438.01. While the principal portfolio approach targets expected return subject
to a volatility constraint, our strategy is derived directly from Sharpe ratio-maximization.
As a result, it places greater emphasis on balancing return and risk, leading to improved
performance on risk-adjusted metrics in our empirical setting.

To enhance implementability, we impose zero-cost and leverage-two constraints on
both strategies. Panel B of Table 4 reports the resulting performance. Under these con-
straints, the maximum-expected-return strategy (Row 1) achieves a 0.46% monthly ex-
pected return and an annualized Sharpe ratio of 0.51, while the maximum-Sharpe ratio
strategy (Row 2) attains a 0.30% monthly expected return and an annualized Sharpe ratio
of 2.33. In both cases, the portfolios maintain zero net cost and a constant leverage of two
in every period.

Overall, the maximum-Sharpe ratio strategy remains highly competitive—delivering
superior risk-adjusted performance relative to a range of recent approaches, including
principal portfolios. Accordingly, we focus our subsequent analyses to the constrained
max-SR strategy.
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Table 4: A First Comparison on the Performance of PP, MR, and MS

This table reports each strategy’s monthly average return (%), monthly standard deviation (%), annualized
Sharpe ratio, time-series average of the sum of positions on basic assets, and time-series average of the ab-
solute sum of positions on basic assets. PP-ME is the Principal Portfolio strategy using the market-equity
signal; PP-BM uses book-to-market; PP-MOM uses momentum. PP-EW is an equal-weighted combination
of the first principal portfolios of 138 signals. MR is our maximum-expected return strategy, and MS is our
maximum-Sharpe ratio strategy. Panel A places no leverage or cost constraints on the strategies. Panel B
imposes two constraints—a zero-cost requirement and a leverage restriction—on all strategies. Data span
January 1963 through December 2019 (from PP’s replication package on the Journal of Finance website), with
the out-of-sample period running from February 1973 to December 2019.

Strategy µ σ SR Sum ASum

Panel A: Strategies

PP-ME 3.27 22.32 0.51 23.21 23.22
PP-BM 4.64 26.94 0.60 12.62 14.45
PP-MOM 3.65 26.41 0.48 23.94 25.34
PPEW 2.83 17.52 0.56 1.03 1.35

MR 135.14 895.59 0.52 95.83 537.70
MS 68.65 107.15 2.22 48.33 438.01

Panel B: Strategies with Zero Cost

MR 0.46 3.10 0.51 0.00 2.00
MS 0.30 0.45 2.33 0.00 2.00
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Table 5: Cross- vs Self-Prediction

This table reports the monthly average returns (%), monthly standard deviation(%), and annualized Sharpe
ratio, time-series average of the sum of positions on basic assets, and time-series average of the absolute
sum of positions on basic assets. The objective of the strategies is to maximize the Sharpe ratio. Notably,
the cross-prediction strategies can be solved with and without the zero-cost constraint; however, the self-
prediction strategy does not have an analytic solution once adding the zero-cost constraint. Panel A invests
on spread portfolios and Panel B is for bivariate sorted portfolios. The out-of-sample period is February 1973
to December 2023.

µ σ SR Sum ASum

Panel A: Spread Portfolios

MS Self 6.76 16.54 1.42 1.26 30.93

MS Cross 64.43 107.19 2.08 45.06 438.46
MS Cross ZC 0.29 0.45 2.21 0.00 2.00

Panel B: BiSort Portfolios

MS Self 15.83 26.64 2.06 2.34 99.05

MS Cross 389.99 450.02 3.00 112.14 2154.07
MS Cross ZC 0.26 0.27 3.32 0.00 2.00

5.2.2 Cross-Prediction SDF versus Self-Prediction SDF

The existing literature on SDF estimation has predominantly focused on self-predictive
frameworks, where each asset’s signals are used solely to forecast its own returns. Kelly
et al. (2019) propose Instrumented PCA with the belief that the factor loadings on SDF
are determined by assets characteristics, overcoming the limitations of static loading in
PCA. Lettau and Pelger (2020) find that the SDF estimated on Risk-Premium PCA is more
highly correlated with the true SDF than those estimated on PCA. Luo et al. (2025) esti-
mate the SDF with observable characteristics-based factors with L1-penalized SDF regres-
sion; whereas, Didisheim et al. (2024) apply the L2-penalized SDF regression on observable
and Random-Fourier-Feature generated factors. All of these papers have been working on
high-dimensional characteristics-based portfolios to estimate the SDF, where the belief of
self-prediction are embedded the portfolios.

By contrast, our framework utilizes managed-portfolios inherently reflecting the belief
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of cross-prediction: πs (6), χΦ (19), and χΛ (23). Whether cross-predictive strategies—where
signals from one asset help predict the returns of others—can systematically outperform
self-predictive ones in high-dimensional settings remains an open question. To investigate
this, we construct the self-predictive strategy by restricting the matrix Ψ to its diagonal,
thereby eliminating all cross-asset interactions.

Panel A of Table 5 reports the empirical performance of the Sharpe ratio–maximizing
strategies on the 138 spread portfolios. The self-predictive strategy achieves a Sharpe ratio
of 1.42, while the cross-predictive counterparts attain Sharpe ratios of 2.08 without zero-
cost requirement and 2.21 with zero-cost and leverage-two constraints. This more than 0.60
difference in Sharpe ratio underscores the incremental value of incorporating cross-asset
predictive signals.

Panel B reports results for the 544 bivariate sorted portfolios. The self-predictive strat-
egy achieves a Sharpe ratio of 2.06, while the cross-predictive variants reach 3.32 and 3.00
under constrained and unconstrained implementations, respectively. This gap of more
than 1.00 in Sharpe ratio highlights the significant contribution of off-diagonal elements
in Ψ to improved portfolio performance.

Overall, the evidence confirms that cross-predictive strategies materially enhance the
estimation and performance of stochastic discount factors—particularly in richer portfolio
universes and longer samples.

5.2.3 Factor Spanning Tests

We conduct a series of factor-spanning tests to assess whether the established asset
pricing factors fully explain the expected returns of the Sharpe ratio-maximizing strategies.
Table 6 reports monthly alphas (%), factor loadings, and associated t-statistics. Panel A
presents the Sharpe ratio-maximizing strategy on the spread portfolios, while Panel B re-
ports for the bivariate sorted portfolios.

We first evaluate the Fama and French (2015) five-factor model (FF5). The strategy
on spread portfolio exhibits modest loadings on Market (β = −0.01, t = −2.56) and SMB
(β = 0.01, t = 1.78) but insignificant exposures to the other four factors, while delivering
a highly significant monthly alpha of 0.29% (t = 13.29). This suggests that the strategy’s
returns are largely orthogonal to the FF5 factors. Also, we augment the FF5 model with mo-
mentum (UMD), short-term reversal (REV), and liquidity (LIQ) factors (Pastor and Stam-
baugh, 2003). In this expanded specification, the strategy shows significant loadings on
UMD and REV but not on LIQ, while its alpha remains economically and statistically sig-
nificant at 0.26% (t = 11.54). These findings indicate that momentum and reversal effects
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partially explain the strategy’s performance, with little role for liquidity risk.
Next, we then examine the Hou et al. (2015) four-factor model, which incorporates in-

vestment (R_IA) and profitability (R_ROE) factors alongside market and size factors. The
strategy displays negligible loadings on R_IA and R_ROE, while maintaining a highly sig-
nificant alpha. The Stambaugh and Yuan (2017) mispricing factors—MGMT and PERF—
also fail to subsume the strategy’s returns: The strategy shows minimal exposures to both
factors, with an alpha of 0.28% (t = 10.20). Then, we assess the Daniel et al. (2020) model,
which includes the market factor and two behavioral factors, PEAD and FIN. While the
strategy loads significantly on PEAD, its alpha remains robust at 0.29% (t = 11.09), and it
shows no meaningful exposure to FIN. Finally, in a comprehensive regression incorporat-
ing all fourteen factors, The strategy maintains an alpha of 0.26% (t = 8.04), with statisti-
cally significant but economically small loadings on SMB, UMD, REV, LIQ, FIN, and R_IA.
These results collectively demonstrate that the strategy’s expected returns cannot be fully
explained by existing factor models.

Panel B corroborates these findings. The strategy on bivariate sorted portfolio displays
statistically significant but economically modest loadings on RMW, CMA, REV, PERF, R_IA,
MGMT, and PERF. Notably, it maintains a monthly alpha of 0.25% (t = 11.36) even after
controlling for all fourteen factors, further supporting the strategy’s robustness to estab-
lished factor models.

Across all specifications—including the Fama–French five-factor model with UMD,
REV, and LIQ augmentations, Hou–Xue–Zhang, Stambaugh–Yuan, and Daniel–Hirshleifer–Sun
frameworks, and even the comprehensive fourteen-factor regression—the Sharpe ratio-
maximizing strategies on the spread and bivariate sorted portfolios exhibit persistently
large and highly significant alphas with only moderate loadings on existing factors. This
suggests that conventional models may miss the cross-asset return predictability captured
by our strategy. Below, we further analyze the pricing content of the Sharpe ratio-maximizing
strategies.
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Table 6: Alpha and Factor Loadings

This table reports the monthly alphas (%), factor loadings, and their t-values (in parentheses) obtained from
the factor-spanning tests of regressing the strategy returns on other asset pricing factors. We have scaled
the original strategy and factor returns by 100 for percentage compatibility, aiding coefficient comparability.
This table focus on the Sharpe ratio-maximizing strategies with zero cost and leverage two. Panel A displays
the results for investing in spread portfolios, while Panel B shows for bivariate sorted portfolios. The factors
include FF5 factor, momentum factor (UMD), short-term reversal factor (REV), liquidity factor (LIQ) from
Pastor and Stambaugh (2003), short-horizon inattention factor (PEAD) and long-horizon financing factor
(FIN) from Daniel et al. (2020), investment factor (R_IA) and return on equity factor (R_ROE) from Hou et al.
(2015), management factor (MGMT) and performance factor (PERF) from Stambaugh and Yuan (2017). PEAD
and FIN are available before December 2018. MGMT and PERF are available before December 2016. All other
factors are available during the whole sample period. We report with the Newey and West (1987) t-statistics
using a Bartlett kernel and lag length L = 4(T/100)2/9. One, two, and three asterisks indicate significance at
the 10%, 5%, and 1% levels, respectively.

Alpha Market SMB HML RMW CMA UMD REV LIQ PEAD FIN R_IA R_ROE MGMT PERF

Panel A: Spread Portfolios

0.29*** -0.01** 0.01* -0.01 0.01 0.02
(13.29) (-2.56) (1.78) (-1.02) (0.98) (1.53)
0.26*** -0.01** 0.01 -0.00 0.01 0.01 0.03*** 0.02*** -0.00
(11.54) (-2.26) (1.48) (-0.16) (0.68) (0.91) (3.34) (2.74) (-0.82)
0.29*** -0.01 0.03** 0.01
(11.09) (-1.56) (2.14) (0.91)
0.28*** -0.01** 0.01* 0.01 0.01
(12.91) (-2.56) (1.95) (0.73) (1.24)
0.28*** -0.00 0.02** 0.02 0.03***
(10.20) (-0.47) (2.51) (1.19) (3.66)
0.26*** -0.01 0.01 -0.00 0.01 -0.03 0.01* 0.03*** -0.00 0.01 0.00 0.04 -0.05*** 0.01 0.04***
(8.04) (-0.92) (0.83) (-0.13) (0.44) (-0.72) (1.74) (3.05) (-0.51) (0.90) (0.37) (1.23) (-2.92) (0.51) (2.61)

Panel B: BiSort Portfolios

0.25*** -0.00 0.01* -0.00 0.03*** 0.01
(16.67) (-0.62) (1.94) (-0.62) (3.96) (1.20)
0.24*** -0.00 0.01 0.00 0.02*** 0.01 0.02** 0.01 -0.00
(13.98) (-0.01) (1.59) (0.72) (3.92) (0.63) (2.21) (1.09) (-0.37)
0.25*** 0.00 0.02** 0.02***
(13.15) (1.23) (1.99) (2.70)
0.24*** -0.00 0.01** 0.01 0.02***
(14.61) (-0.53) (2.03) (1.23) (2.68)
0.26*** 0.01* 0.01 0.02*** 0.02***
(14.12) (1.81) (1.55) (3.02) (3.92)
0.25*** 0.01 0.01 0.00 0.02* -0.02 0.01 0.01 0.00 0.01 0.00 0.03 -0.02 0.01 0.02***
(11.36) (1.42) (1.58) (0.15) (1.88) (-0.96) (1.04) (1.51) (0.12) (1.38) (0.39) (1.11) (-1.29) (1.05) (2.69)
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5.2.4 Evolution of Sharpe Ratios over the Sample Period

To assess the persistence and evolution of risk-adjusted returns over time, Figure 1
Panel A shows the ten-year trailing Sharpe ratios of our three maximum-Sharpe ratio
strategies—MS Spread, MS BiSort and MS BiSort fixed—alongside those of the market and
momentum factors for comparison. 5 By smoothing over a decade window, we can observe
how the trading strategies respond to changing market conditions.

These strategies deliver eye-catching Sharpe ratios in the 1990s—MS BiSort climbs as
high as 4–7 before 2000, and MS Spread approaches 4—reflecting their ability to capture
persistent value-enhancing opportunities. After 2000, however, it is natural to see some
attenuation: wider adoption of anomaly tradings, increased market liquidity, and a lower-
volatility regime tend to compress excess returns over time. Accordingly, by the end of
2023, the trailing Sharpe of MS Spread and MS BiSort has moderated to about 1.2. By
contrast, the MS BiSort fixed seems to deliver even higher Sharpe ratios than MS BiSort,
suggesting that our cross-validation scheme is conservative and provides a low bound for
the out-of-sample performance.

To make more clear comparison, Figure 1 Panel B shows the Sharpe ratio of each strat-
egy relative to that of MS BiSort fixed. In early sample before 2000, the Sharpe ratio of MS
Spread (MS BiSort) is approximately 60% (90%) that of MS BiSort fixed, and market and
momentum factors have below 20% Shape ratio relative to MS BiSort. In the most recent
sample, the Sharpe ratios of MS Spread, MS BiSort, MKT-RF, and UMD are 70%, 75%, 43%,
and 4% that of MS BiSort fixed.

For context, both the market factor’s rolling Sharpe ratio and that of the momentum
factor remain well below our strategies over the entire forty-year span. Although the per-
formance gap narrows in the post-2000 era, both maximum-Sharpe ratio strategies con-
tinue to deliver robust risk-adjusted returns relative to these benchmarks.

Table 7 reports the (annualized) Sharpe ratios of the cross-predictive maximum-Sharpe
ratio strategies, Fama-French five factors, and momentum factor for three sample periods:
the whole OOS period from 1973:02 to 2023:12, before 2000:01, and after 2000:01. Although,
the Sharpe ratios of our strategies attenuate after 2000, they remain competitive compared
to the benchmark factors in three sample periods.

5The shrinkage parameter λ for MS Spread and MS BiSort are selected via cross-validation. Appendix E
reports the selected parameter values of time. MS BiSort fixed uses a fixed λ = 1, which is the most frequently
selected value.
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Figure 1: Sharpe Ratio of Strategies

The figure depicts ten-year trailing (annualized) Sharpe ratios for the cross-predictive maximum-Sharpe ratio
strategies. “MS Spread” is the strategy to maximize Sharpe ratio investing in the spread portfolios.“MS
BiSort” is the strategy to maximize Sharpe ratio investing in the bivariate sorted portfolios. “MS BiSort
fixed” uses a fixed λ = 1, which is the most frequently selected value. Panel A shows the Sharpe ratio, while
Panel B shows the Sharpe ratio of each strategy divided by that of “MS BiSort.” The out-of-sample period is
from February 1973 to December 2023 in monthly frequency, and the first ten-year Sharpe ratio is obtained
for January 1983. For comparison, the market factor (MKT-RF) and momentum factor (UMD) are included.
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Table 7: Comparing Sharpe Ratios with Prevailing Factors

The table reports the (annualized) Sharpe ratios of the cross-predictive strategies, Fama-French five factors,
and momentum. Three sample periods are 1973:02 to 2023:12, 1973:02 to 1999:12, and 2000 to 2023.

MS Spread MS BiSort MKT-RF SMB HML RMW CMA UMD

1973-2023 2.21 3.32 0.45 0.21 0.33 0.45 0.5 0.45
1973-1999 2.84 4.98 0.48 0.16 0.47 0.36 0.58 0.96
2000-2023 1.58 2.21 0.41 0.27 0.20 0.54 0.43 0.09

Table 8: Top Ten Signals by Λ

This table reports the top ten most important signals, Panel A for spread portfolios and Panel B for bivariate
sorted portfolios. The columns are abbreviation, theme, time-series average of absolute Λ, full name, and
original publication of the signals. There are 13 themes following Jensen et al. (2023).

Abbreviation Theme Λ Full Name Publication

Panel A: Spread Portfolio

2 aliq_at Investment 0.139 Liquidity of book assets Ortiz-Molina and Phillips (2014)
34 div12m_me Value 0.126 Dividend yield Litzenberger and Ramaswamy (1979)
7 at_me Value 0.125 Assets-to-market Eugene and French (1992)
9 be_gr1a Investment 0.125 Change in common equity Richardson et al. (2005)
44 emp_gr1 Investment 0.123 Hiring rate Belo et al. (2014)
45 eq_dur Value 0.123 Equity duration Dechow et al. (2004)
24 col_gr1a Investment 0.123 Change in current ope. lia. Richardson et al. (2005)
116 sale_gr3 Investment 0.123 Sales growth (3 years) Lakonishok et al. (1994)
15 bev_mev Value 0.121 Book-to-market equity Penman et al. (2007)
10 be_me Value 0.120 Book-to-market enterprise value Rosenberg et al. (1985)

Panel B: BiSort Portfolio

71 ni_be Profitability 0.141 Return on equity Haugen and Baker (1996)
86 ope_bel1 Profitability 0.138 Ope. profits-to-lagged be Fama and French (2015)
85 ope_be Profitability 0.136 Operating profits-to-be Fama and French (2015)
77 o_score Profitability 0.135 Ohlson O-score Dichev (1998)
42 ebit_sale Profitability 0.134 Profit margin Soliman (2008)
90 prc Size 0.133 Price per share Miller and Scholes (1982)
41 ebit_bev Profitability 0.132 Return on net operating assets Soliman (2008)
16 bidaskhl_21d Low Leverage 0.130 The high-low bid-ask spread Corwin and Schultz (2012)
65 mispricing_perf Quality 0.126 Performance Based Mispricing Stambaugh and Yuan (2017)
58 ivol_capm_252d Low Risk 0.126 Idio. vol. to CAPM (21 days) Ali et al. (2003)
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5.3 Signal Importance

To understand the economic underpinnings of our Sharpe ratio-maximizing strategies
or SDF, we examine the estimated values of Λ, which assign weights to firm-level predic-
tive signals. These weights reflect the relative contribution of each signal to the SDF. We
focus on the absolute value of these weights averaged over time to assess long-term signal
importance. Table 8 presents the ten most influential signals, ranked by their time-series
average of absolute |Λ| values, where Panel A is for spread portfolios and Panel B is for
bivariate sorted portfolios.

Panel A, investing in spread portfolios, indicates that the most important signals are
concentrated in the investment and value categories. For instance, the top signal—liquidity
of book assets (Ortiz-Molina and Phillips, 2014)—receives an average importance of 0.139,
while dividend yield (Litzenberger and Ramaswamy, 1979), the leading signal in the value
theme, ranks seventh overall with an importance of 0.126. These findings suggest that the
strategy places greater emphasis on firm fundamentals linked to capital structure, financ-
ing constraints, and valuation, rather than technical or return-based indicators.

As for Panel B, profitability dominates the top ten signals, followed by size, low leverage,
and low risk themes. For instance, return on equity (Haugen and Baker, 1996) and operating
profitability-to-lagged book equity (Fama and French, 2015) are top signals, all belonging to
profitability. Besides, price per share (Miller and Scholes, 1982) emerges from the size theme,
recalling stronger size effects in the test assets sorted on size and other signals.

Figure 2 presents the importance measures for all 138 signals, organized into 13 the-
matic categories (as defined in the Data section). Sub-figures (a) and (b) display theme-
level importance for spread portfolios and bivariate-sorted portfolios, respectively.6 The
heatmap visualization employs color intensity to indicate importance levels—with red
(blue) representing high (low) importance–allowing clear identification of which signals
consistently influence portfolio construction.

In sub-figure (a) for spread portfolios, investment- and value-related signals dominate
the red spectrum, reinforcing the role of tangible firm fundamentals. In contrast, momen-
tum, profit growth, debt issuance, seasonality, and short-term reversal appear consistently in the
blue range, indicating minimal weight in the Sharpe ratio-maximizing SDF.

Turning to sub-figure (b) for bivariate-sorted portfolios, the profitability theme dom-
inates the heatmap, particularly following a pronounced regime shift in the late 1980s.
The size theme exhibits persistent importance throughout the sample period, reflecting the
strong cross-sectional dispersion in firm size within our test assets. In contrast, accruals,

6We provide the time-varying signal-level importance measures in Figure F.1 of the Appendix F.
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Figure 2: Signal Importance

This figure depicts the heatmaps of signal importance Λ for each rolling-window estimation. Sub-figures (a)
and (b) are for spread portfolios and bivariate sorted portfolios, respectively. For interpretation, we focus on
the absolute value of elements in Λ. We calculate the theme-level importance as the average of all signal-level
importance within each theme. There are 13 themes following Jensen et al. (2023).
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profit growth, seasonality, and short-term reversal show consistently low importance over the
entire sample.

Our analysis reveals that while the dominant predictive role of investment, value, prof-
itability, and size themes remains stable over time, certain signals—particularly accruals
and quality—exhibit heightened importance during high-volatility or low-sentiment peri-
ods. This time variation suggests dynamic shifts in return predictability patterns, which
our framework successfully captures through its adaptive structure.

In summary, our signal importance analysis demonstrates that the cross-predictive
SDF is primarily driven by stable, economically grounded predictors, with negligible depen-
dence on transient or noisy effects. These findings not only underscore the robustness and
economic interpretability of our framework but also open new avenues for investigating
the fundamental drivers of cross-sectional return predictability.

5.4 Networks in the Cross Section

To uncover the economic structure embedded in the cross-predictive matrix Ψ, we in-
terpret Ψ as the adjacency matrix of a directed network across N assets. This representation
enables us to move beyond portfolio-level effects and examine how predictive information
flows through the cross-section. That is we identify assets that function as net transmit-
ters or receivers of signals and assessing the alignment of these linkages with economic
groupings such as firm size.

Following the connectedness methodology of Diebold and Yılmaz (2014), we compute
three metrics for each asset i—outgoing connectedness (FROM), incoming connectedness (TO)
and net connectedness (NET)—along with a market-level overall network intensity (TOTAL).
Let Ψi,j denote the predictive influence of asset i on asset j. We define the network metrics
as follows:

FROMi =
N∑
j=1
j ̸=i

|Ψi,j|, (26)

TOj =
N∑
i=1
i ̸=j

|Ψi,j|, (27)

NETk = TOk − FROMk, (28)

TOTAL =
1

N

N∑
i,j=1
i ̸=j

|Ψi,j|. (29)
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Here, FROMi measures the total strength of predictive signals sent from asset i to
others, capturing how much i contributes to forecasting the returns of other assets. TOj

measures the total strength of predictive signals received by asset j from all other assets,
reflecting how much j is influenced by the rest of the network. NETk is the difference
between incoming and outgoing connectedness, indicating whether asset k is a net trans-
mitter (< 0) or net receiver (> 0) of predictive information. TOTAL aggregates the overall
off-diagonal magnitude of Ψ across all asset pairs, summarizing the average intensity of
cross-asset predictive linkages in the network. The use of absolute values follows Diebold
and Yılmaz (2014) and ensures all measures are non-negative, thereby capturing signal
strength regardless of sign.

We compute these metrics monthly for two asset universes—138 spread portfolios and
544 bivariate sorted portfolios—over T = 611 months. To investigate the firm-level char-
acteristics driving variation in connectedness, we estimate monthly cross-sectional regres-
sions:

Connectednessi,t = αt + β′Chari,t + εi,t, (30)

where Connectednessi,t is one of FROMi, TOi, or NETi, and Chari,t is a vector of observ-
able characteristics. We report time-series averages of the estimated coefficients along with
Newey–West (Newey and West, 1987) t-statistics using a Bartlett kernel and lag length
L = 4(T/100)2/9 ≈ 5.

Table 9 reports the results of monthly cross-sectional regressions of three network con-
nectedness measures—FROM, TO, and NET—on firm characteristics for two groups of
test assets: spread portfolios (Panel A) and bivariate sorted portfolios (Panel B). The re-
sults reveal economically intuitive patterns linking a stock’s network role to size, valuation,
profitability, investment, momentum, and several trading frictions.

In Panel A for spread portfolios, the FROM regressions, measuring how much a stock
helps predict others, we observe that smaller stocks (low ME), high book-to-market (BM),
high profitability (OP), and high momentum (MOM) stocks tend to transmit stronger sig-
nals to others. These firms—small, value, profitable, and past winners—have greater fore-
casting influence, possibly because they aggregate market-wide information or drive co-
movements. Additionally, stocks with low illiquidity (ILL) and low turnover (TRN) exhibit
higher FROM, suggesting that liquidity increase a stock’s impact to the network. Volatil-
ity (VLT), by contrast, enters positively, implying that more volatile stocks spill predictive
attention. Notably, the coefficient on size (ME) becomes insignificant, once controlling five
trading frictions, which means that the size effect on FROM is a manifestation of trading
frictions but not size itself.
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The TO regressions, which capture how strongly a stock is predicted by others, show
the opposite patterns on many characteristics. Stocks with high ME, high BM, low OP, low
INV, high MOM, high VLT, and high BETA receive more predictive inputs from others.
This suggests that firms that are large, volatile, illiquid, and priced as value stocks appear
more susceptible to being forecasted using cross-asset information. Interestingly, high-
MOM stocks both receive and transmit signals, indicating they may act as informational
amplifiers within the network.

The NET regressions, defined as TO − FROM, consolidate these effects to identify
whether a stock is a net receiver or transmitter of predictive information. Stocks that are
large (high-ME), low-BM, low-OP, low-INV, and low-MOM tend to be net receivers, while
small, value, profitable, non-investing, and momentum-driven stocks are net transmitters.
These directional patterns highlight a persistent asymmetry: small, value, strong profitabil-
ity, and conservative investment firms disseminate predictive signals, while larger and
illiquid firms absorb them.

In Panel B for bivariate sorted portfolio, these patterns still exist. For ease of interpre-
tation, we focus on the NET regressions. We find that small, low-BM, high-OP, low-INV,
and low-MOM firms are net receivers in the network, while big, value, weak-profitable,
conservative-investing, and high-momentum stocks are net transmitters. After controlling
five trading frictions in the regressions, the coefficient on size become significantly posi-
tive, while other four coefficients are unchanged. As for trading frictions, stocks with low
volume, low volatility, high turnover, and low market-beta tend to receive spillovers from
others than transmitting signals to others.

Together, two sets of test assets demonstrate significant correlations between network
connectedness and asset characteristics, shedding light on that the determinants of cross-
asset spillover effects. The estimated Ψ matrix embeds an economically interpretable hi-
erarchy of signal flows, shaped by firm fundamentals and market frictions. This struc-
ture supports imposing sparsity or blockwise restrictions to enhance interpretability and
control overfitting—especially by limiting signal flows that contradict observed economic
asymmetries. Nevertheless, the correlation between connectedness and asset character-
istics depends on the choice of test assets. That is, different test assets reflect different
patterns in asset pricing, see Feng et al. (2020); Avramov et al. (2025). In this specific exer-
cise, we confirm the prominent status of size as an asset characteristic in building sorted
portfolios as test assets (Fama and French, 1993).

Table 9 connects to several literature. For bivariate portfolios (Panel B), we initially
corroborate Lo and MacKinlay (1990), finding big stocks lead small stocks (coefficient -
0.15, row 1 on NET)—a result robust to controlling for BM, OP, INV, and MOM (coeffi-
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cient -0.19, row 2). However, controlling for trading frictions reverses the size coefficient,
suggesting big stocks become net receivers, warranting further investigation of size’s role
in lead-lag effects.7 Contrary to Chordia and Swaminathan (2000), we find low-turnover
stocks transmit signal to high-turnover stocks after controlling for size.8 It holds for both
spread and bivariate sorts. The divergence from prior papers reflects discretion in test as-
sets and sample periods. Moreover, the two papers focus exclusively on weekly return
spillovers, whereas we incorporate multiple firm-level monthly signals, including past re-
turns. Collectively, we demonstrate that cross-asset spillovers are fundamentally linked to
asset characteristics.

Figure 3 depicts the TOTAL connectedness index—the average intensity of the off-
diagonal elements in Ψ—for both the 138 spread portfolios (dashed line) and the 544 bi-sort
portfolios (solid line) over the 1973–2023 period. Four key findings emerge. First, the time-
series of TOTAL connectedness on the spread portfolios varies markedly through time:
it troughs in the mid-1980s and again after 2020, but peaks around the early 1990s and
during the post financial crises, 2010s. Second, the indices for bivariate sorted portfolios
share the trough in mid-1980s and peak in early 1990s, however, slight fluctuations after
2000. Overall, the average level of TOTAL of spread portfolios is almost equal to that of
bivariate sorted portfolios before 2000, but become higher after 2000. Third, despite these
episodic surges, the time series reverts to a long-run mean near 0.72, suggesting a stable
baseline level of cross-asset information transmission.

Taken together, Figure 3 demonstrates that cross-asset spillover effects intensify dur-
ing turbulent periods but persist as a pervasive market feature. These findings underscore
the importance of modeling the full Ψ matrix—rather than restricting attention to its diag-
onal elements—for constructing Sharpe ratio-maximizing portfolios.

7For comparability, we replicate results for 1973-1987 (matching Lo and MacKinlay (1990)’s sample end)
and find consistent size coefficient signs.

8While Chordia and Swaminathan (2000) uses "Trading Volume" in their title, they actually employ daily
turnover as their volume proxy.
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Table 9: Understanding Connectedness

This table reports the time-series average and the Newey and West (1987) t-statistics of cross-sectional re-
gressions estimates for each month that regress a connectedness measure on asset characteristics. The assets
are 138 spread portfolios in Panel A, and 544 bivariate sorted portfolios in Panel B. For ease of interpre-
tation, the coefficients are reported with values multiplied by 1000. There are three connectedness mea-
sures: FROM, TO, and NET. The characteristics of interest are size (“market_equity”), book-to-market eq-
uity (“be_me”), operating profits-to-lagged book equity (“ope_bel1”), asset growth (“at_gr1”), price momen-
tum t-12 to t-1 (“ret_12_1”), Amihud illiquidity(“ami_126d”), volume(“dolvol_126d”), volatility(“rvol_21d”),
turnover(“turnover_126d”), CAPM beta (“beta_60m”), with abbreviations ME, BM, INV, OP, MOM, ILL,
VLM, VLT, TRN, and BETA. There is an intercept in the regression, but the estimates are omitted in the table.
The sample period is from February 1973 to December 2023.

ME BM OP INV MOM ILL VLM VLT TRN BETA

Panel A: Spread Portfolio

FROM

-1.26
(-9.39)
-2.62 7.78 4.75 0.80 4.83

(-7.62) (16.82) (8.39) (3.86) (20.28)
0.37 8.9 7.04 0.41 6.47 -7.49 -7.04 4.68 -2.49 -0.07

(0.16) (27.91) (14.08) (1.66) (21.42) (-1.35) (-1.5) (7.36) (-2.58) (-0.19)

TO

0.72
(3.19)
1.65 0.90 -2.79 -1.66 2.63

(7.22) (3.27) (-7.43) (-9.71) (7.77)
17.47 2.84 -1.06 -1.77 4.03 -4.29 -15.46 5.55 -1.90 2.03
(8.3) (11.55) (-3.01) (-10.42) (9.79) (-1.11) (-3.55) (13.35) (-2.14) (5.38)

NET

1.98
(6.45)
4.27 -6.88 -7.53 -2.46 -2.20

(9.78) (-14.07) (-11.09) (-11.32) (-6.05)
17.09 -6.06 -8.10 -2.19 -2.44 3.19 -8.42 0.86 0.58 2.11
(4.36) (-19.12) (-13.52) (-8.65) (-4.45) (0.49) (-1.42) (1.06) (0.38) (4.22)

Panel B: BiSort Portfolio

FROM

0.25
(12.53)

0.36 0.38 -0.30 0.59 0.52
(13.77) (16.23) (-16.54) (20.59) (20.31)

0.32 0.53 -0.16 0.69 0.73 1.39 2.22 0.56 -0.93 -0.03
(1.21) (18.89) (-6.22) (19.2) (15.16) (2.36) (2.98) (7.82) (-4.57) (-0.41)

TO

0.10
(1.66)
0.17 -0.26 0.07 -0.33 -0.06

(2.86) (-4.79) (0.95) (-5.14) (-0.85)
3.82 -0.05 0.41 -0.45 -0.04 0.77 -3.96 -0.23 2.34 -0.50

(8.13) (-0.68) (5.21) (-6.84) (-0.54) (0.7) (-3.99) (-1.65) (10.22) (-3.7)

NET

-0.15
(-2.41)
-0.19 -0.64 0.38 -0.92 -0.58

(-3.35) (-11.56) (4.54) (-11.36) (-10.22)
3.50 -0.59 0.58 -1.14 -0.77 -0.63 -6.18 -0.79 3.27 -0.47

(6.05) (-7.97) (6.49) (-13.19) (-10.66) (-0.63) (-5.47) (-5.92) (9.36) (-3.2)
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Figure 3: Total Connectedness

This figure depicts the time-series plot of total connectedness of Ψ matrix over OOS period form February
1973 to December 2023. The blue dash line is for 138 spread portfolios, and the orange solid line is for 544
bivariate sorted portfolios. The shadow areas indicate for NBER recession periods.
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To analyze directional spillover effects in the bivariate-sorted portfolios more precisely,
we decompose the Ψ matrix into four blocks (A, B, C, and D) according to firm size. Figure 4
presents the resulting predictive information flows across these partitions.

Figure 5 presents the time series of absolute average values for each of the four blocks
in Ψ. The results reveal consistently stronger predictive relations in Block A (Small →
Small) and Block C (Big → Small) compared to Block B (Small → Big) and Block D (Big
→ Big), particularly during the last two decades. The time-series averages are 1.50 and
1.53 for Blocks A and C, respectively, versus 1.09 and 1.11 for Blocks B and D. Notably, the
divergence between the A/C and B/D blocks has increased substantially in recent years.

These findings confirm an asymmetric predictive structure, which aligns with the NET
regression coefficient of −0.15 reported in Panel B of Table 9. This result is consistent with
the evidence in Lo and MacKinlay (1990), showing that large stocks tend to lead small
stocks, but not vice versa. The persistent and stable nature of these patterns over time
supports the economic rationale for imposing restrictions on Ψ, particularly by excluding
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small-to-large predictive links. Furthermore, the long-run regularity of these asymmetries
suggests that dynamic sparsity structures—which adapt to time-varying network block
strengths while maintaining economically motivated constraints—could offer significant
modeling value.

In summary, the connectedness analysis reveals that the connection matrix Ψ encodes
economically meaningful structure. For bivariate sorted portfolios on size and other sig-
nals, big stocks act as net transmitters of predictive signals; controlling more signals, we
find that low trading volume, high turnover ratio, and low-beta stocks are net transmit-
ters. Meanwhile, value, profitable, non-investing, and high-momentum assets are more
likely to be net receivers. The strength of cross-predictive relations is comparable to that
of self-predictive effects. The overall network intensity fluctuates over time, but remains
around a stable level. Decomposing Ψ by firm size shows that predictive flows from large
to small firms dominate those in the reverse direction.

Figure 4: Partition of Ψ in Size.

This figure decomposes the Ψ matrix to four blocks based on firm size. They are:

• A: Small (Stock Signals) → Small (Stock Returns),

• B: Small → Big,

• C: Big → Small,

• D: Big → Big.

A B

C D

Small Signal

Big Signal

Small Return Big Return
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Figure 5: Absolute Average of Four Blocks in Ψ: BiSort Portfolios

This figure shows the time-series plot of the absolute average of elements in four blocks of Ψ. The basic
assets are the bivariate sorted portfolios, where four blocks A, B, C, and D represent the strength of cross-
predictive relations for (1) small stock signals predict small stock returns, (2) small stock signals predict big
stock returns, (3) big stock signals predict small stock returns, and (4) big stock signals predict big stock
returns. The sample period is form February 1973 to December 2023. The shadow areas indicate for NBER
recession periods.
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6 Conclusion

This paper develops a structured framework for constructing Sharpe ratio–maximizing
investment strategies using multiple firm-level signals and accounting for informational
linkages across assets. By jointly estimating signal relevance and a matrix capturing cross-
asset predictive relationships, our approach yields closed-form portfolio weights derived
from a generalized eigenvalue decomposition. In high-dimensional settings, estimation
is implemented through Ridge-SDF regressions, which offer a stable and interpretable
managed-portfolio representation of the decision variables. The resulting stochastic dis-
count factor consistently delivers high out-of-sample Sharpe ratios across a range of asset
universes and market conditions, outperforming both self-predictive models and expected
return-maximization. Economically, the strategy is primarily driven by fundamental char-
acteristics related to investment, valuation, and profitability. In addition, the estimated
connection matrix reveals that large and low-turnover stocks tend to act as net transmitters
of predictive signals, while the overall strength of cross-asset linkages remains persistently
high over time.

The paper opens several promising avenues for future research. First, the framework
could be extended to other asset classes where cross-asset interdependencies are economi-
cally meaningful, such as corporate bonds, currencies, sovereign credit, or international eq-
uities. For instance, in the corporate bond market, issuer fundamentals or equity-side infor-
mation may predict bond returns through industry linkages, shared ownership networks,
or common analyst coverage. Similarly, in currency markets, major reserve currencies may
act as informational hubs whose movements help forecast subsequent shifts in peripheral
currencies. Second, incorporating economic structure into the modeling of cross-asset rela-
tionships could enhance both interpretability and predictive performance. As the number
of assets and signals expands, estimating all possible interactions becomes increasingly
challenging. Imposing economically motivated constraints—such as directional spillovers
based on firm size or sectoral hierarchies—could provide a more structured and scalable
approach.
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Appendices

A Proof of Proposition 1

Expected Return We first express πs, the realized return on the trading strategy, as a func-

tion of the model parameters. Recognize that πs = Λ′S ′
tΨrs =

∑N
i=1 Ψ

′
irsS

′
itΛ = tr

[
Λ
∑N

i=1 Ψ
′
iΠsi

]
=

Λ′Π′
sΦ, where Ψ′

i is a 1×N vector which is the i-th row of Ψ, S ′
it is a 1×M vector, which is

the i-th row of St, tr stands for the trace operator, and Πs is an N2×M matrix that vertically

stacks the N ×M matrices Πsi = rsS
′
it for i = 1, 2, · · · , N .

Then, on the basis of realized return, the expected value is given by

E(πs) = Λ′Π′Φ = Φ′ΠΛ. (A.1)

Variance Let ΣΦ be the covariance matrix of vec(Π′
s). We express πs in terms of vec(Π′

s):

πs = Λ′Π′
sΦ = Λ′vec(Π′

sΦ). (A.2)

Using the property of vectorization vec(ABC) = (C ′ ⊗ A)vec(B), we get:

vec(Π′
sΦ) = (Φ′ ⊗ IM)vec(Π′

s). (A.3)

Therefore:

πs = Λ′(Φ′ ⊗ IM)vec(Π′
s). (A.4)

The variance of πs is:

Var(πs) = Λ′(Φ′ ⊗ IM)ΣΦ(Φ⊗ IM)Λ,

= Λ′BΦΛ, (A.5)
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where BΦ = (Φ′ ⊗ IM)ΣΦ(Φ⊗ IM).

We consider an alternative expression of Var(πs). Let ΣΛ be the covariance matrix of

vec(Πs). We express πs in terms of vec(Πs):

πs = Φ′ΠsΛ = Φ′vec(ΠsΛ). (A.6)

Again using the property of vectorization, we get:

vec(ΠsΛ) = (Λ′ ⊗ IN2)vec(Πs). (A.7)

Therefore:

πs = Φ′(Λ′ ⊗ IN2)vec(Πs). (A.8)

The variance of πs is:

Var(πs) = Φ′(Λ′ ⊗ IN2)ΣΛ(Λ⊗ IN2)Φ,

= Φ′BΛΦ, (A.9)

where BΛ = (Λ′ ⊗ IN2)ΣΛ(Λ⊗ IN2).

Sharpe Ratio With the expected return and variance, we express the Sharpe ratio square

as:

SR2 =
Λ′AΦΛ

Λ′BΦΛ
, (A.10)

where AΦ = Π′ΦΦ′Π, BΦ = (Φ′ ⊗ IM) ΣΦ (Φ⊗ IM), and ΣΦ is the covariance matrix of

vec(Π′
s). Alternatively, we express the Sharpe ratio squared as:

SR2 =
Φ′AΛΦ

Φ′BΛΦ
, (A.11)
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where AΛ = ΠΛΛ′Π′, BΛ = (Λ′ ⊗ IN2) ΣΛ (Λ⊗ IN2), and ΣΛ is the covariance matrix of

vec(Πs). These alternative expressions of SR2 assist in finding the solution to maximize

the Sharpe ratio.

B Relating Φ to B When M = 1

Setup. Consider the return-generating process:

rs = BSt + εs, (B.1)

where:

• St ∈ RN×1 is the signal vector,

• B ∈ RN×N is the slope matrix,

• εs ∼ (0,Σε) is a zero-mean innovation,

• ΣS = E[StS
′
t] is the signal covariance matrix.

Managed-Portfolio Return. The managed-portfolio return vector is defined as:

Πs = (IN ⊗ rs)St. (B.2)

Taking expectations:

Π = E[Πs] = vec(E[rsS ′
t]) = vec(BΣS). (B.3)

In the case of a single signal, both Π and Πs are vectors of dimension N2, and ΣΛ denotes

the covariance matrix of Πs.
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Sharpe Ratio Maximization. We maximize the Sharpe ratio subject to ∥Φ∥ = 1:

max
Φ:∥Φ∥=1

Φ′Π√
Φ′ΣΛΦ

. (B.4)

The optimal solution is:

Φ =
Σ−1

Λ vec(BΣS)

∥Σ−1
Λ vec(BΣS)∥

. (B.5)

Thus, we obtain:

B = unvec(ΣΛΦ) · Σ−1
S , (B.6)

where unvec denotes the reshaping of an N2-vector into an N ×N matrix.

Expected Return Maximization. We now maximize expected return subject to ∥Φ∥ = 1:

max
Φ:∥Φ∥=1

Φ′vec(BΣS) (B.7)

The solution is:

Φ =
vec(BΣS)

∥vec(BΣS)∥
. (B.8)

Inverting gives:

B = unvec(Φ) · Σ−1
S . (B.9)

Intuition: Why Are the B Matrices Different? The difference stems from the objective:

• Maximizing Expected Return: aligns Φ with the direction of highest expected payoff,

ignoring variance.

• Maximizing Sharpe Ratio: adjusts for risk by incorporating ΣΛ, penalizing high-

volatility directions.
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C Proof of Expected Return Reduction due to Zero-Cost Con-

straint

Consider the matrix Π formed by vertically stacking N matrices Πi, each of dimension

N × M , and let Π̃ be the matrix obtained after pre-multiplying each Πi by the matrix Θ,

where Θ = IN − 1
N
ιN ι

′
N . Here, Θ is a projection matrix that projects vectors onto the space

orthogonal to the vector ιN of ones.

Properties of Θ:

• Θ is symmetric and idempotent, i.e., Θ2 = Θ and Θ′ = Θ, confirming that it is a

projection matrix.

• The eigenvalues of Θ are 0 along the direction of ιN and 1 along all directions orthog-

onal to ιN .

Impact on Singular Values:

1. The matrix Θ modifies Πi by removing its component in the direction of ιN . This

operation reduces the variance in Πi that is aligned with ιN .

2. Given the singular value decomposition of Π = UΣV ′, the transformation Π̃ = (ΘΠi)

can be viewed through the lens of modified singular vectors. Since Θ acts as an iden-

tity on the space orthogonal to ιN and zeroes out components along ιN , it does not

increase the magnitude of any singular vector components.

3. The singular values λi(Π̃) of the transformed matrix Π̃ correspond to the norms of the

vectors ΘUi, where Ui are the left singular vectors of Π. Since Θ is a projection (and

thus a norm-reducing operation except where it acts as the identity), we have:

∥ΘUi∥ ≤ ∥Ui∥. (C.1)
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4. Therefore, the singular values of Π̃ must satisfy:

λi(Π̃) ≤ λi(Π). (C.2)

for each i, because the projection does not increase vector norms and reduces them

for vectors with non-zero components in the direction of ιN .

To be more precise, the highest singular value of the transformed matrix does not

change due to the preservation of the highest singular value by Θ. However, the transfor-

mation induced by Θ results in a reduction of singular values in the transformed matrix

Π̃ in the other singular values, leading to a decrease in variance explained by certain com-

ponents. Specifically, at least one singular value of Π̃ is strongly diminished compared to

the corresponding singular value of the original matrix Π. This reduction underscores the

effectiveness of the transformation in diminishing the influence of certain components in

Π and highlights its role in variance reduction. Hence, both expected return and risk of the

trading strategy are lower in the presence of the zero-cost restriction.

D Proof and Derivations for Propositions 4 and 5

This section focuses on maximizing the squared Sharpe ratio of a linear strategy. The

results extend naturally to the Sharpe ratio maximization of a nonlinear strategy with an

augmented signal space, for which we leave for future research.

Maximizing the squared Sharpe ratio constitutes a generalized Rayleigh quotient problem,

which can be solved via an eigenvalue problem. However, in empirical settings, the solution

to this eigenvalue problem often becomes ill-conditioned in high-dimensional settings.

To address this issue, we employ Ridge-SDF regressions to estimate the decision vari-

ables, providing an intuitive managed-portfolio interpretation. Finally, we present an iter-

ative algorithm to estimate Λ and Φ until convergence. The details are as follows.
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Define the squared Sharpe ratio as a function of Λ. According to Proposition 1, the

squared Sharpe ratio takes the form:

SR2 =
Λ′AΦΛ

Λ′BΦΛ
, (D.1)

where AΦ = Π′ΦΦ′Π, BΦ = (Φ′⊗IM)ΣΦ(Φ⊗IM), and ΣΦ is the covariance matrix of vec(Π′
s).

Maximizing the squared Sharpe ratio with respect to Λ. From (A.10), the optimization

problem is formulated as:

max
Λ

Λ′AΦΛ

Λ′BΦΛ
. (D.2)

This is equivalent to the constrained optimization problem:

max
Λ

Λ′AΦΛ s.t. Λ′BΦΛ = κ. (D.3)

Given the norm constraint on Λ, we set κ = 1 without loss of generality.

Applying the method of Lagrange multipliers, we define the Lagrangian function:

L(Λ, λ) = Λ′AΦΛ− λ(Λ′BΦΛ− 1). (D.4)

Taking derivatives with respect to Λ yields the generalized eigenvalue problem:

AΦΛ = λBΦΛ. (D.5)

Multiplying both sides by B−1
Φ gives:

B−1
Φ AΦΛ = λΛ. (D.6)
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Defining CΦ = B−1
Φ AΦ, we obtain the standard eigenvalue problem:

CΦΛ = λΛ. (D.7)

Solving (D.7) provides the eigenvector corresponding to the largest eigenvalue, Λmax. Nor-

malizing for the norm constraint, we set:

Λ =
Λmax

||Λmax||
. (D.8)

Since the solution for Λ depends on Φ, we define the function:

Λ = argmax
Λ

Λ′AΦΛ

Λ′BΦΛ
= Λ(Φ). (D.9)

Estimating high-dimensional Λ using ridge regression. In high-dimensional settings

where M is large relative to the number of observations T , the solution in (D.9) often fails

in out-of-sample tests.

To address this, consider a set of managed-portfolios χΦ of dimension T ×M :

χΦ =


(χΦ)

′
2

(χΦ)
′
3

...

(χΦ)
′
T+1


, (D.10)

where

(χΦ)s = Π′
sΦ. (D.11)

The optimization in (D.9) is an asset allocation problem in which the goal is to deter-

mine the investment weights Λ for the managed-portfolios χΦ to maximize the squared

Sharpe ratio. This is equivalent to estimating Λ as the mean-variance efficient portfolio

weights.

53



Following Britten-Jones (1999), we estimate Λ using the regression:

1 = χΦΛ + u, (D.12)

where 1 is a T -vector of ones.

To improve out-of-sample performance, we adopt ridge regression, as in Kelly and

Xiu (2023); Shen and Xiu (2024):

Λ̂ = (χ′
ΦχΦ + λIM)−1χ′

Φ1, (D.13)

where λ is a shrinkage parameter. The solution in (D.13) coincides with (D.9) when λ =

0. While (D.13) may underperform in-sample, it improves robustness for out-of-sample

applications.

Define the squared Sharpe ratio as a function of Φ. Alternatively, we express the squared

Sharpe ratio as:

SR2 =
Φ′AΛΦ

Φ′BΛΦ
, (D.14)

where AΛ = ΠΛΛ′Π′, BΛ = (Λ′ ⊗ IN2)ΣΛ(Λ ⊗ IN2), and ΣΛ is the covariance matrix of

vec(Πs).

Maximizing the squared Sharpe ratio with respect to Φ. Referring to Eq. (A.11), we

formulate the optimization problem as:

Φ = argmax
Φ

Φ′AΛΦ

Φ′BΛΦ
= Φ(Λ). (D.15)

Solving (D.15) follows the same procedure as (D.9).

54



Estimating high-dimensional Φ using ridge regression. Analogous to (D.13), we define

managed-portfolios χΛ of dimension T ×N2:

χΛ =


(χΛ)

′
2

(χΛ)
′
3

...

(χΛ)
′
T+1


, (D.16)

where

(χΛ)s = ΠsΛ. (D.17)

Applying ridge regression, we estimate Φ as:

Φ̂ = (χ′
ΛχΛ + λIN2)−1χ′

Λ1. (D.18)

Algorithm and Iteration. To solve the whole problem, we do iterations until conver-

gence. In each iteration, we have four steps:

1. Given Π,ΣΛ,Λ, update the values of AΛ, BΛ, CΛ,

2. Solve Eq.(D.18) to get the updated Φ,

3. Given Π,ΣΦ,Φ, update the values of AΦ, BΦ, CΦ,

4. Solve Eq.(D.13) to get the updated Λ.

A full description of the algorithm is in Algorithm 1.
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Algorithm 1 Maximize Sharpe Ratio
1: procedure MAXSR( Λ,Φ )
2: Input Asset returns rs and signals St.
3: outcome Investment decision variables Λ,Φ.
4: Calculate Π,ΣΦ,ΣΛ. ▷ These variables are Constant.
5: Initialize index of iteration k = 0. ▷ We use k in notation Λ{k},Φ{k}.
6: Initialize Λ{0}. ▷ E.g., the solution in Max Expected Return strategy.
7: while Termination Conditions not Activated do
8: Update AΛ, BΛ, CΛ with Λ{k}.
9: Update Φ{k+1} by solving Eq.(25).

Φ{k+1} = Φ(Λ{k}).

10: Update AΦ, BΦ, CΦ with Φ{k+1},
11: Update Λ{k+1} by solving Eq.(22).

Λ{k+1} = Λ(Φ{k+1}).

12: k = k + 1.
13: end while
14: return Λ{k},Φ{k}

15: end procedure
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E Cross-Validation for λ the Ridge Shrinkage Parameter

We employ the five-fold cross-validation to select the λ parameter in ridge regressions

(22) and (25), and then apply to out-of-sample investment. The parameter grid is 10x, where

x ∈ [4, 3, 2, · · · ,−5,−6]. Figure E.1 shows the parameters selected by cross-validation in

each rolling window estimation. We find the selected parameters are time-varying, wan-

dering in the parameter grid.

Figure E.1: Selected Parameter by Cross-Validation

This table reports the selection results of λ in (22) and (25) via the five-fold cross-validation. The parame-
ter grid is [104, 103, 102, 101, 100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6]. Each point in the figure represents the
selected λ for a rolling window estimation.
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F Signal-Level Importance

Figure F.1: Signal Importance

This figure complements the theme-level signal importance in Figure 2 by providing the 138 signal-level
importance in full detail. These signals of the same theme are grouped in the vertical axis, where the 13
themes follow Jensen et al. (2023). For interpretation, we focus on the absolute value of elements in Λ. Sub-
figures (a) and (b) report for spread portfolios and bivariate sorted portfolios, respectively.
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