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Abstract

This paper shows that the VIX market contains information that is not already contained

by the S&P 500 market on the variance of the S&P 500 returns. We estimate a flexible affine

model based on a joint time series of underlying indexes and option prices on both markets.

We find that including VIX option prices in the model estimation allows better identification of

the parameters driving the risk-neutral conditional distributions and term structure of volatility,

thereby enhancing the estimation of the variance risk premium. We gain new insights on the

properties of the premium’s term structure and show how they can be used to form trading

signals. Finally, our premium has better predictive power than the usual model-free estimate and

the higher-order moments of its term structure allow improving forecasts of S&P 500 returns.
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1 Introduction

Introduced by the CBOE in 1993, the VIX index non-parametrically approximates the expected

future realized volatility of the S&P 500 returns over the next 30 days. Options on the VIX started

trading in 2006 and, as of today, represent a much larger market than VIX futures. By definition,

the VIX index, VIX options, and S&P 500 options are directly linked to the S&P 500 index and

all provide valuable information on the S&P 500 returns dynamics. However, to the best of our

knowledge, there has been very little effort dedicated to comparing the information these datasets

contain on the distribution of the S&P 500 returns and on the trajectory of their variance process.

In this paper we aim to fill this gap and study the added information content of the VIX option

market compared to the S&P 500 market.

Our main contribution to the empirical option pricing literature is to show that VIX options contain

valuable information on the dynamic properties of S&P 500 returns, which is not spanned by S&P

500 options. We draw this conclusion from a parametric approach, using a parsimonious and flexible

affine model for returns. Our results are backed by various in- and out-of-sample tests as well as an

in-depth analysis of the implied variance risk premium (VRP). We argue that VIX options allow for

an enhanced representation of the VRP and of its term structure, and show that the resulting VRP

can be used to form trading signals and improve predictions of S&P 500 returns.

Jointly analyzing the dynamic properties and information content of the VIX and S&P 500 option

markets is a challenge. Not only do we need a model that is flexible enough to simultaneously

accommodate the stylized facts of both markets over time, but the empirical analysis of such highly

nonlinear data poses a significant computational hurdle. We develop a time-consistent estimation

procedure that permits us to extract information from a large and unbalanced panel of data and

estimate the trajectories of the unobserved volatility of the S&P 500 returns. This methodology goes

well beyond a simple calibration exercise as it makes it possible to reconcile time series data on the

S&P 500 and VIX derivatives markets and consistently match the joint evolution of prices over time.

We model the S&P 500 returns using an affine jump-diffusion specification that belongs to the class

of Duffie, Pan, and Singleton (2000). This specification features two factors driving the variance

1



process, and an additional factor driving the jump intensity. Its affine structure allows us to price

S&P 500 and VIX derivatives in semi-closed form, which is essential to analyze the returns and

volatility dynamics using a large dataset of options. It also enables us to derive the VRP in closed-

form, and to conduct a thorough analysis of its dynamic behavior and term structure.

We find that VIX options contain information on the dynamics of the S&P 500 returns and their

variance which is not spanned by S&P 500 options, disregarding the state of the economy. More

specifically, in time of market calm, VIX options do not bring any value in estimating the current

state of latent factors. However, they allow better identification of the parameters of the model,

thereby providing information on the conditional distributions of the underlying returns and their

variance. This translates into a better pricing of VIX options, which are not well priced when

not included in the estimation dataset. This observation holds both in- and out-of-sample, and is

therefore not the result of over-fitting. It also holds in times of market turmoil, but then VIX options

bring value in identifying the current states of latent processes as well. Furthermore, we show that

adding VIX options to the estimation allow a better representation of the term structure of variance.

We synthesize the VIX index from S&P 500 options for maturities from 2 to 6 months. Our model,

when estimated to a dataset which does not include VIX options, yields RMSEs which are more than

twice as large as the ones obtained when VIX options are included in the estimation dataset. Our

results have considerable impact in terms of pricing and risk management, which rely heavily on an

accurate estimation of the conditional distributions of the underlying risk factors over different time

horizons.

A by-product of our estimation is the variance risk premium (VRP), which represents the compen-

sation investors expect to receive for bearing the risk coming from stochastic fluctuations in the

variance of the returns over a given horizon. In other words, it is the expected payoff of a variance

swap. By definition, it depends on the conditional expectation of the variance of S&P 500 returns.

Due to the affine structure of our model, the VRP is available in closed-form, which enables us

to address three highly debated questions in the recent literature: What are the main components

driving the VRP? Can the VRP be used to form trading signals? Does the VRP have predictive

power on S&P 500 returns?
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We find that the VRP is very sensitive to jumps in the returns and their variance, in particular when

the investment horizon is short. Intuitively, this is justified by the fact that a large movement in the

variance process has an immediate negative impact on the payoff of a short-term variance swap. The

two variance factors are shown to have different effects on the VRP. The first factor reacts swiftly to

changing market conditions and captures most of the sudden variance fluctuations, especially during

market turmoil. As such, its impact on the VRP dominates for short-term investments and during

turmoil periods. The second factor is more persistent and captures mid- to long-term trends of the

return variance. Its impact on the VRP is most important during calm market periods and for mid-

to long-term investments.

Our results on the term structure of VRP complements recent findings of Gruber, Tebaldi, and

Trojani (2015). In line with the latter authors, we find that that the VRP has a downward sloping

term structure in times of market calm but that this is no longer true during high volatility times.

During these periods, the convexity of the VRP term structure increases, i.e., the VRP becomes

more negative when increasing the investment’s maturity up to 3 to 4 months, and then increases.

While the usual trading strategy to reap the VRP is to buy long-term variance contracts (for example

variance swaps, see Filipović, Gourier, and Mancini (2016)) and sell short-term contracts, we show

that the change in the term structure of VRP can be interpreted as a trading signal. Our proposed

strategy achieves a Sharpe ratio of 1.02 over the turbulent period from 2006 to 2010, against 0.01

for the usual strategy.

Finally, we examine the predictive power of our model-implied VRP on S&P 500 returns. We find that

our estimate over-performs by a factor close to 2 a model-free VRP which uses the ex-post realized

variance as proxy for its expectation under the historical measure. However, our main finding is that

the term structure of the VRP has predictive power on S&P 500 returns as well. Indeed, adding

a measure of convexity of the VRP term structure (or, equivalently, of skewness), allows reaching

an R2 of 0.23 when the estimation dataset does not contain VIX options (it is composed of S&P

500 options and of the underlying S&P 500 and VIX indexes). This R2 is around three times the

one without the convexity measure. Furthermore, the R2 increases above 0.40 when including VIX

options in the estimation dataset.
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As we adopt a parametric approach, our results are backed up by an extensive model specification

analysis. We examine different nested models to investigate the role of the various features in ex-

plaining option prices, the risk-neutral distributions of returns, and those of the variance process. Of

course, any parametric approach is bound to suffer, to a certain extent, from model misspecification.

Based on likelihood criteria as well as analyses of the in- and out-of sample pricing errors, we show

that the full specification of our model is needed to represent the underlying indices as well as the

options on both markets.

We address the computational challenge of jointly estimating a model to two liquid option markets

by designing an option pricing algorithm and a particle filter which are tailored to our problem

and model specification. Estimating the dynamics of the S&P 500 returns from an extremely large

dataset of options on the two markets and for a long time series requires computationally efficient

techniques that can easily deal with the features of the model, in particular the state-dependent

jumps. To achieve this goal, we extend the Fourier Cosine method introduced by Fang and Oosterlee

(2008) for S&P 500 options to price VIX options and adapt the Auxiliary Particle Filter of Pitt

and Shephard (1999) to estimate the trajectories of unobservable processes and jumps. Accordingly,

we provide an extensive toolkit for inference and diagnostics of affine option pricing models given

index and option data from both the S&P 500 and VIX markets. Particle filtering techniques and

more generally Sequential Monte Carlo methods have recently increased in popularity and have been

used to estimate models, but most endeavors using this tool restrict their options dataset to near

at-the-money options and as far as we know, none have used S&P 500 and VIX derivatives jointly.

Our work is related to several recent papers which aim to reconcile the cross-sectional information

of the S&P 500 and the VIX derivatives markets by modeling them jointly. Gatheral (2008) pointed

out first that even though the Heston model performs fairly well at pricing S&P 500 options, it fails

to price VIX options. In fact, modeling the instantaneous volatility as a square root process leads

to a VIX smile decreasing with moneyness, which is the opposite of what is observed in practice.

Among the recent papers that have attempted to simultaneously reproduce the volatility smiles of

S&P 500 and VIX options are Chung, Tsai, Wang, and Weng (2011), Cont and Kokholm (2013),

Papanicolaou and Sircar (2013), and Bayer, Gatheral, and Karlsmark (2013). We build on this
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literature by considering extensions of the Heston model that remain within the affine framework,

but add more flexibility to the specifications used in the above mentioned papers. We use a special

case of the general affine framework developed by Duffie, Pan, and Singleton (2000) that includes as

sub-cases the usual extensions of the Heston model encountered in the literature, for example Bates

(2000b), Eraker (2004) and Sepp (2008a).1 In related work, Song and Xiu (2015) use a model that

is similar to ours but with a different focus, and estimate marginal densities and pricing kernels of

the market returns and VIX.

We also build on a literature which studies the dynamic properties of variance risk premia. Amengual

(2008) uses S&P 500 options and variance swaps to infer the term structure of variance risk premia

prior to the financial crisis. He finds a downward-sloping term structure of variance risk premia,

which is confirmed by later studies by Andries, Eisenbach, Schmalz, and Wang (2015), solely based

on S&P 500 options. Gruber, Tebaldi, and Trojani (2015) are the first to differentiate between

periods of low and high volatility, and find that the slope of the VRP term structure switches sign

in periods of distress. Our results extend theirs as we show that the term structure of VRP is

no longer monotonic in times of high volatility: it has negative slope up to three to four months,

and then positive slope. On a related note, Dew-Becker, Giglio, Le, and Rodriguez (2015) show

that on average, investors do not price news about future volatility and are only willing to hedge

against fluctuations in short-term realized volatility. We argue that the attitude of investors towards

long-term volatility changes over time, and depends on market conditions.

Finally, our work enriches the literature on time-consistent estimation methods. These methods have

been previously used to calibrate models to index returns and options. See, e.g., Bates (2000a), Pan

(2002), Eraker (2004), Broadie, Chernov, and Johannes (2007), Christoffersen, Jacobs, and Mimouni

(2010), Johannes, Polson, and Stroud (2009) and Duan and Yeh (2011). However, as underlined in

Ferriani and Pastorello (2012), most papers filtering information from option prices rely on one option

per day or a limited set of options. Limiting the amount of data results in a computationally less

intensive empirical exercise, but it ignores a large part of the information present in the markets. In

1Some studies are going in the direction of non-affine models (e.g., Jones (2003), Aı̈t-Sahalia and Kimmel (2007),
Christoffersen, Jacobs, and Mimouni (2010), Ferriani and Pastorello (2012), Durham (2013), Kaeck and Alexander
(2012)). However, tractability remains an issue that is of crucial importance when it comes to calibrating a model to
a long time series containing hundreds of options each day.
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contrast, in our particle filter estimation we fully exploit the richness of our dataset. Furthermore, we

note that most if not all papers that consider S&P 500 and VIX options in their calibration exercise

have restricted their analysis to a static one-day estimation. The resulting parameters might exhibit

large variations when calibrating the model to different dates and therefore cannot be used to infer

time series properties of returns and risk premia.2

This paper is organized as follows. In Section 2, we introduce the three-factor affine jump–diffusion

framework used later in the estimation. We describe the risk premium specification and derive the

expression for the VIX squared as well as the pricing formula for VIX and S&P 500 options. In

Section 3, we describe our dataset. In Section 4, we detail our time series consistent estimation

method. In Section 5, we discuss our estimation results and model specification analysis. Section 6

provides a thorough analysis of the VRP, the properties of its term structure and predictive power

on future S&P 500 returns. Section 7 concludes.

2 Theoretical framework

We first present our modeling framework. Our model is novel and able to represent important stylized

facts of S&P 500 returns which have been recently highlighted in the literature. In particular, it

includes a state-of-the-art representation of the jumps, inspired from Andersen, Fusari, and Todorov

(2015) and Amengual and Xiu (2015), which allows better capturing the stochastic skewness of

returns and of their variance. Despite its flexibility, it is parsimonious and belongs to the affine class

of models, which ensures tractability.

2.1 Model specification

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying the usual assumptions, where P de-

notes the historical measure. We consider a risk-neutral measure Q equivalent to P. Let (Ft)t≥0 be

the forward price of the S&P 500 index and Y = (Yt)t≥0 = (log(Ft))t≥0 the returns. The dynamics

2See, e.g., Lindström, Ströjby, Brodén, Wiktorsson, and Holst (2008).
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of Y under Q are specified by

dYt = µ(vt− ,mt, ut)dt+
√
vt−dW

Y
t + dJ

Y (+)
t + dJ

Y (−)
t , (1)

dvt = κv(mt− − vt−)dt+ σv
√
vt−dW

v
t + dJ

v(+)
t + dJ

v(−)
t , (2)

dmt = κm(θm −mt)dt+ σm
√
mtdW

m
t , (3)

where W Y , W v, Wm and W u are standard Brownian motions. The processes W Y and W v are

correlated with coefficient ρY,v. All other Brownian motions are independent of one and another.

The process v = (vt)t≥0 is the diffusive component of the variance of S&P 500 returns. The second

variance factor m = (mt)t≥0 represents a stochastic level around which v reverts.3 We refer to it as

central tendency. The two processes v and m are instantaneously uncorrelated and only interact via

the drift term of v.

The processes J
Y (+)
t , J

Y (−)
t , J

v(+)
t and J

v(−)
t are finite activity jump processes driven by the point

processes N
Y (+)
t and N

Y (−)
t . The process N

Y (−)
t (resp. N

Y (+)
t ) counts negative (resp. positive)

jumps in the returns. The jump processes are defined by

J
Y (+)
t =

N
Y (+)
t∑
i=1

Z
Y (+)
i , J

Y (−)
t =

N
Y (−)
t∑
i=1

Z
Y (−)
i , J

v(+)
t =

N
Y (−)
t∑
i=1

Z
v(+)
i , J

v(−)
t =

N
Y (+)
t∑
i=1

Z
v(−)
i . (4)

where Z
Y (+)
i , Z

Y (−)
i , Z

v(+)
i and Z

v(−)
i are the random jump sizes. As suggested by the price paths

of the S&P 500 and VIX index, large negative (res. positive) movements in equity returns and large

positive (resp. negative) movements in the variance are likely to occur at the same time. We therefore

choose, in line with the literature, the same point processes N
Y (+)
t and N

Y (−)
t to generate jumps in

the asset returns and variance process v. The leverage effect is driven by the correlation between

W Y and W v as well as the possibility of simultaneous jumps in the returns and variance. While

it is standard to model positive jumps in the returns, accounting for negative jumps has less been

3It has already been shown that at least two factors are needed to provide an accurate description of the volatility
dynamics (see, e.g., Bates (2000b), Andersen, Benzoni, and Lund (2002), Alizadeh, Brandt, and Diebold (2002),
Chernov, Gallant, Ghysels, and Tauchen (2003), Christoffersen, Heston, and Jacobs (2009), Egloff, Leippold, and Wu
(2010), Todorov (2010), Kaeck and Alexander (2012), Bates (2012), Johnson (2012), Menćıa and Sentana (2013) and
Huang and Shaliastovich (2015)).
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done. Amengual and Xiu (2015) show that negative jumps in volatility do occur, and are usually

triggered by macroeconomic announcements. We assume that the jump intensities depend linearly

on the factor levels4. The intensity of positive jumps in returns is denoted by λ(+), and the intensity

of negative jumps by λ(−):

λ(+)(vt− ,mt) = λ
(+)
0 + λ(+)>Xt− ; λ(−)(vt− ,mt, ut) = λ

(−)
0 + λ(−)>Xt− , (5)

where X denotes the (column) vector of latent processes Xt− = (vt− ,mt, ut)
>, λ(+) = (λ

(+)
1 , λ

(+)
2 , 0)>

and λ(−) = (λ
(−)
1 , λ

(−)
2 , λ

(−)
3 )>. The process u drives the intensity of negative jumps in the returns

(joint with positive jumps in the variance), as in Andersen, Fusari, and Todorov (2015). It has the

following dynamics:

dut = κu(θu − ut)dt+ σu
√
utdW

u
t , (6)

with W u independent of the other Brownian motions. Intuitively, u allows to better represent the

stochastic skewness of the return process. Andersen, Fusari, and Todorov (2015) find that the

effect of the process u on the intensity of positive jumps in returns and on the diffusive variance is

insignificant, therefore we do not incorporate it in our model.

We assume that the random jump sizes are independent and identically distributed. The jump sizes

in the returns and volatility are assumed to be exponentially distributed with respective means µ
(+)
Y ,

µ
(−)
Y , ν

(+)
v and ν

(−)
v . Let us define Zi = (Z

Y (+)
i , Z

Y (−)
i , Z

v(+)
i , Z

Y (−)
i )> , i ∈ N∗. The jump sizes are

characterized by their joint Laplace transform

θZ(φ) = θZ1(φ
(+)
Y , φ

(−)
Y , φ(+)

v , φ(−)v ) = EQ[exp(φ>Z1)], φ ∈ C3. (7)

4The specification of jumps is of importance. Todorov (2010), Todorov and Tauchen (2011) and Jacod and Todorov
(2010) find striking evidence for co-jumps in S&P 500 returns and in the VIX. See also Eraker (2004), Broadie, Chernov,
and Johannes (2007), Cont and Kokholm (2013). Bates (1996), Pan (2002) and Eraker (2004) argue in favor of using
state-dependent jumps in returns, which is intuitively appealing, as jumps tend to occur more frequently when volatility
increases. Using variance swaps, Aı̈t-Sahalia, Karaman, and Mancini (2012) find that the state dependent intensity of
jumps is a desirable model feature.
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The drift of the returns process can be written accordingly as:

µ(vt− ,mt, ut) = −λ(−)(vt− ,mt, ut)(θZ(0, 1, 0, 0)− 1)− λ(+)(vt− ,mt)(θZ(1, 0, 0, 0)− 1)− 1

2
vt− (8)

In our model, the diffusive variance of returns can in theory reach zero with positive probability as

well as become negative because of the negative jumps in v. While this is certainly a drawback,

the empirical literature has highlighted the need for negative jumps in volatility and shown that

even with a standard Heston model with positive jumps only, imposing the Feller condition puts

restrictions on the model which do not allow a satisfactory representation of the data, see, e.g., Song

and Xiu (2015). To tackle this issue, we verify in the empirical part of the paper that the estimated

trajectory of the process vt never crosses the zero boundary.

This model specification implicitly defines the dynamics for the VIX. To derive its expression within

our framework, we use the definition of the VIX as a finite sum of call and put prices that converges

to the integral VIX2
t = 2

τE
Q
t

[∫ t+τ
t

dFu
Fu−
− d(lnFu)

]
, where τ is 30 days in annual terms.

Proposition 2.1. Under the model specification given in Equations (1)-(7), the VIX squared at

time t can be written as an affine deterministic function of vt and mt:

VIX2
t =

1

τ
EQ
t

∫ t+τ

t
vudu+ 2

NY v
t+τ∑

i=NY v
t

(
eZ

Y
i − 1− ZYi

) , (9)

= αVIX2vt + βVIX2mt + γVIX2ut + δVIX2 , (10)

where the coefficients αVIX2 , βVIX2 , γVIX2 and δVIX2 are known in closed form and provided in

Appendix A.

2.2 Risk premium specification

We specify the change of measure from the pricing to the historical measure so that the model

dynamics keep the same structure under P. We separate the total equity risk premium γt into a

diffusive contribution, which is proportional to the variance level and represents the compensation
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for the diffusive price risk, and a jump contribution reflecting the compensation for jump risk:

γt = ηY vt−+λ(+)(vt− ,mt)
(
θPZ(1, 0, 0, 0)−θZ(1, 0, 0, 0)

)
+λ(−)(vt− ,mt, ut)

(
θPZ(0, 1, 0, 0)−θZ(0, 1, 0, 0)

)
,

(11)

where θPZ denotes the joint Laplace transform of jump sizes under the historical measure P. We

follow Pan (2002) and Eraker (2004) and assume that the intensity of jumps is the same under Q

and P.5 However, we allow the mean of the jump sizes in returns to be different under Q and P.

Similarly, the volatility risk premium on the two volatility factors v and m decomposes into a diffusive

component and a jump component. The diffusive variance risk premium in v is proportional to the

current level of variance, with coefficient of proportionality given by ηv = κv −κPv . The same applies

to the central tendency m, for which the coefficient is defined as ηm = κm − κPm. For the jump part

of the volatility risk premium, we allow the mean jump sizes ν
(+)
v and ν

(−)
v to be different under P

and Q.

In line with Andersen, Fusari, and Todorov (2015), we find in the empirical part that the trajectory

of the factor u is difficult to estimate. Therefore, to not add unnecessary complexity to the model,

we assume that it does not carry any risk premium.

2.3 Derivatives pricing

Within the class of affine models, option pricing is most efficiently performed using Fourier inversion

techniques. As a starting point, we need the characteristic function of the underlying processes. Due

to the affine property of the VIX square in Proposition 2.1, we have the following result:

Proposition 2.2. In the two-factor stochastic volatility model with jumps defined by equations (1)-

(7), the Laplace transforms of the VIX square and the S&P 500 returns are exponential affine in the

5Pan (2002) argues that introducing different intensities of jumps under the historical and pricing measure introduces
a jump-timing risk premium that is very difficult to disentangle from the mean jump risk premium. Our assumption
artificially incorporates the jump-timing risk premium into the mean jump size risk premium.
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current values of the factor processes v, m and u:

ΨVIX2
T

(t, x̃;ω) := EQ
t

[
eωVIX2

T

∣∣∣Xt = x̃
]

= eα(T−t)+B(T−t)x̃,

ΨYT (t, y, x̃;ω) := EQ
t

[
eωYT

∣∣∣yt = y,Xt = x̃
]

= eαY (T−t)+BY(T−t)x̃,

where B = (β, γ, δ)> and BY = (γY , δY , ξY )> are functions defined on [0, T ] by the ODEs given in

Appendix B. The parameter ω belongs to a subset of C where the above expectations are finite.

Pricing options on the VIX poses technical difficulties that are not encountered when pricing equity

options. Given a call option with strike K and maturity T on the VIX at time t = 0, we need to

calculate

C(VIX0,K, T ) = e−rT
∫ ∞
0

(
√
v −K)+fVIX2

T
(v)dv, (12)

where fVIX2
T

is the Q-density of the VIX square at time t = T . The square root appearing in the

integral as part of the payoff in (12) prevents us from using the Fast Fourier Transform of Carr and

Madan (1999). We would need the log of the VIX to be affine, which is incompatible with affine

models for log-returns.

However, this problem can be circumvented. Fang and Oosterlee (2008) introduce the Fourier cosine

expansion to price index options on the S&P 500. We extend their method to tackle the pricing

of VIX options. Our approach to pricing VIX options is comparable to the inversion performed by

Sepp (2008a) and Song and Xiu (2015), but it is more parsimonious in the number of computational

parameters.

Proposition 2.3. Consider a European-style contingent claim on the VIX index with maturity T and

payoff uVIX(VIX2) = (
√

VIX2 −K)+. Given an interval [aVIX, bVIX] for the support of the VIX2
T |v0,m0

density, the price PVIX(t0,VIX0) at time t = t0 ≥ 0 of the contingent claim is

PVIX(t0,VIX0)= e−r(T−t0)
N−1∑′

n=0

AVIX2

n UVIX2

n , (13)
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where the prime superscript in the sum
∑′

means that the first term AVIX2

0 UVIX2

0 is divided by 2.

The terms in the sum are defined by

AVIX2

n =
2

bVIX − aVIX

Re

{
ΨVIX2

T

(
t0, v0,m0;

inπ

bVIX − aVIX

)
exp

(
−iaVIX

nπ

bVIX − aVIX

)}
, (14)

UVIX2

n =

∫ bVIX

aVIX

uVIX(v) cos

(
nπ

v − aVIX

bVIX − aVIX

)
dv. (15)

The coefficient AVIX2

n is computed using Proposition 2.2 and UVIX2

n is known in closed form and given

in Appendix C.

3 Data and preliminary analysis

In this section, we describe our data and point out some important characteristics of VIX options.

We also perform a preliminary model selection exercise, in which we try to jointly calibrate some

candidate models to the S&P 500 and VIX option markets.

3.1 Data description

Options on the VIX were introduced in 2006. Our sample period is from March 1, 2006 to October

29, 2010. The option data consist of the daily closing prices of European options on the S&P 500

and VIX, obtained from OptionMetrics. This time series includes both periods of calm and periods

of crisis with extreme events. Therefore, it provides an ideal test bed for our candidate models.

Both the S&P 500 and VIX options datasets are treated following the literature, see e.g. Aı̈t-Sahalia

and Lo (1998). We only consider options with maturities between one week and one year and delete

options quotes that are not traded on a given date. Then, we infer from highly liquid options

the futures price using the at-the-money (ATM) put-call parity. This avoids two issues: Making

predictions on future dividends, and using futures closing prices which are not synchronized with the

option closing prices. Hence, we consider that the underlying of the options is the index futures and

not the index itself. We only work with liquid out-of-the-money (OTM) options for the S&P 500
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market and only with liquid call options for the VIX market. If the VIX in-the-money (ITM) call is

not liquid, we use the put–call parity to infer a liquid VIX ITM call from a more liquid VIX OTM

put. Finally, implied volatilities are computed considering futures prices as underlying.6

These adjustments leave a total of 383,286 OTM S&P 500 and 43,775 call options on the VIX, with

a daily average of 327 S&P 500 options and 37 VIX options. The number of S&P 500 (VIX) options

in our dataset on a given date increases with time, with around 170 (5) options at the beginning of

the dataset and around 450 (70) options at the end. At the beginning of the sample, there are one

or two short maturities (less than six months) available for VIX options and around six maturities

for S&P 500 options, with approximately 40 S&P 500 options per maturity slice. At the end of the

sample, the VIX options have around five short maturities with a bit more than 10 options trading

per maturity. For S&P 500 options, around ten maturities are available per day with around 60

options for one-month maturities and 40 options for the one-year slice. The low number of VIX

options compared to the number of S&P 500 options comes from the fact that VIX options only

started trading in 2006. At the end of our sample, the total VIX options volume per day is about

one-half the total volume of S&P 500 options traded.

3.2 Descriptive statistics

Table 1 presents the first four sample moments of the S&P 500 futures returns and VIX index levels,

over two different periods of time. The first period starts in March 2006 and ends in February 2009,

i.e., it spans the pre-crisis period as well as the beginning of the crisis. The second period begins

in March 2009 and lasts until October 2010. For our estimation, these two periods serve as the

in-sample and out-of-sample periods.

The S&P 500 log-returns exhibit a high kurtosis, especially during the in-sample period, suggesting

the presence of rare and large movements. In the in-sample period, their skewness is slightly positive,

but becomes negative in the out-of-sample period, due to the substantial losses made during the

6We remark that VIX option prices do not satisfy no-arbitrage relations with respect to the VIX index, but rather
with respect to the VIX futures value. A VIX call option at time t with maturity T is an option on the volatility for
the time interval [T, T + 30d], where 30d stands for 30 days. The value VIXt at time t is related to the volatility on
the time interval [t, t+ 30d], which might not overlap at all with [T, T + 30d].
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financial crisis. The VIX index exhibits a large positive skewness and kurtosis in the in-sample

period. However, in the out-of-sample period, both skewness and kurtosis decrease significantly

whereas the mean increases by 45%, indicating that the values of the index are of larger overall

magnitude but with less extreme values.

[Table 1 about here.]

Panel A of Figure 1 displays the joint evolution of the S&P 500 and the VIX index from 2006 to

2010. The S&P 500 returns and the VIX daily increments are highly negatively correlated (with a

correlation coefficient of −0.832 over this period), which explains the popularity of VIX contracts for

hedging part of the equity risk of a portfolio. Panel B represents the expected one-month forward

log-returns of the S&P 500 from March 1st, 2006 to October 29th, 2010 as implied by prices of

S&P 500 options and calculated following the method of Bakshi, Kapadia, and Madan (2003). The

expected forward returns illustrate the variety of market situations covered by our time series. They

were almost constant until the end of 2007, equal to a positive value and thus indicating that market

participants were expecting a stable income from investing in the index. From the end of 2007, they

exhibit more variation and eventually turn negative. Following the bail-out of Lehman Brothers in

September 2008, the expected forward returns drop below -1.5%. Then, they gradually come back

and become stable mid-2009 around a slightly negative level close to -0.2%. In 2010, the sudden

increase in the VIX index coincides with a further sudden drop of the expected forward returns

falling to almost -0.5%.

[Figure 1 about here.]

Even though the S&P 500 and VIX markets are closely related, we emphasize that options on the VIX

and S&P 500 differ substantially in their characteristics and in the information that they contain

on the underlying S&P 500 returns and variances. First, S&P 500 and VIX derivatives with the

same maturity contain information on the S&P 500 over different time periods. While an S&P 500

option with maturity T contains information about the future S&P 500 index level at time T and

therefore about the S&P 500 volatility up to T , a VIX option with maturity T embeds information

about the VIX at time T and therefore about the S&P 500 volatility between T and T + 30 days.

Second, the two types of options also differ in their contents. While S&P 500 options, assuming a
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continuous range of traded strikes, characterize the conditional density of future S&P 500 returns,

it only provides a point estimate, at each traded maturity, of the conditional variance of returns. In

turn, VIX options characterize the whole conditional density of future VIX levels, and as such are

likely to contain much more information on the future density of S&P 500 return variance.

Panels C and D of Figure 1 display the S&P 500 and VIX smiles on May 10, 2010. The implied

volatilities (IVs) are computed using the standard Black–Scholes formula. The VIX IVs are in general

substantially higher than the S&P 500 IVs. They range in our sample from 34% to 216% with an

average of 80% whereas the S&P 500 IVs range from 6% to 162% with an average of 26%. The

implied volatilities of S&P 500 options are in general decreasing with moneyness, which highlights

the expensiveness of out-of-the money put options on the S&P 500. As these options provide investors

with protection against large downward movements in returns, the negative skewness of the volatility

smile reflects their risk aversion towards such movements. Due to the leverage effect, negative changes

in returns are strongly related to increases in volatility, which out-of-the-money VIX call options can

hedge. This explains why VIX implied volatilities tend to be positively skewed. A related quantity

is the put–call trading ratio. Almost twice as many puts as calls are traded daily in the S&P 500

options market, but the situation is reversed in the VIX market, where the amount of calls traded

daily is almost double that of the puts. In fact, we can observe in Panels C and D of Figure 1 that

the log-moneynesses traded for S&P 500 options are mostly negative (which corresponds to OTM

put options) and often positive for VIX options (OTM calls).

4 Estimation methodology

Before we bring our model to the time series of data, we carry out a joint calibration exercise using

the cross-section of S&P 500 and VIX options on a particular date. This exercise gives us some

guidance for model design and allows us to reduce the set of models to be estimated on a time

series of options’ data. If a model is not flexible enough to jointly reproduce the implied volatility

patterns of both markets on a single date, the Q–dynamics of the model is not sufficiently rich to

accurately price both the S&P 500 and VIX derivatives jointly, and we can safely discard this model
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from further consideration. Our methodology and detailed results are reported in Appendix D. We

find that irrespective of the day, the specification of our model with jumps but m and u constant

(SVJ) performs as well as the specification with m stochastic and u constant (SVJ2) and the full

specification with u stochastic too (SVJ3) on the S&P 500 options market, all fitting the data very

well. In contrast, we find that there are dates when the SVJ model struggles to fit the VIX IVs in

addition to the S&P 500 IVs whereas the SVJ2 and SVJ3 models satisfactorily fit both.7 Therefore,

we conclude from our calibration exercise that we can discard the Heston model from further analysis

and that jumps in the volatility are necessary.

Daily calibration is essentially a multiple curve fitting exercise which matches a model to risk-neutral

distributions implied by option prices at different maturities. Some of the parameters we get from

daily calibrations are unstable and vary substantially from one day to the next.8 To achieve a

more robust estimation which is consistent with the whole time series of in-sample data, we choose a

methodology based on particle filtering. A particle filter uses a time series of observable market data,

called measurements, to estimate the conditional densities of unobserved latent processes such as the

volatility and jump processes at every point in time during the estimation period. It can be combined

with maximum likelihood estimation for parameter estimation and standard error calculations. Using

a time series of S&P 500 and VIX indexes and options, we estimate both the P- and Q-dynamics of

the model to obtain a set of model parameters that jointly prices spot and options in both markets

consistently over time. The estimation is performed over the in-sample period. The out-of-sample

analysis is conducted by setting the parameters equal to their in-sample estimates and running the

filter on the subsequent period. Before introducing the specific filter used, we specify the discretized

model and the measurement errors.

7Our findings are consistent with Gatheral (2008), who shows that the Heston model is incapable of reproducing
the positive skew in VIX IVs, and with Sepp (2008a,b), who finds that incorporating positive jumps in the volatility
dynamics into the Heston model removes this shortcoming.

8Parameters obtained when calibrating to daily options prices are not stable over time, as explained in Broadie,
Chernov, and Johannes (2007) and Lindström, Ströjby, Brodén, Wiktorsson, and Holst (2008).
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4.1 Discretized model and specification of errors

We discretize the continuous-time model on a uniform time grid composed of M + 1 points t ∈ {t0 =

0, t1 = ∆t, ..., tk = k∆t, ..., tM = M∆t}, for some M ∈ N∗. Since we use daily data, ∆t corresponds

to one day. In discrete time, the model evolves under P as follows:

∆Yt = [−λ(−)(vt,mt, ut)(θ
P
Z(0, 1, 0, 0)− 1)− λ(+)(vt,mt)(θ

P
Z(1, 0, 0, 0)− 1)− 1

2
vt + γt]∆t

+
√
vt∆W

Y,P
t + Z

Y (+),P
t ∆N

(+)
t + Z

Y (−),P
t ∆N

(−)
t , (16)

∆vt = κPv

(
κv
κPv
mt − vt

)
∆t+ σv

√
vt∆W

v,P
t + Z

v(−),P
t ∆N

(+)
t + Z

v(+),P
t ∆N

(−)
t , (17)

∆mt = κPm(θPm −mt)∆t+ σm
√
mt∆W

m,P
t (18)

∆ut = κu(θu − ut)∆t+ σu
√
mt∆W

u,P
t (19)

where the notation ∆Xt for some process X represents the increment Xtk+1
− Xtk where t = tk ∈

{t0, ..., tM−1}.

As the log-returns are observable, equation (16) is the first measurement equation. The second

measurement equation comes from the observation of the VIX index level with error:

VIX2
t − (αVIX2vt + βVIX2mt + γVIX2ut + δVIX2) = εVIX

t . (20)

Jiang and Tian (2007) point to systematic biases in the calculation of the VIX index, such as

model misspecification or data limitations. For example, in practice, the index is calculated using a

finite number of options thereby inducing an error in the computation of the integral present in the

definition. These biases are captured by the error term εVIX
t , which is assumed to follow a normal

distribution with mean zero and variance s > 0.

In order to better identify the total variance of S&P 500 returns under the P measure, we add a

measurement equation which matches the logarithm of the daily Realized Variance (RVt) of S&P

500 returns to the logarithm of the total spot variance under P, as in Filipović, Gourier, and Mancini

(2016). The associated measurement error εt is conditionally normally distributed with mean ρεεt−1

and variance c0 + c1RVt−1. The rationale behind this component of the measurement equation is
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the following. Andersen, Bollerslev, Diebold, and Ebens (2001), among others, provide empirical

evidence that log(RVt) is approximately normally distributed. The conditional mean specification of

εt allows for autocorrelation in the measurement error, which can be induced by clustering of price

jumps caused by persistence of the price jump intensity and/or microstructure noise in the estimates

of daily realized variance. Autocorrelation in the measurement error is also reported in Wu (2011).

The conditional variance specification of εt captures in a parsimonious way the heteroscedasticity of

the measurement error due to the volatility of realized variance.

The daily RV is computed using tick-by-tick data from the S&P 500 futures and applying the two-

scale estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005) with fast and slow time scales given by

two-tick and 20-tick, respectively.

The last measurements are the prices of S&P 500 and VIX options. We assume that the option

prices are observed with an error, which comes from different sources, such as bid–ask spreads and

potential model misspecification, timing and processing errors. We define these errors as the relative

differences between market OM,Mkt
t and model prices OM,Mod

t , M∈ {SPX,VIX}:

OSPX,Mod
t,i (Yt, vt,mt,Θ,Θ

P,Q)−OSPX,Mkt
t,i

OSPX,Mkt
t,i

= εSPX,optionst,i , i = 1, . . . , NSPX,t, (21)

OVIX,Mod
t,j (vt,mt,Θ,Θ

P,Q)−OVIX,Mkt
t,j

OVIX,Mkt
t,j

= εVIX,options
t,j , j = 1, . . . , NVIX,t, (22)

where NM,t is the number of contracts available in the corresponding market and the Θ’s are the

sets of parameters to estimate:

ΘP = {κPv , κPm, θPm, νPm, ν(+)P
v , ν(−)Pv , µ

(+)P
Y , µ

(−)P
Y , ηY }

Θ = {κv, κm, θm, ν(+)
v , ν(−)v , µ

(+)
Y , µ

(−)
Y }

ΘP,Q = {λ(−)0 , λ
(−)
1 , λ

(−)
2 , λ

(−)
3 , λ

(+)
0 , λ

(+)
1 , λ

(+)
2 , σm, σv, σu, κu, θu, ρY v}.

We assume the error terms to be normally distributed and heteroscedastic:

εSPX,optionst,i ∼ N (0, σ2
εSPX
t,i

), εVIX,options
t,j ∼ N (0, σ2

εVIX
t,j

), (23)
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The variance of the errors is

σ2
εSPX
t,i

= exp

(
φ0 · bid-ask spreadi + φ1

∣∣∣∣log

(
Ki

F SPX
t (Ti)

)∣∣∣∣+ φ2(Ti − t) + φ3

)
, (24)

σ2
εVIX
t,j

= exp

(
ψ0 · bid-ask spreadj + ψ1

∣∣∣∣log

(
Kj

FVIX
t (Tj)

)∣∣∣∣+ ψ2(Tj − t) + ψ3

)
, (25)

with φi and ψi in R, i ∈ {0, ..., 3}.9

4.2 Particle filter

At every period t = tn, the measurement vector yt collects observed market prices. By yt =

(yt0 , ..., ytn), we denote all the observations available up to time t. The filtering problem consists of

recursively approximating the distribution of the latent state Lt,

Lt =
{
vt,mt, ut,∆N

(+)
t ,∆N

(−)
t , ZY

(+)

t , ZY
(−)

t

}
, (26)

conditional on yt. Particle filters are perfectly adapted to our problem: They can handle observations

that are nonlinear functions of latent variables as well as equations with non-Gaussian innovations.

There are many types of particle filters. We use the Auxiliary Particle Filter (APF) proposed by

Pitt and Shephard (1999). Compared to more basic particle filters, such as the Sampling Importance

Resampling (SIR) filter, the APF is better suited to detect jumps, whereas the SIR filter faces sample

impoverishment leading to potential particle degeneracy. Both filters are described in Johannes,

Polson, and Stroud (2009) for filtering latent factors from returns in a Heston model with jumps in

returns.

We develop an extension of their algorithm that is able to handle more data (the VIX market data on

top of the S&P 500 market data) as well as the second volatility factor m, the third factor for jumps

ut and the volatility jumps. The likelihood estimation and particle filter are presented in detail in

Appendix E. In particular, we use the weighted likelihood method of Hu and Zidek (2002), in order

9The fact that the option pricing errors are normally distributed does not constitute a restriction. The reason is
that the errors are heteroscedastic and the coefficients generating the heteroscedasticity are driven by the data, i.e., we
optimize over the parameters {φi, ψi}0≤i≤3.
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to assign comparable weight to S&P 500 and VIX options. Furthermore, we performed additional

data treatments for S&P 500 and VIX options before running the particle filter. They are described

in Appendix F.

5 Estimation results with and without VIX options

This section analyzes the benefits of including the different features of the full model specification,

with and without VIX options in the estimation dataset.

5.1 Terminology

We denote by D1 the dataset containing S&P 500 options, S&P 500 returns and their daily RV

and VIX levels, and by D2 the dataset containing VIX options in addition the components of D1.

Furthermore, the full specification of model (1)-(6) is called SVJ3 (Stochastic Volatility model with

Jumps and 3 latent factors). In this model and to improve identification, we impose θu to 1 and

λ
(−)
0 = 0. The following sub-specifications of the SVJ3 model are examined: (i) a specification where

m is a constant and the intensity of jumps does not load on u, denoted SVJ; (ii) a specification where

m is stochastic but the intensity of jumps does not load on u, denoted SVJ2.

5.2 Likelihood criteria and parameter estimates

Before we discuss in detail our parameter estimates, we would like to stress the fact that options

are crucial for identifying the parameters of our model. Even when estimating highly restricted

sub-specifications of our full specification to a dataset without options (with the underlying S&P

500 and VIX indices only), we find that the resulting estimates of the Q-parameters (and some of

the P-parameters) have extremely large standard errors, typically four to five times larger than the

ones obtained with datasets containing options. This problem can partly be resolved by extending

the in-sample time period, leading to a more accurate estimation of the P-parameters, but not of

the Q-parameters. Therefore the VIX index does not contain sufficient information to identify the
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Q−dynamics of S&P 500 returns, as has been argued in, e.g., Duan and Yeh (2010, 2011).10

Table 2 reports the log-likelihood across the model sub-specifications and the values of the Akaike

Information Criterion (AIC) and Bayes Information Criterion (BIC), with both estimation datasets.

[Table 2 about here.]

Inspection of these values for D2 suggests that the full SVJ3 specification is substantially superior

to all nested sub-specifications examined. When VIX options are not part of the estimation dataset

(D1), the SVJ3 model only slightly out-performs the SVJ2 model, where the intensity of jumps does

not load on the additional factor u. Given that this factor controls for simultaneous jumps in the S&P

500 and VIX index, VIX options contain information that helps identifying the parameters driving

its dynamics. This justifies why the difference in performance between the SVJ2 and SVJ3 models is

larger when VIX options are included in the estimation. Other sub-specifications restricting m to a

constant, or without jumps, significantly under-perform the SVJ2 and SVJ3 models for both D1 and

D2. A less flexible jump size specification where positive jumps in the returns are modeled together

with negative jumps using a normal distribution also under-performs our specification significantly.

Table 3 presents the point estimates and standard errors resulting from the estimation of the SVJ3

model to datasets D1 and D2.

[Table 3 about here.]

The estimated parameters driving the two variance processes allow identifying very different roles.

Indeed, v has a high volatility parameter σv ranging from 0.57 to 0.76 depending on the model

specification, with small standard error. Besides, it has a high speed of mean reversion under both

measures, implying a half life around 33 days under P and 48 days under Q. In contrast, m has a

volatility parameter σm around 10% regardless of the estimation dataset and chosen model, also with

small standard error. Its speed of mean reversion is difficult to estimate precisely but ranges between

0.08 and 0.24, leading to a half life to 3 to 7 years depending on the estimation. We can interpret the

process v as a factor representing erratic short-term fluctuations of the variance, whereas the process

m is persistent and captures smoother medium- to long-term trends.11 The estimated volatility of

10Results have not been reported for space constraints but are available upon request.
11Indeed, under the assumption that jumps have a minor impact on this expectation compared to the drift term, i.e.
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the jump process u, σu, is close to 0.3 which suggests that u is not as volatile as v but also not as

persistent as m. Its quite high speed of mean reversion, corresponding to a half life between 60 and

75 days, indicates that it captures punctual events.

Not surprisingly, we find a prominent leverage coefficient ρY v across all models and datasets.

In line with the literature, the equity risk premium coefficient ηY is positive across all models and

datasets, which implies a positive diffusive equity risk premium. The diffusive part of the volatility

risk premium ηv = κv − κPv is always found negative, which supports the existence of a negative

variance risk premium.

Jump size estimates under Q are statistically significant, with a negative part which captures the

value given to large and rare events (around -11% on average). It is much more negative than

the average negative jump estimate under P, around −4%. This is due to investors’ risk aversion

to crashes and yields a non-zero negative jump risk premium. In contrast, positive jumps have

comparable means under both measures. Similarly to negative jumps in returns, positive jumps in

volatility are priced, with an average size of around 6% under Q and 2 to 4% under P. Negative

jumps have a zero risk premium by assumption, but we find that their estimated size is significantly

different from zero. In fact, imposing it equal to zero yields a substantial loss of likelihood.

The intensity of jumps is driven mainly by the short-term volatility process v, and to a smaller extent

on the long-term process m.

κP
v >> λ

(+/−)
k νPv (inequalities satisfied by our parameter estimates), the conditional expectation of the variance EP

t [vT ]
can be written as:

EP
t [vT ] ≈ θPm

κv
κP
v

+ c · e−κ
P
m(T−t)(mt − θPm) + e−κ

P
v(T−t)(vt − c ·mt + c · κ

P
m

κP
v

θPm),

for a constant c = κv

κP
v−κP

m
. As κP

v >> κP
m, the coefficients in front of vt decays much faster than the one in front of mt.

For T − t equal to three months, e−κ
P
v(T−t) is around 0.16, but goes down to 0.03 for six months, and is of order of

magnitude of 10−3 for a year. In contrast, e−κ
P
m(T−t) is around 0.90 for T − t equal to six months, and as high as 0.80

for one year. Therefore the deviation of mt relative to its long-term mean drives the medium- to long-term expectation
of the variance.
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5.3 Filtered trajectories

Figure 2, Panel A displays the filtered trajectory of the volatility process vt resulting from estimating

the SVJ3 model to D2. Until mid-2007, the volatility remains at low levels, oscillating around 10%.

When the crisis of the quant-strategy hedge funds starts in the summer of 2007, the process v

gradually goes up to stabilize around 20%. The bankruptcy of Lehman Brothers in September 2008

triggers a sudden increase in v to more than 80%, closely followed by a decrease and a subsequent

increase when the House of Representatives rejects the Troubled Asset Relief Program at the end of

September. The volatility then reverts back to around 40%, to increase again following the distress

of Bank of America in 2009. It gradually goes back to a level that is close to its initial level, to reach

around 10% early 2010. The Greek financial crisis then leads to new increases in volatility, with a

peak around 50% in mid-2010, and a reversion to around 10% following the agreement on a rescue

plan. Note that v never touches or crosses the zero boundary. Panel B represents the difference

between the estimated variance using D2 and D1 as estimation datasets. The estimated trajectory

is consistent throughout the two datasets in times of market calm, and yields slightly different

estimates during market turmoil. The maximum difference is around 10%. These differences can be

explained as follows: first, the model is likely not able to fully represent both markets during high

volatility times; second, the two markets are subject to different frictions, e.g., in terms of liquidity, or

constraints and information sets of the traders involved, introducing inconsistencies between prices.

Similarly, panel C represents the filtered trajectory of the stochastic central tendency m resulting

from estimating the SVJ3 model to D2. The process m is overall more persistent than the process

v, in line with the parameter estimates found. It starts increasing in mid-2007 from around 1% to

around 5%. It stabilizes and oscillates around that level for about a year, until September 2008 when

it increases gradually again, to reach a level close to 10% at the beginning of 2009. This increase

is followed by a gradual decrease until beginning of 2010, where m is around 5% again. The high

volatility due to the Greek crisis in 2010 translates into an slight increase of m from 5 to 7%. While

the process v reaches levels which are close to its initial level at the beginning of 2010, m stabilizes at

a level which is about 7 times its initial level. Panel D represents the difference in the estimated m

trajectory when removing VIX options from the estimation dataset. The trajectory does not change
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dramatically, with a maximum difference of around 4% around the crisis period.

[Figure 2 about here.]

In Figure 3, Panel A represents the filtered trajectory of the jump intensity factor u, with and

without VIX options. The two processes are almost symmetric about 1. This is explained by the

fact that the level of mean reversion of the u factor is imposed to be 1. As the estimation with D2

yields an estimate of λ
(−)
1 which is much higher than the estimation with D1, the intensity of jumps

as implied by the model becomes too high and is not supported anymore by the data when v is at

its peak. Similary, with D1, the low estimated value of λ
(−)
1 implies that the model-implied intensity

of jumps is not high enough for the data. The factor u therefore correct for the non-linearity in

v of the intensity of jumps. It is only significantly different from its long term mean 1 in times of

crisis. Panel B represents the recovered jump sizes in v, when the estimated probability of jumps is

larger than 10%. Note that no negative actual jump in the volatility is filtered. The data indicates

that negative jumps in volatility are likely to occur with a small probability, but even during the

crisis period this fact has not happened. Positive jumps in the variance have been filtered during the

crisis, with and without VIX options. These jumps tend to be large, even more when VIX options

are included in the estimation; the maximum jump comes close to 20%.

[Figure 3 about here.]

5.4 Pricing errors

Tables 4 and 5 present the Root Mean Square Relative Errors (RMSREs) of our model implied

volatilities for S&P 500 and VIX options, in- and out-of-sample, using datasets D1 and D2. Results

are reported for the SVJ3 model. Options are sorted into buckets by moneyness and maturity.

Inspection of the pricing errors of S&P 500 options reveals that RMSREs are only marginally smaller

with D1 than with D2 (0.096 versus 0.099 over all S&P 500 options in the in-sample period). This

observation is valid both outside and during the financial crisis and suggests that VIX options,

in-sample, do not contain information that is conflicting with the information already spanned by
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S&P 500 options. In fact, Root Mean Square Errors (RMSEs)12 even decrease from D1 to D2,

from 0.041 to 0.036.13 The improvement is most noticeable for deep OTM put options (RMSEs

decrease from 0.091 to 0.069), OTM put options (0.022 versus 0.03) and long-term options (0.026

versus 0.034), suggesting that VIX options help identify the model parameters driving the prices of

these options. This is consistent with the intuition that VIX options help pinpoint stark volatility

increases (modelled with the jumps) and provide information on the long-term behavior of variance.

Out-of-sample pricing errors on S&P 500 options confirm this intuition, as including VIX options

allows to slightly improve both RMSREs and RMSEs overall, the strongest improvement being for

OTM put options.

A comparison of pricing errors on VIX options with D1 and D2 uncovers striking results: VIX

options are not well priced when they are not included in the estimation dataset. This is true in-

and out-of sample, outside and during the crisis period. In-sample, the RMSRE over all VIX options

decreases from 0.603 to 0.423 from D1 to D2, and the decrease is observed throughout all maturity

and moneyness buckets. The corresponding RMSE goes from 0.490 to 0.423. Out-of-sample, the

numbers are comparable, with a decrease of the RMSRE from 0.653 to 0.490 , and a decrease of

the RMSE from 0.452 to 0.365. Note that the out-of-sample pricing errors are smaller than the

in-sample errors. This is due to the fact that the main part of the financial crisis occurs during

the in-sample period. Excluding options after September 2008 from the calculation of pricing errors

yields an RMSRE of 0.528 with D1 versus 0.354 with D2, and RMSEs of 0.375 and 0.255 respectively.

[Table 4 about here.]

[Table 5 about here.]

In unreported results14, we find that including a stochastic central tendency in the model significantly

improves the pricing of long-term options and the representation of the tails of the distributions of

12RMSEs emphasize expensive options, i.e., options which are closer to the ATM level. For this reason we report
RMSREs. RMSEs are available upon request.

13Our results are comparable to those obtained by Andersen, Fusari, and Todorov (2015) who fit a three factor
volatility model to S&P 500 options. They consider IV RMSEs as the distance to minimize and obtain an RMSE of
1.7%. Excluding the financial crisis from the calculation of the RMSEs, we obtain RMSEs of 1.4%, and 3.6% when
including the crisis period. In addition, their model has an additional volatility factor hence adding flexibility to fit
more data.

14Pricing errors for sub-specifications of the SVJ3 model are available upon request.
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the returns (OTM puts and calls on the S&P 500). Furthermore, jumps improve the representation

of the right tail of the variance distribution (OTM calls on the VIX) as well as of the short-term

options.

5.5 Representation of the variance term structure

In order to further assess the model’s ability to reproduce the variance of S&P 500 returns, we test

whether it can price claims on the variance which are not included in the estimation dataset. While

the VIX measures the expectation of future variance over a 30-day horizon, it is straightforward to

construct a similar index for other maturities, using S&P 500 options with the chosen maturities. In

fact, in 2007 the CBOE started calculating the 3-month VXV index, and in 2013 the 9-day VXST

index. We build indices for maturities 2, 3, 5 and 6 months and verify that our model can reproduce

them. The RMSE on the VIX during the in-sample period is 2.6%, and goes down to 1.6% when

excluding the data after September 2008 from the calculation. It is equal to 2% in the out-of-sample

period. The VIX index, besides, is as well fitted when including VIX options in the estimation

dataset as without them. Synthesizing a VIX index for other maturities generates a small error,

which depends on the amount of traded options for the considered maturities. As there are less

traded options for longer time-to-maturity options, we expect the 6-month VIX to be less precisely

synthesized than the 30-day VIX index. Using D2 as estimation dataset, we obtain RMSEs on the

synthesized 2, 3, 5 and 6-month VIX indexes which are equal to, respectively, 3.4%, 3.1%, 2.8%

and 2.8%, over the entire time period considered (in- and out-of-sample). In contrast, using D1

as estimation dataset, we obtain RMSEs of 2.3%, 4.5%, 6.8% and 7.8%, which provides striking

evidence that VIX options play a fundamental role in identifying the parameters of the model that

drive the variance term structure.
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6 Variance risk premium

6.1 Closed-form expression

Following Bollerslev and Todorov (2011), we define the annualized integrated variance risk premium

(VRP) as

VRP(t, T ) =
1
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where QV[t,T ] denotes the quadratic variation of the log price process, which is the sum of the

integrated variance of the returns and the squared jumps in the time interval considered:
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The VRP represents the expected payoff when buying a variance swap at time t with maturity T .

We can further decompose the IVRP into a continuous and a discontinuous part:

VRP(t, T ) = VRPc(t, T ) + VRPd(t, T )

with
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Each part can also be decomposed into a linear contribution from mt and another one from vt, given

that the expectations of the integrated latent factors are affine in their current values, see Appendix

G.
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6.2 Estimated VRP

We showed in Section 5 that including VIX options in the estimation dataset allowed achieving a

better representation of the conditional distribution of future variance. As the VRP is based on the

expectation of future variance, we analyze its properties using dataset D2. We estimate the VRP for

investments with different times-to-maturity varying from 1 week to 1 year.

In Figure 4, Panel A, we plot the evolution of the VRP over time, with its 90% confidence interval.

In line with the literature, we find that the VRP is negative. At the beginning of our sample period,

it is fairly stable, around -1%, meaning that investors are willing to pay 1% of their notional per year

to be hedged against variance fluctuations, when investing in a 6-month contract. From mid-2007,

the VRP reacts to the slight increase in volatility, goes down and stays around -2% until Lehman

Brothers’ bankruptcy. This event triggers a sharp drop to almost -12%, followed by a recovery period

bringing the VRP back to -2%. The Greek crisis prompts a second drop to -5%, followed by a second

recovery period. In contrast with the volatility factor, the VRP never goes back to its initial level of

1%. Panel B represents the VRPs for different times-to-maturity, from 1 month to 1 year. The sign

and shape of the VRPs are consistent across maturities. Before September 2008, the VRPs range

between 0 and -2.5%, all of them being relatively close to one another. In September 2008, they all

drop simultaneously but then recover at different paces: The shorter-term VRP recover faster than

the longer-term VRP. In Panels C and D of Figure 4, we decompose the 1-week and 6-month VRPs

into their continuous and discontinuous parts. The discontinuous component of the VRP dominates

for shorter maturities, indicating that including jumps helps to represent the shorter end of the

variance premium’s term structure. In fact, the jump part of the VRP represents about two thirds of

the total VRP for a 1-week investment. At the long end, the effect of a jump in the variance process

is likely to be dampened by the reversion of the variance to its long-term mean, which justifies why

jumps only have a moderate impact on the 6-month VRP. Finally, Panels E and F represent the

contributions of the v and m factors to the VRP. The contribution of m to the VRP is negligible for

short maturities but plays a substantial role for maturities larger than three months, which explains

why the 1-week VRP recovers much faster than the 6-month VRP after the volatility peak. The

central tendency m plays an important role in setting the level of the continuous VRP, especially for
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mid- to long-term investments, but it becomes secondary during market turmoil. The VRP is then

dominated by the impact of v.

[Figure 4 about here.]

Both the variance jumps and the stochastic central tendency play a crucial role in the VRP. While

the jumps help represent the short end of the variance term structure, the central tendency has a

large impact on the mid- to long-term VRP, especially during market calm. In times of financial

crises, the impact of the process v dominates.

6.3 Term structure of the variance risk premium

While the negativity of VRP is well established, the term structure of VRP has been subject to

scrutiny very recently. Indeed, in contrast to most papers finding a VRP that is more negative when

time-to-maturity increases (e.g., Amengual (2008)), Gruber, Tebaldi, and Trojani (2015) find instead

that the slope of the term structure switches sign in times of market distress. Such phenomenon has

already been uncovered for the equity risk premium, see van Binsbergen, Hueskes, Koijen, and Vrugt

(2013), and is intuitively appealing from an economic perspective. Indeed, in low volatile periods,

investors are likely to require a larger compensation for an investment which has a longer time-to-

horizon, as the probability that markets enter into distress before maturity increases with time-to-

maturity. In turn, in highly volatile periods, and due to the mean-reverting nature of volatility,

increasing the time-to-maturity of an investment also increases the probability that volatility will

go down before maturity of the investment. This would justify a lower (in absolute value) VRP for

longer time-to-maturity investments in times of market distress.

Panel A of Figure 5 plots the difference between the 3-month and the 1-year VRP over time. This

difference is generally positive, meaning that the 1-year VRP is more negative than the 3-month VRP.

During the recession (grey part of the graph), this relation is inversed and the difference becomes

highly negative. In terms of modelling, we have seen that there is a large premium for jump variance,

which represents about two times the premium for continuous variance fluctuations for a one-week

investment. This premium disappears when increasing time-to-maturity of the investment. Panels
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B and C of Figure 5 represent the continuous and jump contributions in our estimation and show

that both contributions of the VRP to the 3-month minus 1-year difference are responsible for the

change in sign.

[Figure 5 about here.]

Figure 6 plots the difference between the 3-month and the 6-month VIX, constructed from S&P 500

options, following the procedure used in Section 5.5. It indicates that the slope of the term structure

of the Q−expectation of total variance (up to an adjustment due to jumps) becomes strongly positive

during the recession, driving the slope of the term structure of the variance risk premium down. Note

that this observation is completely model-free, suggesting that our results are not driven by model

mis-specification. The switch in the slope of term structure of VRP has strong economic implications.

Indeed, in terms of investment strategy, it implies that it is no longer profitable, on average, to sell

claims on variance with a longer time-to-maturity, and hedge part of the exposure by buying claims

with a shorter time-to-maturity. Such investment has been shown to be dynamically optimal in

Filipović, Gourier, and Mancini (2016), using variance swaps.

[Figure 6 about here.]

Let us now analyze whether the term structure of VRP can be used as trading signal. In the spirit

of Dew-Becker, Giglio, Le, and Rodriguez (2015), we define a squared VIX forward as a claim on the

future variance as follows:

VIX2
t,T1,T2 = VIX2

t,T2 −VIX2
t,T1 .

In other words, VIX2
t,T1,T2

represents the price of a portfolio that is long variance with maturity T2

and short variance with maturity T1. Up to a jump adjustment, it can be convenient to think of

such portfolio as being long a variance swap with maturity T2 and short a swap with maturity T1.

Let us assume that there exists an index tracking future variance as defined above. The annual

Sharpe ratio of a short investment in the VIX2
t,3 months,6 months from 2006 until 2010 is equal to 1%.

Interpreting a change of sign in the slope of the VRP term structure as a warning, and leaving

the investment on hold until the slope switches sign again, yields an annual Sharpe ratio of 0.82.

Switching position from selling future variance into buying future variance whenever the slope of
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the VRP term structure is negative still enhances the Sharpe ratio, which reaches 1.18. The sign of

the VRP slope can therefore be interpreted as a trigger indicating that selling future variance is no

longer profitable in times of market turmoil. These results are robust to other values of T1 and T2.

For example, the previously reported Sharpe ratios become respectively 0.01, 0.55 and 1.02 if using

T1 = 2 months instead of 3 months.

Another property of the VRP term structure which has been recently investigated in the literature is

its convexity (or concavity, in papers which define the VRP as the Q-expectation of variance minus

the P-expectation). See, e.g., Andries, Eisenbach, Schmalz, and Wang (2015) and Dew-Becker,

Giglio, Le, and Rodriguez (2015). The latter argue that shocks in the future variance (beyond the

first months) are not priced, and that only transitory shocks in the short-term variance are priced.

This theory is consistent with a term structure of VRP which is steep for short-term maturities,

and then flattens out for longer-term maturities. It is also in line with the very small Sharpe ratio

obtained when investing in the VIX2
t,3 months,6 months. Our Panel A of Figure 7 represents the term

structure of VRP on different dates and shows that the level of skewness and convexity of the VRP

term structure is time-dependent. Before Lehman Brothers filed for bankruptcy, the term structure

of VRP is decreasing and quite flat after the 3-month horizon, corroborating the findings of Dew-

Becker, Giglio, Le, and Rodriguez (2015). However, in October 2008, the shape of the VRP term

structure radically changes. Not only is it no longer flat for long horizons, but it exhibits a sharp

decline up to a horizon of around 3 months, reaches its minimum and then increases almost as sharply

for longer-term investments. The inversion in the term structure of VRP is only happening for mid-

to long-term investments. Intuitively, this finding is consistent with the belief that the situation

could get worse on the short-term, i.e. in the next two to three months, but will eventually get

better on the long-term. As a result, the VRP term structure exhibits a large convexity. Panel B of

Figure 7 represents an estimate of the higher-order moments of the VRP term structure. The short-

term skewness is measured as the difference between the 1-month and the 3-month VRP, while the

long-term skewness represents the 3-month VRP minus the 1-year VRP. The convexity is measured

as the sum of the 1-month and the 6-month VRP minus two times the 3-month VRP. The graph

shows that the short-term skewness of the VRP term structure varies together with its convexity, in

line with what is illustrated in Panel A. The long-term skewness varies in the inverse direction. In
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fact, the three time-series are almost perfectly correlated, with a correlation above 0.96. In contrast

to Dew-Becker, Giglio, Le, and Rodriguez (2015), we therefore find that investors care about shocks

in future variance, but that the way they care differs across time.

[Figure 7 about here.]

6.4 Return predictability

Bollerslev, Tauchen, and Zhou (2009), using the difference between implied and realized variances

as a proxy for the VRP, find that it has predictive power on future returns, large premia predicting

high future returns. This result has been confirmed in subsequent papers.15 We analyze it using

our estimates of the VRP. It does not present the disadvantage of the usual model-free estimators

that approximate the non-observable expectation of the realized variance under P by its realized

value over a past interval. But at the same time, it has the drawback of being model-dependent.

Panel A of Figure 8 represents the adjusted R2 when regressing returns over the interval [t, t + τ ],

with τ between 1 month and 1 year, on different predictors. The first predictor is the difference

between the VIX and the (past) 1-month realized variance used by Bollerslev, Tauchen, and Zhou

(2009). The second predictor is our estimate of the 1-month VRP. Its performance is comparable

to the one of the first predictor below the 2-month horizon, with negligible predictive power. Above

the 2-month horizon, the R2 increases for both predictors and our estimate of the VRP outperforms

the first predictor. We include another predictor in the regression, which contains the residuals of

short-term skewness of the VRP term structure, regressed on the VRP. Interestingly, the R2 strongly

increases for predictions over all horizons. For 3-month returns, the R2 of the third regression is

about five times the one of the first regression. These results indicate that not only does the VRP

have predictive power on returns, but so does its term structure and its higher-order moments.

Similarly to Bollerslev, Tauchen, and Zhou (2009), the R2 increases with time-to-maturity, to reach

its maximum around 3 months, and then goes down. The beta of the VRP is negative whenever the

term structure component is included, confirming the usual results: the larger the VRP (in absolute

value), the larger future returns on average. In contrast, the beta of the skewness variable is always

15See, among others, Drechsler and Yaron (2011), Bekaert and Hoerova (2014), Kelly and Jiang (2014) and Bali and
Zhou (2016).
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positive, indicating that a larger short-term skewness goes together with higher future returns on

average. Panel B of Figure 8 compares the R2 of regressions using the estimated VRP from D1,

which does not contain VIX options, and D2 which does. When using only the VRP as regressor,

the R2 is similar across maturities in both cases. However, when including the skewness of the VRP

term structure in the regression, the R2 using D2 increases substantially, more than the one using

D1: it is about twice as large over all horizons. These results confirm that VIX options contain

information on the term structure of the VRP which is not spanned by S&P 500 options, and has

predictive power on future returns over all horizons considered.

[Figure 8 about here.]

7 Conclusion

In this paper, we carry out an extensive empirical investigation of the information contained in

VIX options on the dynamics of S&P 500 returns and their variance process. We estimate various

specifications of a flexible affine model using two datasets: the first dataset contains a time series

of S&P 500 and VIX indexes as well as S&P option prices, and the second dataset contains VIX

options in addition to the first dataset. We do not restrict the moneyness and maturity of the options

considered, to benefit from their information contents on the distribution of S&P 500 returns and

their variance. Instead of a step-wise estimation, we depart from most of the literature and estimated

the historical and the risk-neutral parameters jointly, in a single step. Our maximum likelihood

estimation procedure is based on particle filtering.

We find that VIX options contain information on the dynamics properties of S&P 500 returns, which

is not spanned by S&P 500 options. This conclusion is based on several observations. First, when

VIX options are not included in the estimation dataset, they are not well priced. Including them

in the estimation dataset not only corrects this in both in- and out-of-sample period, but even

yields improvements of the fitting of some S&P 500 options: in-sample, deep OTM put options and

long-term options are better priced and so are all put options out-of-sample. Second, including VIX

options in the estimation dataset allows considerable improvements in representing the variance term
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structure. We replicate the construction of the VIX index for maturities 2, 3, 5 and 6 months. We

find that for maturities larger than 3 months, the model yields RMSEs which are twice as large when

VIX options are not in the estimation dataset as when they are part of it.

We perform a thorough analysis of the variance risk premium (VRP) and of its term structure. In

line with the literature, we find that the VRP, in absolute value, is more negative for longer time-

to-maturity investments in low volatility periods. However, in high volatility periods, we uncover

a non-monotonic term structure of VRP, which reaches its optimum around a 3-month maturity.

This finding complements the recent results of Gruber, Tebaldi, and Trojani (2015) and Dew-Becker,

Giglio, Le, and Rodriguez (2015). We illustrate the economic implications of our results by testing a

simple trading strategy which sells long-maturity variance and buys short-maturity variance, switch-

ing the sign of positions when an inversion of the term structure occurs. Our strategy allows reaping

the variance risk premium disregarding market conditions, and reaches a Sharpe ratio of 1.18, against

0.01 for a strategy which does not react to changes in the VRP term structure. Finally, we study

the predictive power of our model-implied VRP and its term structure on future S&P 500 returns,

and find that adding a term structure component substantially improves the predictive power of the

VRP. This holds especially true when VIX options are included in the estimation dataset.
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Menćıa, J., and E. Sentana, 2013, “Valuation of VIX derivatives,” Journal of Financial Economics,

108(2), 367 – 391.
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Appendix

A Affine dependence of the VIX2 on vt, mt and ut

The expressions for the coefficients αVIX2 , βVIX2 , γVIX2 and δVIX2 in Proposition 2.1 are given by

αVIX2 =
(

1 + 2λ
(+)
1 C(+) + 2λ

(−)
1 C(−)

)
A(τVIX), (A.1)

βVIX2 =
(

1 + 2λ
(+)
1 C(+) + 2λ

(−)
1 C(−)

)
B(τVIX) +

(
2λ

(+)
2 C(+) + 2λ

(−)
2 C(−)

)
Â(τVIX), (A.2)

γVIX2 =
(

1 + 2λ
(+)
1 C(+) + 2λ

(−)
1 C(−)

)
D(τVIX) +

(
2λ

(+)
3 C(+) + 2λ

(−)
3 C(−)

)
Ā(τVIX), (A.3)

δVIX2 = 2(λ
(+)
0 C(+) + λ

(−)
0 C(−)) +

(
1 + 2λ

(+)
1 C(+) + 2λ

(−)
1 C(−)

)
G+ (A.4)(

2λ
(+)
2 C(+) + 2λ

(−)
2 C(−)

)
B̂(τVIX) +

(
2λ

(+)
3 C(+) + 2λ

(−)
3 C(−)

)
B̄(τVIX), (A.5)

where C(+/−) := 1

1−µ(+/−)
Y

, τVIX is 30 days and and the remaining coefficients are available in closed

form from:

A(τ) =
1

τVIX

∫ t+τVIX

t
αv(t, s)ds; B(τ) =

1

τVIX

∫ t+τVIX

t
βv(t, s)ds; (A.6)

D(τ) =
1

τVIX

∫ t+τVIX

t
γv(t, s)ds; G(τ) =

1

τVIX

∫ t+τVIX

t
δv(t, s)ds; (A.7)

Â(τ) =
1

τVIX

∫ t+τVIX

t
αm(t, s)ds; B̂(τ) =

1

τVIX

∫ t+τVIX

t
βm(t, s)ds; (A.8)

Ā(τ) =
1

τVIX

∫ t+τVIX

t
αu(t, s)ds; B̄(τ) =

1

τVIX

∫ t+τVIX

t
βu(t, s)ds; (A.9)

with the functions αv, βv, γv, δv, αm, βm, αu and βu such that, for 0 ≤ t < s:

EQ
t [vs] = αv(t, s)vt + βv(t, s)mt + γv(t, s)ut + δv(t, s); (A.10)

EQ
t [ms] = αm(t, s)mt + βm(t, s); (A.11)

EQ
t [us] = αu(t, s)ut + βu(t, s). (A.12)
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B Characteristic functions

Assuming that the characteristic functions of the processes Y , VIX2 take the exponential affine form

ΨV IX2
T

(t, v,m, u;ω) = EQ
t

[
eωV IX

2
T

]
= eα(T−t)+β(T−t)v+γ(T−t)m+δ(T−t)u,

ΨYT (t, v,m, u;ω) = EQ
t

[
eωYT

]
= eαY (T−t)+βY (T−t)y+γY (T−t)v+δY (T−t)m+ξ(T−t)u,

with ω ∈ C, the coefficients in the definition of ΨV IX2
T

satisfy the following ODEs, with τ = T − t:16

− α′(τ) + γ(τ)κmθm + δ(τ)κuθu + λ
(−)
0

(
1

1− β(τ)ν
(+)
v

− 1

)
+ λ

(+)
0

(
1

1− β(τ)ν
(−)
v

− 1

)
= 0

− β′(τ)− β(τ)κv +
1

2
σ2vβ

2(τ) + λ
(−)
1

(
1

1− β(τ)ν
(+)
v

− 1

)
+ λ

(+)
1

(
1

1− β(τ)ν
(−)
v

− 1

)
= 0

− γ′(τ)− γ(τ)κm +
1

2
σ2mγ

2(τ) + κvβ(τ) + λ
(−)
2

(
1

1− β(τ)ν
(+)
v

− 1

)
+ λ

(+)
2

(
1

1− β(τ)ν
(−)
v

− 1

)
= 0

− δ′(τ)− δ(τ)κu +
1

2
δ2(τ)σ2u + λ

(−)
3

(
1

1− β(τ)ν
(+)
v

− 1

)
+ λ

(+)
3

(
1

1− β(τ)ν
(−)
v

− 1

)
= 0

∀t ∈ (0, T ], with boundary conditions α(0) = ωγV IX2 , β(0) = ωαV IX2 , γ(0) = ωβV IX2 and δ(0) =

ωγV IX2 , where the coefficients αV IX2 , βV IX2 , γV IX2 and δV IX2 are defined in Appendix A.

16This relies on the fact that the Poisson processes driving the positive and negative jumps in Yt are independent.
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The coefficients of ΨYT satisfy the following ODEs for t ∈ (0, T ]:

− α′Y (τ) + βY (τ)

(
−λ(+)

0 (
1

1− µ(+)
Y

− 1)− λ(−)0 (
1

1− µ(−)Y

− 1)

)
+ δY (T − t)κmθm + ξY (τ)κuθu+

λ
(+)
0

 1(
1− βY (τ)µ

(+)
Y

)(
1− γY (τ)ν

(−)
v

) − 1

+ λ
(−)
0
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1− βY (τ)µ

(−)
Y

)(
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(+)
v

) − 1

 = 0
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1 (
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1− µ(+)
Y

− 1)− λ(−)1 (
1

1− µ(−)Y

− 1)− 1

2

)
− γY (τ)κv +

1

2
βY (τ)2+

1

2
γY (τ)2σ2v + βY (τ)γY (τ)σvρY,v + λ

(+)
1

 1(
1− βY (τ)µ

(+)
Y

)(
1− γY (τ)ν

(−)
v

) − 1

+

λ
(−)
1

 1(
1− βY (τ)µ

(−)
Y

)(
1− γY (τ)ν

(+)
v

) − 1

 = 0

− δ′Y (τ) + βY (τ)

(
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2 (
1

1− µ(+)
Y

− 1)− λ(−)2 (
1

1− µ(−)Y

− 1)
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+ γY (τ)κv − δY (τ)κm +

1

2
δY (τ)2σ2m+

λ
(+)
2

 1(
1− βY (τ)µ

(+)
Y

)(
1− γY (τ)ν

(−)
v

) − 1

+ λ
(−)
2

 1(
1− βY (τ)µ

(−)
Y

)(
1− γY (τ)ν
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v

) − 1
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− ξ′Y (τ) + βY (τ)
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3 (
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1− µ(+)
Y

− 1)− λ(−)3 (
1

1− µ(−)Y

− 1)
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− ξY (τ)κu +

1

2
ξY (T − t)2σ2u+

λ
(+)
3

 1(
1− βY (τ)µ

(+)
Y

)(
1− γY (τ)ν

(−)
v

) − 1

+ λ
(−)
3

 1(
1− βY (τ)µ

(−)
Y

)(
1− γY (τ)ν

(+)
v

) − 1

 = 0,

with boundary conditions αY (0) = 0, βY (0) = ω, γY (0) = 0, δY (0) = 0 and ξY (0) = 0.

In practice, the ODEs are solved numerically.
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C Coefficients for the Fourier cosine expansion

Here we give the expression for UVIX2

n , the Fourier cosine transform of the VIX options’ payoff. To

ease notation, we drop the subscript VIX for aVIX, bVIX and define ωn := nπ
b−a . For n > 0, we obtain

UVIX2

n =

∫ b

a

(√
x−K

)+
cos (ωn(x− a)) dx (C.1)

=
2

b− a
Re

{
e−iωna

[√
be−iωnb

iωn
+

√
π

2(−iωn)3/2

(
erfz(

√
−iωnb)− erfz(K

√
−iωn)

)]}
.

where erfz is the error function for complex numbers.

For n = 0,

UVIX2

0 =
2

b− a

[
2

3
b3/2 −Kb+

1

3
K3

]
. (C.2)

D Joint calibration

Before we bring our models to the time series of data, we carry out a joint calibration exercise using

the cross-section of S&P 500 and VIX options on a particular date. This exercise gives us some

guidance for model design and allows us to reduce the set of models to be estimated on a time

series of options’ data. If a model is not flexible enough to jointly reproduce the implied volatility

patterns of both markets on a single date, the Q–dynamics of the model is not sufficiently rich to

accurately price both the S&P 500 and VIX derivatives jointly, and we can safely discard this model

from further consideration.

Let us fix a date t and consider {IVMkt
SPX,i}i=1···NSPX

, the set of NSPX market implied volatilities of

S&P 500 options for strikes {Ki} and maturities {Ti}. We denote by {IVMkt
VIX,j}j=1···NVIX

the set of

NVIX market implied volatilities of VIX options. To estimate the parameters, we minimize the root
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mean squared error (RMSE) between the market and model implied volatilities:17

RMSEM(t) :=

√
1

NM

∑
1≤i≤I

(
IVMkt
M,i − IVMod

M,i

)2
, M∈ {SPX,VIX}, (D.1)

RMSE(t) :=
1

2
(RMSESPX(t) + RMSEVIX(t)) . (D.2)

We use two global optimizers to cope with the non-convexity of the calibration problem and the

potential existence of multiple local minima, namely the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES), introduced by Hansen and Ostermeier (1996), and the Differential Evolution

(DE) algorithm introduced by Storn (1996).

For our calibration, we choose a date on which the markets were under stress, namely May 5, 2010 at

the beginning of the European sovereign debt crisis. After cleaning our data as described previously,

we have 91 VIX options at six different maturities (from 0.04 to 0.46 years) and 486 S&P 500 options

at eleven different maturities (from 0.05 to 0.91 years) available. We emphasize that we perform a

joint calibration. Hence, all this data is entered as input to minimize the total RMSE in (D.2) from

the VIX and the S&P 500 market simultaneously across all available maturities and moneyness.

In Figure 9, we plot the market and model implied volatilities for the S&P 500 (Panels A, C, E) and

the VIX (Panels B, D, F) for two maturity slices each. For the S&P 500 options, we choose the two

maturities T = 0.05 and T = 0.3, and for the VIX options, T = 0.04 and T = 0.36. As candidate

models, we choose different sub-specifications of the general model (SVJ3) presented in Equations

(1)–(7), namely the Heston model, the Heston model with negative jumps in returns and positive

jumps in volatility (SVJ), and the latter model augmented with the factor m (SVJ2). Richer model

are found to not provide any improvements on one day of data, and are examined in the time-series

consistent estimation.

[Figure 9 about here.]

From Panel A, Figure 9, we observe that the Heston model provides reasonable results for the S&P

17Alternatively, we checked that using distances taking into account the bid–ask spread of IVs as in Cont and Kokholm
(2013) does not significantly change the quality of fit. Instead of the RMSE, we also looked at average relative errors
(ARE). However, this does not affect our conclusions. The results using ARE are available upon request.
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500 market. However, for the VIX market (Panel B), the Heston model clearly fails to reproduce

one of the stylized facts of VIX option markets: the positive skew of the implied volatility surface.

This failure is most pronounced for the short-term options, where the Heston model generates a

significant negative skew. The results for the SVJ model look much more promising. Just by adding

jump components to the returns and volatility process, we can now generate the positive skew in the

VIX market (Panel D), while providing an almost perfect fit for the S&P 500 options market. The

SVJ model only struggles at the short end of the VIX implied volatility surface. This shortcoming

disappears when we extend the SVJ specification to the SVJ2 model by adding the factor m. Doing

so gives us not only a remarkable fit for the S&P 500 but also for the VIX options market (Panel F).

Looking at the RMSEs of the SVJ and SVJ2 models, we find that the SVJ provides an RMSESPX of

1.27% and an RMSEVIX of 11.60%. The SVJ2 model yields 1.17% and 5.15%, respectively. Hence,

while the two models are comparable in terms of their performance on the S&P 500 options market,

there is an obvious difference in the VIX market on the chosen date.

In unreported results, we perform calibration exercises on other days, also including calm periods.

Irrespective of the day, we observe that the SVJ and SVJ2 models perform comparably on the S&P

500 options market, both fitting the data very well. In contrast, we find that there are dates when

the SVJ model struggles to fit the VIX IVs in addition to the S&P 500 IVs whereas the SVJ2 model

satisfactorily fits both.18 Therefore, we conclude from our calibration exercise that we can discard

the Heston model from further analysis and that jumps in the volatility are necessary.

E Particle filter

The log-likelihood of a time series of n+ 1 observations with joint density p, conditional on a set of

parameters Θ, is equal to

log p(ytn |Θ) = log p(yt0 , ..., ytn |Θ) =

n∑
k=1

log p(ytk |y
tk−1 ,Θ) + log p(yt0 |Θ) (E.1)

18Our findings are consistent with Gatheral (2008), who shows that the Heston model is incapable of reproducing
the positive skew in VIX IVs, and with Sepp (2008a,b), who finds that incorporating positive jumps in the volatility
dynamics into the Heston model removes this shortcoming.
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where, by the Law of Total Probability,

p(ytk |y
tk−1 ,Θ) =

∫
p(ytk |Ltk ,Θ)p(Ltk |y

tk−1 ,Θ)dLtk . (E.2)

Given an initial density p(Lt0 |Θ), the transition density of the state variables p(Ltk |Ltk−1
,Θ) and the

likelihood function p(ytk |Ltk ,Θ), filtering methods allow us to estimate the distribution p(Ltk |ytk ,Θ)

of the current state at time tk = k∆t, given all observations up to that time. In the following, we

simplify notation and drop the subscript for the conditioning on the parameters Θ. The filtering

density is given by Bayes’s formula,

p(Ltk |y
tk) ∝ p(ytk |Ltk)p(Ltk |y

tk−1). (E.3)

The likelihood function is known, but the predictive distribution of the state is not. It is given by

the following integral, which involves the previous filtering density.

p(Ltk |y
tk−1) =

∫
p(Ltk |Ltk−1

)p(Ltk−1
|ytk−1)dLtk−1

(E.4)

The key idea is to approximate the posterior density function of the latent variables p(Ltk |ytk) by a

sum of point masses positioned at strategic points, called particles, {L(i)
tk
}1≤i≤np :

p̂(Ltk |y
tk) =

np∑
i=1

π
(i)
tk
δ(Ltk − L

(i)
tk

), (E.5)

where π
(i)
tk

denotes the normalized importance weight for particle i, δ(.) is the Dirac delta function,

and np is the number of support points (particles) for p̂(Ltk |ytk). Then, we can recursively calculate

the filtering density by

p̂(Ltk |y
tk) ∝

∫
p(ytk |Ltk)p(Ltk |Ltk−1

)p̂(Ltk−1
|ytk−1)dLtk−1

=

np∑
i=1

p(ytk |Ltk)p(Ltk |L
(i)
tk−1

)π
(i)
tk−1

. (E.6)
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To implement the particle filter, ones needs to be able to simulate at every time tk a number np of

particles L
(i)
tk
, i = 1, ..., np from p(Ltk |ytk−1) and to be able to evaluate p(ytk |L

(i)
tk

). Based on these

simulated particles, we can approximate p(ytk |ytk−1) by

p(ytk |y
tk−1) ≈ 1

np

np∑
i=1

p(ytk |L
(i)
tk

). (E.7)

The available observations are the S&P 500 daily returns, the VIX levels, and the option prices on

both indexes. In the following, the notation is as in Section 4.2. We used np = 15, 000 particles on

days when the observations contain option prices and np = 8, 000 when the observations are only

composed of the S&P500 returns and VIX index levels. Larger numbers of particles did not change

our estimates, but increased the computational burden.

The filtering algorithm can be decomposed into the following steps.

Step 1: Initialization. We simulate np initial particles for the latent variables {v(i)t0 ,m
(i)
t0
, U

(i)
t0
}i=1,...,np

which are compatible with the initial value of the VIX squared, i.e., given the specification (20). The

following steps are repeated for each time step tk in the grid from k = 0 to k = M − 1.

Step 2: First-stage resampling. At this point, we assume that we have np particles (i.e., pos-

sible values of mt and vt) at time tk given all observations ytk up to tk. At time tk+1, there are

new observations yk+1. The goal of this step is to retain, from the previous sample of particles

{v(i)tk ,m
(i)
tk
}1≤i≤np , only those which are likely to generate the new observations yk+1. For this pur-

pose, we assign a weight (the so called “first-stage weights”) to each particle, which is proportional

to the likelihood of new market observations ytk+1
given the value of the particle Ltk at time tk.

Intuitively, particles that are compatible with the new observations will be assigned larger weights

than other particles. To increase the speed of the first-stage resampling, we do not consider options

as part of the observations ytk+1
(only in this step) and limit ytk+1

to the values of the indexes.

The first stage weight ω
(i)
tk+1

assigned to the ith particle L
(i)
tk

at time tk+1 is given by

ω
(i)
tk+1

= p(L
(i)
tk
|ytk+1

) ∝ p(ytk+1
|L(i)
tk

)
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where p(ytk+1
|L(i)
tk

) is the density of the observation vector ytk+1
given the values of the particle vector

L
(i)
tk

. The importance weights {ω(i)
tk+1
}1≤i≤np add up to 1, so that they define a proper probability

mass function. Conditioning on the number of jumps in ∆Yt (or equivalently in ∆vt) and ∆mt gives

ω
(i)
tk+1
∝
∑
j,l∈N

p(ytk+1
|L(i)
tk
,∆N

(+)
tk

,∆N
(−)
tk

)P(∆N
(+)
tk

= j,∆N
(−)
tk

= l).

Given that we use daily observations, we limit the possible number of jumps of the Poisson random

variables ∆N
(+)
tk

,∆N
(−)
tk

to zero or one (this Bernoulli approximation is found to be very accurate in

Johannes, Polson, and Stroud (2009)). We recall that the new observation is composed of the S&P

500 returns and the VIX level ytk+1
= (∆Ytk = Ytk+1

− Ytk ,VIX2
tk+1

). Since the VIX2
tk+1

is a sum

of normal distributions and no more than two exponential distributions, there is no closed form for

this bivariate density in the general case. To preserve tractability, we approximate the exponentially

distributed jump sizes by a categorical distribution (a generalization of a Bernoulli distribution)

which is supported in a certain number of (the corresponding exponential distribution’s) quantiles.19

As a consequence, the weight ω
(i)
tk+1

is a sum of weighted bivariate normal densities.

To eliminate the particles {L(i)
tk
}1≤i≤np that are not likely to generate the new observations ytk+1

, we

resample (with replacement) the particles according to a stratified resampling scheme:20

z(i) ∼ StratRes(np, ω(1)
tk+1

, ..., ω
(np)
tk+1

).

This makes it possible to create a new sample of np latent factors {L(j)
tk
}1≤j≤np which are now

equally likely. Indeed, particles representing mtk and vtk are shuffled into a new set of particles:

{m(j)
tk
, v

(j)
tk
}j=1..np = {mz(i)

tk
, v
z(i)
tk
}i=1..np . We resample the same number of particles, although this is

in principle not necessary.

The next step of the particle filter consists in propagating the latent factors according to their

conditional density given the previous values L
(i)
tk

and the new observations ytk+1
:

L
(i)
tk+1
∼ p(Ltk+1

|L(i)
tk
, ytk+1

).

19Robustness tests were performed on simulated data to check that the choice of quantiles was appropriate.
20We checked that using a multinomial or stratified resampling scheme gives similar results.
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Because the distribution p(Ltk+1
|L(i)
tk
, ytk+1

) is not known in closed form, we use a proposal density

q(Ltk+1
|L(i)
tk
, ytk+1

). Propagating vt and mt requires preliminary knowledge on the jump components,

so we first focus on the jumps.

Step 3: Generating the jumps. We calculate the joint probability of jumps in ∆Yt (or equiva-

lently in ∆vt) between tk and tk+1 using

P(∆N
(+)
tk

,∆N
(−)
tk
|ytk+1

) ∝ p(ytk+1
|∆N (+)

tk
,∆N

(−)
tk

)P(∆N
(+)
tk

,∆N
(−)
tk

). (E.8)

Conditionally on the jump sizes, the first part of the right-hand side has already been calculated in

the first-stage weights. Using Bayes’s rule, we get an approximation for P(∆N
(+)
tk

,∆N
(−)
tk
|ytk+1

).

We simulate the jump sizes for ∆vt and ∆mt according to their exponential law.

Step 4: Propagating the latent factors. The latent factors v, m and u are propagated following

a Milstein discretization scheme of the SDE. See Kloeden and Platen (1992) for details. We use the

full truncation method to prevent them from taking negative values.

Step 5: Computing the filtering density. At this point, the newly generated particles {L(i)
tk+1
}1≤i≤np

are a sample of p(Ltk+1
|ytk+1). We now calculate the second-stage weights {π(i)tk+1

}1≤i≤np which ap-

proximate the probabilities p(L
(i)
tk+1
|ytk+1) and give an approximation for the filtering density at

time tk+1. These weights are proportional to the likelihood of observations at time tk+1 given the

propagated particles L
(i)
tk+1

, with a correction related to the proposal density

π
(i)
tk+1
∝
p(L

(i)
tk+1
|L(i)
tk

)p(ytk+1
|L(i)
tk+1

)

ω
z(i)
tk+1

q(L
(i)
tk+1
|L(i)
tk
, ytk+1

)
.

The posterior distribution of the state variables is approximated by

p̂(Ltk+1
|ytk+1) =

np∑
i=1

π
(i)
tk+1

δ(Ltk+1
− L(i)

tk+1
).
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We choose the most likely value of a given factor by taking the expectation of the estimated filtering

density, e.g., v̂tk+1
= Ep̂[v

(i)
tk+1

].

The algorithm described above extracts latent factors if one assumes that the model parameters are

known. Pitt (2002) builds on Gordon, Salmond, and Smith (1993) to show that the parameters can

be estimated using the Maximum Likelihood Importance Sampling Criterion, defined as the product

over time of the averages of the second-stage weights. The likelihood of observations given the values

of the particles is then estimated by the average of the second-stage weights over the particles

p̂(ytn |Θ,M) =
M∏
k=1

p̂(ytk |y
tk−1 ,Θ,M)p̂(yt0 |Θ,M),

where p̂(ytk |ytk−1 ,Θ,M) = 1
np

∑np
i=1 π

(i)
tk

.

Finally, we use the Weighted Likelihood function analyzed in Hu and Zidek (2002), in order to assign

comparable weights to the different datasets, and to ensure that the estimation is not dominated by

S&P 500 options. Such procedure has been used by Ornthanalai (2014) to estimate a model with

Lévy jumps to S&P 500 options and returns.

F Specific data treatment for the particle filter

The S&P 500 options dataset contains a large amount of ATM options compared to OTM and deep

OTM options. If we use the filter (within the maximum likelihood procedure) on this entire dataset,

the fitting of ATM options will be its priority rather than (deep) OTM options. Given the formula of

Breeden and Litzenberger (1978), this results in fitting the body of the S&P 500 returns distribution

rather than the tails, which is not what we want. We need information about the extreme events

contained in the data to be incorporated into the models. For this reason, we interpolate the S&P

500 IV slices and re-sample the option prices from the resulting parametric fit uniformly with respect

to moneynesses.21 Other advantages of our use of interpolation is that the resulting data is arbitrage

free, we have fewer points for each slice (but still accurately representing the information of each

21It is common to interpolate data, see, e.g., Broadie, Chernov, and Johannes (2007). This eliminates arbitrage
opportunities in the data and removes the accumulation of options around the ATM region.

51



slice), thus reducing the computational complexity.22

For the interpolation, we use the efficient mixture of log-normals approach of Rebonato and Cardoso

(2004) to have a parametric fit for each S&P 500 implied volatility slice. The RMSE of the S&P

500 implied volatilities parametric fits are on average around 0.25% and we therefore do not lose

information, especially given the market bid–ask spread. Finally, using the parametric fit, we can

sample a fixed number (we have chosen 15) of “market option prices” for the desired strikes. We

have chosen to resample the option prices from each parametric slice uniformly in the strike (or,

equivalently, the moneyness). We however do not resample the options for which the strike is smaller

than 40% or larger than 140% of the current futures price. The reason is that there are usually only

one or two options outside this interval of moneyness and we do not wish to re-sample options where

the interpolation results could be driven by an outlier.

We do not perform any interpolation for the VIX options dataset, as most VIX options are OTM

and therefore contain information about the tails of the VIX distribution (i.e., variance and central

tendency processes). Therefore all available VIX option prices are used.

As the datasets comprise a large number of options (up to 600 a day), it is unfeasible to calculate

the option prices every day for every particle. As a consequence, we follow Pan (2002) and Johannes,

Polson, and Stroud (2009), among others, and use weekly (Wednesday) options data. Furthermore,

this eliminates beginning-of-week and end-of-week effects. Our particle filter uses daily time steps and

incorporates information on the underlying indexes on a daily basis (i.e., only options are considered

weekly).

We decompose the time series of observations into two periods. The first period is from March

1st, 2006 to Feb 28, 2009 (shortly after the VIX index increased to its highest point). This was a

rather calm period,23 that we will use as the in-sample estimation period. Our out-of-sample period

starts on March 1st, 2009 and ends on October 29, 2010. This period includes very high levels

of volatility (for implied volatilities from the S&P 500 and VIX options as well as the VIX index

22Since we have considered mid-prices and because of synchronization issues between the underlying and the options,
implied volatility slices are not guaranteed to be arbitrage free.

23We have decided to include the beginning of the financial crisis so that the in-sample period actually includes
several dates with extreme events.
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values). The last column of Table 4 presents the number of options within each moneyness and

maturity range in both periods. In particular, our dataset contains, in the in-sample period, 608

close-to-maturity OTM call options on the S&P 500 with a moneyness larger than 1.05, and 2,243

OTM put options with a moneyness smaller than 0.95. These options have maturities shorter than

two months. Analogously, in the out-of-sample period, the dataset contains 737 close-to-maturity

OTM calls and 2,032 OTM put options. As highlighted in Bollerslev and Todorov (2011), these

options provide valuable information on jumps as they have little value unless a large movement in

the S&P 500 is possible. Similarly, OTM calls on the VIX with short maturities contain information

on the extreme upwards moves in the VIX index, and help identify the heavy-tailedness of the right

tail of the VIX distribution. Our dataset contains 1,006 such options on the VIX with a moneyness

larger than 1.1 in the in-sample period and 1,269 in the out-of-sample period.

G Variance risk premium

The expression of the VRP involves the following terms:

EQ
(∫ T

t
vsds

)
= A(T − t)vt +B(T − t)mt +D(T − t)ut +G(T − t); (G.1)

EQ
(∫ T

t
msds

)
= Â(T − t)mt + B̂(T − t); (G.2)

EQ
(∫ T

t
usds

)
= Ā(T − t)ut + B̄(T − t); (G.3)

(G.4)

where are A, B, D, G, Â, B̂, Ā and B̄ are given by (A.6)-(A.9). Expectations under P are calculated

following the same procedure.
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To calculate the discontinuous component of the VRP, we use that:

EQ
t

 N
(+/−)
T∑

i=N
(+/−)
t

(
Z

(+/−)
i

)2 = EQ
t

 N
(+/−)
T∑

i=N
(+/−)
t

2
(
µ
(+/−)
Y

)2 (G.5)

= 2
(
µ
(+/−)
Y

)2(
λ
(+/−)
0 (T − t) + λ

(+/−)
1 EQ

[∫ T

t
vsds

]
+ λ

(+/−)
2 EQ

[∫ T

t
msds

]
+ λ

(+/−)
3 EQ

[∫ T

t
usds

])
.

(G.6)
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Table 1. Descriptive statistics for daily S&P 500 futures log-returns and daily VIX levels for the
periods from March 2006 to February 2009, and March 2009 to October 2010. We report the mean
(Mean), standard deviation (Std), skewness (Skew), and kurtosis (Kurt).

March 2006–February 2009 March 2009–October 2010

Mean Std Skew Kurt Mean Std Skew Kurt

S&P 500 -0.0007 0.0159 0.0722 14.0772 0.0007 0.0158 -0.3283 6.8683
VIX 0.2044 0.1208 2.6560 10.9620 0.2907 0.1025 1.1929 3.8631
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D1 D2

SV2 SVJ SVJ2 SVJ3 SVJ2 SVJ3

LL 8713 9200 9412 7705 8850
AIC -17384 -18346 -18766 -15348 -17634
BIC -17290 -18225 -18636 -15209 -17486

Table 2. Log-likelihood (LL) and values of the AIC and BIC tests for sub-models of the SVJ3
models. The specifications considered are: no jumps (SV2), m and u are constant (SVJ), u is
constant (SVJ2). The estimation period is from March 2006 to February 2009.
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Figure 1. Panel A: Times series of S&P 500 (dashed curve) and VIX (solid curve) indexes from
March 1st, 2006 to October 29th, 2010. Panel B: One-month S&P 500 expected returns implied
by S&P 500 options with one month maturity. We use the method described in Bakshi, Kapadia,
and Madan (2003). Returns are expressed in percentages. Panels C and D: Implied volatilities of
S&P 500 options and VIX options on May 10 2010, as a function of log-moneyness log(K/F ). The
maturities T are quoted in years.
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Figure 2. Panels A and C: Filtered trajectories of the latent volatility processes v and m for the
SVJ3 model using D2 from March 2006 to March 1st, 2009 (748 days). Panels B and D: difference
between the filtered v and m processes of the SVJ3 model for datasets D2 and D1. The shaded part
of the graph represents the out-of-sample period, from March 1, 2009 until the end of October 2010.
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Figure 3. Panel A: Filtered trajectories of the latent jump intensity process u for the SVJ3 model,
with and without VIX options in the estimation dataset, from March 2006 to March 1st, 2009 (748
days). Panel B: Filtered size of jumps in the variance process v, when the probability of jumps
exceeds 10%. The shaded part of the graph represents the out-of-sample period, from March 1, 2009
until the end of October 2010.
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Panel C: 1-week VRP 
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Panel F: 6-month VRP 
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Figure 4. Integrated variance risk premia (VRP) when estimating the SVJ3 model using the full
dataset of S&P 500 options, VIX options and their underlying levels. Panel A plots the 6-month
VRP and its 90% confidence interval, conditional on parameter estimates. Panel B plots the VRP for
different maturities. Panels C and D decompose the 1-week and 6-month VRP into their continuous
and discontinuous components. Panels E and F plot the contribution of the latent factors v and m
to the 1-week and 6-month VRP. The shaded parts of the graphs represent the out-of-sample period
from March 1, 2009 until the end of October 2010.
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Panel A: 3-month VRP minus 1-year VRP 
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Figure 5. Difference between the 3-month and the 1-year integrated variance risk premia (VRP)
when estimating the SVJ3 model using the full dataset of S&P 500 options, VIX options and their
underlying levels. Panel B plots the contribution of the continuous fluctuations in the VRP and panel
C the contribution of the jumps. The shaded part of the graphs represents the NBER recession from
December 2007 until June 2009.
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Figure 6. Difference between the 3-month and the 6-month VIX constructed from S&P 500 options.
The shaded part of the graphs represents the NBER recession from December 2007 until June 2009.
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Figure 7. Panel A: Term structure of variance risk premium for investment horizons from 1 month
to 1 year. The VRP is represented on the following dates, going from the upper curve to the lower
one: 3 March 2006, 17 May 2006, 14 June 2006, 18 June 2008, 5 November 2008, 10 December 2008,
22 October 2008. Panel B: Long- and short-term skewness of the term structure of VRP over time.
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Figure 8. Adjusted R2 when regressing future returns over the horizon given on the x-axis (from
a 1-month to a 1-year horizon) over three sets of regressors: {the VIX minus the 1-month realized
variance}, {the 1-month VRP} and {the 1-month VRP and the short-term skewness of the VRP
term structure}.
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Panel E: SVJ2 model
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Figure 9. Market and model IVs on May 5, 2010, obtained by a joint calibration on the S&P 500
and VIX option market on that day. Circles represent the market IV for T = 0.05 (S&P 500) and
T = 0.04 (VIX). Crosses represent the market IV for T = 0.3 (S&P 500) and T = 0.36 (VIX). The
dashed line corresponds to the model fit for T = 0.05 (S&P 500) and T = 0.04 (VIX) while the
solid line corresponds to the model fit for T = 0.3 (S&P 500) and T = 0.36 (VIX). Panels A (S&P
500) and B (VIX) plot the model IVs based on the Heston model. Panels C and D display the
corresponding results for the SVJ model, while Panels E and F do so for the SVJ2 model.68


