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Oil and Equity Return Predictability:
The Importance of Dissecting Oil Price Changes

Abstract

Based on data until the mid 2000s, oil price changes were shown to predict international equity
index returns with a negative predictive slope. Extending the sample to 2015, we document that
this relationship has been reversed over the last ten years and therefore has not been stable over
time. We then posit that oil price changes are still useful for forecasting equity returns once
complemented with relevant information about oil supply and global economic activity. Using a
structural VAR approach, we decompose oil price changes into oil supply shocks, global demand
shocks, and oil-specific demand shocks. The hypothesis that oil supply shocks and oil-specific
demand shocks (global demand shocks) predict equity returns with a negative (positive) slope is
supported by the empirical evidence over the 1986—2015 period. The results are statistically and
economically significant and do not appear to be consistent with time-varying risk premia.

JEL Classification Codes: C53; G10; G12; G14; E44; Q41
Keywords: Equity return predictability; structural VAR model; oil price change decomposition;
oil supply shock; global demand shock; oil-specific demand shock



1 Introduction

As the world’s major source of energy, oil plays a crucial role in the modern global economy. Not
surprisingly, the impact of oil price fluctuations on equity markets and the real economy has been
of great interest to academics, policy makers, and market participants alike. Qil price changes
could be interpreted in different ways. On the one hand, an oil price increase could be considered
bad news for the economy and equity markets as it increases the cost of production in a significant
number of sectors and causes consumers to reduce their consumption. Following the same line of
thinking, an oil price drop would have the opposite effect and would be perceived as good news.
On the other hand, higher oil prices imply higher profits for the oil sector. This would likely
cause oil price shares to gain value and, to some extent, boost the aggregate market. Analogously,
lower oil prices is bad news for the oil sector and could negatively affect the broader market. The
conventional wisdom in the past was that the former effect dominates, implying that an oil price
hike is considered to be bad news for equity markets. Accordingly, a possible hypothesis is
that positive (negative) oil price changes should predict lower (higher) subsequent stock returns.
In line with this hypothesis, |[Driesprong, Jacobsen, and Maat (2008) document that, based on
data until 2003, oil price changes predict Morgan Stanley Capital International (MSCI) equity
index returns with a negative and statistically significant predictive slope for a large number of
countries. However, the relationship between oil price movements and subsequent stock returns
has not been stable over time. Figure[l], where we present the two scatter plots of the MSCI World
index return versus the one-month lagged log growth rate of West Texas Intermediate (WTT)
spot price over the 1982-2003 and 20042015 periods, clearly illustrates the shift over time. The
correlation has shifted from —0.22 in the former period to 0.25 in the latter period. As a result
of this shift, the overall predictive ability of oil price change has dramatically decreased over the
sample period covering the last thirty years. This structural change is striking and begs for an

explanation.

At the most fundamental level, oil prices move when there is a misalignment between supply
and demand. Understanding what causes oil price changes, in the first place, can be crucial for

determining the potential impact of such a change on equity markets. For instance, lower oil



prices due to a slowdown in global economic activity should be viewed as bad news. However,
prices could also fall because of excess supply of oil, in which case the message would be different.
To provide an explanation for the recent positive correlation between oil price changes and
aggregate US market returns, Bernanke (2016) decomposes oil price change into a demand-
related component and a residual. He documents that the correlations of the two components
with market returns are different and states: “That’s consistent with the idea that when stock
traders respond to a change in oil prices, they do so not necessarily because the oil movement is
consequential in itself, but because fluctuations in oil prices serve as indicators of underlying global
demand and growth.” Recent academic literature has also discussed the potential differential
effects of demand and supply shocks associated with oil price fluctuations. Although oil price
shocks were often associated with oil production disruptions in the 1970s and 1980s, it has been
argued that the role of global demand for oil, especially from fast-growing emerging economies,
should also be emphasized (see [Hamilton (2003), Kilian (2009), and Kilian and Park| (2009)).
Furthermore, the last two papers point out that oil supply shocks, global demand shocks, and
other types of shocks, all of which can cause oil prices to fluctuate, should have differential effects

on the macroeconomy and the stock market.

In this paper, we investigate whether oil price changes contain useful information for predict-
ing future equity returns. Building on the ideas discussed above, we posit that this is indeed
the case, once these changes are suitably decomposed into supply and demand shocks. We moti-
vate the research question by first demonstrating that the negative relationship between oil price
changes and future G7 country and World MSCI index excess returns, documented using data
until 2003, has dramatically changed over the extended sample period ending in 2015. Faced
with this empirical result, one might infer oil price changes are useless for forecasting interna-
tional equity index returns. However, we contend that information contained in oil price changes
becomes useful once it is suitably complemented with relevant information about oil supply and
global economic activity. The key observation, as made by |Kilian| (2009), is that oil price changes
are driven by various supply and demand shocks that play fundamentally different roles. Accord-
ingly, we use two distinct structural VAR models that allow us to decompose oil price changes

into oil supply, global demand, and oil-specific demand shocks. We, subsequently, illustrate the



ability of these three shocks to predict G7 country and World MSCI index excess returns, using
metrics of both statistical and economic significance, as well as the structural stability of this

predictive relationship over the last thirty years.

Our work relates to a growing literature that examines the impact of oil price shocks on the
real economy and equity markets. |Chen, Roll, and Ross (1986), |Jones and Kaul| (1996)), and
Kilian and Park| (2009)), among others, examine the contemporaneous relationship between the
price of oil and stock pricesE] Kilian and Park| (2009)) augment the structural VAR model of |Kilian
(2009) by incorporating the US real stock return and study the contemporaneous relationships
between shocks embedded in oil price changes and stock returns. They examine cumulative
impulse responses of real stock returns to one-time shocks to oil supply, global demand, and
oil-specific demand in the crude oil market. Their results, using data over the 1975-2006 period,
show that an unexpected decrease in oil production has no significant effect on cumulative US
real stock returns and a positive surprise to global demand (oil-specific demand) is associated
with a subsequent increase (decrease) in US real stock returns. In addition, several recent papers,
including [Driesprong, Jacobsen, and Maat| (2008)), |Casassus and Higuera (2012), and Narayan
and Gupta, (2015), investigate the ability of oil price shocks to forecast equity index returns
and document a negative predictive slope of oil price changes. Unlike Kilian and Park! (2009),
and in line with the recent finance literature and |Driesprong, Jacobsen, and Maat| (2008) in
particular, we use a predictive regression framework to examine whether information contained
in oil price changes can be used to forecast future stock returns. We approach the question from
the perspective of an investor who wishes to use real-time information embedded in oil price
changes and captured by the three aforementioned shocks to forecast MSCI equity index excess

returns.

This paper is also related to some recent empirical research that focuses on disentangling
the intrinsic shocks embedded in oil price changes. Kilian| (2009)) identifies oil shocks using a
structural VAR model and highlights the importance of disentangling oil supply, global demand,
and oil-specific demand shocks. However, the short-run price elasticity of oil supply is assumed to

be equal to zero in Kilian (2009)), implying that oil supply shocks only account for a small fraction

! The contemporaneous relationship between the volatility of oil prices and stock returns has been studied by
several papers, such as |Chiang, Hughen, and Sagi| (2015) and |Christoffersen and Pan| (2017).



of oil price variation. |Caldara, Cavallo, and Iacoviello| (2017) and Baumeister and Hamilton
(2017) propose structural VAR models that facilitate estimation of both oil supply and oil demand
elasticities. They further illustrate that the percentage of variation in oil prices attributed to oil
supply shocks critically relies on the oil supply and demand elasticity estimates. Rapaport| (2014))
and Ready| (2018) propose to use information from the stock market to identify the underlying
types of shocks in oil price changes. |Rapaport (2014) identifies shocks specific to the oil market
and shocks that affect the overall economy using the sign and magnitude of the correlation
between daily oil price changes and aggregate stock market returns, excluding oil companies.
Ready| (2018) uses crude oil futures returns, returns on a global equity index of oil producing
firms, and innovations to the VIX index to identify demand and supply shocks. He documents a
strong contemporaneous relationship between aggregate market returns and the demand/supply
shocks from his decomposition based on data from 1986 to 2011, an empirical result that is
readily confirmed to remain valid over the sample period extending to 2015. However, the shocks
identified by [Ready] (2018]) cannot forecast future stock market returns. In contrast, the focus of
our paper is the predictive relationship between the various shocks embedded in oil price changes
and equity index returns. Hence, we find that the structural VAR approach along the lines of
Kilian| (2009)), which utilizes more direct proxies for oil supply and global demand and does not

require stock market information to obtain the decomposition, is more suitable for our purposes.

In this paper, we make a number of contributions to the literature studying the relationship
between oil price fluctuations and subsequent international equity returns. First, we document
that the ability of oil price changes to forecast G7 country and World MSCI index returns has
dramatically changed over the last decade. In particular, using formal structural break tests,
we detect a break in the predictive relationship in the third quarter of 2008 for most of the
indexes under examination. Second, using two distinct structural VAR models, we obtain de-
compositions of oil price changes into oil supply, global demand, and oil-specific demand shocks.
The first model is a variant of the Kilian| (2009) model, and the second model is a parsimonious
version of the model proposed by |Caldara, Cavallo, and Iacoviello| (2017, which allows for joint
estimation of the elasticity of oil supply and demand. The implementation of the structural

VAR models is facilitated by the use of suitable proxies for the variables of interest. We use the



first principal component of the log growth rates of WTI, Dubai, and Arab Light spot prices
as a comprehensive proxy for oil price change. Moreover, we employ two proxies for global real
economic activity, namely a shipping cost index and global crude steel production, and use the
first principal component of their log growth rates as a comprehensive proxy for global demand
growth. Importantly, all the variables that we use in our empirical tests are constructed based on
information available in real time. Third, we illustrate the ability of these three shocks to predict
G7 country and World MSCT index returns, denominated in both local currency and US dollars.
In particular, using the shocks obtained from both structural VAR models, we find empirical
evidence supporting the hypothesis that oil supply shocks and oil-specific demand shocks (global
demand shocks) predict equity returns with a negative (positive) slope over the 1986-2015 pe-
riod. We also demonstrate the advantage of using the oil price decomposition instead of just the
oil price change, in economic terms, by the economically substantial and statistically significant
improvement in the performance of mean-variance optimal trading strategies. Finally, we exam-
ine various other aspects of the predictive relationship. To address real-time data availability
concerns, we construct returns with a delay of one and two weeks and show that the results are
essentially identical. We demonstrate that, as the forecasting horizon increases from one to six
months, the predictive ability of the three shocks gradually diminishes. For the case of the US,
we document that the forecasting ability is present in the cross section of industries and robust
in the presence of standard macroeconomic predictors. The estimated conditional expected re-
turns, based on the three shocks, exhibit high volatility and low persistence in comparison to risk
premia estimates available in the literature. Finally, these three shocks do not appear to have an
effect on conditional return volatility. Collectively, these results do not appear to be consistent

with the notion of time-varying risk premia.

The rest of the paper proceeds as follows. In Section [2| we describe the data that we use
in our empirical exercises. In Section [3] we present evidence on the forecasting ability of oil
price changes and how it has changed over the last decade. In Section [4 we use structural
VAR models to decompose oil price changes into oil supply shocks, global demand shocks, and
oil-specific demand shocks. In Section [5] we illustrate the ability of these three types of shocks

to forecast MSCI equity index returns and provide additional robustness checks. In Section [6]



we offer some concluding remarks.

2 Data

We use five different data sets: returns on international equity indexes, short-term interest rates,
oil price proxies, proxies for global economic activity, and global oil production. The full sample

period is from January 1982 to December 2015.

We use returns on the G7 country and World MSCI equity indexes, denominated in both
local currency and US dollarsﬂ We collect monthly short-term interest rates for the G7 countries
from the International Monetary Fund (IMF) and the Organisation for Economic Cooperation
and Development (OECD). We use IMF Treasury Bill rates whenever available and short-term

interest rates obtained from the OECD otherwiseF]

We further use three proxies for oil price, namely the WTI spot price, the Dubai spot price,
and the Arab Light spot priceﬁ Note that 75% (83%) of the log growth rates of WTI (Arab
Light) prices from October 1973 to September 1981 are zeroﬂ Therefore, it is problematic to
use WTI and Arab Light prices before September 1981. Therefore, in our empirical analysis, we
use oil price data from 1982 onward. Following Driesprong, Jacobsen, and Maat| (2008), we use

nominal oil prices.

We combine the information contained in the three proxies for crude oil spot price into a
single proxy using Principal Component Analysis (PCA). The single proxy, denoted by ¢° where
P stands for price, is represented by the first principal component of the log growth rates of WTI,
Dubai, and Arab Light spot prices. The details of the construction of the single PCA proxy for
oil price change are provided in Appendix To make the proxy ¢g¥ comparable to the three

individual proxies, we rescale it so that its standard deviation equals 0.09 over the sample period

2 Specifically, data on MSCI indexes for the G7 countries, i.e., Canada, France, Germany, Italy, Japan, the United
Kingdom, and the United States, as well as the World MSCI index are obtained from Datastream. 3 For Canada,
France, Italy, Japan, and the United Kingdom, we use Treasury Bill rates from the IMF. For Germany, we use
Treasury Bill rates from the IMF and, from September 2007, short-term interest rates from the OECD. For the
United States, we use the 1-month Treasury Bill rate taken from Kenneth French’s website. % Data on the
Dubai and Arab Light spot prices are obtained from Bloomberg. Data on WTI spot oil prices for the period of
between January 1982 and August 2013 are obtained from the website of St. Louis Fed. Data for the period
between August 2013 and December 2015 are obtained from Bloomberg. 3 [Hamilton| (2013) documents that the
US federal control of crude oil prices started in August 1971 and ended in January 1981.



of January 1983 to December 2015. Table [I] presents summary statistics, including correlations,
for g° and the log growth rates of the three oil price proxies. Over the subsample period ending
in April 2003, which is the last month in the sample used in [Driesprong, Jacobsen, and Maat
(2008), as well as the full sample period, ¢F is highly correlated with the log growth rates of the
three individual proxies. The top panel in Figure 2| also shows that the four series track each

other quite closely.

We use two proxies for global economic activity to capture changes in global demand. The
first proxy is a shipping cost index constructed from data on dry cargo single voyage rates and
the Baltic Dry Index (BDI). Since the supply of bulk carriers is largely inelastic, fluctuations in
dry bulk cargo shipping cost are thought to reflect changes in global demand for transporting
raw materials such as metals, grain, and coal by sea. Therefore, shipping cost is considered to be
a useful leading indicator of global economic activity. Data on dry cargo single voyage rates are
hand collected from Drewry Shipping Statistics and Economics for the period between January
1982 and January 1985. Rates for seven representative routes are reported each month. We com-
pute the monthly log growth rates of the shipping cost for each route, and then, following |Kilian
(2009)), obtain the cross-sectional equally-weighted averageﬂ Data on the BDI from January

1985 to December 2015 are obtained from Bloomberg.

The second proxy for global economic activity is global crude steel production. |Ravazzolo and
Vespignani (2015) argue that world steel production is a good indicator of global real economic
activity. Steel is widely used in a number of important industries, such as energy, construction,
automotive and transportation, infrastructure, packaging, and machinery. Therefore, fluctua-
tions in world crude steel production reflect changes in global real economic activity. We obtain
monthly crude steel production data for the period January 1990 to December 2015 from the
World Steel Association’s website. The reported monthly figure represents crude steel production
in 66 countries and accounts for about 99% of total world crude steel production. In addition,
monthly data for the period January 1968 to October 1991 are hand collected from the Steel

Statistical Yearbook published by the International Iron and Steel Institute. Crude steel pro-

S It is, however, worth noting that there is an important difference between our proxy for global economic activity
and the one constructed in Kilian| (2009). Specifically, in |[Kilian| (2009)), the average growth rate is cumulated, then
deflated, using the US CPI, and finally detrended. In that sense, the proxy in Kilian| (2009)) is a level variable. In
contrast, our proxy is a growth rate.



duction exhibits strong seasonality and, therefore, we seasonally adjust the data, as we explain
in Appendix

As in the case of oil price proxies, we use PCA to construct a single proxy for global demand
growth. The single proxy, denoted by ¢g®° where GD stands for global demand, is represented by
the first principal component of the log growth rates of the shipping cost index and global crude
steel production. The details of the construction of the single PCA proxy for global demand
growth are provided in Appendix The correlations between ¢®° and the log growth rates of
the shipping cost index and global crude steel production are 0.82 and 0.74, respectively. The
bottom panel in Figure [2| shows that g% closely tracks the two individual proxies most of time,

except for a few instances in which one of the two proxies takes extreme values.

Finally, we obtain oil production data, covering the period between January 1982 and Decem-
ber 1991, from the website of the US Energy Information Agency[] In addition, we hand-collect
data on the total supply of crude oil, natural gas liquids, processing gains, and global biofuels,
for the period between December 1991 and December 2015, from the monthly Oil Market Report
obtained from the website of the International Energy Agency. Combining data from the two

sources, we construct a time series of monthly log growth rates of world crude oil production.

3 Oil price change as a predictor of MSCI index excess returns

To examine whether oil price changes can predict equity returns, we start by revisiting the
evidence documented in Driesprong, Jacobsen, and Maat| (2008)) who consider a sample period
ending in April 2003. In particular, we estimate the following standard predictive regression
model:

i = o + 070 +ui, (1)

where 77, ; is the excess return on an MSCI index and the oil price change proxy gF is the first
principal component obtained from three oil spot price log growth rates: WTI, Dubai, and Arab

Light. We construct excess returns by subtracting the particular country’s short-term rate from

" Specifically, we use Table 11.1b (World Crude Oil Production: Persian Gulf Nations, Non-OPEC, and World).



each MSCI index return in the case of local currency-denominated indexes and by subtracting
the US Treasury Bill rate from each MSCI index return in the case of US dollar-denominated
indexesF]

We consider the MSCI indexes for the G7 countries as well as the World MSCI index, de-
nominated both in local currencies and US dollars. The oil price change proxy we use is the first
principal component obtained from the WTI, Dubai, and Arab Light spot prices, as explained in
Section . Driesprong, Jacobsen, and Maat| (2008) document negative and statistically significant
estimates of the predictive slope coefficient 6% for a large number of countries based on a sample
that ends in April 2003. We first run the predictive regression for the sample starting in January
1983 and ending in April 2003 and then consider the extended sample period starting in January
1983 and ending in December 2015. We examine the statistical significance of predictability in
terms of p-values and adjusted R-squares. Furthermore, we examine the economic significance of
predictability by evaluating the performance of the resulting optimal trading strategies in terms
of certainty equivalent returns and Sharpe ratios. Appendix explains in detail the methods

used to evaluate predictive ability.

3.1 Evidence from the 1983-2003 sample period

In the left panel of Table [2] we present statistical significance results for the predictive regression
model based on MSCI index excess returns, denominated in both local currencies and US
dollars over the sample period starting in January 1983 and ending in April 2003. We first
focus our analysis on this sample period to facilitate comparison of our results with the evidence

presented in [Driesprong, Jacobsen, and Maat| (2008]) who also use a sample ending in April 2003.

For local currency-denominated returns, the point estimate of the predictive slope &° in
regression is negative for all six cases. The null hypothesis Hy : 6° = 0 is rejected in six (four)
out of six cases at the 10% (5%) level of significance according to Newey and West| (1987)) standard
errors. When [Hodrick! (1992) standard errors are used, Hy : 6° = 0 is rejected in five (four) out of

six cases at the 10% (5%) level of significance; Japan yields the highest p-value equal to 0.12. The

8 While Driesprong, Jacobsen, and Maat/| (2008) use log returns in their empirical analysis, it is more convenient
for us to use excess returns for the purpose of assessing the economic significance of the predictive ability of oil
price changes. The results for log returns, available upon request, are very similar.



adjusted R-square is greater than 2% in five out of six cases; Canada yields the lowest adjusted
R-square equal to 1%. The results for US dollar-denominated returns are qualitatively similarﬂ
Note that our empirical exercise differs from the analysis in [Driesprong, Jacobsen, and Maat
(2008)) in that we use our own oil price change proxy, our sample starts at a different point in
time, and we use excess returns as opposed to log returns. Despite these differences, our results
confirm their evidence on the relationship between oil price changes and subsequent global equity

returns for the sample period ending in April 2003.

In the left panel of Table in the Online Appendix, we present evidence on the ability of oil
price changes to predict MSCI index excess returns in terms of economic significance, over the
1983.01-2003.04 period. Specifically, we report results on the certainty equivalent return (CER)
and the Sharpe ratio (SR) of the associated optimal trading strategies for a mean-variance investor
with a risk aversion coefficient v = 3 (see Appendix . These results reinforce the statistical
significance results reported in the left panel of Table[2] Let CERz1p and SRrrp denote the CER and
SR achieved by the optimal trading strategy assuming that the MSCI index excess returns are
i.i.d., and CERp and SRp denote the CER and SR achieved by the optimal trading strategy using the
predictive regression model . For local currency-denominated returns, the alternative model
using the oil price change proxy ¢° as predictor generates significantly higher (point estimates
of) CERs and SRs compared to the baseline model that assumes that MSCI index excess returns
are i.i.d. across all six countries. More importantly, the null hypothesis H§®™ : CERr1p = CERp is
rejected in six (five) out of six cases at the 10% (5%) level of significance, respectively, against
the one-sided alternative HG™® : CERrrp < CERp. The null hypothesis H§F : SRip = SRp is rejected

against the one-sided alternative H3 : SRi1p < SRp in all six cases at the 5% level of signiﬁcancem

9 Specifically, the point estimate of the predictive slope 6¥ in regression is negative for all eight cases. The null
hypothesis Hy : 6" = 0 is rejected in seven (six) out of eight cases at the 10% (5%) level of significance according
to|Newey and West/| (1987) standard errors. When [Hodrick| (1992) standard errors are used, Hy : 8° = 0 is rejected
in six (six) out of eight cases at the 10% (5%) level of significance; Japan again yields the highest p-value equal
to 0.27. The adjusted R-square is greater than 2% in six out of eight cases; Canada yields the lowest adjusted
R-square equal to 0.7%. Importantly, for the case of the World MSCI index, Hy : 6° = 0 is strongly rejected by
both methods and the adjusted R-square is equal to 5.6%, which is rather high for monthly returns. '° The
results for US dollar-denominated returns are qualitatively similar. The alternative model based on the predictive
regression model still generates significantly higher (point estimates of) CERs and SRs compared to the baseline
i.i.d. model for MSCI index excess returns across all eight cases. The null hypothesis HSER : CER1mp = CERp is
rejected in five (three) out of eight cases at the 10% (5%) level of significance, respectively, against the one-sided
alternative HS® : CERipp < CERp, with Canada yielding the highest p-value equal to 0.15. The null hypothesis
HSR : SRip = SRp is rejected against the one-sided alternative HZR : SRimp < SRp in six (three) out of eight cases at
the 10% (5%) level of significance, respectively, with Japan yielding the highest p-value equal to 0.14.

10



Overall, the economic significance results confirm the evidence reported in [Driesprong, Jacobsen,

and Maat| (2008) on the ability of oil price changes to forecast international equity index returns.

3.2 Evidence from the 1983-2015 sample period

In this subsection, we extend the sample period to December 2015 and run the same predictive
regressions again. As in the previous subsection, we examine both the statistical and economic

significance of the predictive ability of oil price changes.

In the right panel of Table [2, we present statistical significance results over the 1983.01—
2015.12 period. The evidence obtained from the extended sample is quite different: the predictive

ability of oil price changes has mostly disappeared.

For local currency-denominated returns, the point estimates of the predictive slope 6 in
regression are still negative for all six countries. However, they are much smaller in absolute
value. For instance, for Japan and the UK, the §° point estimates obtained over the 1983.01—
2003.04 period are -0.11 and -0.11, while they fall to -0.05 and -0.06 over the 1983.01-2015.12
period, respectively. The null hypothesis Hy : 6° = 0 is now rejected in only three (two) out
of six cases at the 10% (5%) level of significance according to |Newey and West| (1987) standard
errors. Moreover, we observe a substantial reduction in adjusted R-squares. For instance, for
Japan and the UK, the adjusted R-squares obtained over the 1983.01-2003.04 period are 2.9%
and 4.1%, while they fall to 0.3% and 1.4% over the 1983.01-2015.12 period, respectively. In the

case of Canada, the adjusted R-square even becomes negative.

The results for US dollar-denominated returns are even weaker. While the 6° point estimates
are still negative in seven out of eight cases, they are even smaller in absolute value than their
counterparts obtained for local currency-denominated returns and, in the case of Canada, the
predictive slope estimate becomes positive. The null hypothesis Hy : 6° = 0 is rejected only in
the case of Italy at the 10% level of significance, regardless of whether we use Newey and West
(1987) or Hodrick (1992)) standard errors. Importantly, the corresponding p-values for the US
and the World MSCI indexes are 0.22 and 0.22, respectively, according to Newey and West| (1987)

standard errors. In addition, the adjusted R-squares are rather low: they are less than 1% in seven

11



out of eight cases, and even negative in the case of Canada. Hence, our results show substantially
weaker statistical evidence on the relationship between oil price changes and subsequent global

equity excess returns over the 1983.01-2015.12 period compared to the 1983.01-2003.04 period.

The right panel of Table in the Online Appendix reports results on the economic signif-
icance of the predictive ability of oil price changes, over the 1983.01-2015.12 sample period, in
terms of the CER and the SR of the associated optimal trading strategies for a mean-variance
investor with a risk aversion coefficient v = 3 (see Appendix . These results reinforce
the message, conveyed by the right panel of Table [2] that the forecasting ability of oil price
changes has all but disappeared over the extended sample ending in December 2015. For local

currency-denominated returns, the null hypothesis H§® : CER11p = CERp is not rejected against

the one-sided alternative H§® : CER1p < CERp in four out of six cases at the 10% level of sig-
nificance, with the exceptions of Italy and the UK. We obtain the same results when we test
H§® : SRimp = SRp against Hle : SRrip < SRp. The results for US dollar-denominated returns
are even weaker. The null hypothesis HG® : CER11p = CERp is not rejected against the one-sided
alternative H{® : CER1p < CERp in any case, out of eight, at the 10% level of significance. Im-
portantly, the corresponding p-values for the US and the World MSCI indexes are 0.37 and 0.30,

respectively.

Collectively, the statistical as well as economic significance results presented in this subsection
illustrate that the forecasting ability of oil price changes has been diminished over the extended
sample ending in December 2015. In the next subsection, we provide further corroborating
evidence by examining the stability, or lack thereof, of the predictive relationship between MSCI

index excess returns and past oil price changes.

3.3 Instability of the predictive slope coefficients

The empirical evidence gathered in the previous two subsections suggests that the ability of oil
price changes to predict MSCI index excess returns is not stable over time. We confirm previous
results on the oil price change predictive ability using data until April 2003, consistent with the

evidence in Driesprong, Jacobsen, and Maat| (2008]), but also show that these results do not hold

12



in the extended sample ending in December 2015. While we obtain negative and statistically
significant predictive slope estimates in the early sample, these estimates become much closer to

zero and lose their statistical significance in the extended sample.

As a first attempt to shed some light on these striking findings, we estimate the predictive
regression model over different samples using an expanding window. The first sample covers
the 1983.01-1993.01 period and the last sample covers the 1983.01-2015.12 full period. Figures[A]]
and both in the Online Appendix, present the predictive slope estimates along with 95%
confidence intervals, based on |Newey and West| (1987)) standard errors, over the period 1993.01-
2015.12 for local currency- and US dollar-denominated MSCI index returns, respectively. The
pattern evident in these graphs is rather revealing. For the majority of the cases, the predictive
slope estimates are negative and frequently statistically significant until the third quarter of
2008. For most cases after that point in time, however, the estimates start increasing to zero and
quickly lose their statistical significance. This effect is more prominent for US dollar-denominated

returns.

In addition to the informal analysis based on the predictive slope estimates presented in the
aforementioned graphs, we also perform formal structural break tests. Specifically, we employ
the methodology developed by |Bai and Perron (2003)) to test for multiple structural breaks in
the predictive slope coefficients. The Bayesian Information Criterion (BIC) is used to select the

number of breaks.

Table [3| presents Bai and Perron! (2003) structural break tests in the slope coefficient for the
predictive regression . The second column presents the BIC values assuming no break. The
third and fourth columns provide the BIC values and the corresponding break dates for the case
of the one-break model. The last column shows the number of breaks selected by the BIC. For
local currency-denominated index returns, the test identifies the presence of one structural break
in five out of six cases, with the only exception of the UK. For US dollar-denominated index
returns, the test identifies the presence of one structural break in seven out of eight cases, with
the only exception of France. The break dates identified in most cases fall in the third quarter
of 2008. However, the break dates for Italy and Japan are October 2003 and September 1990,

respectively. Overall, the structural break tests provide additional evidence against the stability
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of the slope coefficient in the predictive relationship between MSCI index excess returns and past

oil price changes.

4 Identifying oil price shocks using structural VAR models

In the previous section, we confirm the finding of |Driesprong, Jacobsen, and Maat| (2008) that
oil price changes predict international equity index returns at the monthly frequency with a
negative predictive slope based on data up to April 2003. However, we also provide compelling
evidence that the predictive power of oil price changes has practically disappeared over the
extended sample ending in December 2015. For most of the MSCI indexes, the predictive slope
estimates based on expanding windows become closer to zero and turn statistically insignificant
after the third quarter of 2008. Moreover, the formal econometric tests of Bai and Perron| (2003)
indicate the existence of a structural break in the third quarter of 2008 for the majority of the
cases, especially when US dollar-denominated returns are used. The dramatic reduction in the

predictive ability of oil price changes, therefore, begs for an explanation.

In this paper, we offer an explanation that emphasizes the differential roles of the vari-
ous shocks embedded in oil price changes. Specifically, we use a structural Vector Autoregres-
sion (VAR) framework that provides a decomposition of oil price changes into oil supply shocks,
global demand shocks, and oil-specific demand shocks. As [Kilian| (2009) and Kilian and Park
(2009)) point out, oil price shocks cannot be treated as strictly exogenous with respect to the
global economy. In particular, they argue that oil supply shocks, global demand shocks, and
oil-specific demand shocks, the combination of which leads to the observed aggregate oil price

changes, should have different effects on the macroeconomy and the stock market.

Kilian and Park (2009) augment the structural VAR model of |Kilian| (2009) by adding the US
real stock return in the vector of variables and study the contemporaneous relationships between
shocks embedded in oil price changes and stock returns. They further examine cumulative
impulse responses of real stock returns to one-time shocks to oil supply, global demand, and
oil-specific demand in the crude oil market. Their results, using data over the 1975-2006 period,

show that an unexpected decrease in oil production has no significant effect on cumulative US
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real stock returns and a positive surprise to global demand (oil-specific demand) leads to a
continuous increase (decrease) in US real stock returns. In this paper, following the recent
finance literature, Driesprong, Jacobsen, and Maat| (2008) in particular, we cast the question in a
predictive regression framework using short-horizon, i.e., one-month-ahead, forecasts. Although
we utilize the structural VAR framework along the lines of |Kilian| (2009), we approach the question
from the perspective of an investor who wishes to use the real-time information embedded in oil
price changes and captured by the three aforementioned shocks to predict subsequent equity

index returns.

To disentangle the supply shocks, demand shocks, and oil-specific demand shocks embedded
in the observed oil price changes, we employ two distinct structural VAR models. The first
model is a variant of the Kilian (2009) model which assumes that the short-run elasticity of oil
supply is zero. The second model is a parsimonious version of the model proposed by |Caldara,
Cavallo, and Iacoviello (2017)) that allows for joint estimation of the elasticities of oil supply and
oil demand. Both of the structural VAR models describe the joint evolution of three variables
capturing changes in the (i) supply of oil; (ii) global economic activity; and (iii) price of oil. The
first variable, denoted by g5, where S stands for supply, is the log growth rate of world crude
oil production. The second variable, denoted by ¢¢°, where GD stands for global demand, is
the first principal component of the log growth rates of the dry bulk cargo shipping cost index
and global crude steel production. It has been argued in the literature, e.g., Kilian/ (2009) and
Ravazzolo and Vespignani (2015), among others, that fluctuations in shipping cost and global
crude steel production capture changes in global economic activity growth and demand for oil.
The third variable, denoted by ¢gf where P stands for price, is the first principal component of

the log growth rates of West Texas Intermediate, Dubai, and Arab Light spot prices. We provide

a detailed explanation of the data sources and construction in Section

Our purpose is to employ the two structural VAR models to obtain a decomposition of oil
price changes into three types of shocks and use them as predictors of MSCI index returns.
We do so by, first, using information available in real time and, second, constructing three
variables that are stationary in a consistent way as explained above. As a result, our approach

differs from Kilian (2009) and (Caldara, Cavallo, and Iacoviello (2017) who use detrended level
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variables. Importantly, as |Apergis and Miller| (2009) point out, the variables of global real
economic activity and log real oil price used in the structural VAR model in Kilian| (2009) appear

to be non-stationary. On the contrary, our variables are, by construction, stationary.

4.1 Structural VAR framework

Let g¢ = [¢7 g ¢F]’ denote the vector of the three variables described above. The structural

VAR model is then stated as:

p
Aogi=a+ Y Agiiter, (2)
i=1

where A is the 3 x 3 matrix specifying the contemporaneous structural relations between the

three variables, a = [as agp ap|' is a 3 x 1 vector, A; = [a;s a;gp a;p) is a 3 x 3 matrix,
for i = 1,...,p, and & = [ef & &PP] is the vector of orthogonal structural shocks. The

interpretation of the fundamental shocks is as follows: &} is the oil supply shock, €% is the global

demand shock, and %P is the oil-specific demand shock. The structural innovation vectors &;

are, by assumption, serially and cross-sectionally uncorrelated with covariance matrix given by

oz 0 0
B.=Varlesdd=| 0 o3 0 |- 3)

0 0 0(2)513

The reduced-form VAR innovation obtained from the structural VAR model 1' ise; = Ay le,.
Letting 3. denote the covariance matrix of e;, we obtain ¥, = Ag 125(Aa 1)’ which is the
equation that provides identification of the matrices of interest Ay and X.. Note that the
covariance matrix 3. contains six distinct parameters. Due to the orthogonality of the structural
shocks, ¥, contains three distinct parameters. Hence, only three distinct parameters in the
matrix Ay can be identified. We consider two different structural VAR models reflected in the
form of the matrix Ag. The first model is a variant of the model advanced by [Kilian| (2009)) and
assumes zero short-term oil supply elasticity; it is referred to as the IS model, where IS stands for

inelastic supply of oil. The second model is a parsimonious version of the recent model proposed
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by |Caldara, Cavallo, and Iacoviello| (2017)) that facilitates joint identification of oil supply and
demand elasticities; it is referred to as the ES model, where ES stands for elastic supply of oil.
For now, we assume that the matrix Ay is fully identified, given knowledge of the covariance

matrix .. We elaborate more on how Ay is determined in the context of both models below.

The estimation of the VAR model and the decomposition of oil price changes proceed as
follows. Multiplying both sides of the structural VAR model by Ay ! yields the reduced-form
VAR model

p
g =b+)> Bigii+e, (4)
i=1

where b = Aala and B; = AalAi, i = 1,...,p. The parameters b and B; are estimated
by standard OLS and the VAR order p is selected using the BIC criterion. The matrix ¥, is
estimated by the covariance matrix of the residuals from . Writing the VAR(p) system in
VAR(1) form, we obtain

vt = Cyi—1 +uy, (5)

where y; and u; are 3p X 1 vectors defined by

/
ye=lgl—p g 1—m, - &y — (6)
w=[e 0 --- 05/, (7)
Itg is the mean of g; and C is a suitable 3p x 3p matrix (involving the matrices B;, i =1,...,p).

The Wold representation of y; reads y; = > .o C'u;_;. Denoting by D; the 3 x 3 upper-left block
of the matrix C* and defining the matrix F; = D; Ay, we can express g; as g; = o+ 2o Figr.
The third element of the vector g; is the oil price change proxy denoted by g°. Hence, we obtain

the following decomposition of g* into three components
g = ug + 23 + 28 4 205 (8)

where yf is the mean of the oil price change gf, #f = > 72,(Fi)s1€f_; is the oil supply shock,
2P = 30 (F;)32e5®, is the global demand shock, and 2932 = 372 (F;)332%2 is the oil-specific

demand shock.
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As mentioned above, the reduced-form VAR model is estimated using standard OLS. In

our implementation, the order p is selected equal to 2 according to BIC.

4.2 Inelastic supply (IS) structural VAR model

The identification strategy in Kilian| (2009) rests on the following assumptions: (i) oil production
does not respond contemporaneously to either global demand or oil price changes; (ii) global
demand responds contemporaneously to oil production but not to oil price changes; and (iii) oil
price responds contemporaneously to both oil production and global demand changes. Impor-
tantly, according to Kilian (2009)’s setting, the short-run elasticity of oil supply is assumed to
be zero. Note that the above restrictions imply that the matrix Ag in the IS model is lower

triangular:

100
AF=19 1 0. (9)
o ¢ 1

Recall that the matrices Ap and 3. are identified through the equation ¥, = A 125(Aa 1)’ .
Hence, given the form of AJ®, one can use the Cholesky factor of the covariance matrix X, to

recover both Af® and X..

4.3 Elastic supply (ES) structural VAR model

While Kilian (2009)) has successfully emphasized the importance of disentangling oil demand and
supply shocks, it has also received criticism in the literature regarding the assumption of inelastic
supply of oil. One of the implications of the model is that oil supply shocks account for a rather
small percentage of variation in oil prices (see |[Ready| (2018), Caldara, Cavallo, and Iacoviello
(2017), and Baumeister and Hamilton (2017), among others). To address these concerns, we
also consider a structural VAR model that facilitates estimation of both oil supply and demand

elasticities. The model is a parsimonious version of the model proposed by |Caldara, Cavallo, and
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lacoviello (2017)). The three equations describing the joint evolution of g; are:

p
9 =nsgr +as+ Y alsgii+ e, (10)
=1
p
97 =mog; + 09 +ap+ Y _ajpg i+, (11)
i=1
p
9:° = Ag; +aep + Z a; opBt—i + Gl (12)
=1

Equations and characterize the oil market. Equation describes the oil supply
schedule. We assume that oil production reacts contemporaneously only to oil price changes.
The short-run price elasticity of oil supply is captured by the parameter ns. Equation ((11))
describes the oil demand schedule. We assume that oil demand responds contemporaneously to
both oil price changes and changes in global economic activity. The short-run price elasticity
of oil demand is captured by the parameter np. Equation describes the evolution of global
economic activity. We assume that global economic activity is affected contemporaneously only

by changes in oil production. The corresponding Ay matrix is given by

1 0 —1s
AF=|_-x 1 o |- (13)
1 -0 —np

As emphasized by |Caldara, Cavallo, and Tacoviello| (2017)), the parameters in AES cannot be jointly
identified without additional information. However, the ES model is very informative in the sense
that it imposes restrictions on the feasible pairs of elasticities (ns,7p). Indeed, assuming a value
for ng and knowledge of the covariance matrix 3., one can recover the rest of the parameters
in A according to the equation AgX.A{ = X.. This procedure results in an admissible set
of pairs (ns,7p) that are consistent with the ES structural VAR model. To determine estimates
of supply and demand elasticities consistent with their structural VAR model, |(Caldara, Cavallo,

and lacoviello (2017)) propose a two-stage identification strategy. First, they obtain independent
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estimates (ng,n5) using an instrumental variable (IV) estimation approachE Then, they select
the optimal admissible pair of elasticities (7s,7p) by minimizing a suitable distance between the

admissible pairs and (ng, n3), i.e., solving the following problem:

/

min s s v s s ; (14)

"] i (ns; Be) — 0 o (ns; Be) — 115
where 7p(ns; Xe) is the elasticity of demand consistent with ns and X, and V is a diagonal matrix
of weights that reflect the sampling error in the (1§, 7)) estimates. Adopting the identification
procedure advanced by (Caldara, Cavallo, and Iacoviello| (2017) to our setting and using their IV
point estimates (ng,n5) = (0.077,—0.074), we obtain the set of admissible pairs as well as the
optimal admissible pair of elasticities (7s,7p) = (0.157,—0.136). The results are presented in
Figure 3| that closely resembles Figure 2 in |Caldara, Cavallo, and Iacoviello| (2017). Even though
we use a more parsimonious model, with three instead of five variables, different proxies and cast
our VAR model in terms of growth rates as opposed to levels, our estimates of supply and demand
elasticities are quite close to the estimates obtained by |Caldara, Cavallo, and Iacoviello| (2017),
ie., (7s,mp) = (0.11,—0.13). Moreover, our results are comparable to the results in |Baumeister
and Hamilton| (2017) who obtain (7s,7p) = (0.15, —0.35). The rest of the parameters in Af® and

3., namely A, 0, 03, 02, and o3gy are readily recovered from the equation AgE.Af = ..

4.4 Oil price decomposition according to the IS and ES models

We obtain estimates of the matrix Ag, in the context of the IS and ES models, as we explain above.
Using these estimates and employing equation , we decompose oil price changes into oil supply,
global demand, and oil-specific demand shocks. The two structural models presented above, IS
and ES, have quite different implications in terms of the role of supply shocks in explaining

the variation in oil prices. Specifically, our IS model estimates, based on the full sample, imply

11 |Caldara, Cavallo, and Iacoviello| (2017)) estimate the price elasticity of oil supply and demand by using IV panel
regressions. They use a narrative analysis to identify 14 exogenous episodes of large country-specific declines in
oil production for 21 countries over the period 1985-2015. In the supply and demand regression equations, for a
particular country, the instrumental variables for the price of oil are large exogenous declines in oil production in
other countries. In the second stage, country-level IV regressions for supply and demand use changes in crude oil
production and petroleum consumption in the particular country, by excluding exogenous episodes involving that
country. They obtain point estimates of supply and demand elasticity equal to 0.077 and -0.074, respectively.
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that 1%, 5%, and 94% of oil price change variation is attributed to oil supply, global demand,
and oil-specific demand shocks, respectively. In contrast, our ES model estimates, based on
the full sample, imply that 58%, 5%, and 37% of oil price change variation is explained by oil
supply, global demand, and oil-specific demand shocks, respectively. In Figure [4] we present the
percentages of the variance of oil price changes attributed to oil supply and oil-specific demand
shocks as a function of the elasticity of supply ng in the context of the ES model. The pattern
in Figure (] illustrates that the percentage of oil price variation explained by oil supply shocks is
a monotonically increasing function of the elasticity of supply ng. The pattern is consistent with
the fact that the IS model can be seen a limiting case of the ES model as the elasticity of supply,

1s, approaches zero.

For the purposes of predicting future equity returns, we need estimates of the oil supply, global
demand, and oil-specific demand shocks based on available data at each point in time. To obtain
such estimates, we estimate the reduced-form VAR model and obtain the decomposition in
equation in a real-time fashion for both the IS and ES models. Specifically, for each month
in the period between January 1986 and December 2015, we estimate the VAR model using all
available data starting in February 1982 and ending in that month. Then, we obtain the time
series of three shocks in the decomposition , but keep the vector of the oil supply, global
demand, and oil-specific demand shocks only for the last month. Our real-time decomposition is
obtained in a fashion that reflects all revisions to past data of crude oil and crude steel production.
We plot the real-time estimates of the oil supply, global demand, and oil-specific demand shocks
from January 1986 to December 2015 in Figure 5| As expected, oil-specific demands shocks are
more volatile under the IS model, while oil supply shocks are more volatile under the ES model.

The global demand shocks are very similar across the two structural VAR models.

5 The predictive power of oil supply, global demand, and oil-

specific demand shocks

In this section, we examine the ability of the three shocks obtained by the oil price change

decomposition to forecast next-month MSCI index excess returns over the sample period
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from January 1986 to December 2015. Specifically, we run the following predictive regression:

DEC S,..S GD,.GD 0SD,..0SD DEC
’rte+1:O[ +5 xt+/6 It +B ‘Tt +ut+17 (15)

where 7§, ; denotes excess return on an MSCI index and xf, 2§, 2§ denote the oil supply,

global demand, oil-specific demand shocks obtained from the decomposition , respectively.
We consider the shocks obtained from both the IS and ES structural VAR models. As in the
previous section, we gauge the forecasting ability of the three shocks using measures of both
statistical and economic significance. Furthermore, we offer comparisons between model ,

which uses oil price change as the sole predictor, and the decomposition-based model .

The three shocks identified by the decomposition are anticipated to have different impacts
on future equity returns. Given that demand for oil is less than perfectly elastic, a disruption
in oil production would result in an oil price increase. Such a disruption would be potentially
bad news for the real economy and the stock market while the corresponding shock x° would
be positive. Hence, one expects 3° to have a negative value in the predictive regression .
Second, positive global demand shocks stimulate the global economy as a whole, although the
impact might differ across countries. One, therefore, expects that a positive global demand shock
would be good news for equity markets. At the same time, a positive global demand shock could
drive up the price of oil, which, in turn, could have a slowing-down effect on certain economies.
However, the overall effect should be dominated by the first direct impact and, hence, one expects
a positive slope S in the predictive regression . Third, following the interpretation in |Kilian
(2009), an oil-specific demand shock is thought to capture changes in the demand for oil driven by
precautionary motives. Accordingly, a positive oil-specific demand shock is thought to originate
from the increased demand for oil due to uncertainty regarding future availability of oil and
is, therefore, perceived as bad news for the global economy and the stock market. Hence, one

expects %P to have a negative value in the predictive regression ([15]).

Summarizing the above discussion, we view an oil price increase due to an oil supply or an
oil-specific demand shock as bad news. Recall, however, that the two structural VAR models that

we use have different implications regarding the magnitude of these shocks. According to the
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IS model, the percentages of oil price variation explained by oil supply and oil-specific demand
shocks are 1% and 94%, respectively, while, according to the ES model, these percentages are
58% and 37%, respectively. Hence, we anticipate that, when we use the shocks obtained from
the IS (ES) model, the oil-specific demand (oil supply) shocks will play a more important role
in predicting future equity returns. Indeed, this is confirmed by the evidence presented in the

following subsection.

5.1 Evidence on the predictive ability of the shocks obtained from the struc-
tural VAR models

In Tables {4 and |5, we present statistical significance results for the predictive regression
over the 1986.01-2015.12 sample period using the shocks obtained from the IS and ES models,
respectively. To provide a direct comparison between the predictive regression model , which
uses oil price change as the sole predictor, and the predictive regression model , we also
estimate model over the same sample period. We report results for MSCI index excess
returns denominated in both local currencies and US dollars and compute standard errors using
the Newey and West| (1987) method with optimal bandwidth selected as in Newey and West

(1994).

As expected, given the evidence presented in Section [3] the forecasting power of oil price
changes diminishes over the 1986.01-2015.12 sample period. The results are very similar to those
presented in Table [2] corresponding to the 1983.01-2015.12 sample period. In particular, the
adjusted R-square for both the World and the US MSCI index is 0.5%. In stark contrast, we
find strong evidence of predictability using the decomposition-based model with the shocks

obtained from either the IS or the ES model.

The results based on the IS model shocks are reported in Table [4] and summarized as follows.
We focus on US dollar-denominated returns, as the results for local currency-denominated returns
are very similar. The adjusted R-squares for the Canada, France, Germany, Italy, Japan, and
UK MSCI indexes are 1.5%, 1.5%, 1.9%, 6.6%, 0.7%, and 2.1%, respectively. The 3% estimates

are positive in all eight cases and statistically significant in four (six) cases at the 5% (10%) level
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of significance. The B%P estimates are negative in all eight cases and statistically significant in
five (six) cases at the 5% (10%) level of significance. The 3% estimates are negative in six out
of eight cases, although statistically significant only in one case. Importantly, for the US and
the World MSCI indexes, the 3% estimate is positive, the 3% estimate is negative, and both
are statistically significant at the 5% level of significance, while the corresponding R-squares are

4.3% and 3.6%, respectively.

The results based on the ES model shocks, reported in Table [5] also show strong predictive
ability of the shocks, except that in this case it is the oil supply shock, as opposed to the oil-
specific demand shock, that negatively and significantly predicts future equity returns. Next, we
briefly summarize the results for US dollar-denominated returns; the results for local currency-
denominated returns are very similar. The adjusted R-squares for the Canada, France, Germany,
Italy, Japan, and UK MSCI indexes are 1.5%, 1.1%, 1.5%, 6.0%, 0.7%, and 2.3%, respectively.
The 3P estimates are positive in all eight cases and statistically significant in four (six) cases at
the 5% (10%) level of significance. The 3° estimates are negative in all eight cases and statistically
significant in four (four) cases at the 5% (10%) level of significance. The B%P estimates are
negative in five out of eight cases, although none of them are statistically significant. Importantly,
for the US and the World MSCI indexes, the 35 estimate is negative, the 3% estimate is positive,
and both are statistically significant at the 5% level of significance, while the corresponding

R-squares are 4.2% and 4.1%, respectively@

In addition to the evidence on statistical significance, we also provide evidence on the economic
significance of the ability of the oil supply, global demand, and oil-specific demand shocks to
predict the G7 country and World MSCI index returns. We refer to the model described by the
decomposition-based predictive regression as the alternative model and compare it to three
baseline models. The first baseline model assumes that the MSCI index excess return rg,; is

i.i.d. The second baseline model is described by the predictive regression that uses the oil

12 We repeat the above analysis, for both the IS and ES models, computing standard errors according to the Ho-
drick| (1992) method. The results, reported in Tables and in the Online Appendix, are similar and convey
the same message. Collectively, there is strong statistical evidence supporting the usefulness of the decomposi-
tion and the ability of the three associated shocks to forecast the World and G7 country MSCI index excess
returns.
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price change ¢° as predictor. The third baseline model is described by the predictive regression

iy = 0%+ 6% 4+ uf2,, (16)

which uses the global demand growth proxy ¢®° as predictor.

Let CERpgc and SRpec denote the CER and SR achieved by the optimal trading strategy for
a mean-variance investor with a risk aversion coefficient v = 3 using the decomposition-based
predictive regression model . Analogously, we denote by CER1p, CERp, and CERgp (SRr1p, SRp,
and SRgp) the CERs (SRs) achieved by the optimal trading strategies using the i.i.d. model,
the predictive regression based on oil price change, and the predictive regression based
on global demand growth, respectively. To gauge the predictive ability of the shocks z?, x$P,
and z9%° we test the null hypotheses HS®™® : CERprp = CERpge, HS™® : CERp = CERpgc, and
HG®® : CERgp = CERpgc against their one-sided alternatives. Furthermore, in a similar fashion,
we test the null hypotheses H3® : SRirp = SRprc, H3" : SRe = SRpge, and HF" : SRep = SRprc
against their one-sided alternatives. The economic significance test results, based on the shocks
obtained from the IS and ES models, are reported in Tables [6] and [7] respectively. Next, we

discuss the results based on the shocks obtained from the IS model. The results based on the

shocks obtained from the ES model are similar.

For local currency-denominated index returns, the decomposition-based model generates
CERs that are higher than their counterparts generated by the i.i.d. model in all six cases.
The difference is sizable, e.g., more than 3.76%, in annualized terms, for Japan and the UK,
and statistically significant in five out of six cases at the 10% level of significance. Moreover,
the decomposition-based model generates CERs that are higher than their counterparts
generated by model based on oil price change in five out of six cases, with the exception of
France. In the remaining cases, the difference is greater than 1.2%, in annualized terms, and
statistically significant in the case of Japan at the 10% level of significance. The decomposition-
based model also performs substantially better than the model based on global demand
growth in terms of CER. It produces CERs that are higher in all six cases and statistically

significant in four out of six cases at the 10% level of significance. The SR results are in line with
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the CER results. The decomposition-based model generates SRs that are higher than their
counterparts generated by the i.i.d. model in all six cases. The increase in SR is sizable, e.g.,
from 0.19 to 0.53 for the UK, and the difference is statistically significant in four out of six cases
at the 5% level of significance. Moreover, the decomposition-based model generates SRs that
are at least as high as their counterparts generated by the model based on oil price change
in all six cases. The differences again are sizable and statistically significant in the case of Japan
at the 5% level of significance. The decomposition-based model also performs substantially
better than the model based on global demand growth in terms of SR. It produces SRs that
are higher in all six cases and statistically significant in five out of six cases at the 10% level of

significance.

The results for US dollar-denominated index returns convey the same message. Importantly,
in the case of the US MSCI index, the decomposition-based model generates an annualized
CER equal to 9.28% compared to 6.52%, 6.08%, and 6.20% generated by the i.i.d. model, the
predictive regression model , and the predictive regression model , respectively. The
corresponding p-values are 0.11, 0.08, and 0.05, respectively. Even stronger results are obtained
for the World MSCI index. The decomposition-based model generates an annualized CER
equal to 7.90% compared to 4.03%, 3.88%, and 3.30% generated by the i.i.d. model, model (),
and model , respectively. The difference is statistically significant in all three comparisons
with p-values equal to 0.04, 0.07, and 0.03, respectively. Strong results are obtained in terms of
SR as well. In the case of the US MSCI index, the decomposition-based model generates
an annualized SR equal to 0.65 compared to 0.48, 0.45, and 0.46 generated by the i.i.d. model,
model , and model , respectively. The corresponding p-values are 0.12, 0.09, and 0.05,
respectively. For the World MSCI index, the decomposition-based model generates an
annualized SR equal to 0.56 compared to 0.31, 0.30, and 0.27 generated by the i.i.d. model,
model , and model , respectively. The difference is statistically significant in all three

comparisons with p-values equal to 0.04, 0.06, and 0.03, respectively.

Thus far, in this subsection, we have provided strong evidence, in terms of statistical as well
as economic significance, in support of the ability of the oil supply, global demand, and oil-

specific demand shocks to predict the World and G7 country MSCI index excess returns, based
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on both IS and ES models. Next, we provide further corroborating evidence on the stability of
this predictive relation between MSCI index excess returns and these three shocks. As in the case
on the predictive regression model , we use the |Bai and Perron| (2003) methodology to test for
structural breaks in the decomposition-based model . The results are presented in Table
The test identifies breaks in zero (two) out of the 14 cases considered, covering six local currency-
and eight US dollar- denominated MSCI indexes, when we use shocks from the IS (ES) model.
Collectively, the results illustrate the importance of disentangling oil price changes into oil supply,
global demand, and oil-specific demand shocks for the purpose of forecasting international equity

returns.

In the next subsection, we examine various aspects of the relationship between the three
shocks embedded in oil price changes and future stock returns. In particular, we provide evidence
suggesting that the documented predictability does not appear to be consistent with time-varying

risk premia.

5.2 Additional evidence and robustness checks

First, to alleviate any concerns regarding the real-time availability of the data required to obtain
the oil price change decomposition , we estimate the predictive regression 7"?+1 = ol
B3a? + Pz + [9PP5P + PEC where i, is the monthly net return on the World or a G7
country MSCI index constructed with a delay of one or two WeeksB The results for the shocks
obtained from the IS and ES models, reported in Tables [] and respectively, are in line with
the baseline evidence reported in Tables 4| and |5, Overall, the results illustrate the robustness of
the forecasting ability of oil supply, global demand, and oil-specific demand shocks with respect

to one- or two-week delays.

When studying return predictability, one natural question that emerges is whether the pre-
dictors under examination can forecast asset returns over horizons longer than one month. We
present statistical evidence on the predictive ability, at the three-month and six-month horizons,

of the shocks obtained using the IS and ES models in Tables [L1]and respectively. The results

13 We do not use excess returns for this exercise due to lack of availability of interest rate data for the relevant
time periods.
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show that the predictive ability of the three shocks gradually diminishes as the horizon gets
longer. Moreover, the statistical significance of the slope corresponding to the global demand
shock decreases as we move from the three-month to the six-month horizon. This evidence is
reinforced by the adjusted R-squares over horizons up to six months that we report in Table
The adjusted R-squares at the six-month horizon are typically much lower than their three-
month counterparts. As argued by Fama and French| (1989) and Driesprong, Jacobsen, and Maat
(2008)), among others, predictability typically associated with time-varying risk premia is long-
lived and persists over long horizons. We document that this is not the case for the oil supply,
global demand, and oil-specific demand shocks and, hence, we conclude that the documented

predictability is not consistent with time-varying risk premia.

We also examine whether the results on the predictability of aggregate equity index returns
are robust in the cross section of US industries. Specifically, we use the 17 Fama-French value-

weighted industry portfoliosE

First, we conduct |Bai and Perron| (2003)) structural break tests for (i) the predictive regression
using oil price change as the predictor, for the 1983.01-2015.12 sample period, and (ii) the
predictive regression using the oil supply, global demand, and oil-specific demand shocks, obtained
from both the IS and ES models, as predictors, for the 1986.01-2015.12 sample period. Table[AZ]
in the Online Appendix shows that the tests identify the presence of one structural break in 14
of 17 industry portfolios when oil price change is used as the sole predictor, with the exception
of Mining and Minerals, Oil and Petroleum Products, and Utilities. In contrast, the tests do not
identify a break for any industry when the three shocks embedded in oil price changes are used
as predictors. Collectively, these results are consistent with the evidence from the G7 country

and World MSCI indexes reported in subsection [5.1

Second, we examine the ability of the three shocks, obtained from the IS and ES models, to

forecast industry portfolio excess returns. The results are presented in Tables [A5] and [Af] in the

1 We use monthly returns on the 17 Fama-French value-weighted industry portfolios from Kenneth French’s web-
site. The abbreviations (descriptions) of the 17 industries are Food (Food), Mines (Mining and Minerals), Oil (Oil
and Petroleum Products), Clths (Texiles, Apparel and Footware), Durbl (Consumer Durables), Chems (Chemi-
cals), Cnsum (Drugs, Soap, Perfumes, Tobacco), Cnstr (Construction and Construction Materials), Steel (Steel
Works Etc), FabPr (Fabricated Products), Machn (Machinery and Business Equipment), Cars (Automobiles),
Trans (Transportation), Utils (Utilities), Rtail (Retail Stores), Finan (Banks, Insurance Companies, and Other
Financials), and Other (Other).
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Online Appendix, where we also provide the results of the predictive regression using oil price
change as the sole predictor, for the purposes of comparison. Given the results of the structural
break tests discussed above, the results of the oil price change regression are meaningful only
for the three industries that do not exhibit a break. As expected, the estimated predictive
slope on oil price change is positive for the Oil and Petroleum Products industry, although not
statistically significant. Overall, there is no evidence of predictability based on oil price change
alone, with 15 out of 17 adjusted R-squares being less than 1%. In contrast, there exists strong
evidence of predictability across the various industries based on the three shocks embedded in
oil price changes, according to Newey and West| (1987)) standard errors. The results for the IS
model shocks (Table are summarized as follows. The 3% estimates are positive for all 17
industries and statistically significant for 12 (13) industries at the 5% (10%) level. The 3%P
estimates are negative for 15 industries and statistically significant for seven (eight) industries
at the 5% (10%) level. The 3% estimates are negative for all 17 industries, although statistically
significant only for four industries at the 10% level. Moreover, the adjusted R-square is greater
than 1.5% for 12 out of 17 industries. The results based on the ES model shocks (Table
convey the same message, except that, as in the case of MSCI index returns, it is the oil supply
shock, and not the oil-specific demand shock, that negatively predicts industry returns. The 3
estimates are positive for all 17 industries and statistically significant for 12 (14) industries at the
5% (10%) level. The 3% estimates are negative for all 17 industries and statistically significant for
seven (eight) industries at the 5% (10%) level. The 5% estimates are negative for 10 industries
but not statistically significant for any of them. Finally, the adjusted R-square is greater than
1.5% for 14 out of 17 industries. Overall, these results demonstrate that the predictive ability of
the oil supply, global demand, and oil-specific demand shocks is strong not only for the aggregate

equity index, but also across different US industry portfolios.

Another natural question in the context of equity return predictability is: how do the pro-
posed predictors relate to macroeconomic variables that have been extensively used in the extant
literature to model time-varying expected equity returns? Due to data limitations, we examine
this issue only for the case of the US. Table presents the contemporaneous correlations be-

tween the oil supply, global demand, and oil-specific demand shocks, obtained from the IS and
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ES models in a real-time fashion, and four macroeconomic variables: the log dividend yield, the
term spread, the default yield spread, and the one-month Treasury Bill rate. The correlations
are rather low in magnitude with the largest (in absolute value) being the correlation between

the global demand shock and the default yield equal to -0.17.

In addition, we examine whether the forecasting ability of the oil supply, global demand, and
oil-specific demand shocks is robust to the presence of the macroeconomic predictors in the case
of the US. We examine the following linear predictive regressions rf ; =~" + 6%g; + 0'z; + v,
and 7§, = PR+ B5af + S 4 OPPSP 4 N'zy 4+ 0PES over various sample periods, where 7§,
is the US MSCI index excess return and z; is the vector of the four macroeconomic variables
mentioned above. The results, based on shocks from both the IS and ES models, are reported
in Table According to the evidence, the inference results we have reported thus far in the
paper are robust to the presence of the macroeconomic variables. In particular, the forecasting
ability of oil price change over the early 1982.01-2003.04 sample period is unaffected. Moreover,
over the 1986-2015 sample period, the slopes of the global demand shock and the oil supply (oil-
specific demand) shock are positive and negative, respectively, and significant at the 5% level of

significance for the ES (IS) model, consistent with our baseline results.

In our next empirical exercise, we examine the descriptive statistics of the conditional expected
excess returns based on the oil supply, global demand, and oil-specific demand shocks obtained
from the IS and ES models. In particular, we focus on the mean, the standard deviation,
and the first three autocorrelations. This evidence can shed light on the issue of whether the
documented predictive ability of the three shocks is consistent with time-varying risk premia.
For the purposes of comparison, we use two benchmarks. The first benchmark is the predicted
MSCI US index excess return based on the aforementioned macroeconomic variables in terms
of descriptive statistics. We report the results for the time period 1986.01-2015.12 in Table
Overall, the conditional expected excess returns predicted by the three shocks are more volatile
and much less persistent compared to their analogues obtained from the macroeconomic variables.
One might argue that the predicted excess returns based on the macroeconomic variables are
just too persistent, given the nature of these macroeconomic predictors. To address this concern,

in our second comparison, we use as a benchmark the equity risk premium estimates obtained
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by [Martin| (2017)) based on option prices over different maturities, ranging from one month to
one yearﬁ Table [17]reports the results for the time period 1996.01-2012.01, which is the sample
period used by [Martin/ (2017). The main message from the second comparison remains the same.
In particular, the second and third order autocorrelations of the conditional expected excess
returns predicted by the three shocks are much lower than their counterparts obtained from
either the predicted excess returns based on the macroeconomic predictors or the risk premium
estimates of Martin (2017). Collectively, this evidence suggests that the forecasting ability of
the three shocks is not consistent with time-varying risk premia, in line with the evidence of

predictability diminishing over longer horizons as reported above.

We conclude this section by investigating whether there is a more direct link between time
variation in expected returns and changes in risk, as captured by return volatility. Such an
exercise can shed more light on the question of whether the predictive ability of the oil supply,
global demand, and oil-specific demand shocks is associated with changes in risk premia. To
this end, we employ an augmented EGARCH(1,1) model that includes these three shocks in
the volatility equation as exogenous regressors. If the variation of expected returns is to be
attributed to time-varying risk premia, we expect that any of these three shocks would have
the same effect on both the drift and the volatility. In the context of the EGARCH model, we
expect the coefficient on any of these shocks to have the same sign as in the drift equation and

be statistically significant. The econometric specification is:

1o = % Gaf + B+ P 4ol (17)
U?E(i = Ot2t+1, Zt41 11d(0, 1), (18)
log(07) = 70 + 12| + 722t + T3 log(o7 1) + Caf + (PafP 4 (PP, (19)

As argued above, time-varying risk premia would be consistent with ¢5 < 0, ¢°° > 0, and ¢%P < 0.
We estimate the model using monthly excess returns on the MSCI indexes for the G7 countries
as well as the World MSCI index, denominated both in local currencies and US dollars, over
the 1986.01-2015.12 sample period. We consider three distributions for the disturbances z;41:

Normal, Student-¢, and GED. The Student-¢ distribution was selected according to the Bayesian

15 We thank Tan Martin for making the data available on his website.
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Information Criterion[l) The results for the IS and the ES models are presented in Tables
and in the Online Appendix, respectively. In the majority of the cases, the estimates (5 < 0,
¢® > 0, and (%P < 0 are statistically insignificant at conventional levels. Moreover, for the IS
model, whenever there is significance, the sign is the opposite of what would be consistent with
time-variation of risk premia; e.g., in five out of 14 instances, the estimates of (®° are statistically
significant but negative. This evidence is inconsistent with the notion of time-varying risk premia,

reinforcing the message conveyed by the evidence documented earlier.

6 Conclusion

As the modern global economy heavily depends on oil, the price of oil is widely thought to affect
global real economic activity and, consequently, the global equity market. An oil price drop, in the
past, has been considered as good news, as it lowers the cost of production in a significant number
of sectors and allows consumers to boost their consumption. Accordingly, one could hypothesize
that negative (positive) oil price changes should predict higher (lower) subsequent equity returns.
Driesprong, Jacobsen, and Maat| (2008) document that this is indeed the case for a large number
of MSCI equity indexes based on data until 2003. However, this predictive relationship has
dramatically changed over the last ten years. Specifically, the correlation between the World
MSCI index return and the lagged one-month log growth rate of West Texas Intermediate spot
price has increased from -0.22 over the 1982-2003 period to 0.25 over the 2004-2015 period. As
a result, the ability of oil price change to forecast future equity returns has diminished over the
sample period that extends to 2015. Furthermore, using the formal econometric test of [Bai and
Perron| (2003), we detect a structural break in the predictive relationship in the third quarter of

2008 for most of the G7 country MSCI index returns.

In this paper, we suggest that oil price changes do, in fact, contain useful information for
forecasting subsequent equity indexes, provided that these changes are suitably disentangled into
supply and demand shocks. Using two distinct structural VAR models, we obtain an oil price

change decomposition into an oil supply shock, a global demand shock, and an oil-specific de-

16 The results are very similar across all three distributional assumptions.
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mand shock and argue that these three different types of shocks should have different effects on
equity markets. The first model is a variant of the model proposed by [Kilian| (2009), and assumes
zero elasticity of oil supply. The second model is a parsimonious version of the model advanced
by (Caldara, Cavallo, and Tacoviello| (2017) that facilitates joint estimation of oil supply and de-
mand elasticities. The hypothesis that oil supply shocks and oil-specific demand shocks (global
demand shocks) predict equity returns with a negative (positive) slope is supported by the empir-
ical evidence over the 1986-2015 sample period, using shocks obtained from both structural VAR
models. Using the oil price decomposition obtained from the first structural VAR model, instead
of just oil price change, leads to an increase of the annualized certainty equivalent return and
Sharpe ratio of a mean-variance optimal trading strategy for the World MSCT index from 3.88%
to 7.90% and from 0.30 to 0.56, respectively, with the differences being statistically significant.
When we use the shocks obtained from the second structural VAR model, the corresponding
increases are from 3.88% to 7.67% for the annualized certainty equivalent return and from 0.30
to 0.55 for the Sharpe ratio. These results survive in the presence of traditional macroeconomic
predictors for the case of the US MSCI index and, in general, do not appear to be consistent

with time-varying risk premia.

33



References

Andrews, D., 1991, “Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Esti-

mation,” Econometrica, 59, 817-858.

Andrews, D. W. K., and J. C. Monahan, 1992, “An Improved Heteroscedasticity and Autocor-

relation Consistent Covariance Matrix Estimator,” Econometrica, 60, 953-966.

Apergis, N., and S. M. Miller, 2009, “Do structural oil-market shocks affect stock prices?,” Energy
FEconomics, 31, 569-575.

Bai, J., and P. Perron, 2003, “Computation and analysis of multiple structural change models,”

Journal of Applied Econometrics, 18, 1-22.

Baumeister, C. J., and J. D. Hamilton, 2017, “Structural Interpretation of Vector Autoregressions
with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks,” NBER
Working Paper # 24167.

Bernanke, B., 2016, “The Relationship between Stocks and Oil Prices,” Article, The Brookings

Institution.

Caldara, D., M. Cavallo, and M. lacoviello, 2017, “Oil Price Elasticities and Oil Price Fluctua-

tions,” Working Paper, Federal Reserve Board.

Campbell, J., and S. Thompson, 2008, “Predicting Excess Stock Returns Out of Sample: Can

Anything Beat the Historical Average?,” Review of Financial Studies, 21, 1509-1531.

Casassus, J., and F. Higuera, 2012, “Short-horizon return predictability and oil prices,” Quanti-

tative Finance, 12, 1909-1934.

Chen, N., R. Roll, and S. Ross, 1986, “Economic Forces and the Stock Market,” Journal of
Business, 59, 383—403.

Chiang, I.-h. E.;, W. K. Hughen, and J. S. Sagi, 2015, “Estimating Oil Risk Factors Using

Information from Equity and Derivatives Markets,” Journal of Finance, 70, 769-804.

34



Christoffersen, P., and X. Pan, 2017, “Oil Volatility Risk and Expected Stock Returns,” Journal

of Banking and Finance, forthcoming.

Driesprong, G., B. Jacobsen, and B. Maat, 2008, “Striking oil: Another puzzle?,” Journal of
Financial Economics, 89, 307-327.

Fama, E. F., and K. R. French, 1989, “Business Conditions and Expected Returns on Stocks and

Bonds,” Journal of Financial Economics, 25, 23-49.
Hamilton, J. D., 2003, “What is an oil shock?,” Journal of Econometrics, 113, 363—-398.

Hamilton, J. D., 2013, “Historical Oil Shocks,” in Randall E. Parker, and Robert Whaples (ed.),

Handbook of Major Events in FEconomic History . pp. 239-265, Routledge.

Hodrick, R., 1992, “Dividend Yields and Expected Stock Returns: Alternative Procedures for

Inference and Measurement,” Review of Financial Studies, 5, 357-386.
Jones, C., and G. Kaul, 1996, “Oil and the Stock Markets,” Journal of Finance, 51, 463—491.

Kilian, L., 2009, “Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks
in the Crude Oil Market,” American Economic Review, 99, 1053—1069.

Kilian, L., and C. Park, 2009, “The impact of oil price shocks on the U.S. stock market,”

International Economic Review, 50, 1267-1287.

Martin, 1., 2017, “What is the Expected Return on the Market?,” Quarterly Journal of Eco-

nomacs, 132, 367-433.

Narayan, P. K., and R. Gupta, 2015, “Has oil price predicted stock returns for over a century?,”

Energy Economics, 48, 18-23.

Newey, W., and K. West, 1994, “Automatic Lag Selection in Covariance Matrix Estimation,”
Review of Economic Studies, 61, 631-653.

Newey, W. K., and K. D. West, 1987, “A Simple, Positive Semi-definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix,” Fconometrica, 55, 703-708.

35



Rapaport, A., 2014, “Supply and Demand Shocks in the Oil Market and their Predictive Power,”

Working Paper, University of Chicago.

Ravazzolo, F., and J. L. Vespignani, 2015, “A New Monthly Indicator of Global Real Economic

Activity,” Working Paper, BI Norwegian Business School and University of Tasmania.

Ready, R. C., 2018, “Oil Prices and the Stock Market,” Review of Finance, 2, 155-176.

36



A Appendices

A.1 Data construction

The single oil price change proxy g% is constructed in a real-time fashion using PCA. Specifically, for each
month ¢ between January 1983 and December 2015, we use data on three proxies for oil price change
starting in February 1982 and ending in month ¢. We first rescale the three log growth rates, obtained
from the West Texas Intermediate, the Dubai, and the Arab Light spot prices, so they all have variances
equal to one over the given sample period and then perform PCA. The first PCA corresponding to month

t is kept each time and the process is repeated using expanding windows until December 2015 is reached.

To address the strong seasonality of the global crude steel production data, we use X-
13ARIMA-SEAT'S to compute seasonally-adjusted level data from which we compute log growth
rates in a real-time fashionE] Specifically, for each month in the period between February 1982
and December 2015, we perform seasonal adjustment on the level data starting in January 1968
and ending in that month, compute the log growth rates of the seasonally adjusted level data,

and, finally, keep the log growth rate over the last month.

The single global demand growth proxy ¢®° is also constructed in a real-time fashion using
PCA. Specifically, for each month ¢ between January 1983 and December 2015, we use data on
two proxies for global economic activity starting in February 1982 and ending in month ¢. We
first rescale the two log growth rates, obtained from the shipping cost index and the global crude
steel production data, so they all have variances equal to one over the given sample period and
then perform PCA. The first PCA corresponding to month ¢ is kept each time and the process

is repeated using expanding windows until December 2015 is reached.

A.2 Evaluation of predictive ability

In this paper, we examine the ability of (i) oil price changes and (ii) the oil supply, global demand,

and oil-specific demand shocks embedded in these changes to forecast MSCI index excess returns.

17 We use the X-13 Toolbox for Matlab, written by Yvan Lengwiler, to perform seasonal filtering. The source
codes are retrieved from http://www.mathworks.com/matlabcentral/fileexchange/49120-x-13-toolbox-for-
seasonal-filtering/content/x13tbx/x13.m.
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Following the literature, we employ linear predictive regressions of the type:

/
rin = a+ Bx + upa, (20)
where 7§, is the MSCI index excess return, x; = [x1; -+ @, is a vector of predictors,
B = [B1 -+ Bn) is the vector of predictive slope coefficients, and w41 is a zero-mean random

disturbance. The predictor x; could be a scalar (n = 1), e.g., when we use a sole predictor such
as oil price change, or a multidimensional vector (n > 1), e.g., when we use multiple predictors
such as the three different shocks and/or additional controls. In some instances, we also consider
the i.i.d. model for r§,; in which case the vectors B and x; are null and equation reduces
to rg,; = a+ u1. We evaluate predictive ability in terms of both statistical and economic

significance.

The question we wish to address is whether x; can forecast the MSCI index excess return
r¢ . Hence, we are interested in testing the null hypotheses Hy : 8; = 0, for i = 1,...,n. We
evaluate the statistical significance of predictive ability of x; using standard metrics. Specifically,
we obtain two-sided p-values for the null hypotheses Hy : 8; = 0,7 =1,...,n based on standard
errors computed according to two well-established approaches: (i) the Newey and West| (1987))
method, where the optimal bandwidth is selected following the approach in Newey and West
(1994)), and (ii) the Hodrick| (1992) method that imposes the no-predictability condition. Finally,

we also report adjusted R-squares.

To gauge the economic significance of the predictive ability of x;, we consider a mean-variance
investor who can invest in an MSCI index and the corresponding short-term Treasury Bill. The
investor uses the regression model to forecast MSCI index excess returns. An optimal trading
strategy is then developed based on the resulting estimates of the conditional mean and variance
of excess returns. We evaluate economic significance in terms of two commonly used metrics: (i)
the certainty equivalent return (CER) and (ii) the Sharpe ratio (SR) of the associated optimal

portfolio returns.

Following (Campbell and Thompson| (2008]), we assume that the risk aversion coefficient of

the mean-variance investor is v = 3. At the end of each period t, the investor uses all available
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data to estimate the parameters of the linear predictive regression (20). Using these parameter
estimates, the investor then obtains estimates of the mean and the variance of the MSCI index
excess return rg, | at time ¢, denoted by fis41 and vy41, respectively. These estimates give rise to

the following optimal portfolio weight on the MSCI index:

_ l i1 (21)
Y Vpg1

Wt

The rest of the investor’s wealth is invested in the short-term Treasury Bill. We assume that the
portfolio weight on the MSCI index is constrained between a minimum and maximum feasible
weight, denoted by w and w, respectively. The minimum weight w is set equal to zero so that
short-selling is precluded. Following (Campbell and Thompson| (2008), we set the maximum
weight, @, equal to 150% so that the investor is allowed to borrow up to 50% and invest the
proceeds in the MSCI index. Optimal weights are determined according to equation and
then the realized portfolio returns are computed. Below, we describe the two metrics, CER and

SR, used in our evaluation of economic significance of predictability.

The CER of the resulting optimal portfolio from period 1 to period 7" based on the predictive

regression is given by

CER = fi, — %@p, (22)

where the mean fi,, and the variance v, of the realized optimal portfolio net returns are defined

by
//Zp = T Z(Tf_l_l =+ thf_i_l) and 7)\27 = f Z ((T;;_l + th‘te+1) - //Zp) ’ (23)
t=0 t=0

and r§,; and rf,; denote the excess return on the MSCI index and the corresponding Treasury

Bill rate at time ¢ + 1, respectively.

The SR of the resulting optimal portfolio from period 1 to period T based on the predictive

regression is given by
SR = lz (24)
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with the mean and the variance of the realized optimal portfolio excess returns defined by

T-1 T-1
ge_ 1 Z wWers and 7 = L (wirs,, — [i8)? (25)
Mp—T thi+1 P T tTi1 — Hp) -

t=0 t=0

We express the CERs obtained from equation in annualized percentages by multiplying
by 1,200 and annualize the monthly SRs from equation by multiplying by v12. CER
represents the equivalent risk-free rate of return that a mean-variance investor would require in
exchange of a risky portfolio return series, while SR measures the average portfolio excess return

per unit of risk as measured by the portfolio excess return standard deviation.

If the variables in a vector x; have nontrivial predictive ability, then using the predictive
regression model is expected to generate a higher CER (SR) than using the i.i.d. model
for the MSCI index excess returns r§,;. In this context, we refer to the i.i.d. model as the
baseline model (Model 1) and the predictive regression model using the vector of predictors x;
as the alternative model (Model 2). We are interested in providing a formal comparison of the
two models in terms of CER and SR. Denote by CER; and SR; the CER and SR of Model j, for
j = 1,2. Even if the point estimate of the CER and/or SR generated by the alternative model
is higher than its counterpart generated by the baseline model, i.e., CER; < EE\RQ, one might
be concerned whether this is due to genuine predictive ability of x; or simply due to sample
variability. Therefore, it is important to test the statistical significance of any differences in CER
and SR. To this end, we develop asymptotic tests for the null hypothesis H§*® : CER; = CERg
against the one-sided alternative HG® : CER; < CERy and similarly the null hypothesis HF :
SR; = SRy against the one-sided alternative H> : SRy < SRy. Our purpose is to evaluate the
incremental value of the alternative Model 2 compared to the baseline Model 1 and, hence, we
focus on one-sided alternative hypotheses. The same framework can be used to facilitate more
general comparisons. For instance, an important comparison in terms of predictive ability is
between the oil price change and the vector of oil supply, global demand, and oil-specific demand
shocks. For this comparison, Model 1 (baseline) corresponds to the predictive regression with
x; consisting of the oil price change, while Model 2 (alternative) corresponds to the predictive

regression with x; consisting of the three shocks.
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Next, we provide the details about the aforementioned asymptotic tests and the computation
of p-values. Let ry = (r14, T27t)l denote the pair of returns on the portfolios generated by Models
1 and 2 at time ¢. These returns would be either net or excess depending on whether we focus
on the CER or the SR. Note that, in the context of our mean-variance framework, the CER of
a portfolio is expressed as a function of the first two moments of net portfolio returns, while
the SR of a portfolio is expressed as a function of the first two moments of the portfolio excess
returns. Denote the mean, variance, and non-central second moment of r;; by u;, a?, and vj,
respectively for the portfolios j = 1,2. Note that 0']2- =vj— ,u?. It follows that, in the case of net
returns, the CERs for an investor with mean-variance preferences and a risk aversion coefficient

equal to 7 are given by CER; = u; — 3 (I/j — ,u?), j = 1,2. Similarly, in the case of excess

g

\/ vj lu‘]

be stated using a suitable function of the parameter vector @ = (u1, pio, v1,12)". We estimate

returns, the SRs are given by SR; =

=, j = 1,2. Therefore, the relevant hypotheses can

6 by the sample analogue 6 = ([, fi2, U1, 2)’, where i = %Zthl rjt and U; = % Zthl 7}2‘,w
for j = 1,2. Under regularity conditions, such as stationarity and ergodicity, 0 asymptotically

follows a normal distribution described by
VT(6 - 6) f Zt yi = N(0, ), (26)
where W is the long-run variance-covariance matrix of
2 2 !
ye = (rie — p1,To — B2, 71 — V1,75 — 12) - (27)

The matrix ¥ is given by ¥ =T+ > 7%, (T¢ + I'}), where Ty = E [yyy,_,|, for £=10,1,... and

is estimated by a heteroscedasticity and autocorrelation consistent (HAC) estimator of the form

T
- - AP
U=To+) <> (T¢ + 1), (28)
br
=1
where
= ~ o~ ~ ~ ~ ~ ~\/
'e=7— D IV Yi= (rie—Hurae —fzrl, - 03, - 0) (29)

t=0+1

k(+) is a kernel function, and by is the bandwidth. HAC estimators have been developed by several

41



authors including Newey and West| (1987), |Andrews| (1991)), Andrews and Monahan| (1992), and
Newey and West| (1994). We report p-values based on the Newey and West| (1987) approach
with the Bartlett kernel and the optimal bandwidth computed as suggested in |[Newey and West
(1994).

Consider testing the null hypothesis Hy : f(0) = 0 against the alternative hypothesis H4 :
f(8) < 0, where f () is a smooth real-valued function of 8. Applying the delta method, we
obtain

VT (1(8) - £(6)) ~ N (0,V'[(0) BV (8)) . (30)

-~

where V f(-) is the gradient of f. For large T', the standard error of f(8) is given by

el f(B)) =\ £ B)FV 1) G

and, therefore, the corresponding t-statistic is ¢(f, é\) = Se{](c?();))

p(f,0) = ©(t(f,0)), where @ (+) is the cumulative distribution function of the standard normal

, yielding the one-sided p-value

distribution.

To test for equality of CERs, we use net returns and the function f takes the form

Jeer 0) = (=3 (= 4)) = (w2 = 5 (2= 13)) (32)

with gradient equal to

/
Veen(8) = (1+ 701, 1 =2, 2, 3 ) (33)
To test for equality of SRs, we use excess returns and the function f takes the form
1 2
fon (8) = —== < (34)

V- Ve-i

with gradient equal to

2 12 1 1
vaR(e)_< 2;7_ 2;7_5 o3
(1 — w2 (v2—p3)2 (v1 —pg)2

Rz ) . (35)

(2 — M%)

N =
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Table 1: Oil price change summary statistics. This table presents summary statistics for three oil spot
price log growth rates, i.e., West Texas Intermediate (WTI), Dubai, and Arab Light, and their first principal
component g°. Results are presented for the 1983.01-2003.04 and the 1983.01-2015.12 sample periods. All
reported numbers are in percentages.

1983.01-2003.04 Sample Period

WTI Dubai Arab Light q°
Min —39.60 —37.76 —48.51 —49.85
Max 37.71 53.68 48.73 38.16
Mean —0.05 —0.10 —0.08 —0.26
Std. dev. 8.17 10.51 10.94 9.18
7 of obs. 244 244 244 244

Correlation Matrix

WTI Dubai Arab Light q°
WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.90 0.94
Arab Light 0.72 0.90 1.00 0.92
g° 0.90 0.94 0.92 1.00

1983.01-2015.12 Sample Period

WTI Dubai Arab Light g
Min —39.60 —49.71 —48.51 —49.85
Max 37.71 53.68 48.73 38.16
Mean 0.04 0.02 0.01 —0.09
Std. dev. 8.45 10.16 10.34 9.00
# of obs. 396 396 396 396

Correlation Matrix

WTI Dubai Arab Light g°
WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.91 0.95
Arab Light 0.72 0.91 1.00 0.93
g 0.90 0.95 0.93 1.00
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Table 14: Correlations between oil supply, global demand, and oil-specific demand shocks and
several US macroeconomic variables. This table presents correlations between the oil supply (%), global
demand (z$P), and oil-specific demand (z9%°) shocks, obtained from the IS and ES models in a real-time
fashion, and the log dividend yield (dy), the term spread (¢ms), the default yield spread (dfy), and the one-
month Treasury Bill rate (¢bl). Results are presented for the 1986.01-2015.12 sample period. The top and
bottom panels show results of the three shocks obtained by oil price change decomposition based on the IS

and ES models, respectively.

IS Model OPC Decomposition

dy tms dfy tbl
xS —0.04 0.01 —0.01 —0.02
2P —0.03 0.05 -0.17 0.04
208D —0.08 —0.00 —0.08 0.04
ES Model OPC Decomposition
dy tms dfy tbl
xS —0.08 0.03 -0.07 0.03
2P —0.03 0.04 -0.17 0.04
205D —0.06 —0.03 -0.07 0.03
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Table 16: Descriptive statistics for predicted excess returns on MSCI indexes: 1986.01-2015.12.
This table presents the annualized mean and standard deviation (STD), and the first three autocorrelations
(AC(k), k = 1,2,3) of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic
variables, i.e., the log dividend yield, the term spread, the default yield spread, and the one-month Treasury
Bill rate and (ii) the oil supply, global demand, and oil-specific demand shocks obtained from the oil price
decomposition. The top panel contains the results for the MSCI US index based on the macroeconomic variables.
The second and third panels contain the results for MSCI local currency- and US dollar-denominated indexes
based on the oil price change decomposition resulting from the IS and ES models, respectively.

Mean STD AC(1) AC(2) AC(3)

Macroeconomic Variables
US 7.76 2.56 0.97 0.93 0.90

IS Model OPC Decomposition

Local currency

Canada 4.79 2.32 0.56 0.14 —0.09
France 6.04 3.76 0.32 —-0.03 —0.11
Germany 5.74 4.25 0.36 —-0.01 -0.12
Ttaly 2.50 7.36 0.28 —0.03 —0.09
Japan 3.62 3.28 0.39 0.05 —0.09
UK 4.21 2.74 0.27 0.00 —0.09
US dollar

Canada 6.79 2.94 0.61 0.19 —0.07
France 7.96 3.22 0.38 —-0.03 —0.13
Germany 7.15 3.81 0.41 —-0.02 -0.13
Ttaly 5.24 6.90 0.30 —-0.04 -0.10
Japan 3.29 2.65 0.31 —-0.02 -0.07
UK 6.68 3.02 0.46 0.09 —-0.10
(O] 7.77 3.44 0.44 0.04 —0.12
World 6.35 3.24 0.43 0.06 —0.11

ES Model OPC Decomposition

Local currency

Canada 4.79 2.30 0.52 0.16 —0.01
France 6.01 3.97 0.34 0.12 —0.02
Germany 5.72 4.33 0.36 0.11 —0.03
Ttaly 2.49 7.19 0.29 0.03 —0.06
Japan 3.60 3.94 0.41 0.14 —0.01
UK 4.18 3.13 0.32 0.13 —0.01
US dollar

Canada 6.78 2.92 0.56 0.20 0.02
France 7.95 2.98 0.37 0.09 —0.04
Germany 7.13 3.50 0.39 0.09 —0.05
Ttaly 5.24 6.59 0.27 —0.01 —0.08
Japan 3.28 2.65 0.37 0.13 —0.01
UK 6.66 3.14 0.45 0.14 —0.02
UsS 7.76 3.40 0.43 0.10 —0.05
World 6.33 3.40 0.43 0.12 —0.03

58



Table 17: Descriptive statistics for predicted excess returns on MSCI indexes: 1996.01-2012.01.
This table presents the mean, the standard deviation (STD), and the first three autocorrelations (AC(k),
k = 1,2,3) of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic
variables, i.e., the log dividend yield, the term spread, the default yield spread, and the one-month Treasury
Bill rate and (ii) the oil supply, global demand, and oil-specific demand shocks obtained from the oil price
decomposition. For comparison purposes, the top panel reports the descriptive statistics for the US equity
premium estimates of Martin (2017), obtained from option prices, for one-month (M1), two-month (M2), three-
month (M3), six-month (M6), and one-year (M12) maturities. The second panel contains the results for the
MSCI US index based on the macroeconomic variables. The third (fourth) panel contains the results for MSCI
local currency-denominated (US dollar-denominated) indexes based on the oil price decomposition.

Mean STD AC(1) AC(2) AC(3)

Martin| (2017))’s US Equity Premium
M1 493 399 0.78 0.55 0.45

M2 4.97 3.65 0.82 0.61 0.51
M3 4.93 3.35 0.85 0.67 0.57
M6 4.87 2.85 0.88 0.73 0.64
M12 4.64 2.38 0.90 0.80 0.72
Macroeconomic Variables
US 4.89 3.42 0.94 0.87 0.81
IS Model OPC Decomposition
Local currency
Canada 6.98 4.25 0.65 0.19 —0.09
France 5.18 5.23 0.51 —-0.00 —0.17
Germany 5.75 6.78 0.47 —-0.06 —0.19
Ttaly 2.55 6.21 0.42 —-0.03 —0.16
Japan —2.19  3.66 0.65 0.22 —0.04
UK 2.52 3.21 0.38 —-0.01 —0.12
US dollar
Canada 10.19 5.72 0.67 0.23 —0.06
France 5.57 5.20 0.54 0.05 —0.15
Germany 6.09 6.62 0.49 —0.02 —0.18
Italy 4.19 6.21 0.46 0.01 —-0.14
Japan —2.60 3.04 0.54 0.04 —0.03
UK 4.34 4.76 0.62 0.17 —0.08
US 4.73 5.36 0.54 0.06 —-0.14
World 3.61 4.84 0.57 0.11 —0.11
ES Model OPC Decomposition
Local currency
Canada 6.96 4.38 0.65 0.23 —0.02
France 5.12 5.22 0.51 0.14 —0.04
Germany 5.65 6.27 0.46 0.08 —0.07
Italy 2.52 6.66 0.42 0.10 —0.05
Japan —2.17  3.73 0.64 0.21 —0.03
UK 2.53 4.40 0.37 0.13 —0.01
US dollar
Canada 10.15 5.72 0.69 0.28 0.00
France 5.52 5.08 0.55 0.14 —0.06
Germany 6.01 6.18 0.47 0.06 —0.08
Italy 4.17 6.41 0.46 0.10 —0.06
Japan —2.52 215 0.67 0.27 —0.01
UK 4.34 5.38 0.58 0.21 —0.01
US 4.68 5.49 0.55 0.15 —0.05
World 3.59 4.98 0.57 0.17 —0.04
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Figure 1: Scatter plots of US dollar-denominated MSCI World index excess return versus the
one-month lagged log growth rate of West Texas Intermediate (WTI) spot price. In this figure, we
present the scatter plots of the US dollar-denominated MSCI World index return versus the one-month lagged
log growth rate of WTI spot price over the 1982.01-2003.12 and 2004.01-2015.12 sample periods. The solid lines
represent the fitted least-squares regression lines. The correlation between the MSCI World index excess return
and the one-month lagged log growth rate of WTI spot price is -0.22, 0.25, and -0.04 over the 1982.01-2003.12,
2004.01-2015.12, and 1982.01-2015.12 sample periods, respectively.

Sample Period: 1982-2003
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0.2 | | | ¢ | | | | |
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02r

MSCI World Index Excess Return

02 | | 0| | | | |
-0.4 0.3 -0.2 0.1 0 0.1 0.2 0.3

One-Month Lagged Log Growth Rate of WTI Spot Price
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Figure 2: Time series of oil price change and global demand growth proxies. In the first figure, we
plot the log growth rates of three oil spot price proxies, i.e., WTI, Dubai, and Arab Light, along with their first
principal component, g, over the 1983.01-2015.12 sample period. The series are rescaled so that they have a
standard deviation equal to 0.09. In the second figure, we plot the log growth rates of the shipping cost index
and the seasonally-adjusted crude steel production, along with their first principal component, g®°, over the
1983.01-2015.12 sample period. The series are rescaled so that they have a standard deviation equal to 0.12.
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Figure 3: Oil supply and demand elasticities consistent with the estimates of the reduced-form
VAR model. In this figure, we plot the pairs of supply and demand elasticities (ns,7p) that are consistent
with the estimates of the reduced-form VAR model . The circle corresponds to the independent IV estimates
(ng,ny) = (0.077,—0.074) of |Caldara, Cavallo, and Iacoviello| (2017). The square corresponds to the pair of
optimal admissible elasticities (7s,7p) = (0.157, —0.136).
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Figure 4: Variance decomposition of oil price changes according to the ES model. In this figure, we
plot the percentages of the oil price variance attributed to the oil supply and oil-specific demand shocks based
on the estimates of the ES model.
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Figure 5: Time series of oil supply, global demand, and oil-specific demand shocks. In this figure,
we plot the time series of the oil supply, global demand, and oil-specific demand shocks obtained using the
decomposition in equation , based on the IS and ES models, over the 1986.01-2015.12 sample period. The
shocks are obtained in a real-time fashion as described in section
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Online Appendix for
“Qil and Equity Return Predictability:

The Importance of Dissecting Oil Price Changes”

In this Online Appendix, we provide additional results and robustness checks. In Table we report results
on the economic significance of the predictive ability of oil price change in terms of the CER and the SR of
the associated optimal trading strategies for a mean-variance investor with a risk aversion coefficient v = 3. In
Tables and we present predictive regression estimation results for MSCI indexes based on (i) the oil
price change and (ii) the oil supply, global demand, and oil-specific demand shocks obtained from the IS and the
ES models, respectively, using [Hodrick (1992) standard errors. In Table we report Bai and Perron (2003)
structural break test results for the regressions using (i) oil price change and (ii) the oil supply, global demand,
and oil-specific demand shocks to forecast the Fama-French 17 industry portfolio excess returns. In Tables
and [A6] we present predictive regression estimation results for the Fama-French 17 industry portfolios based
on (i) the oil price change and (ii) the oil supply, global demand, and oil-specific demand shocks obtained from
the IS and the ES models, respectively. In Tables and we report estimation results for an augmented
EGARCH(1,1) model that includes the oil supply, global demand, and oil-specific demand shocks in the volatility
equation as exogenous regressors for the IS and the ES models, respectively. In Figures and we present
the slope estimates for the predictive regression model over different samples using an expanding window

for local currency- and US dollar-denominated MSCI index returns, respectively.
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Figure Al: QOil price change as a predictor of local currency-denominated MSCI index excess
returns: slope estimates over expanding sample periods. In this figure, we plot the time series of
the slope estimates, along with the corresponding 95% confidence intervals based on Newey and West| (1987)
standard errors, from the predictive regression model over different samples using an expanding window
with the first sample being 1983.01-1993.01 and the last sample being 1983.01-2015.12.
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Figure A2: Oil price change as a predictor of US dollar-denominated MSCI index excess returns:
slope estimates over expanding sample periods. In this figure, we plot the time series of the slope
estimates, along with the corresponding 95% confidence intervals based on Newey and West, (1987) standard
errors, from the predictive regression model over different samples using an expanding window with the first
sample being 1983.01-1993.01 and the last sample being 1983.01-2015.12.
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