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1 Introduction

The 2007–2008 global financial crisis put the spotlight on counterparty risks in over-the-

counter (OTC) markets. To tame these risks, regulators around the world have mandated

clearing of many OTC contracts via Central Counterparties (CCPs).1 For instance, the

fraction of centrally cleared interest rate derivatives rose to 60% in 2018 from 15% in 2009

(FSB, 2018).2 CCPs can manage counterparty risks thanks to collateral requirements, by

monitoring clearing members’ financial soundness, and via loss mutualization. By standing

between every transacting parties (the members), a CCP reduces the impact of any member’s

default by shouldering the losses or reallocating them to other members.

Regulators view the design of this loss allocation process in CCPs, also known as the

default waterfall, as critical to financial stability (Yellen, 2013; FSB, 2020). Yet, practition-

ers disagree about some of its key features. Large institutional investors who are clearing

members often request more “meaningful” capital contribution from CCPs to cover losses

(ABN-AMRO, 2020). CCPs, meanwhile, resist these calls arguing their business is to pool

risks, not to insure them. In this view, members’ financial resources, typically pre-funded as

collateral, should absorb the bulk of the losses, and capital serves primarily to align CCPs’

incentives in risk management (LCH, 2015).

In this paper, we propose a framework to analyze the optimal design of CCPs where

central clearing is endogenized. In our model, investors match in pairs to trade. The bilat-

eral exposure to idiosyncratic counterparty risk generates benefits from sharing losses. We

1In the U.S., Section 723 of the Dodd-Frank Act mandates central clearing of interest rate swaps and
credit default swaps. In the EU, the EMIR regulation introduced similar requirements. See Spatt (2017) for
an in-depth discussion on the regulatory changes in swaps and derivative markets in the U.S.

2Another example is the Euro interbank repurchase agreements (repos) market where central clearing has
become the norm. Mancini, Ranaldo, and Wrampelmeyer (2015) show that from 2009 to 2013, the share of
CCP-based repos increased from 42% to 71%, whereas bilateral repos declined from 50% to 19%.
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represent the loss allocation mechanism in central clearing as a multilateral contract signed

by investors (or “members”) and the CCP. Sharing losses, however, increases the expected

liability of investors who can only credibly promise to pay up to a fraction of their future

income. Investors can mitigate this limited pledgeability problem via counterparty monitor-

ing and by pledging costly cash collateral. In this context, a CCP can add value by enabling

loss mutualization, providing insurance with its capital, or monitoring investors. When the

contract has the CCP perform at least one of these roles, we say it requires central clearing.

With these basic ingredients, we achieve four main results. First, central clearing dom-

inates bilateral trading when the cost of collateral is intermediate and market size is large.

Second, under similar conditions, it is efficient to delegate and centralize all monitoring tasks

to a third-party CCP. Third, such a CCP holds a junior equity tranche in the default water-

fall to align its incentives, and contributes capital as “skin-in-the-game” (SITG) at members’

request. Fourth, the equilibrium level of CCP capital, when chosen either by the CCP or by

the members, can be socially inefficient. Our results have implications for the design of the

default waterfall, the ownership structure of a CCP, and CCP regulations.

Our results arise due to two fundamental frictions. The first one is the aforementioned

limited pledgeability. As in Biais, Heider, and Hoerova (2016), it stems from a moral hazard

problem: Investors would shirk for private benefits and default if their expected liability

is too large. The shirking metaphor is meant to capture investors’ concerns in practice

that their counterparties could under-invest in proper risk management or take actions that

expose them to “wrong-way risk”.3 Investors can expand their capacity to share risks by

liquidating their asset for cash collateral, which is fully pledgeable but has lower returns.

Asset pledgeability can also be improved by counterparty monitoring, but monitoring

3In Basel III, wrong-way risk is defined as follows: a bank is exposed to “wrong-way risk” if future exposure
to a counterparty is highly correlated with the counterparty’s probability of default. BCBS (2019).
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requires a costly and unobservable effort. This is the second friction: Monitoring needs to be

incentivized. The monitoring effort corresponds to investors’ and CCPs’ due diligence pro-

cesses in practice to ascertain the financial soundness of their counterparties and members.4

To clearly show how these frictions affect the design of central clearing, we proceed in

three steps. We first analyze the frictionless benchmark in which investors’ asset is fully

pledgeable (and thus monitoring is redundant). We will then add the limited pledgeability

friction (with observable monitoring), and finally the friction of unobservable monitoring.

In the frictionless benchmark, investors achieve insurance against counterparty default

with collateral, CCP capital, or loss mutualization via the CCP. Loss mutualization is limited

by the resources of non-defaulting members. This implies that mutualizing losses can never

provide full hedging and is less efficient in small CCPs. In contrast, with enough CCP capital

or collateral, investors can fully hedge counterparty default risk. Hence, when the cost of

CCP capital or collateral is low, investors hedge with the cheaper of the two. Otherwise,

they rely on loss mutualization. The key insight is that without friction a CCP substitutes

for collateral when collateral is costly, by pledging capital or by enabling loss mutualization.

Collateral becomes instead a necessary input for central clearing when the limited pledge-

ability friction is introduced. Central clearing requires additional payments from investors,

either to compensate the CCP for providing capital, or to cover other members’ losses in

mutualization. Investors’ payment capacity is constrained due to limited pledgeability and

can be expanded by pledging collateral. This friction also implies that bilateral monitoring

is optimal when monitoring is observable. The CCP has the same technology as investors

but compensating its effort in centralized monitoring requires investors’ collateral.

4For example, ESMA (2020) shows that CCPs monitor members with internal credit rating criteria and
examine their books regularly. The rigor and incentive structure behind such processes are first-order issues
to regulators and CCPs (see e.g., Coeuré 2015 and LCH 2015).
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Our first main result is that central clearing strictly dominates bilateral trading only

when the cost of collateral is intermediate. In this case, investors mutualize losses or, if

capital is cheap enough, use CCP capital as insurance. The intuition is as follows. If the

cost of collateral is low enough, full hedging with collateral is desirable, leaving no losses for

CCP capital to absorb or to be mutualized. If instead the cost is high, using collateral to

support any insurance either from CCP capital or from loss mutualization is too expensive.

When the second friction of unobservable monitoring is added, loss mutualization gives

rise to the classic “insurance vs. incentive” conflict of Holmström (1979). When more

losses from counterparty default are shared, an investor benefits less from monitoring her

counterparty. Hence, to restore incentives for bilateral monitoring, loss mutualization must

be reduced. That is, investors retain more exposure to counterparty risk.

An alternative scheme to overcome the “insurance vs. incentive” tension is to delegate

and centralize all the monitoring efforts to the CCP. We interpret the CCP in this case as a

third-party, for-profit agent who performs the monitoring tasks for compensation stipulated

in the contract. Yet, centralized monitoring is costly for two reasons. First, we recall that

compensating the CCP requires collateral. Second, the CCP enjoys an agency rent, receiving

compensation over and above the effort cost, because monitoring efforts are unobservable.

Our second main result is that centralized monitoring dominates bilateral monitoring in

large markets. As in Diamond (1984), these economies of scale arise endogenously because

the agency rent for monitoring decreases with the number of members monitored. This

result points to a new force shaping the optimal CCP ownership structure. Under centralized

monitoring, the CCP is a third-party agent. Under bilateral monitoring, however, the CCP

merely channels transfers among members – an arrangement we interpret as a member-owned

CCP. Hence, a large (small) market favors third-party (member-owned) CCPs.
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The analysis of the optimal contract under centralized monitoring delivers our third main

result, which characterizes the compensation and capital contribution of a third-party CCP.

It is optimal to only pay the CCP when no member defaults because such high-powered

compensation minimizes the agency rent.5 The CCP thus holds a junior equity tranche

in the default waterfall, absorbing losses right after defaulters’ collateral. Furthermore,

members recoup the rent by requiring the CCP to contribute capital. The capital is akin to

skin-in-the game (SITG) in the sense that the CCP will lose it if any member defaults.

Our last main result follows from the comparison of market participants’ choice of CCP

capital in third-party CCPs with the socially optimal amount. Members and the CCP haggle

over the size of SITG capital because more capital reduces collateral requirements for the

former but eats away the profit of the latter. This observation can explain the tension

between members (ABN-AMRO, 2020) and CCPs (e.g. LCH 2015) about the desirable size

of SITG capital. We show that the choice made either by CCPs or members can be socially

inefficient as the planner does not care about this surplus distribution. Our analysis hence

provides a rationale for regulations of CCP capital and members’ collateral.

Our results rationalize several key features of the default waterfall of CCPs as observed

in practice. Defaulters pay first as the CCP seizes their collateral. Collateral in our model

represents both Initial Margins and pre-funded Default Fund Contributions. The remaining

losses are next absorbed by the CCP’s SITG capital and junior tranche (in third-party

CCPs) and then by surviving members. We emphasize that both STIG capital and junior

tranche mainly play the role of incentives while most losses are to be borne by members.

These results echo the observations by regulators and CCPs themselves that CCPs should

be primarily “risk poolers, not insurers” (Coeuré, 2015; LCH, 2015).

5The result that the optimal incentive contract pays only when no investor defaults and the associated
agency rent decreases in market size is standard in contracting (see Tirole 2010).
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Finally, our analysis also delivers empirical predictions for collateral demand in central

clearing. First, collateral requirements in central clearing can be higher (lower) than those

in bilateral trading when collateral is expensive (cheap). Second, an increase in bargaining

power of a CCP vis-à-vis its members would decrease CCP SITG capital and increase col-

lateral requirements. Hence, we predict that more competition among CCPs would reduce

collateral requirements for central clearing.

Literature Review

The premise of our analysis is the ability of CCPs to manage counterparty risks in OTC mar-

kets, as in Koeppl and Monnet (2010) and Biais, Heider, and Hoerova (2016).6 We analyze

the tension between the mutualization of losses and the incentives to identify creditworthy

counterparties, a version of the classic insurance vs. incentive trade-off (Stiglitz, 1974; Holm-

ström, 1979).7 In the context of central clearing, this trade-off is studied in related models

by Biais, Heider, and Hoerova (2012) and Antinolfi, Carapella, and Carli (forthcoming). Our

analysis of member-owned CCPs thus broadly shares some of their conclusions.8 Our key

innovation is the possibility to delegate monitoring efforts to a third-party CCP. This feature

allows us to endogenize the optimal ownership structure of CCPs, the default waterfall of

third-party CCPs (including SITG capital) and the CCP’s compensation. To the best of our

knowledge, endogenizing these various aspects of CCP designs from first principles is new.

Some recent works analyze different elements of the default waterfall of a CCP. Wang,

6Vuillemey (2020) provides an empirical analysis of counterparty risk hedging in a 19th century CCP.
7Koeppl (2013) and Palazzo (2016) analyze other incentive problems associated with central clearing.
8There are however noteworthy differences. While Biais, Heider, and Hoerova (2012) do not consider

collateral, we show it is an important determinant of central clearing benefits. From a methodological point
of view, both models assume a continuum of traders for tractability, while we can perform comparative statics
with respect to the number of clearing members and derive implications for clearing benefits. Empirically,
the number of members varies greatly across CCPs (see Domanski, Gambacorta, and Picillo 2015).
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Capponi, and Zhang (forthcoming) also stress the need to align members’ risk-management

incentives and show that pre-funded contributions to the default fund are superior to initial

margins if covering losses ex-post is costly. As we do not make this assumption, such pecking

order between types of collateral is absent in our analysis. Instead, we endogenize another

key element of the waterfall, CCP SITG capital, as part of a solution to the counterparty

monitoring problem. Huang (2019) argues that for a given loss allocation, for-profit CCPs

under-supply loss-absorbing capital to shift liabilities to surviving members. We show in-

stead that even when CCPs are optimally given a junior tranche to align their incentives with

members’, the equilibrium capital contribution can still be socially inefficient. In particular,

members can demand too much capital for rent extraction. We thus provide a different ratio-

nale for CCP capital and collateral regulations. In Huang and Zhu (2021) loss mutualization

is analyzed as an auction for the defaulting members’ positions run by the CCP. With our

optimal contracting approach, all transfers via and to the CCP are specified ex-ante.

The ownership structure is considered critical in the CCP design discussion (Board, 2010;

McPartland and Lewis, 2017). It has been argued that for-profit CCPs may allow too much

risk-taking (Huang, 2019) while member-owned utilities in general may deter entry (Hart

and Moore, 1996). We instead emphasize the costs and benefits of delegating monitoring

to the CCP and predict that third-party CCPs dominate member-owned CCPs in large or

opaque markets, thanks to endogenous economies of scale as in Diamond (1984).

Our paper focuses on CCPs’ role in mitigating counterparty risks, which is most relevant

to the default waterfall design. We thus abstract from other important benefits from central

clearing that have been discussed in the literature (see the comprehensive surveys by Pirrong

2011 and Menkveld and Vuillemey 2021). Duffie and Zhu (2011) analyze netting efficiency

for central and bilateral clearing. Zawadowski (2013) and Acharya and Bisin (2014) show
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that central clearing can reduce counterparty risk externalities by increasing transparency.9

Koeppl, Monnet, and Temzelides (2012) show that a CCP can lower trading costs by deferring

settlement and providing credit to clearing members.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

maps our general contracting approach to centrally cleared contracts in practice. In Section

4, we analyze the costs and benefits of central clearing by deriving the optimal contract

when monitoring is observable. Section 5 analyzes the full problem when monitoring needs

to be incentivized. We compare bilateral monitoring to centralized monitoring and provide

a welfare analysis of the optimal contract. We gather practical implications of our model for

CCP design in Section 6. Section 7 concludes. All proofs are in the Appendix.

2 A Model of Central Clearing

2.1 The framework

There are two dates t ∈ {0, 1}. At date 1, there are two equiprobable aggregate states of the

world S ∈ {A,B}. We denote S ′ = {A,B}\S. The economy is populated by investors and

a CCP agent, simply called the CCP. All agents consume one good –“cash”.

Investors Investors belong to two groups indexed by S ∈ {A,B}, and each group has

N homogeneous investors. An S-investor has the following utility function:

US(cS, cS′) =
1

2
E[cS′ ] +

1

2
E [cS + (ν − 1) min{cS, ĉ}] , (1)

where cS is the consumption in state S, ν > 1, and ĉ > 0. In words, S-investors strictly

9See also Leitner (2011) for related arguments about the benefits of having a central intermediary.
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prefer consuming in state S until their consumption reaches ĉ. These preferences imply that

investors from different groups gain from trading consumption across states. Per-unit gains

from trade are equal to the difference in marginal utility ν − 1. To fix ideas, we say these

preferences reflect hedging needs against an aggregate state, with ĉ the hedging demand.10

Each S-investor is endowed with one unit of a non-tradable asset which pays 2R per unit

with an exogenous probability q ∈ (0, 1) in state S ′ and fails to pay anything otherwise,

as shown in Figure 1. The success or failure of the asset is independent across S-investors,

conditional on the realization of state S ′. Since S-investors have assets that pay in the state

in which S ′-investors value consumption more, some gains from trade can be realized. Due

to assets’ idiosyncratic payoff risk, however, an investor who is supposed to pay will fail to

do so with probability 1− q.

S ′

S

1
2

1
2 0

q

1− q

2R

0

Figure 1. Payoff from an S-investor’s asset

Trading is limited by the fact that the asset’s cash flow is not fully pledgeable. An

investor with asset pledgeability β̃ ∈ {0, β} can credibly promise to pay no more than β̃ in

expectation out of the cash flows of the asset. If faced with a larger liability, the investor

shirks at date 0 which destroys the asset cash flow, like an asset failure.11 The limited

10An alternative interpretation of these preferences is that investors have different beliefs across groups.
Then, investors would trade to bet about the realization of the state of the world they think is more likely.
To identify robust principles for clearing, we do not specify a particular hedging/betting instrument. Our
model can accommodate one-sided hedging needs as in the Credit Default Swaps (CDS) market.

11Limited pledgeability is often motivated with moral hazard, as in Holmström and Tirole (1997). Suppose

10



pledgeability friction captures investors’ concerns for counterparties taking excessive risks or

shirking proper risk management effort when their liability becomes large (see footnote 3).

The limited pledgeability problem can be mitigated with monitoring. If monitored, an

investor’s asset pledgeability is β > 0. If unmonitored, her asset pledgeability is β with

probability 1− α only and 0 otherwise. Monitoring is performed by another investor or the

CCP. It costs ψ > 0 per investor and the monitoring effort is unobservable to third parties.

Monitoring can be seen as a way to ensure an investor’s position does not exceed her financial

capacity and is considered by CCPs as important defense against counterparty risks (see also

footnote 4). It is also relevant in OTC markets where a counterparty’s overall risk exposure

may be difficult to assess due to the lack of transparency.

CCP The CCP agent is risk-neutral and competitive. It has a large initial endowment

E of cash at date 0 and no asset. Its utility function is given by

UC = νCc0 + c1 (2)

with νC > 1. The parameter νC is the gross interest rate required by the CCP to substitute

date-1 consumption for date-0 consumption. We thus refer to νC−1 as the cost of CCP cap-

ital. The CCP can use (cash) capital to satisfy investors’ hedging needs. It can also monitor

investors but its monitoring effort is as costly as the investors’ and it is also unobservable.

Collateral At date 0, any fraction of an investor’s asset can be liquidated one to one for

cash. Asset payoff risk and limited pledgeability give a role for cash to be used as collateral as

cash is safe and fully pledgeable. First, by holding cash, an investor can use it to consume in

her favorite state, thereby reducing her hedging needs. Second, when trading with investors

the investor can shirk for a private benefit B̃ per unit of asset held. Then, an investor with private benefit

B̃ = q
(
R− β̃

2

)
can credibly promise to repay no more than β̃.
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from the other group, cash collateral can protect against counterparty default. Third, as

we will show, cash collateral expands investors’ aggregate risk-sharing capacity, due to the

limited pledgeability friction. Using collateral, however, is costly as we assume the expected

payoff of the asset qR is higher than 1. In what follows, we call k ≡ qR − 1 the cost of

collateral. This cost captures the foregone return on high-return assets compared to assets

widely accepted as collateral such as cash or government bonds.12

2.2 Contracting

In practice, investors sign a bilateral contract which is then novated to and cleared by a

CCP. A cleared contract implicitly specifies contingent transfers among investors and the

CCP. In the model, we directly consider a general multilateral contract between investors

and the CCP. We discuss the mapping to a cleared contract in practice in Section 3.1.

At date 0, each S-investor matches with an S ′-investor, called her counterparty. Al-

though matching is bilateral, contracting is multilateral. A contract specifies transfers, and

if necessary, a monitoring scheme: bilateral (counterparty) monitoring or centralized (CCP)

monitoring. To streamline the exposition, we only analyze the contract with monitoring in

the main text. The optimal contract without monitoring is derived in the proof of Proposi-

tion 4 when we characterize conditions for monitoring to be optimal.

With monitoring, all investors have the same asset pledgeability β and thus, a single

contract is offered to all investors.13 The contract specifies state-contingent transfers and

an aggregate state in general is defined by {S, d}, where d is the number of defaulting

12In practice, CCPs require members to post a fraction of collateral as cash (Armakolla and Bianchi 2017)
and their cash reinvestment policy is limited to safe low-return vehicles (e.g. Article 47 of regulation EMIR).

13As we show in Proposition A.1 in the Appendix, even in the case without monitoring, a single (pooling)
contract will be offered to investors with heterogeneous asset pledgeability. Separating contracts are not
feasible because the single-crossing property fails. In particular, all investors have the same cost of collateral.
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investors with d ∈ {0, 1, .., N}. As the environment is symmetric, we focus on symmetric

contracts. Moreover, S-investors should receive payments and S ′-investors should pay only

in states {S, d} when the former have high marginal utility of consumption. We thus drop

the reference to S and label investors by their ex post role: receiver or payer. We allow an

investor’s transfer to be contingent on the idiosyncratic outcome o ∈ {s, f} for the payer in

the pair, where s stands for success and f for failure (of the asset).14 The CCP’s transfer is

indexed by the state d only. The contract is thus defined as follows.

Definition 1. A contract C = {x, po(d), ro(d), e, π(d)} with o ∈ {s, f} and d ∈ {0, ..., N}

is a set of non-negative transfers. At date 0, investors post an amount of collateral x and

the CCP contributes capital Ne. At date 1, a payer pays po(d), a receiver gets ro(d) and

the CCP gets compensation Nπ(d). The contract also specifies a monitoring scheme by the

indicator function 1cm, which is equal to 1 when the CCP monitors all investors (centralized

monitoring) and 0 when each investor monitors her own counterparty (bilateral monitoring).

Transfers rs(N), ps(N) and rf (0), pf (0) are set to 0 as they are not well-defined. For

instance, there cannot be N defaulting payers if a payer succeeds.

We are now ready to formally define the investors’ problem.

14It can be argued that in practice, a cleared contract’s payments would not be contingent on some (id-
iosyncratic) outcome of the original counterparty because the counterparty is the CCP after novation. Such
restriction on the contract severely undermines investors’ incentives to monitor each other, thus strengthening
our result that the CCP emerges as a centralized monitor (see Proposition 7).
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Investors’ Problem.

max
{C,1cm}

U = qR +
ν − 1

2
E[min{ro(d), ĉ}]− xk − (1− 1cm)ψ − 1

2
(E[π(d)]− e) (3)

s. to ∀ d, ps(d) ≤ x+ (1− x)2R, (4)

∀ d, pf (d) ≤ x (5)

∀ d, (N − d)rs(d) + drf (d) +Nπ(d) = N(x+ e) + (N − d)ps(d) + dpf (d) (6)

E[π(d)] ≥ νCe+ 1cm2ψ (PCCCP )

Es[po(d)]− Ef [po(d)] ≤ (1− x)β (LP)

If 1cm = 1, 2ψ ≤ E[π(d)|m = 1]− E[π(d)|m = 0]; (MICcm)

If 1cm = 0,
ψ

q(1− α)
≤ 1

2

(
Es[ro(d)]− Ef [ro(d)]

)
+
ν − 1

2

(
Es[min{ro(d), ĉ}]− Ef [min{ro(d), ĉ}]

)
(MICbm)

where the expectation operator E[·] is taken over the state d and Eo′ [·] is the expectation

conditional on an outcome o′ ∈ {s, f} for the payer (a receiver’s counterparty).

Investors’ problem is to maximize their expected utility (3), subject to resource con-

straints (4)-(6), CCP’s participation constraint (PCCCP ), investors’ limited pledgeability

constraint (LP), monitoring incentive constraint under centralized monitoring (MICcm) or

bilateral monitoring (MICbm). We discuss each elements of the Investors’ Problem below.

The objective function, given by equation (3) represents an investor’s expected utility.

We present the steps to obtain (3) from (1) in the Appendix and provide the intuition here.

The first term is the investor’s utility under autarky when she uses no collateral, and the

remaining terms capture the net benefits of the contract: the expected gain from transferring

consumption to investors’ preferred state less the collateral cost, the cost of monitoring in a

14



bilateral scheme 1cm = 0 and the CCP compensation net of its capital contribution.

A feasible contract satisfies individual resource constraints (4) and (5) for payers and

aggregate resource constraint(s) (6). The latter say that in any state, the sum of receivers’

transfers and the CCP compensation must equal total resources available: those committed

at date 0 by receivers (collateral) and the CCP (capital), and payments by payers at date 1.

The CCP’s participation constraint is formalized by equation (PCCCP ). The CCP partic-

ipates in the contract if its expected payoff exceeds its cost per investor pair, which includes

the cost of the capital contribution and the monitoring cost when it monitors.

The first key constraint is investors’ Limited Pledgeability constraint (LP). The pledge-

ability problem implies that the additional expected liability upon success relative to that

upon failure cannot exceed an investor’s pledgeable income from the 1− x units of asset.15

The second key constraints are the Monitoring Incentive Constraints (MICcm) or (MICbm),

imposed because monitoring efforts are unobservable. Under the centralized monitoring

scheme, the CCP monitors all investors. Equation (MICcm) ensures that the CCP prefers

monitoring everyone to no one. We verify later this is the relevant deviation even if the

CCP could also deviate by monitoring a subset of the 2N investors. Under the bilateral

monitoring scheme, the constraint is given instead by (MICbm). It says that the utility loss

for an investor from the default of her counterparty must be greater than the monitoring cost

ψ weighted by its efficacy in reducing the probability of counterparty default [q(1− α)]−1.

2.3 Assumptions

In this section, we describe our main assumptions and explain how they affect the analysis.

15If a payer’s expected liability increases with the number of defaulting payers d, a coordination problem
arises as an investor’s decision to shirk depends on her expectations about other investors’ behavior. We
abstract from this coordination problem here to focus on the welfare-maximizing outcome, that is, we only
impose that equation (LP) holds under the expectation that other investors behave.
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Assumption 1 (Collateral needs). 2 > ĉ > β.

Assumption 1 ensures that cash collateral is both necessary and sufficient to satisfy

investors’ hedging needs. Without any collateral (x = 0), by constraint (LP), each payer can

at most pay β which is less than each receiver’s hedging need ĉ. If instead each investor posts

ĉ
2
< 1 units of cash collateral, a receiver’s hedging needs can always be met with collateral

from herself and her counterparty.

Assumption 2 (Monitoring cost). ψ ≤ ψ̄ ≡ min
{

(1−q)(ν−1)
ν(2−βαq)(1−αq) ,

1
2

}
βq(1− α)

(
1− ĉ

2

)
.

The first part of Assumption 2 ensures that there are parameters such that monitoring

is optimal and the CCP plays a role. The expression for this upper bound will be derived in

Proposition 7. The second part of Assumption 2 plays a technical role.

Assumption 3 (Resources). N ≤ 2R
ĉ

.

Assumption 3 ensures that the hedging demand Nĉ of all receivers can be satisfied even

if only one payer’s asset succeeds, as the asset pays out 2R in this case. This implies the

resource constraint (4) is slack for all d ≤ N − 1. Assumption 3 simplifies our analysis in

that the only aggregate risk receivers must bear is that of all payers’ joint default.16

3 Cleared contract and frictionless benchmark

We first provide a result to restrict the set of relevant contracts for our analysis. The following

proposition allows us to map our general contract to a centrally cleared contract in practice.

16We derive the optimal contract when Assumption 3 fails in Internet Appendix B. In this case, risk
sharing is further limited because receivers’ hedging needs cannot be satisfied when too few payers survive.
We show, however, that the key trade-off identified in the main text continues to hold .
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3.1 Sufficient contracts as cleared contracts in practice

Proposition 1. Contracts with the following properties are optimal

1. A receiver with a successful payer gets rs(d) = rs. Otherwise, rf (d) = rf ≤ rs if at

least one (other) payer survives (d < N) and rf (N) = 2x+ e ≤ rf if all payers default.

2. A defaulting payer’s collateral is seized: pf (d) = x. A successful payer’s transfer is

ps(d) = rs − x− e︸ ︷︷ ︸
Bilateral transfer

+
d

N − d
(rf − 2x− e)︸ ︷︷ ︸

Loss Mutualization transfer

+
N

N − d
π(d)︸ ︷︷ ︸

CCP compensation

(7)

Proposition 1 says that given a collateral amount x and a CCP contract {e, π(d)}, in-

vestors’ transfers can be parametrized with two scalars rf and rs only. The intuition for

this result is as follows. As shown by expression (3), receivers are risk-averse and thus wish

to minimize the variability of their transfers. Yet, transfers may be state-contingent for

two reasons. First, receivers are exposed to the aggregate risk of a joint payer default. In

this state of the world, by budget constraint (6), their transfer rf (N) cannot exceed pre-

committed resources 2x + e as no payer survives. Second, investors may optimally retain

some counterparty risk exposure (rs > rf ) to satisfy the bilateral monitoring constraint

(MICbm). For payers now, it is optimal to set pf (d) = x because a larger payment in default

relaxes investors’ pledgeability constraint (LP). This makes larger payments sustainable in

case of success. This payment ps(d) is pinned down residually by budget constraint (6).

Proposition 1 offers an interpretation of the general multilateral contract as a cleared

OTC contract. A receiver with a successful payer gets rs which can be viewed as the face

value of the contract. When the payer defaults, the resources available directly to the pair

are 2x units of collateral and the capital e pledged by the CCP per investor pair. These
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resources pin down the receiver’s consumption rf (N) when all payer defaults. When some

(other) payers survive, they can transfer resources to the receiver whose consumption rf

lies above rf (N). We call loss mutualization the feature that an investor’s loss when her

counterparty defaults is reduced by transfers across investor pairs. This loss mutualization

transfer is captured by the second term of a successful payer’s transfer in (7). It corresponds

to investors’ contributions to a default fund in practice. The first and the third terms of (7)

are respectively the purely bilateral transfer and the share of the CCP compensation.

3.2 Frictionless benchmark

To see how frictions affect outcomes, it is useful to characterize the frictionless benchmark.

We derive below the solution to the Investors’ Problem when the asset is fully pledgeable

(β̃ = 2R). We are interested in the role of the collateral cost k and capital cost νC − 1. Note

that monitoring is redundant when the asset is fully pledgeable. In particular,

Proposition 2 (No Friction). The solution to the Investors’ Problem with β̃ = 2R is

1. if min{k, νC − 1} ≤ (ν − 1)(1− q)N , a full-hedging contract with rs = rf = ĉ and

(a) (x, e) =
(
ĉ
2
, 0
)

if k ≤ νC − 1,

(b) (x, e) = (0, ĉ) if k > νC − 1,

2. otherwise, a complete loss mutualization contract with rs = rf = ĉ and x = e = 0.

Any CCP compensation schedule {π(.)} such that (PCCCP ) binds is optimal.

The intuition for the result is as follows. Absent frictions and under Assumption 3,

one successful payer can credibly cover the hedging needs of all receivers. It is thus always

optimal to set rf = rs = ĉ to realize all gains from trade when one or more payers survive.
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To further hedge the joint-default state, safe resources, either collateral or CCP capital,

need to be pre-committed. Full hedging with the cheaper of the two safe resources is optimal

when one resource is cheaper than the benefits of hedging the joint-default state, measured by

(ν− 1)(1− q)N . When this condition is not met (Case 2), neither CCP capital nor collateral

is used and counterparty risk is only dealt with mutualization. We say loss mutualization is

complete because a receiver’s transfer is not affected by the default of her counterparty as

long as at least one other payer survives.

Proposition 2 shows that the contract assigns two roles to the CCP in the frictionless

benchmark. When investors desire full hedging and capital is cheaper than collateral, the

CCP uses its capital to hedge investors’ joint default risk. Alternatively, the CCP provides

hedging by enabling loss mutualization among investors when both capital and collateral are

too costly. In both cases, the CCP substitutes for collateral. In the next section, we show

how limited pledgeability changes the relationship between clearing and collateral.

4 Clearing with observable monitoring

Limited pledgeability and the unobservability of monitoring are the two key frictions in our

model. To isolate the effect of the former, in this section we assume away the monitoring

friction and solve the Investor’s Problem without constraints (MICbm) or (MICcm).

The limited pledgeability friction gives collateral a new function beyond hedging against

the joint-default state. Collateral now helps satisfy receivers’ hedging needs when payers

survive. To see this, let us consider an investor pair. If each investor pledges x units of

collateral ex ante, a non-defaulting payer can credibly pay x+ (1−x)β in expectation, using

Proposition 1 to substitute pf (d) = x in (LP). Also, the receiver can use her own collateral
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x for consumption. Together, a non-defaulting payer’s payment capacity in excess of her

receiver’s needs is

EPC(x) = x+ (1− x)β − (ĉ− x) (8)

which increases in x because β < 2 (Assumption 1).

The limited pledgeability friction makes collateral a necessary input for central clearing.

This new feature arises because collateral increases the excess payment capacity EPC at

the investor-pair level, as shown above. Without collateral, EPC(0) < 0 because β < ĉ

(Assumption 1). In words, without collateral an investor’s payment capacity already falls

short of her counterparty’s hedging needs. Therefore, collateral is needed to support any

additional payment for loss mutualization or to compensate the CCP for providing capital.

We begin the analysis by showing that the limited pledgeability problem also affects the

choice of monitoring scheme.

Lemma 1. If monitoring is observable, the optimal monitoring scheme is bilateral.

Lemma 1 states that monitoring by investors dominates monitoring by the CCP. The rea-

son is that when investors’ pledgeable income is limited, CCP monitoring entails a collateral

cost. Intuitively, to compensate the CCP for the monitoring costs, each payer is expected

to pay an additional 2ψ at t = 1. These additional payments require costly collateral to be

pledged when constraint (LP) binds. Since the CCP has no intrinsic technological advantage

as a monitor, bilateral monitoring is superior. As we will show in Section 5, this conclusion

can be overturned when monitoring is not observable.

In Section 4.1 we solve for the optimal contract under observable monitoring, called the

OM-contract. We provide conditions such that monitoring is optimal in Section 4.2.
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4.1 Optimal contract under observable monitoring (OM-contract)

Proposition 3 (Optimal clearing with observable monitoring). There exists two thresholds

of collateral cost k̄ = 1
2
(ν − 1)(2− qβ) and kN a continuous function of νC − 1 such that the

contract solving the Investors’ Problem without (MICbm) and (MICcm) is as follows:

1. For k ≤ kN , it features full hedging with rOMs = rOMf = ĉ, and

(a) (eOM , xOM) =
(
0, ĉ

2

)
if k < νC − 1, with, in this case, kN = (ν − 1)(1− q)N ,

(b) (eOM , xOM) =
(
qβ(2−ĉ)
2νC−qβ

, ĉ−e
OM

2

)
if k ≥ νC − 1.

In this case, kN is strictly decreasing with νC − 1 and limνC→1 kN = k̄.

2. For k ∈ [kN , k̄], there is complete loss mutualization: rOMs = rOMf = ĉ, eOM = 0 and

xOM ≡
[
1− (1− q)N

]
ĉ− βq

2 [1− (1− q)N ]− βq
∈
(

0,
ĉ

2

)
, (9)

3. For k ≥ k̄, the contract is uncollateralized with rOMs = β, rOMf = xOM = eOM = 0.

Proposition 3 shows how the limited pledgeability friction changes the economics of a

CCP. In the frictionless benchmark (Proposition 2), the CCP’s function is to substitute for

collateral when collateral is costly enough, either with capital or loss mutualization. Here in

contrast, when investors’ asset is not fully pledgeable, the CCP can only play a role with the

help of collateral. Investors must now pledge collateral to tap into the CCP capital (Case

1b) or to mutualize losses (Case 2). The intuition is that investors must be able to pay to

the default fund with loss mutualization or to compensate the CCP for pledging capital with

full hedging. Their excess payment capacity can only be expanded by pledging collateral.

When collateral is needed for central clearing, Proposition 3 shows that loss mutualization

is no longer optimal if the collateral cost is too high. Above a threshold k̄, no collateral is
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used, receivers do not fully satisfy their hedging needs (rs < ĉ), and they are fully exposed

to counterparty risk (rf = 0). This threshold k̄ captures the total hedging value of collateral

starting from the contract in Case 3. A unit of collateral provides 1 unit of self-hedging,

1 − q expected units of counterparty risk-insurance and q(1 − β) extra units from relaxing

the pledgeability constraint (LP), thus increasing the expected incentive-compatible transfer

to receivers by 2− qβ. When k > k̄, hedging and thus loss mutualization are too costly.17

Proposition 3 sheds light on the benefits of having a CCP. We say that a CCP is essential

if the OM -contract cannot be implemented via a bilateral contract, defined as follows.

Definition 2. A contract is bilateral if it satisfies ro(d) = po(d) + x for all d ∈ {0, 1, .., N}.

Intuitively, with a bilateral contract, an investor pair does not receive transfers from or

make payments to other investors or the CCP.18 Notably, the contracts in Case 1a and Case

3 can be implemented bilaterally. In both cases, CCP capital is too expensive to be used for

insurance. In addition, loss mutualization is not used for different reasons. When collateral is

cheap (Case 1a), the payer’s transfer is fully backed by collateral (pOMo = x) and the receiver

is fully hedged (rOMo = 2x = ĉ), which leaves no counterparty risk to mutualize. When

collateral is expensive (Case 3), loss mutualization, which requires collateral, is too costly.

Receivers then optimally remain fully exposed to counterparty risk (rOMf = rOMf (N) = 0).

These observations imply that clearing benefits are hump-shaped in the cost of collateral.

Corollary 1 (Essentiality of CCP). A CCP is essential, that is, the OM-contract cannot be

implemented bilaterally, for k ∈ [kess, k̄] with kess = min{kN , νC − 1}. The threshold kess is

weakly increasing in N .

17A similar logic explains why the full-hedging region with CCP capital (Case 1b) shrinks relative to is
counterpart in Proposition 2. Full hedging with CCP capital now requires collateral, so the collateral cost
becomes a limiting factor: the condition k ≤ kN is thus needed in addition to νC − 1 ≤ (ν − 1)(1− q)N .

18By the resource constraint (6) and (PCCCP ), a bilateral contract implies that the CCP posts no capital
(e = 0) and gets no compensation (π(d) = 0 for all d).
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Corollary 1 implies that in the intermediate region of collateral cost, clearing with a CCP

strictly dominates bilateral trading as the contract cannot be implemented bilaterally. In

addition, this region expands when the market size becomes larger.19 This is because when

there are more investors to share idiosyncratic default risks, the joint-default state becomes

less likely and thus full hedging is less desirable relative to loss mutualization.20

As central clearing also changes collateral requirements, we compare the demand of col-

lateral in the multilateral contract of Proposition 3 to that in the optimal bilateral contract,

which satisfies Definition 2.

Corollary 2 (Bilateral Contract vs. CCP). When a CCP is essential for some N ≥ 2, the

bilateral contract requires strictly more (less) collateral when k is low (k is high).

Corollary 2 shows that mandating central clearing of OTC contracts has an ambiguous

effect on the demand for collateral. The intuition for the high-k part of Corollary 2 is that

a complete loss mutualization contract requires more collateral the more investors can share

counterparty risk. When k is close to the upper bound k̄, complete loss mutualization is

optimal for any N by Proposition 3. The collateral amount increases with N , as shown by

(9), to sustain larger loss mutualization transfers. In a bilateral contract, less collateral is

needed because it only protects an investor against the default of her counterparty.

When the collateral cost is close to the lower bound kess of the essential CCP region,

however, a bilateral contract requires more collateral. This result arises for two different

19For this result, it is assumed that investors are monitored. The proof of Corollary 1 also characterizes the
lower bound of the essential CCP region when we account for the optimal monitoring decision (see Section
4.2). This lower bound is higher than kess, but the comparative statics with respect to N remains valid.

20This result does not account for the netting gains – a potentially important benefit of central clearing.
When investors have off-setting positions with others for a given contract, multilateral netting via clearing
reduces collateral needs. As Duffie and Zhu (2011) argue, however, netting benefits for a given contract
in clearing have to be compared with bilateral netting benefits across different contracts. This trade-off is
absent in our model as there is a single contract and each investor has one position.
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reasons. First, suppose investors require full hedging both with a bilateral and a multilateral

contract. Trading via a CCP lowers the need for collateral if CCP capital is cheaper as a

hedging tool. The second reason is a consequence of Corollary 1. As N increases, the lower

bound kess of the essential CCP region decreases due to larger gains from loss mutualization.

Hence, when k is low, investors require full hedging if they can only trade bilaterally while

with a CCP, they (only) mutualize losses, which requires less collateral. Intuitively, investors

use more collateral when it is the only tool against counterparty risk, as in a bilateral contract.

To summarize, central clearing can reduce the need for collateral to protect against

counterparty risk because CCPs provide alternative tools for insurance: their own capital

or loss mutualization. The very mutualization of losses, however, requires collateral because

CCPs need to make sure investors will deliver when asked to cover other members’ losses. By

stressing these two roles of collateral, our result reconciles views that CCPs provide collateral

efficiency gains (see Menkveld and Vuillemey 2021) with claims that central clearing increases

the need for collateral (see e.g. Domanski, Gambacorta, and Picillo 2015).

4.2 Optimal Monitoring

So far, we assumed investors should be monitored. To conclude this section, we provide

conditions for monitoring to be optimal. It is clear that monitoring can be suboptimal.

Consider for instance the case in which investors fully hedge with collateral (Case 1a of

Proposition 3). Monitoring is wasteful because any investor, monitored or not, can post

collateral. More generally, monitoring plays the same role as collateral in enhancing the

investors’ total pledgeable income. In other words, monitoring is a substitute of collateral

and it is optimal when the collateral cost is high enough (relative to the cost of monitoring).
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Proposition 4. Monitoring is optimal (when observable) if and only if k ≥ k̂m with k̂m an

increasing function of ψ. The threshold satisfies k̂m ∈ [kess, k̄].

The lower bound of k̂m confirms the intuition that monitoring is suboptimal when the

contract is fully hedged with collateral, that is, when k < kess. The upper bound on the

monitoring cost in Assumption 2 ensures that limψ→ψ̄ k̂
m < k̄, that is, there always exists

a region of collateral costs in which monitoring is optimal and the CCP is essential. In the

next section, we will restrict our analysis to this parameter region k ∈ [k̂m, k̄] to show how

the incentive problem in monitoring affects the contract design and the role of the CCP.

We illustrate results from this section in Figure 2. The figure shows the parameter regions

which map into the different contracts of Proposition 3. The threshold kN is the frontier

between the yellow region on the one hand and the blue and red regions on the other hand.

The dashed line represents the monitoring threshold k̂m of Proposition 4. For a higher value

of N , the full-hedging regions in Figure 2 would shrink together with (ν − 1)(1− q)N .

5 Clearing with Monitoring Incentives

In this section, we add back the friction of unobservable monitoring and analyze the Investors’

Problem in full. The main new insight is that clearing conflicts with investors’ incentives to

monitor their counterparty and, consequently, the CCP can emerge as the efficient monitor.

The analysis also sheds lights on the role of CCP capital as skin-in-the-game and provides

new implications about the design of the CCP loss allocation process.

Monitoring incentives matter for the investors’ problem only if the OM-contract of Propo-

sition 3 is not incentive-compatible with bilateral monitoring. The following lemma describes

the parameter region for such a case.
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Figure 2. Optimal OM-contract with N = 2. The x-axis is the cost of CCP capital k and the
y-axis is the cost of collateral νC − 1. Parameter values: ĉ = 0.8, ν = 2, β = 0.6, α = 0.4,
ψ = 3.7× 10−3. FH=Full Hedging. CLM=Complete Loss Mutualization.

Lemma 2. The OM-contract violates (MICbm) for k ≤ kN , and for k ∈ (kN , k̄) when

N > N∗, where N∗ is the largest value of N such that

ψ

q(1− α)
≤ ν(1− q)N−1

(
ĉ

2
− xOM

)
, with xOM given by (9) (10)

The intuition for Lemma 2 is as follows. When k > k̄, the OM-contract is bilateral and

uncollateralized. Investors are exposed to sufficient counterparty risk to induce monitoring,

provided that monitoring is not too costly (which is guaranteed by Assumption 2). The

case k ≤ kN is the opposite: The OM-contract features full hedging. As investors receive

the same transfer irrespective of the payer’s outcome, monitoring is privately suboptimal.

Finally, the case k ∈ (kN , k̄) with loss mutualization is intermediate as investors retain some

exposure to counterparty risk. This exposure and thus investors’ incentives to monitor are
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captured by the right-hand-side of (10), which decreases with N for two reasons. First, the

loss given counterparty default is more likely to be mutualized because the state when all

payers default becomes less likely. Second, as loss mutualization improves when N increases,

the amount of collateral xOM also increases. This reduces the “loss given joint default”

ĉ− 2xOM , which again lowers an investor’s expected loss from a counterparty default.

In order to clearly study the consequences of monitoring incentives, we impose some

parametric restrictions in Assumption 4. The assumption first ensures that bilateral moni-

toring in the OM-contract is not incentive compatible, but that monitoring can be optimal

(k > k̂m). Furthermore, we impose the condition k > kN and relegate the analysis of the

full-hedging case to Internet Appendix C. Our motivation for this additional assumption is

twofold. First, the full-hedging region k < kN shrinks exponentially as N increases, as shown

by Proposition 3. Second, the new rationale for CCP capital and insights about the design

of CCP capital structure arise primarily in the case with loss mutualization (k > k̄N).21

Assumption 4. k ∈ [max{k̂m, kN}, k̄] and N > N∗. That is, monitoring is optimal when

observable, the OM-contract features complete loss mutualization, and it violates (MICbm).22

The rest of Section 5 proceeds as follows. We derive the optimal contract under bilateral

monitoring in Section 5.1 and under centralized monitoring in Section 5.2. We compare the

two schemes to show when the CCP emerges as the efficient monitor in Section 5.3. Section

5.4 provides a welfare analysis of the result.

21Internet Appendix C shows our key findings are robust. The high-powered compensation contract for the
CCP characterized in Proposition 6 remains (weakly) optimal. Second, the result that the CCP can emerge
as the efficient monitor (Proposition 7) is strengthened as it always holds with the full-hedging contract.

22Assumption 4 only implies that monitoring is optimal when it is observable. When monitoring is un-
observable, it becomes more expensive because the monitor(s) must be incentivized. When we characterize
the optimal monitoring scheme in Section 5.3, we derive the new (higher) monitoring threshold.
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5.1 Bilateral Monitoring

We first consider the bilateral monitoring scheme. The main tension under this scheme is

that counterparty risk insurance via loss mutualization reduces an investor’s incentive to

monitor her counterparty. This is the classic risk exposure and incentive trade-off extended

to a multilateral contracting context. To incentivize monitoring, an investor must suffer large

enough losses when her counterparty defaults. This can be achieved by distorting the OM-

contract via either increasing the payoff an investor receives when her counterparty succeeds

or decreasing the payoff conditional on counterparty default. We characterize the optimal

distortion in the proposition below, in which we use the superscript ∗ for the equilibrium

variables of the optimal contract with unobservable monitoring.

Proposition 5 (Optimal contract under bilateral monitoring). Let k̄bm = 1−q
1−q+νq k̄. Under

Assumption 4, the optimal contract with incentive-compatible bilateral monitoring is

1. if k ≤ k̄bm, a contract with a higher payoff upon counterparty success, that is, r∗s > r∗f = ĉ,

no CCP capital, e∗ = 0 and more collateral than in the OM-contract, x∗ > xOM ,

2. if k ∈ [k̄bm, k̄], a contract with lower payoff upon counterparty default, that is, r∗s = ĉ > r∗f ,

no CCP capital, e∗ = 0 and less collateral than in the OM-contract, x∗ < xOM .

Proposition 5 shows how to efficiently preserve enough counterparty risk exposure to

restore incentives for bilateral monitoring. Increasing the transfer received by an investor

conditional on counterparty success (r∗s > ĉ) is more efficient than decreasing the transfer

conditional on counterparty default (r∗f < ĉ) when the collateral cost is low enough (k < k̄bm).

This is intuitive because a larger transfer to receivers requires more collateral to increase

investors’ excess payment capacity.
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The main take-away from the analysis of bilateral monitoring is that counterparty risk

cannot be mutualized completely because counterparty risk insurance conflicts with moni-

toring incentives. This result motivates our analysis of CCP monitoring in the next section

5.2 Centralized Monitoring by the CCP

In this section, we analyze clearing with centralized monitoring. As all monitoring tasks are

delegated to the CCP, the incentive problem associated with monitoring no longer interferes

with investors’ risk-sharing needs. Compensating the CCP for its monitoring service is,

however, costly as it increases investors’ liability and hence requires additional collateral

(Lemma 1). The CCP contract is then designed with the aim to minimize the cost borne by

investors while ensuring the CCP has incentives to exert effort. We derive below the optimal

amount of capital e and the optimal compensation schedule π(d) for the CCP.

Proposition 6 (Centralized monitoring contract). Under Assumption 4, the optimal con-

tract with centralized monitoring features complete loss mutualization with r∗s = r∗f = ĉ and

x∗ > xOM . The CCP breaks even; its compensation and capital contribution are given by

π∗(0) =
2ψ

qN(1− αN)
, π∗(d) = 0 for d > 0, and (11)

e∗ = e ≡ 1

νC

2ψαN

(1− αN)
. (12)

Proposition 6 shows first that investors must post additional collateral x∗− xOM to sup-

port the compensation to the CCP. However, investors can still completely mutualize losses

as in the OM contract (r∗o = rOMo ). This is made possible by the separation of monitoring

and risk-sharing incentives when the CCP monitors. This result contrasts with Proposition 5

in which we showed loss mutualization is distorted to satisfy bilateral monitoring incentives.
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Proposition 6 delivers two new insights regarding the CCP compensation and capital con-

tribution when it plays a monitoring role. Regarding compensation, the CCP should only

get paid when no investor defaults. The intuition is as follows. Due to unobservable mon-

itoring and limited liability, the CCP always receives a compensation above its monitoring

costs. This agency rent, E[π(d)] − 2ψ, is minimized when all compensation is concentrated

in the state where no payer defaults (π∗(d) > 0 only if d = 0). This is optimal because the

no-default state is most indicative of the fact that CCP has monitored all investors. The op-

timal compensation is then the minimum value of π(0) required to bind (MICcm). The CCP

thus loses all of its promised compensation when one or more payer default. Effectively, it

holds a junior tranche and absorbs losses right after the defaulters’ pre-committed resources

(i.e., collateral) have been exhausted.23

The second insight is that there exists a new rationale for CCP capital, beyond its role as

counterparty risk insurance. In the OM-contract, for the same parameter values, the CCP

does not pledge capital. Here, it is required to do so by the investors, who have the bargaining

power, to capture the agency rent the CCP earns from monitoring. Indeed, (PCCCP ) binds

at e∗ = e. We also note that its contributed capital is akin to skin-in-the-game in the sense

that the CCP will lose it when one or more members default. In the proof of Proposition 6,

we show that by requiring CCP capital, investors economize on collateral. This result thus

implies that when a CCP’s outside option or bargaining power improves, it contributes less

capital and demand more collateral from investors. As discussed in Section 6.3, this tension

reflects the disagreement between CCP members who call for larger capital contributions

23In practice, for-profit CCPs also collect non-state-contingent fees from members. In our model, if
instead the CCP has bargaining power, it would charge such fees to extract members’ benefits from central
clearing (formal results are available upon request). In contrast, the high-powered compensation described
in Proposition 6 is not affected by the distribution of bargaining power since it is used to efficiently sustain
the CCP’s monitoring incentives.
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(ABN-AMRO, 2020) and CCPs who resist these calls (e.g. LCH, 2015; OCC, 2020).

Our results also reveal endogenous economies of scale in centralized monitoring. As the

number of investors N grows, the no-default state becomes more indicative of efforts and

hence the rent dissipates.24 These economies of scale can be seen in the reduction of total

CCP capital contribution (Ne∗ decreases with N). As we discuss in Section 5.3, this is a

crucial force in making the CCP a superior monitor.

Remark 1. As π∗(0) increases exponentially with N , it would violate the resource constraint

(4) for d = 0 if N is large enough. Still, the insight from Proposition 6 that the CCP holds a

junior tranche is robust in the following way: after exhausting all the available resources in

state d = 0 to compensate the CCP, the remaining compensation is paid in the states most

indicative of effort, i.e., d = 1, then d = 2, and so on.

5.3 Optimal monitoring scheme

Having characterized the optimal contract under both monitoring schemes, we now answer

the question: Who should monitor? To illustrate the relevant economic forces, we begin with

a numerical example. Figure 3 shows the range of collateral cost and market size in which

centralized monitoring is optimal (green region) for two different values of α, a measure of

the monitoring incentive friction.

In both panels, we observe that central monitoring tend to be optimal when the cost of

collateral is intermediate. The intuition is as follows. If collateral is cheap enough, any form

of monitoring is wasteful because counterparty risk can be better dealt with collateral. If

collateral is very expensive, bilateral monitoring (blue region) is more efficient than central-

24This result is known as “cross-pledging” (see Cerasi and Daltung 2000 and Laux 2001).
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Figure 3. Optimal Monitoring Scheme. Parameter values: ĉ = 0.8, β = 0.4, v = 2, q = 0.7,
νcm = 1.9, ψ = 5.6× 10−3.

ized monitoring because it requires less collateral, together with reduced loss mutualization

(Case 2 of Proposition 5). Therefore, centralized monitoring can only be optimal in the

intermediate range of collateral cost.

We further observe that market size N and the severity of the monitoring friction α

favor centralized monitoring with respect to bilateral monitoring. A larger N and α require

more reduction in loss mutualization to maintain incentives in bilateral monitoring. At the

same time, the economies of scale in centralized monitoring becomes more relevant. We

note, however, that when N or α increase, loss mutualization also becomes more efficient

without monitoring (red region expanded). Hence, the overall effect of these variables on

the optimality of centralized monitoring is ambiguous.

To provide analytical support for these observations, we characterize the conditions in

which centralized monitoring is optimal when N →∞. This analysis is subject to the caveat

that Assumption 3 cannot hold when N becomes large. We present this result because it is
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also informative for small values of N : the terms that depend on N in the general condition

decrease exponentially (see the proof for details).

Proposition 7. At the limit N → ∞, when α > 0, centralized monitoring is optimal with

complete loss mutualization for k ∈ [k̂cm, k̄cm] where k̂cm > k̂m and k̄cm < k̄. This region is

non-empty as k̂cm < k̄cm is implied by ψ < ψ̄ (Assumption 2).

Proposition 7 first supports the claim that centralized monitoring is optimal in an inter-

mediate range of collateral. We also confirm the ambiguous effect of monitoring friction by

showing that k̂cm and k̄cm both increase with α in the proof.

5.4 Social optimal choice of CCP capital

In this subsection we ask if the equilibrium level of capital and collateral with centralized

monitoring is socially optimal. We thus analyze the social planner’s choice and then show

how it differs in general from privately optimal choices made by either investors or the CCP.

Proposition 8. Under Assumption 4, there exists ν̂C such that the social planner’s choice

of CCP capital is e∗ if νC ≤ ν̂C and 0 otherwise. In addition, if the CCP had bargaining

power, it would not pledge capital.

Proposition 8 first states that investors may require too much CCP capital compared to

the social optimum. CCP capital can replace collateral for hedging, but the substitution is

inefficient when capital is costly (νC ≥ ν̂C). For capital level e ∈ [0, e∗], however, investors do

not internalize this cost as the loss from increasing e is borne by the CCP whose monitoring

rent decreases. This argument also explains the second statement of Proposition 8: CCPs

would not pledge collateral voluntarily if they had bargaining power because doing so eats

into their profit.
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Putting the results together, the key takeaway of Proposition 8 is that equilibrium choices

of CCP capital are generically inefficient. Relative to the socially optimal solution, there

is too much (too little) capital if the choice is made by investors (the CCP). The wedge

arises because market participants care about the impact of capital contribution on rent

distribution but the social planner does not. This result not only echoes the ongoing debate

between members and CCP about the suitable amount of capital contribution (see Section

6.3), but also provides a rationale for regulating the loss allocation design in central clearing.

6 Implications for CCP design

In this section, we explain how our results inform the practical design of a CCP. We first

discuss the roles of a CCP. We then focus on the CCP’s monitoring role and the default

waterfall design in this case. Finally, we discuss implications for ownership structure

6.1 Roles of CCP and the determining factors

By studying the efficient management of counterparty risks, our model rationalizes three

potential roles of a CCP. First, a CCP can use its capital as insurance against the extreme

event of many members defaulting. Second, a CCP can play the role of risk pooler. By ex-

ante arranging a loss mutualizing scheme, a CCP pools idiosyncratic member default risks.

Third, a CCP can monitor its members to reduce counterparty risks in the first place.

Overall, our results are in line with the view that CCPs are primarily risk poolers, not

insurance providers—a view widely shared among regulators (Coeuré, 2015; FSB, 2020) and

CCPs (LCH, 2015; MRAC, 2021). While we show that CCPs can function as insurance

providers, it is only efficient when the CCPs are small and have a lower cost of capital than
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that of members’ collateral. We view the last condition as very restrictive. Instead, we

emphasize the CCP’s role in facilitating loss mutualization and show that this function is

particularly valuable when collateral cost is intermediate and the market size for the cleared

contract is large. As we discuss in Section 6.3, however, members will ask the CCP to

contribute capital, even when insurance with capital is inefficient.

The monitoring role of CCPs is another emphasis of our paper. Our analysis shows that

monitoring is a valuable substitute of costly collateral in mitigating counterparty risk, and

that CCPs emerge as efficient monitors of members to facilitate large-scale loss mutualization.

Adequate monitoring of members is indeed often cited by many CCPs in practice as their first

line of defense against counterparty risks.25 Monitoring effort in our model represents the

costs associated with sound risk management. ESMA (2020) reports that CCPs use internal

credit classifications, send mandatory due diligence questionnaires and carry out onsite visits

of their members. These tasks require significant investment in data collection and processing

capacity as well as in hiring experienced and capable personnel. The provisions of incentives

for adequate monitoring is thus paramount and, as we discuss below, have implications for

the loss allocation process. Therefore, the two key roles of CCP in our paper are intertwined.

6.2 Default waterfall design

Our analysis of the loss mutualization role of CCPs explains some important features of

the loss allocation process, also known as the default waterfall of a CCP. First, due to the

limited pledgeability friction, our model endogenizes the commonly observed defaulter-pay

principle. Seizing the pledged collateral of defaulting members (akin to initial margin and

25For example, in ICE (2019) the CCP writes “The first two levels of protection is the clearing houses’ initial
and ongoing conservative membership standards... Our clearing houses have developed and implemented a
sophisticated review and internal credit rating process that assesses and monitors each clearing member’s
initial and ongoing credit worthiness.”
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default fund contribution) efficiently discourages risk taking. Then, the remaining loss will

be allocated among surviving members. Their resources pledged in the default fund are thus

useful to absorb losses and guarantee further contingent payments at the request of the CCP.

The analysis of monitoring incentives endogenizes another key feature of the default wa-

terfall. As we have explained, a CCP’s incentives to monitor its members is best preserved

when it holds a first-loss exposure to member’s default. This can be achieved by giving the

CCP a junior equity tranche in the default waterfall, which absorb losses after the defaulters’

resources are exhausted and before surviving members’ contributions. This default waterfall

structure is very common among CCPs in practice (Duffie, 2015). Regulators and practi-

tioners recognize the importance of this equity tranche to preserve the CCP’s incentives.26

6.3 The determinants of CCP capital

Three additional, novel implications about the CCP’s pre-funded capital, the so-called skin-

in-the-game (SITG), follow from our results. First, the CCP’s SITG needs not be large and

some incentives come in the form of management compensation or loss in value of CCP equity.

Our analysis suggests that wiping out CCP’s SITG, along with other form of compensation,

with only one member default is the most cost-efficient way to provide incentives. Such

a thin layer of SITG is common27 and CCPs in practice make management compensation

contingent on the actual usage of SITG to induce risk management effort.28

26For instance, the Japan Securities Clearing Corporation states that “JSCC should compensate losses
before Survivors’ Pay, in order to keep incentive for appropriate risk management” (See https://www.jpx.

co.jp/jscc/en/risk/default.html). See also Coeuré (2015) and FSB (2020) for regulators’ views.
27We note that in our model when the number of members is very large, the CCP would also receive a

positive compensation when more than one member survives. Then, its equity tranche is progressively wiped
out as more members default (see Remark 1).

28For instance, OCC, a CCP for equity derivatives, says that “OCC will contribute the unvested funds held
under its Executive Deferred Compensation Plan (EDCP), on a pro rata basis pari passu with non-defaulting
clearing members’ default fund contributions.” (OCC, 2020) LCH, another CCP, states that besides SITG,
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Second, the exact size of SITG would depend on the future profit (agency rent) earned by

the CCP for its monitoring service and ultimately the bargaining power of CCP vis-à-vis its

members. We showed that a CCP is willing to contribute capital up to a level e such that its

cost of capital matches its future profit. The higher the future profit is, the larger SITG the

CCP is willing to contribute. Meanwhile, the equilibrium capital contribution e∗ is a tool for

splitting the surplus between the CCP and members. When members have all the bargaining

power as in our model, they leave no surplus to the CCP by requesting e∗ = e. The view that

SITG is an outcome of bargaining is acknowledged by market participants.29 Recently, a

group of twenty major institutional investors and investment banks has collectively issued a

discussion paper (ABN-AMRO, 2020) to request more substantial capital contribution from

the CCP. This request illustrates the tug of war between members and the CCPs.

Third, there can be excessive CCP capital demanded by members who do not take its

(social) opportunity cost into account, as shown in Section 5.4. In light of the request made

in ABN-AMRO (2020) by members, we thus caution against substantially increasing the

SITG even for the goal of loss absorption. A similar caution is voiced by regulators and

CCPs.30 Such a change may push the CCP’s business model from risk-pooling to insurance

provision, as captured by the shift from loss mutualization to full hedging in the contract.

“LCH has further strengthened this incentive structure by linking management compensation directly to
usage of the SITG layer.” (LCH, 2015)

29In a discussion paper written by the International Swap and Derivative Association (ISDA, 2019), for
example, ISDA concedes that “The level of SITG is ultimately a judgement call and is still debated between
many CCPs and clearing members. We believe that the optimum level of SITG is difficult to agree between
CCPs and clearing participants and ask global regulators to develop standards and guidelines as to sizing
SITG for CCPs.”

30FSB (2020) states that “The oversight and/or supervisory authorities acknowledge that this portion is not
calibrated with a view to constituting a significant amount of loss absorbing resources. Rather, it is calibrated
to provide confidence in the risk management incentives of the CCP.” In LCH (2015), LCH argues “A CCP
exists to guarantee the default losses of its clearing members and collects sufficient financial resources from
its members to provide this default insurance. The CCP does not provide the financial resources necessary
to absorb the potential default losses themselves, and so these losses are not a component of CCP capital.”
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6.4 CCP ownership structure

Private CCPs in practice are either owned by their members or by a third-party, for-profit

corporation. CCP ownership structure is relevant to the design of the default waterfall. For

instance, in a member-owned CCP, the seniority of funding sources in the default fund is

less pertinent, as its SITG and equity are ultimately funded by members. To the extent

that our model reveals some key economic principles in default waterfall design, it also has

implications for CCP ownership structure.

Consider the case in which the CCP functions as a loss mutualization mechanism.31

Under bilateral monitoring, the CCP takes transfers from some members and redistributes

to others. It neither pledges capital nor receives compensation from members. We interpret

this arrangement as a member-owned CCP.32 Under centralized monitoring, the CCP also

acts as an agent who monitors members. It contributes capital and receives an equity-like

compensation paid by members. In this sense, it is a third-party, for-profit service provider.

Our results suggest that a third-party CCP is preferable to a member-owned CCP when

the number of clearing members is large. In larger CCPs, discipline is better maintained

by a third-party agent who is liable for any default. In smaller CCPs, members prefer a

“mutualization-light” regime with discipline maintained via bilateral counterparty exposure.

31As we showed, the CCP can also act as an insurance provider in the restrictive case where CCP capital
is cheaper than members’ collateral. In this case, however, the discussion of ownership structure becomes
trivial in our model because a member-owned CCP cannot have a lower cost of capital than its members.

32Several commentators including McPartland and Lewis (2017) use the terminology “mutualized CCP”
for the arrangement without a third-party owner. Since there is also loss mutualization between members
in our third-party CCP, we refer to the former CCPs as member-owned.
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7 Conclusion

In this paper, we characterized the optimal allocation of losses in a CCP when contracts

are subject to counterparty risk. The mutualization of losses hedges investors against their

counterparty’s default, but this protection lowers market discipline because investors’ incen-

tives to trade with creditworthy counterparties become weaker. When the market is large,

we show that a third-party CCP can mitigate these inefficiencies by acting as a centralized

monitor. Our model endogenizes the typical default waterfall of a CCP with defaulter’s

collateral, a CCP junior equity tranche and surviving members’ default fund contributions.

Members and the CCP disagree about the size of the skin-in-the-game capital, and either

choice can be socially inefficient.

One of our paper’s conclusions is that regulating the capital structure of CCP may be

necessary as private choices of market participants can be suboptimal. We believe a dynamic

extension of this model could shed light on richer aspects of the regulatory problem, in

particular the optimal resolution of CCPs. To understand the basic determinants of the

default waterfall, we assumed one CCP clears all trades. In practice, several third-party

CCPs may compete for the market. Introducing several CCPs would allows us to analyze

the relationship between competition and CCP stability. Relatedly, we also believe that

competing CCPs may cater to different clienteles in a model with heterogeneous investors

(see e.g., Santos and Scheinkman (2001)). We leave these venues for future research.
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Appendix

A Proofs

A.1 Derivation of Equation (3)

We first derive a relationship between expected transfers, given by

E[ro(d)] + E[π(d)] = E[po(d)] + x+ e (A.1)

As a payer succeeds with probability q, and default is idiosyncratic the number of defaulting payers
among k payers is a random variable with a binomial distribution B(k, 1− q). Taking expectations
over (6), we thus obtain

Es[po(d)] =

N−1∑
d=0

(1− q)dqN−1−d
(
N − 1
d

)[
rs(d) +

d

N − d
(rf (d)− pf (d))− N

N − d
(x+ e− π(d))

]

= Es[ro(d)] +

N−1∑
d=1

(1− q)dqN−1−d
(
N − 1
d− 1

)
(rf (d)− pf (d))− (x+ e)

N−1∑
d=0

(1− q)dqN−1−d
(
N
d

)

+

N−1∑
d=0

(1− q)dqN−1−d
(
N
d

)
π(d)

= Es[ro(d)] +
1− q
q

N−2∑
l=0

(1− q)lqN−1−l
(
N − 1
l

)
(rf (l + 1)− pf (l + 1))

− (x+ e)

q

[
1− (1− q)N

]
+

1

q

[
E[π(d)]− (1− q)Nπ(N)

]
= Es[ro(d)] +

1− q
q

(Ef [ro(d)]− Ef [po(d)])− x+ e

q
+

E[π(d)]

q

where to obtain the last line, we used (6) for d = N . The last line is equivalent to (A.1).
Using equation (1), we can now derive equation (3). We have

U =
1

2

(
q(1− x)2R+ x− E[po(d)]

)
+

1

2

(
E[ro(d)] + (ν − 1)E

[
min{ro(d), ĉ}

])
− (1− 1cm)ψ

Substituting E[po(d)] thanks to equation (A.1), we obtain

U = qR+
1

2
x− qRx+

1

2
(x+ e)− 1

2
E[π(d)] +

ν − 1

2
E
[

min{ro(d), ĉ}
]
− (1− 1cm)ψ

which is equivalent to equation (3).
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A.2 Proof of Proposition 1

We prove the results in several steps. Step 1 proves that resource constraint (5) binds. Step 2
proves that for all d < N , rs(d) is constant. Step 3 proves that for all d < N , rf (d) is a constant
lower than ĉ and rs. In Step 4, we prove that we can focus on contract with 2x + e ≤ ĉ without
loss of generality. Finally, in Step 5, we prove rf > rf (N). For some arguments in this proof, we
will refer to certain contracts introduced later in the main text.

Step 1. Resource constraint (5) binds: pf (d) = x
From equation (6), increasing pf (d) for d < N allows investors to increase rs(d) in this state.

Such a change may only relax constraints (LP) and (MICbm). Because investors’ utility (3) is
weakly increasing with rs(d), it is thus optimal to set pf (d) = x for all d < N .

For state d = N , suppose (5) is slack and consider increasing pf (N) by ∆pf (N) ∈ (0, x −
pf (N)]. Denote ∆Ef [po(d)] the corresponding increase in Ef [po(d)]. Let us also increase Es[po(d)]
by ∆Es[po(d)] = ∆Ef [po(d)] in order to ensure limited pledgeability constraint (LP) still holds.
Consider then a joint increase in rf (N) and Es[ro(d)] such that

∆rf (N) ≤ ∆pf (N), ∆Es[ro(d)] ≥ ν∆Ef [ro(d)], ∆Es[ro(d)] ≤ ∆Es[po(d)]

The first constraint ensures that resource constraint (5) is still satisfied following the perturba-
tion. The second constraint ensures that bilateral monitoring constraint (MICbm) is satisfied after
the perturbation if needed. The last constraint ensures that budget constraint (6) is still satis-
fied. Since ∆pf (N) > 0 and ∆Es[ro(d)] > 0, by construction, such a perturbation exists and it is
weakly optimal because investors’ utility weakly increases with ro(d). Hence, pf (N) = x is optimal.

Step 2. rs(d) = rs for all d < N
Suppose instead there are two states (d, d′) such that rs(d) > rs(d

′). We argue that the follow-
ing perturbation weakly increases investors’ utility: decrease rs(d) and ps(d) and increase rs(d

′)
and ps(d

′) such that Es[ro(d)] and Es[po(d)] are unchanged. This perturbation is feasible because
it does not affect constraint (LP) and it weakly relaxes bilateral monitoring constraint (MICbm)
(strictly if rs(d) > ĉ > rs′(d

′)). It is (weakly) profitable because objective function (3) is concave
in rs(d) and rs(d

′).

Step 3. rf (d) = rf ≤ min{rs, ĉ} for all d < N
We first show that setting rf (d) = rf for all d < N is optimal. Suppose instead there are

two states (d, d′) such that rf (d) > rf (d′). The argument used in Step 2 above also applies here
if rf (d) > rf (d′) ≥ ĉ or if rf (d′) < rf (d) ≤ ĉ. Hence, we are left to analyze the case in which
rf (d′) < ĉ < rf (d). For ε > 0 small enough, consider the following perturbation

(∆rf (d′),∆rf (d)) =

(
ε,−f(d′)

f(d)
νε

)
with f(d) the probability that d payers default among N − 1. The perturbation is designed such
that the right-hand side of incentive constraint (MICbm) is unchanged. To satisfy budget constraint
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(6) in state d and d′, set ∆ps(d) = 1−q
q ∆rf (d) and ∆ps(d

′) = 1−q
q ∆rf (d′). The limited pledgeability

constraint (LP) still holds after the perturbation as the expected payment Es[po(d)] increases by

∆Es[po(d)] = −1− q
q

(ν − 1)f(d′)ε

The perturbation strictly increases the objective function (3) which is concave in rf .
We then show that rf ≤ min{rs, ĉ} is optimal. The result rf ≤ ĉ follows from two observations.

First, the objective function (3) is independent of rf when rf > ĉ and increasing rf does not relax
any constraint but it tightens constraint (MICbm).

For the second part of the result, suppose rf > rs and consider the following perturbation:

∆rf < 0, ∆rs = −1− q − (1− q)N

q
∆rf , such that rf + ∆rf = rs + ∆rs

Let ∆ps(d) be the perturbation to ps(d) needed in state d < N to satisfy the budget constraint (6)
while keeping other variables constant. The perturbation is designed such that E[ps(d)] does not
change, as can be seen from (A.1). This implies constraint (LP) still holds. Hence, the perturbation
is feasible under constraint (LP) and (MICbm) because the right-hand side of the latter constraint
is increasing with rs and decreasing with rf . With this perturbation, E[ro(d)] is unchanged, which
means investors’ utility is unchanged. Hence, it is weakly optimal to set rs ≥ rf and it can be
strictly optimal if it relaxes (MICbm).

Step 4. Proof that rf (N) = 2x+ e ≤ ĉ
To prove this statement, we first rely on properties of the CCP’s compensation contract shown later
in the text. Proposition 6 shows that it is optimal not to compensate the CCP in state d = N .
Hence, we set π(N) = 0. Using the result in Step 1, we can rewrite budget constraint (6) in state
d = N as rf (N) ≤ 2x + e. Setting rf (N) ≤ ĉ is weakly optimal by the same argument used in
Step 3 for rf . Hence, we are left to show that we can focus on contracts such that 2x+ e ≤ ĉ. We
proceed by contradiction considering a “candidate” contract such that 2x+ e > ĉ.

Case 1. k ≤ νC − 1
In this case, the candidate contract is dominated by the full-hedging contract described in

Proposition 2. Because this contract does not require monitoring, it is enough to show that the
candidate contract is more costly since hedging benefits are lower. The combined cost of collateral
and CCP capital with the candidate contract is given by

xk +
1

2
e(νC − 1) >

ĉ

2
k +

1

2
e(νC − 1− k) >

ĉ

2
k

The last expression is the cost for the the full-hedging contract. Hence, the candidate contract
cannot be optimal.

Case 2. k > νC − 1
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We first rewrite the limited pledgeability constraint (LP) using the result from Step 1, 2 and 3,
the participation constraint of the CCP (PCCCP ) and the budget constraint (6)

qrs+(1−q)
[
1−(1−q)N−1

]
rf ≤ qβ+

(
2−qβ−2(1−q)N

)
x−
[
νC −

{
1− (1− q)N

}]
e−2ψ1cm (A.2)

By assumption about our candidate contract, rf (N) satisfies rf (N) ≤ ĉ < 2x+ e. In what follows,
we treat separately the two monitoring schemes.

Consider first the bilateral monitoring scheme. Consider a perturbation to the candidate con-

tract with ∆x < 0 and ∆e = 2−qβ−2(1−q)N
νC−{1−(1−q)N}∆x. By construction, this perturbation leaves the

right-hand-side of (A.2) unchanged. Hence, the same levels for rs and rf as in the candidate con-
tract can be financed. Besides, because ĉ < 2x+e, it is also possible to finance any receiver transfer
rf (N) ≤ ĉ for a small enough changes in x and e. Because CCP capital and collateral are costly, it
is feasible and optimal to decrease e and rf until either 2x+ e = ĉ, e = 0 or x = 0. In the first case,
the desired result follow directly. In the second case, the candidate contract is dominated by the
full-hedging contract described above. In the third case, a contract with x = 0 and e > 0 is domi-
nated by a contract with x = 0 and e = 0 because CCP capital is costly and reduces pledgeability,
as shown formally in Lemma 1. This proves the result with bilateral monitoring.

We now consider the centralized monitoring scheme. In Proposition 6, we show that the CCP

capital should be no lower than e = 2ψαN

1−αN . This implies that the candidate contract satisfies e ≥ e
by definition of e, as it could be improved otherwise. We now prove that the candidate contract
is dominated by the (optimal) contract characterized in Proposition 6 which has the following
features: e = e such that rs = rf = ĉ and 2x + e ≤ ĉ. Hence, this optimal contract fully satisfies
investors’ hedging needs except in the joint payer default state. The candidate contract can only
dominate that contract if it provides full hedging or if it is cheaper.

In the first case, however, starting from the optimal contract, it is better to satisfy 2x+ e = ĉ
in order to provide full hedging, because collateral and CCP capital are costly. In the second case,
because e > e for the candidate contract, it can only be cheaper than the optimal contract if it uses
less collateral. But then start again from the optimal contract for which the limited pledgeability
constraint (A.2) binds. Reducing x and increasing e thus implies lowering the expected transfer to
receivers. If this change increases investors’ utility, x should be lowered to 0 by linearity. But then
a contract with x = 0 and e > e is dominated by a contract with x = 0 and e = ē because CCP
capital is costly and tightens constraint (A.2). This proves the result with centralized monitoring.

Step 5. Proof that rf ≥ rf (N)
We consider again the centralized monitoring scheme and the bilateral monitoring scheme in turn.
Consider first the centralized monitoring scheme. Either rs = rf = ĉ or limited pledgeability
constraint (LP) binds. In the first situation, rf (N) = 2x + e ≤ ĉ = rf by Step 4. In the second
situation, two cases are again possible. If ν−1

2 (2 − qβ) ≥ k, then increasing x to increase rs and
rf until they are equal to ĉ is optimal. The result follows again. If instead ν−1

2 (2 − qβ) > k, it is
optimal to decrease x until it reaches 0 so that

E[r] = qβ − (νC − 1)e− 2ψ
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But then, it should be optimal to switch to bilateral monitoring with e = 0 because it increases
the right-hand side and thus the transfers of the left-hand-side of the equality above. Bilateral
monitoring is incentive-compatible with contract rs = β, rf = 0 and x = 0 under Assumption 2 as
we will show in Lemma 2. Again, the desired result holds.

Consider now the bilateral monitoring scheme. With a similar argument, we can focus on the
case in which the limited pledgeability constraint binds. The argument when ν−1

2 (2 − qβ) > k is
similar to that above. Suppose then ν−1

2 (2 − qβ) ≤ k. This implies that x should be increased
until rs = ĉ. Increasing rf , however, entails an additional cost because the monitoring constraint
(MICbm) needs to be satisfied. Hence, to increase rf , one must also increase rs. Two cases are
possible. First, if the cost of collateral is low, rf should be increased until it reaches ĉ and the
proof follows by Step 4. Otherwise, rf should be set such rs = ĉ and (LP) and (MICbm) hold as
equality. This contract is the contract considered in Case 2 of Proposition 5 and, as we show there,
it satisfies rf ≥ 2x+ e under Assumption 2. This concludes the proof.

A.3 Proof of Proposition 2

Using Lemma 1, we derive a simplified version of the investor’s problem in the absence of friction.
Recall that monitoring is redundant if the asset is fully pledgeable. The investors solve

max
x,e,rs,rf

ν − 1

2

[
qmin{rs, ĉ}+ (1− q)

([
1− (1− q)N−1

]
min{rf , ĉ}+ (1− q)N−1(2x+ e)

)]
− x(qR− 1)− 1

2
e(νC − 1) (A.3)

The objective function is strictly increasing with rs and rf for all rs ≤ ĉ and rf ≤ ĉ and it is
constant otherwise. Hence, it is optimal to set rs = rf = ĉ. To determine the optimal values of x
and e, compute the derivative of the objective function with respect to these variables:

U ′(e) =
1

2
(ν − 1)(1− q)N − 1

2
(νC − 1) (A.4)

U ′(x) = (ν − 1)(1− q)N − k (A.5)

It is thus optimal to set rf (N) = 2x+ e equal to ĉ if and only if min{k, νC − 1} ≤ (ν − 1)(1− q)N .
In this condition holds, investors choose (x, e) =

(
c
2 , 0
)

if k ≤ νC − 1 and (x, e) = (0, ĉ) otherwise.
This concludes the proof.

A.4 Proof of Proposition 3

Step 1. Limited Pledgeability Constraint
We first rewrite the limited pledgeability constraint (LP). We showed in Proposition 1 that

Ef [po(d)] = x, and in Lemma 1 that 1cm = 0. Using these results together with the binding
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participation constraint of the CCP (PCCCP ) and equation (A.1), we obtain

q
(
Es[po(d)]− Ef [po(d)]

)
= Es[ro(d)]− 2x+ (νC − 1)e

= qrs + (1− q)
[
1− (1− q)N−1

]
rf −

[
1− (1− q)N

]
(2x+ e) + νCe

We can thus rewrite (LP) as a function of (rs, rf , e, x).

qrs + (1− q)
[
1− (1− q)N−1

]
rf ≤ qβ +

(
2− qβ − 2(1− q)N

)
x−

[
νC −

{
1− (1− q)N

}]
e (A.6)

Investors thus solve the problem described in (A.3) under constraint (A.6).

Step 2. Analysis
We first show two results about CCP capital e. First, CCP capital may be used only if k < νC−1.

If this condition does not hold, we showed in Proposition 2 that collateral is preferred to CCP capital
in the frictionless benchmark. This conclusion still applies under limited pledgeability because x
(resp. e) relaxes (resp. tightens) constraint (A.6). Second, if CCP capital is used, it must be that
(A.6) binds. Otherwise, it is optimal to increase e and decrease x while keeping rf (N) = 2x + e
constant. With a small enough change, constraint (A.6) still holds and the objective function
increases because k < νC − 1 must hold if CCP capital is used, as we just showed.

We now argue we can consider two different cases for the analysis: Either rs = rf = ĉ or
constraint (A.6) binds. This observation follows from Proposition 2 where we showed rs = rf = ĉ
is optimal in the absence of constraint (A.6). Besides, the relative weight on these two variables is
the same in the objective function (A.3) and in constraint (A.6).

Suppose first that rs = rf = ĉ. We now derive conditions such that rf (N) = 2x+ e = ĉ.
Optimality of rf (N) = ĉ
Case 1a. k ≤ (ν − 1)(1− q)N
Increasing x until rf (N) = 2x+e = ĉ is then optimal by (A.5) and because increasing x relaxes

constraint (A.6). If in addition k < νC − 1, CCP capital should not be used as shown above. In
this case, the contract is given by rOMs = rOMf = ĉ, xOM = ĉ

2 and eOM = 0. This corresponds to
Case 1a of Proposition 3.

If instead k > νC − 1, CCP capital should be used and, as shown above, constraint (A.6)
should bind. Hence, the contract is given by rOMs = rOMf = ĉ and xOM and eOM such that

rOMf (N) = 2xOM + eOM = ĉ and (A.6) binds. This corresponds to Case 1b of Proposition 3.

Case 1b. k > (ν − 1)(1− q)N
Then, it is optimal to decrease x until constraint (A.6) binds because U ′(x) < 0. Equation (A.4)

shows that increasing e until rf (N) = 2x+e = ĉ can still be optimal if νC−1 ≤ (ν−1)(1−q)N . To
determine the sufficient condition, we need to account for the effect of e on constraint (A.6) when
computing the total derivative of the objective function with respect to e. Maintaining rs and rf
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constant in equation (A.6), we have

∂x

∂e |rf=rs=ĉ, (A.6) binds
=

νC − 1 + (1− q)N

2− qβ − 2(1− q)N
(A.7)

We thus obtain

U ′(e)|rf=rs=ĉ, (A.6) binds =
∂U

∂e
+

∂U

∂x

∂x

∂e |rf=rs=ĉ, (A.6) binds

=
1

2

[
(ν − 1)(1− q)N − (νC − 1)

]
+
[
(ν − 1)(1− q)N − k]

νC − 1 + (1− q)N

2− qβ − 2(1− q)N

This term is positive if

k ≤ kN ≡ (ν − 1)(1− q)N +
1

2

2− qβ − 2(1− q)N

νC − 1 + (1− q)N
max

{
(ν − 1)(1− q)N − (νC − 1), 0

}
(A.8)

If this inequality holds, rf (N) = ĉ is optimal, and thus the OM-contract is given by rOMs = rOMf = ĉ

and xOM and eOM such that rOMf (N) = 2xOM +eOM = ĉ and (A.6) binds. Hence, we characterized
all cases in which rf (N) = ĉ is optimal.

Optimality of rs = rs = ĉ and rf (N) < ĉ
Suppose now that condition (A.8) does not hold while still assuming rs = rf = ĉ. Then the

analysis above shows that setting e = 0 is optimal. Since k > kN and thus k > (ν − 1)(1 − q)N ,
the collateral amount x is pinned down by saturating constraint (A.6) with e = 0. In addition, a
contract with the conjectured properties is optimal if decreasing x when (A.6) binds decreases the
objective function. We have in this case

U ′(x) =
ν − 1

2

∂E[ro(d)]

∂x |e=0,(A.6) binds
− k =

ν − 1

2
(2− qβ)− k ≡ k̄ − k (A.9)

The conjecture is thus optimal if k ∈ [kN , k̄]. This corresponds to Case 2 of Proposition 3.
Optimality of rs, rf < ĉ
Suppose finally that k ≥ k̄. Then, again setting e = 0 is optimal because k̄ ≥ kN with equality

only for νC = 1. But in this case, it is also optimal to set x to 0 since the marginal benefit of
collateral is given by (A.9). The optimal contract is then characterized by eOM = 0, xOM = 0. The
values of rs and rf are pinned down by the binding pledgeability constraint (A.6), that is,

rs +
1− q
q

[
1− (1− q)N−1

]
rf = β

In particular the contract such that rs = β and rf = 0 is optimal, which corresponds to Case 3 of
Proposition 3. This concludes the proof.
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A.5 Proof of Corollary 1

We prove the result here in the case where monitoring is imposed. The proof for the case where
investors can choose whether to monitor is in Internet Appendix D.1. We verify that the OM-
contracts of Proposition 3 satisfy Definition 2 only in Cases 1a and 3.

For Case 1a, we have ro(d) = 2x = po(d) + x for all d. For Case 3, we have rs(d) = ps(d) = β
and rf (d) = 0 = pf (d). Hence, both contracts satisfy Definition 2.

The contract in Case 1b requires CCP capital and thus cannot bee implemented bilaterally.
Indeed, the bilateral restriction in Definition 2 and the CCP’s participation constraint (PCCCP )
imply e = 0. For Case 2, we have rOMf (d) = ĉ > pOMf (d) + xOM for all d < N , and thus this
contract also violates Definition 2.

It follows that the upper bound for the essential CCP region is given by k̄. The lower bound
kess corresponds to the upper bound of the region for Case 1a and it is thus given by kess =
min{(ν − 1)(1− q)N , νC − 1}. This concludes the proof.

A.6 Proof of Corollary 2

The optimal bilateral contract is obtained from Proposition 3 with monitoring and A.1 without
monitoring respectively, setting N = 1 and imposing e = 0.

We first show that when k is close to the upper bound k̄ of the essential CCP region, the
bilateral contract requires strictly less collateral. By Proposition 3, for k lower but close to k̄, the
optimal contract is given by Case 2 of Proposition 3 for all N ≥ 1. Equation (9) shows that the
collateral requirement xOM is increasing in N because ĉ ≤ 2 under Assumption 1. This proves that
a bilateral contract requires less collateral for k close to k̄.

We now show that for k above but close to kess the bilateral contract requires strictly more
collateral. Remember that kess = min{νC − 1, (ν − 1)(1 − q)N}. If kess = νC − 1, the optimal
multilateral contract is given by Case 1b of Proposition 3 while the optimal bilateral contract
is given by Case 1a. The latter requires strictly more collateral, which proves the result in this
case. Suppose instead that kess = (ν − 1)(1 − q)N . Then, there exists a range of collateral cost
[(ν − 1)(1 − q)N , (ν − 1)(1 − q)] such that the optimal multilateral contract is given by Case 2 of
Proposition 3 while the optimal bilateral contract is given by Case 1a. Again, the latter contract
requires strictly more collateral, which concludes the proof.

A.7 Proof of Proposition 4

We first derive the optimal contract without monitoring in Section A.7.1 and then derive the optimal
monitoring decision in Section A.7.2.

A.7.1 Optimal Contract without Monitoring

We first establish that a single (pooling) contract is offered although investors may have different
ex-post types. Without monitoring, each investor has pledgeability β with probability α or 0 with
probability 1−α. With unobservable types, a menu of contracts could be used to screen investors.
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In our environment, however, screening is not possible due to a failure of the Mirrless-Spence
sorting condition. The investor type changes the asset pledgeability but investors’ utility (3) does
not depend on the type. This implies that investors always agree on the best contract in a menu
and separation is not possible.

The result above greatly simplifies the analysis of the optimal contract without monitoring. As
only one contract is offered, we can consider investors ex-ante, that is before their pledgeability
type is realized. It follows that lack of monitoring simply increases the probability of default of an
investor from 1−q to 1−αq. The collateral cost k, however, is the same because the asset succeeds
with probability q, independently of the investor type.

If follows from these observations that we can derive the optimal contract without monitoring by
adapting Proposition 3 substituting q with αq (while keeping k = qR− 1). We use the superscript

ZZm to indicate that investors are not monitored.

Proposition A.1. Suppose investors are not monitored. There are two thresholds of collateral cost

kZmN = (ν − 1)(1− αq)N +
1

2

2− αqβ − 2(1− αq)N

νC − 1 + (1− αq)N
max

{
(ν − 1)(1− αq)N − (νC − 1), 0

}
,

k̄Zm =
1

2
(ν − 1)(2− αqβ)

such that

1. if k ≤ kZmN , a fully collateralized contract is optimal with

(a) no CCP capital and collateral xOM,Zm = ĉ
2 if νC − 1 < k

(b) CCP capital eOM,Zm
C = αqβ(2−ĉ)

2νC−αqβ and collateral xOM,Zm = νC ĉ−αqβ
2νC−αqβ if νC − 1 ≥ k

2. if k ∈ [kZmN , k̄Z
m], a complete LM contract is optimal with rOMs = rOMf = ĉ and

xOM,Zm ≡
[
1− (1− αq)N

]
ĉ− βq

2 [1− (1− αq)N ]− βαq
∈
(

0,
ĉ

2

)
, (A.10)

3. if k ≥ k̄Zm, the contract in Case 3 of Proposition 3 is optimal.

A.7.2 Optimal monitoring decision

We first prove that monitoring is optimal if the collateral cost is above a threshold k̂m, if it exists.
We then characterize k̂m to prove the properties listed in Proposition 4.

Step 1. Threshold condition
The argument relies on three claims.
The first claim is that for a given monitoring choice, the difference in investor’s utility across

consecutive contracts is strictly increasing with k. A contract is consecutive to a reference contract
if it is the next optimal contract when increasing k. For example, with monitoring the contract
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consecutive to the Case 1a contract is the Case 1b contract if νC − 1 ≤ (ν − 1)(1 − q)N , and
the Case 2 contract if νC − 1 > (ν − 1)(1 − q)N (see Figure 2). We only present the argument
when investors monitor because the argument without monitoring is similar. For each Case of
Proposition 3, the contract terms do not depend on k. Hence to prove the claim, it is enough to
show that a consecutive contract uses strictly less collateral. This result is straightforward for all
cases except for Case 1b contract, with consecutive contract the Case 2 contract. Using Proposition
3 to compare collateral requirements, the desired result also holds for this case because

νC ĉ− qβ
2νC − qβ

≥ ĉ− qβ
2− qβ

>
ĉ
[
1− (1− q)N

]
− qβ

2
[
1− (1− q)N

]
− qβ

where the leftmost (rightmost) term is xOM for Case 1b (Case 2). Both inequalities follow from
the observation that the mapping x 7→ xĉ−qβ

2x−qβ is strictly increasing because ĉ < 2.
The second claim is that for a given contract type, the collateral requirement is lower when

investors monitor. A direct comparison between Proposition 3 and A.1 shows the desired inequality
holds strictly in all cases except Case 1a when both contracts are the same and thus require the
same amount of collateral.

The third claims is that the thresholds between consecutive contracts are strictly higher under
no monitoring. The comparison between k̄ and k̄Zm shows immediately that k̄ < k̄Zm. We now
compare kN to kZmN . First, if νC − 1 ≥ (ν − 1)(1− αq)N , we have

kN = (ν − 1)(1− q)N < (ν − 1)(1− αq)N = kZmN

Next, if νC − 1 ∈ [(ν − 1)(1 − q)N , (ν − 1)(1 − αq)N ], we have kN = (ν − 1)(1 − q)N while
kZmN ≥ (ν − 1)(1− αq)N . Finally, when νC − 1 ≤ (ν − 1)(1− q)N ,, observe that both thresholds are
linearly decreasing functions of νC − 1. Besides,

lim
νC→1

kN = k̄ < k̄Zm = lim
νC→1

kZmN

This proves the result in all possible cases.
These three claims together imply that the benefit from monitoring is strictly increasing with k

except when k ≤ kess where it is constant and equal to −ψ. Indeed, in this latter case, the contract
is the same with or without monitoring.

Step 2. Characterization of threshold k̂m

The results in Step 1 show that, if it exists, the collateral cost threshold k̂m above which
monitoring is optimal satisfies k̂m > kess for ψ > 0. For the degenerate case ψ = 0, any value in
[0, kess] is admissible.

Since kess < k̄ by Corollary 1, to show that the threshold exists, it is enough to show that
monitoring is optimal for k = k̄. When k = k̄, by Proposition A.1, the optimal contract without
monitoring is given by Case 1b or 2. In the first case, that is when kZmN ≥ k̄, investors’ utility is
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given by

UZm|k=k̄
= qR+

[
(ν − 1)− k̄

] ĉ
2

+
1

2

[
k̄ − (νC − 1)

]
eOM,Zm

= qR+ qβ
ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ

2νC − qαβ
max

{
0, (2− qβ)− 2(νC − 1)

ν − 1

}
An upper bound for UZm|k=k̄

is obtained by letting νC → 1. We get

UZm|k=k̄
≤ qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

When kZmN ≤ k̄, the optimal contract without monitoring is the Case 2 contract, and

UZm|k=k̄
= qR+

[
(ν − 1)− k̄

] ĉ
2

+ (k − kZmN )

(
ĉ

2
− xOM,Zm

)
= qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

2− qβ − 2(1− αq)N

2
[
1− (1− αq)N

]
− βαq

βαq

(
1− ĉ

2

)
The second term of the last expression is increasing in N . Hence, an upper bound for UZm|k=k̄

is

obtained by letting N →∞, that is,

UZm|k=k̄
≤ qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

which is the same upper bound we obtained in the first case.
Hence, the utility without monitoring is lower for k = k̄ if

0 ≤ Uk=k̄ −
{
qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

}
≤ qR+

ν − 1

2
qβ − ψ −

{
qR+ qβ

ν − 1

2

ĉ

2
+
ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ

}
≤ ν − 1

2
qβ

(
1− ĉ

2

)
− ν − 1

2

(
1− ĉ

2

)
qαβ(2− qβ)

2− qαβ
− ψ

≤ βq(1− α)(ν − 1)

2− βαq

(
1− ĉ

2

)
− ψ

It is easy to verify that the first term on the right-hand-side of the last inequality is strictly above
the upper bound ψ̄ for the monitoring cost. Hence, under Assumption 2, monitoring is optimal for
k = k̄, and thus the monitoring threshold k̂m exists and it lies strictly below k̄. This concludes the
proof.
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A.8 Proof of Lemma 2

Suppose first k ∈ [k̂m, kN ]. In this case, by Proposition 3, the OM-contract is given by Case 1,
with rOMs = rOMf = rOMf (N). This implies the bilateral monitoring constraint (MICbm) is violated.
Suppose now that k ≥ kN . Under Assumption 4, the OM-contract is given by Case 2 of Proposition
3, with rOMs = rOMf = ĉ, eOM = 0 and xOM given by equation (9). Plugging these variables into
the bilateral monitoring constraint (MICbm), we obtain condition (10).

A.9 Proof of Proposition 5

We first rewrite the bilateral monitoring constraint (MICbm) using the results from Proposition 1.

ψ

1− α
≤ 1

2

[
rs − rf + (1− q)N−1 (rf − (2x+ e))

]
+
ν − 1

2

[
min{rs, ĉ} −

( [
1− (1− q)N−1

]
min{rf , ĉ}+ (1− qN−1)((2x+ e))

)]
(A.11)

The optimal contract under bilateral monitoring solves problem (A.3) under limited pledgeabil-
ity constraint (A.6) and constraint (A.11) which correspond respectively to constraints (LP) and
(MICbm) in the Investor’s Problem. In Step 1, we show that constraints (LP) and (MICbm) bind.
In Step 2, we derive the threshold k̄bm. Finally in Step 3, we characterize the optimal distortion to
the OM-contract of Proposition 3.

Step 1. (LP) and (MICbm) bind
Under Assumption 4, constraint (A.11) binds because the OM-contract in Proposition 3 violates

(A.11). The limited pledgeability constraint (LP) must also bind. If it does not, decrease x while
keeping rs and rf constant. This change relaxes constraint (A.11). Hence, the marginal effect on
investors’ utility from this perturbation is given by −U ′(x) in equation (A.5), which is positive
because k > k̄N by Assumption 4.

Step 2. Threshold k̄bm and optimal contract
We now derive the optimal distortion to the Case 2 contract of Proposition 3. By Proposition

3, it is optimal to set rs ≥ ĉ under Assumption 4 when constraint (A.11) is not imposed. Hence, it
is still optimal under additional constraint (A.11) because increasing rs relaxes this constraint. It
is also optimal to increase rf until (A.11) binds. Under Assumption 4, this value denoted rf must
lie strictly below ĉ.

The optimal value of rf , and thus the optimal contract itself, depend on the marginal value of
increasing rf when rf ∈ [rf , ĉ]. From (A.6) and (A.11), we have (for given x and e).

qrs + (1− q)
[
rf − (1− q)N−1(rf − 2x− e)

]
= (2− qβ)x+ qβ − (νC − 1)e (A.12)

rs − v
[
rf − (1− q)N−1(rf − 2x− e)

]
=

2ψ

q(1− α)
− (ν − 1)ĉ (A.13)
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Hence, we obtain

(1− q)
[
rf − (1− q)N−1(rf − 2x− e)

]
=

(1− q)
[
(2− qβ)x+ qβ − (νC − 1)e

]
− q(1− q)

[
2ψ
1−α − (ν − 1)ĉ

]
qv + (1− q)

We can plug this relationship into the expression for investors’ utility in (A.3). Because rs ≥ ĉ, the
utility U is then a function of x and e only. It follows that increasing x to increase rf above rf is
profitable if and only if

k ≤ ν − 1

2

1− q
1− q + νq

(2− qβ) =
1− q

1− q + νq
k̄ ≡ k̄bm < k̄

Step 3. Optimal distortion
CCP capital e tightens monitoring constraint (A.11). This observation implies that setting

e = 0 remains optimal when k > kN , as in the observable monitoring case. The analysis in Step 2
then shows that only two contracts are possible depending on the ranking between k and k̄bm.

Case i) k ≤ k̄bm
In this case, r∗f = ĉ. Setting e∗ = 0 and solving for x using (A.12) and (A.13), we obtain

ĉ
[
1− q − (1− q)N + q − νq(1− q)N−1

]
− qβ +

2ψ

1− α
=
(

2− 2(1− q)N−1
[
νq + 1− q

]
− βq

)
x

Hence,

x∗ =
ĉ
(

1− (1− q)N−1
[
νq + 1− q

])
− qβ + 2ψ

1−α

2− 2(1− q)N−1
[
νq + 1− q

]
− βq

> xOM (A.14)

It can easily be verified that the conjecture 2x∗ ≤ ĉ holds under Assumption 2.
Case ii) k ≥ k̄bm
In this case, r∗s = ĉ. We then use equations (A.12) and (A.13) to solve for r∗f and x∗ setting

again e∗ = 0. We obtain

x∗ =
ĉ− qβ − 2ψ(1−q)

qν(1−α)

2− qβ
< xOM (A.15)

r∗f =
ĉ− 2(1− q)N−1x∗ − 2ψ

νq(1−α)

1− (1− q)N−1
(A.16)

This concludes the proof.

A.10 Proof of Proposition 6

We first show the results related to the CCP compensation (Step 1). We then derive the optimal
contract (Step 2).

Step 1. CCP compensation schedule
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We first show that the CCP should only be compensated in state d = 0. Define the incentive
power of a state d ∈ {0, 1, ...N} as

IC(d) = 1− P[d| shirk]

P[d| effort]

with P[d| a] the probability of state d under action a. We have P[d| effort] =

(
N
d

)
(1 − q)dqN−d)

while the term P[d| shirk] depends on the number of investor pairs the CCP does not monitor. If
it deviates by monitoring only nm ∈ [|0, N − 1|] investors,

P[d| shirk] =
d∑

dm=0

(
nm
dm

)(
N − nm
d− dm

)
(1− q)dmqnm−dm(1− αq)d−dm(αq)N−nm−d+dm

After some manipulation, we obtain

P[d| shirk]

P[d| effort]
=

∑d
dm=0

(
nm
dm

)(
N − nm
d− dm

)[
1−αq
α(1−q)

]d−dm
(
N
d

) =

d∑
dm=0

wnm(dm)

[
1− αq
α(1− q)

]d−dm

where
∑d

dm=0wnm(dm) = 1 by Vandermonde’s identity. Because 1−αq
α(1−q) > 1, the ratio above is

minimized by setting d = 0 and the minimum is strict. Hence, IC(d) is maximized for d = 0.
We will now define π(0) as the incentive payment such that (MICcm) holds as an equality. It is

defined by
NqNπ(0)− 2Nψ = max

nm∈[|0,..N−1|]

{
NqNαN−nmπ(0)− 2nmψ

}
(A.17)

where on the right-hand-side, nm is the number of investor pairs the CCP monitors when it deviates.
The relevant deviation, however, is to monitor no investor. To prove this statement, we need to
show that the mapping g : y → y(1− eylog(α))−1 is increasing with y for y ≥ 1. We have

g′(y) ∝ 1− αy + yαylog(α) ≥ 1− α(1− log(α))

The inequality obtains because y ≥ 1 and α ≤ 1. We thus have g′(y) ≥ 0 because α 7→ α(1−log(α))
is increasing and limα→1 α(1 − log(α)) = 1. Setting nm = 0 on the right-hand side of (A.17), we
find that π(0) is given by (11). With π(0), e given by (12) is the amount of capital such that
(PCCCP ) binds.

Step 2. Optimal Contract
Observe first that the expected compensation to the CCP is a fixed cost. Hence, under Assump-

tion 4, the complete loss mutualization contract of Proposition 3 is still optimal under unobservable
monitoring. We thus have r∗s = r∗f = ĉ, and we are left to determine x∗ and e∗.

Step 2.i) e∗ = e
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Building on the proof of Proposition 3, we need to determine the marginal value of e on the
investors’ utility function when r∗s = r∗f = ĉ and constraint (LP) binds. The key observation is that
the CCP’s participation constraint (PCCCP ) is slack for any e ∈ [0, e] when using the minimum
compensation contract given by (11). When e is increased over e, however, (PCCCP ) is tight, and
any increase in CCP capital requires an increase in expected compensation by a factor νC . Using
formulation (A.6) of constraint (LP), we obtain the following result

U ′(e)|r∗s=r∗f=ĉ, (LP)binds =
∂U

∂e
+
∂U

∂x

∂x

∂e

=


ν−1

2 (1− q)N − [(ν − 1)(1− q)N − k] 1−(1−q)N
2−2(1−q)N−βq if e ≤ e

[kN − k] νC−1+(1−q)N
2−qβ−2(1−q)N if e > e

Since k > kN , U ′(e) ≥ 0 if and only if e ≤ e. It follows that the optimal choice of CCP capital is
e∗ = e. Note that ∂x

∂e < 0, that is, the amount of collateral decreases with e for e < e, as claimed
in the main text.

We are thus left to determine the optimal collateral amount. To solve for x∗, we saturate the
limited pledgeability constraint (LP) to obtain

ĉ
[
1− (1− q)N

]
+ (1− q)N (2x∗ + e∗) + E[π∗] = qβ + (2− qβ)x∗ + e∗ (A.18)

We obtain

x∗ =
ĉ
[
1− (1− q)N

]
− βq

2 [1− (1− q)N ]− βq
+

(
νC −

[
1− (1− q)N

] )
e∗ + 2ψ

2 [1− (1− q)N ]− βq
= xOM+

2ψ

νC(1− αN )

νC − αN
[
1− (1− q)N

]
2 [1− (1− q)N ]− βq

Finally, we need to verify our conjecture that 2x∗+ e∗ ≤ ĉ. Using the first expression for x∗ above,
this inequality is equivalent to

ψ ≤ 1− αN

2− βqαN

νC

βq

(
1− ĉ

2

)
The right-hand side is increasing with N . Hence, the condition above holds for all N if it holds for
N = 1. This latter condition is implied by Assumption 2.

A.11 Proof of Proposition 7

We first compare centralized monitoring to no monitoring. To avoid confusion, we add a superscript
cm to variables for the optimal centralized monitoring contract. For large N , Proposition A.1 shows
that the OM-contract without monitoring is given by Case 2. This is because, the condition k ≤ k̄
in Assumption 4 implies k ≤ k̄Zm, and the lower bound of the region kZmN converges to 0 as N grows
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large. Using Proposition 6 and A.1, we derive the following expressions for investors’ utility:

U∗,cm = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− q)N

]( ĉ
2
− x∗,cm

)
− 1

2

[
(νcm − 1)− (ν − 1)(1− q)N−1

]
e∗ − ψ (A.19)

UOM,Zm = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− αq)N

]( ĉ
2
− xOM,Zm

)
(A.20)

From Proposition 6 and A.1 again, we have

ĉ

2
− x∗,cm =

βq
(
1− ĉ

2

)
2
[
1− (1− q)N

]
− βq

− 2ψ

νC(1− αN )

νC − αN
[
1− (1− q)N

]
2
[
1− (1− q)N

]
− βq

ĉ

2
− xOM,Zm =

βαq

2
[
1− (1− αq)N

]
− βαq

(
1− ĉ

2

)
When N → ∞, e∗ converges to 0 at an exponential rate by Proposition 6. The second term
of ĉ

2 − xcm,∗ above also converges at an exponential rate as N → ∞. In the limit, centralized
monitoring dominates no monitoring, that is, U∗,cm ≥ UOM,Zm if and only if

k

2− βq

[
βq

(
1− ĉ

2

)
− 2ψ

]
− ψ ≥ k

2− βαq
βαq

(
1− ĉ

2

)
Under Assumption 2,

ψ ≤ βq(1− α)

2− βαq

(
1− ĉ

2

)
Hence, the condition can be expressed as a lower bound k̂cm on k with

k̂cm =
2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

We now turn to the comparison between centralized monitoring and bilateral monitoring. We
first consider Case 1 of Proposition 5. In this case, investors’ utility can be written as

U∗ = qR+
[
ν − 1− k

] ĉ
2

+
[
k − (ν − 1)(1− q)N

]( ĉ
2
− x∗

)
− ψ (A.21)

Using equations (A.19) and (A.21), centralized monitoring dominates Case 1 of bilateral mon-
itoring if and only if(
k−(ν−1)(1−q)N

)(
xcm,∗−xOM

)
+

1

2

(
(νcm−1)−(ν−1)(1−q)N

)
e∗ ≤

(
k−(ν−1)(1−q)N

)(
x∗−xOM

)
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Using the expression for the collateral requirement in (A.14), we obtain

x∗ − xOM =
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
(ĉ− 2x∗)

=
2ψ[

1− α
][

2(1− (1− q)N )− βq
] − vq(1− q)N−1

2(1− (1− q)N )− βq
βq(2− ĉ)− 4ψ

1−α
2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

We thus obtain the following condition

1

2

(
(νcm − 1)− (ν − 1)(1− q)N

)
e∗ ≤

[
k − (ν − 1)(1− q)N

]
(x∗ − x∗,cm) (A.22)

1

2

(
(νcm − 1)− (ν − 1)(1− q)N

)
e∗ ≤ k − (ν − 1)(1− q)N

2(1− (1− q)N )− βq

[
2ψ

1− α
− 2ψ

1− αN

−
vq(1− q)N−1

(
βq(2− ĉ)− 4ψ

1−α

)
2
[
1− (1− q)N−1(vq + 1− q)

]
− βq

]
(A.23)

Observe that the terms which depend on N are exponential in N . Taking the limit N → ∞, the
left-hand side converges to 0, while the right hand side converges to a strictly positive number if
and only if α > 0. If α = 0, the right-hand side converges to 0.

Finally, we turn to the comparison between centralized monitoring and Case 2 of Proposition
5 for bilateral monitoring. Centralized monitoring dominates if and only if(
k−(ν−1)(1−q)N

)(
xcm,∗−xOM

)
+

1

2

(
(νcm−1)−(ν−1)(1−q)N

)
e∗ ≤

[
ν − 1

2
(2− qβ)− k

] (
xOM − x∗

)
Using equation (9) for xOM and equation (A.15) for x∗, we obtain

xOM − x∗ =
2ψ(1− q)

vq(1− α)(2− qβ)
− βq(2− ĉ)(1− q)N[

2− qβ]
[
2(1− (1− q)N )− βq

]
We observe again that the terms which depend onN are exponential inN . Taking the limitN →∞,
the condition for centralized monitoring to dominate Case 2 of bilateral monitoring becomes

ν−1
2 (2− qβ)− k

2− qβ
2ψ(1− q)
vq(1− α)

≥ k

2− βq
2ψ

This condition holds if and only if k ≤ k̄cm with

k̄cm ≡ 1− q
1− q + vq(1− α)

k̄ < k̄

Finally, we are left to derive the maximum value of the monitoring cost ψ such that the interval
[k̂cm, k̄cm] is non-empty. Observe that k̄cm is independent of ψ while k̂cm is strictly increasing with
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ψ. Solving for the value of ψ such that k̂cm = k̄cm, we get

0 =
1− q

1− q + vq(1− α)

ν − 1

2
(2− qβ)− 2− βq

βq(1−α)
2−βαq

(
1− ĉ

2

)
− ψ

ψ

2

0 = (1− q)(ν − 1)
βq(1− α)

2− βαq
− (1− q)(ν − 1)ψ − ψ

[
1− q + vq(1− α)

]
ψ =

βq(1− q)(1− α)(ν − 1)

v(2− βαq)(1− αq)

(
1− ĉ

2

)
This is the first argument of the min in the expression for the upper bound on ψ given by Assumption
2. Hence for any ψ < ψ̄, the interval [k̂cm, k̄] is non-empty.

A.12 Proof of Proposition 8

We first prove that a CCP would never pledge capital if it had the bargaining power. We then
shown that a planner maximizing total surplus may choose a lower level of capital than investors.

The first result follows from our analysis of the OM-contract in Proposition 3 and the contracts
with unobservable monitoring in Proposition 5 and 6. We showed that under Assumption 4 the
net value of CCP capital to investors is negative when its cost is νC . Suppose then the CCP has
the bargaining power and consider an allocation without CCP capital. For every unit it pledges,
the CCP must earn an extra profit at least equal to νC which is above the investors’ willingness to
pay for capital. Hence, the CCP prefers not to pledge capital.

To prove the second result, consider the allocation in the proof of Proposition 6, indexed by the
amount of capital e ∈ [0, e∗] with e∗ the investors’ choice. By linearity, it is enough to compare the
allocations with e = 0 and e = e∗. Let U(e) denote the investor’s utility as a function of e ∈ [0, e∗],

U(e) = qR+
ν − 1− k

2
ĉ− 1

2
E[π∗] +

[
k − (ν − 1)(1− q)N

]( ĉ
2
− x− e

2

)
+

1

2

[
1 + k

]
e

where x is a function of e given implicitly by equation (A.18) replacing e∗ with e ∈ [0, e∗]. With
e = e∗ the CCP breaks even, while with e = 0, the CCP’s profit is equal to NνCe

∗. Hence, for a
planner maximizing total surplus, the allocation with e = e∗ dominates if and only if

0 ≤ 2NU(e∗)− (2NU(e = 0) +NνCe
∗
C)

⇔ 0 ≤
[
k − (ν − 1)(1− q)N

](
x(e = 0)− x∗ − e∗

2

)
−
[
νC − 1− k

]e∗C
2

⇔ 0 ≤
{
k − (ν − 1)(1− q)N

k̄ − (ν − 1)(1− q)N
βq(ν − 1)−

[
νC − 1− k

]} e∗C
2

When νC is high enough, this condition does not hold, which implies the planner’s choice is e = 0.
This is lower than the investors’ choice who always prefer e = e∗.
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Internet Appendix

B Contract with binding resource constraint

We relax Assumption 3 to analyze the situation in which the resource constraint (4) may bind.
To clearly highlight the effect of this assumption, we focus on the parametric case in which CCP
capital is not used, that is, we impose νC−1 ≥ k. As shown in Proposition 3, this implies that e = 0
and π(·) = 0. We further assume monitoring is costless (ψ = 0), which means it is optimal and
(bilaterally) incentive-compatible. This implies we can set rs(d) = rf (d) for all d ∈ {1, ..., N − 1}
without loss of generality (see the discussion following Lemma 1).

We first define r̄N (d, x) as the maximum receiver transfer given a collateral amount x and a
state d ∈ {0, 1, ..N − 1}. Using budget constraint (6) and the resource constraints (4)-(5), we have

r̄N (d, x) ≡ 2x+
N − d
N

(1− x)2R

Assumption 3 is equivalent to r̄N (N−1, 0) ≥ ĉ. We also note that r̄N (N−1, 0) ≥ ĉ implies r̄N (d, 0) ≥
ĉ for all d ∈ {0, 1, ..N − 1} because r̄N (d, x) is decreasing with d. When Assumption 3 does not
hold, that is, when r̄N (N − 1, 0) < ĉ, define x̂N (N − 1) ∈

(
0, ĉ2
)

such that r̄(N − 1, x̂N (N − 1)) = ĉ.
This threshold exists because r̄N (d, x) is increasing with x and r̄N (d, 1) = 2 > ĉ by Assumption 1.

Observe next that Assumption 3 is only sufficient for resource constraint (4) to be slack at the
optimal contract of Proposition 3. In fact, in Cases 1 and 3, the resource constraint (4) holds even
without Assumption 3. In Case 2, constraint (4) still holds for d = N − 1 even when Assumption 3
fails if x̂N (N − 1) < xOM with xOM the optimal collateral requirement in (9). Hence, our analysis
will only differ from that in the main text if both Assumption 3 and this latter condition are relaxed.

In what follows, we consider the case N = 3, which is the smallest value of N such that the re-
source constraint may bind at the optimal contract. We thus impose r̄3(2, 0) < ĉ and x̂3(2) ≥ xOM|N=3
which can be written in a compact form as

R <
3

2
min

{
ĉ,

βq

1− (1− q)3

}
(A3n)

We now derive the optimal contract for N = 3 under (A3n). The possibility that resource
constraint (4) binds has two effects. First, as the maximum receiver transfer r̄3(2, x) increases with
x, collateral has an additional hedging value in the state of the world with two payers defaults. By
the pledgeability constraint, however, if transfers from payers are reduced due to a lack of resources,
less collateral is needed for incentives. The result below shows how these two effects interact.

Proposition B.1. Let N = 3, ψ = 0 and νC − 1 > k. Under Assumption (A3n), there exists a
threshold

k3(2) = k3 + (ν − 1)q(1− q)2(3−R) ∈ (k3, k̄)

such that the optimal contract is

58



1. the contract of Proposition 3 if k < k3 or k > k̄,

2. if k ∈ [k3, k3(2)], the optimal amount of collateral is given by x̃OM = x̂3(2) > xOM , and if
k ∈ [k3(2), k̄], it is given by

x̃OM =

[
q3 + 3q2(1− q)

]
ĉ− qβ + 2q(1− q)2R

2 [1− (1− q)3]− 2q(1− q)2(3−R)− qβ
< xOM (B.1)

Proof. As explained above, the resource constraint in state d = 2 may only bind in Case 2 of
Proposition 3. Hence, the optimal contract is the same as in Proposition 3 for k 6∈ [k3, k̄].

For the case k ∈ (k3, k̄), we need to determine the collateral amount xIC such that constraint
(LP) binds. By construction, under condition (A3n), this level satisfies xIC < x̂3(2). Building on
the argument in Proposition 3, it is optimal to set the receiver transfer to its maximum value when
the pledgeability constraint (LP) is slack. Hence, we can determine xIC by saturating (LP) and
setting r(0) = r(1) = ĉ, r(2) = r̄3(2, x) and r(3) = 2x. Using budget constraint (6), we obtain

E[ro(d)] =
[
q3 + 3(1− q)q2

]
ĉ+ 3q(1− q)2r̄3(2, x) + (1− q)32x = x(2− qβ) + qβ (B.2)

Solving for x in (B.2), we find xIC as given by equation (B.1). The inequality xIC < xOM obtains
because the proof of Proposition 3 shows that xIC solves the same equation as xOM substituting
r̄3(2, x) for ĉ > r̄3(2, x).

The optimal amount of collateral x̃OM when k ∈ [k3, k̄] is given either by xIC or x̂3(2) because
the marginal value of collateral is piecewise constant, and it jumps only at these points. Totally
differentiating (3) with respect to x, we obtain

U ′(x) =

{
(ν − 1)

[
(1− q)3 + q(1− q)2(3−R)

]
− k if x ∈ [xIC , x̂2(3)]

k2 − k if x ∈ [x̂2(3), ĉ2 ]

To obtain the derivative ∂E[ro(d)]
∂x for the first expression, we use the middle term of equation

(B.2). By definition of k3(2), this first term is equal to k3(2) − k. Hence, as stated in the result,
x̃OM = x̂2(3) is optimal when k ∈ [k3, k3(2)] while x̃OM = xIC is optimal when k ∈ [k3(2), k̄]

Case 2 of Proposition B.1 shows the effect of the resource constraint on the optimal contract.
When Assumption 3 does not hold, a single payer cannot cover the hedging needs of three receivers
if no collateral is pledged. Hence, collateral has a hedging value in the states where all 3 payers
default and 2 out of 3 payers default. By contrast, when Assumption 3 holds, this insurance value is
only enjoyed in the worst default state. This explains why investors optimally post more collateral
than in the optimal contract of Proposition 3 when collateral is relatively cheap.

When the collateral cost is higher, however, that is when k ∈ [k2(3, k̄] investors post less
collateral than in the benchmark. If collateral is expensive, investors forgo this hedging value(s)
of collateral. The collateral requirement is then determined by the pledgeability constraint. Since
payers’ transfers are lower when the resource constraint binds, less collateral is needed.
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C Optimal Monitor with Full Hedging

In this section, we analyze the optimal monitoring scheme when monitoring is unobservable and
the OM-contract features full hedging with CCP capital, that is when k ∈ [k̂m, k̄N ]. In this case,
as shown by Lemma 2, the OM-contract is not incentive-compatible under bilateral monitoring.

The analysis proceeds in three steps, as in the main text. First, we derive the optimal contract
under bilateral monitoring in Section C.1. Section C.2 then characterizes the optimal contract
under centralized monitoring. Finally, we compare these two schemes in Section C.3 to show that
centralized monitoring dominates.

C.1 Bilateral Monitoring

Proposition C.1 (Optimal contract under bilateral monitoring). When k ∈ [k̂m, k̄N ], there exists
a threshold kbmN such that the optimal contract with incentive-compatible bilateral monitoring is

1. if k ∈ [k̂m, kbmN ], r∗s = ĉ+ 2ψ
q(1−α) , r

∗
f = ĉ, e∗ = eOM −

4ψ
1−α

2νC−qβ and x∗ = xOM +
2ψ
1−α

2νC−qβ ;

2. if k ∈ [kbmN , kbmN ], the loss mutualization contract of Proposition 5.

Proof. The proof is in two Steps. First, we show that when monitoring is unobservable, the frontier
between the full-hedging contract and the loss mutualization contract shifts from kN to kbmN . This
explains the second case of Proposition C.1. Second, we characterize the full-hedging contract of
case 1 under unobservable monitoring.

Step 1. Threshold kbmN
By arguments similar to that of Proposition 3 and 5, we can establish that both constraints (LP)

and (MICbm) must bind. Like kN in Proposition 3, the threshold kbmN is the value of k such that
the total marginal effect of CCP capital on investors’ utility is equal to 0 when rf = ĉ. Consider
then a perturbation ∆e. Equations (A.12) and (A.13) imply that the following relationships must
hold for (LP) and (MICbm) to hold:

q∆rs + (1− q)N (2∆x+ ∆e) = (2− qβ)∆x− (νC − 1)∆e,

∆rs + ν(1− q)N−1 (2∆x+ ∆e) = 0

We thus obtain the following relationship between ∆x and ∆e

∆e =
2− qβ − 2(1− q)N−1

[
νq + 1− q

]
νC − 1 + (1− q)N−1

[
νq + 1− q

] ∆x (C.1)

Hence, the total derivative of U with respect to e is given by

U ′(e) =
1

2

[
(ν − 1)(1− q)N − (νC − 1)

]
+
[
(ν − 1)(1− q)N − k

]∆x

∆e
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which is positive if and only if

k ≤ kbmN ≡ (ν−1)(1−q)N+
1

2

2− qβ − 2(1− q)N−1
[
νq + 1− q

]
νC − 1 + (1− q)N−1

[
νq + 1− q

] max
{[

(ν − 1)(1− q)N − (νC − 1)
]
, 0
}

The claim kbmN ≤ kN follows from the observation that the ration ∆x
∆e in equation (C.1) is higher

that that in equation (A.7)under observable monitoring. As one unit of CCP capital requires more
collateral when monitoring is unobservable, the maximum collateral cost for which CCP capital is
profitable must be lower.

Step 2. Optimal contract
When k > kbmN , it is optimal to set e∗ = 0 and the optimal contract is thus given by Proposition

5. When k ≤ kbmN , the optimal contract features full hedging. It is obtained by setting rs = rf = ĉ
and 2x+e = ĉ in constraints (A.12) and (A.13). From the second equation, we obtain the expression
for r∗s . Solving for e∗ and x∗, we obtain the expression in case 1 of Proposition C.1. Finally, we
need to verify e∗ ≥ 0. This requires

ψ <
βq(1− α)

2

(
1− ĉ

2

)
which follows from Assumption 2. This concludes the proof.

C.2 Centralized Monitoring

Proposition C.2 (Centralized monitoring contract). When k ∈ [k̂m, kN ], an optimal contract with
centralized monitoring is a full-hedging contract with x∗ > xOM , e∗ = ĉ− 2x∗ ∈ (e, eOM ), and any
{π∗(d)} such that (PCCCP ) binds and (MICcm) holds.

Proof. By the same argument as that in the proof of Proposition 6, the full hedging remains optimal
with unobservable monitoring in this parameter region. This is again because the compensation
cost to the CCP is a fixed cost which affects each contract symmetrically.

We show in Proposition 6 that investors achieve less than full hedging with the minimum
incentive compatible CCP capital e. Hence, given full-hedging is desirable when k ∈ [k̂m, kN ], the
optimal level of CCP capital satisfies e∗ > e. The amount of CCP capital and collateral are pinned
down by the condition r∗f (N) = 2x∗ + e∗ = ĉ and the binding pledgeability constraint (LP)

ĉ+ 2ψ = qβ + (2− qβ)x∗ − (νC − 1)e∗
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We obtain

x∗ =
νC ĉ− qβ + 2ψ

2νC − qβ
> xOM (C.2)

e∗ =
qβ(2− ĉ)− 4ψ

2νC − qβ
< eOM (C.3)

We are left to characterize the compensation of the CCP. Let π∗(d) = 0 for d > 0 and set π∗(0)
such that (PCCCP ) binds with e = e∗, that is

π∗(0) =
2ψ + νCe

∗

qN
>

2ψ + νCe

qN
= π(0) (C.4)

where e and π(0) are here the expressions derived in Proposition 6. The inequality follows from the
result above that more capital is used in this case than in the contract of Proposition 6. Equation
(C.4) shows that (MICcm) is slack with the contract such that π∗(d) = 0 for d > 0 and π∗(0) given
by (C.4). Hence, since it saturates (PCCCP ), this contract is weakly optimal. The slack in (MICcm)
implies that there exist other optimal contracts with π(d) > 0 for d > 0.

C.3 Optimal Monitor

We are now equipped to characterize the optimal monitor when k ∈ [k̂m, kN ], that is, when the
OM-contract of Proposition 3 under observable monitoring features full hedging with CCP capital.

Proposition C.3. When the optimal contract features full hedging under both monitoring schemes,
that is, when k ∈ [k̂m, kbmN ], centralized monitoring is optimal.

Proof. Investors realize the same hedging benefits under these monitoring schemes. Hence, the
optimal scheme is that which minimizes the combined cost of collateral and CCP capital, given by
xk + e(νC − 1). Furthermore, because they feature full hedging, each contract satisfies 2x+ e = ĉ.
Hence, because νC − 1 ≤ k when k ∈ [k̂m, kbmN ], the best contract is that which uses more CCP
capital. The result the follows from the comparison between equation (C.3) and its counterpart in
Proposition C.1.

Proposition C.3 shows the CCP is always the efficient monitor when investors desire full hedging.
This result complements and strengthens our finding about optimality of centralized monitoring
in the main text. The intuition is as follows. With full hedging, investors have no exposure to
counterparty risk. Hence, in order to monitor, they must receive an incentive payment equal to the
full agency rent from monitoring 2ψ

1−α . This incentive payment materializes as an extra collateral
cost as the payers’ liabilities increase. Under centralized monitoring, the agency rent is given to the
CCP. Because the CCP pledges capital, however, investors can recoup part of this rent and lower
their collateral requirement under centralized monitoring. This explains the result.
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D Additional Proofs

D.1 Proof of Corollary 1 with optimal monitoring

We prove Corollary 1 accounting for the optimal monitoring decision analyzed in Section A.7 below.
This proves our claim in the main text that the comparative statics with respect to N in Corollary
1 remains valid in this case.

The upper bound of the essential CCP region is again given by k̄. For k > k̄, monitoring is
optimal as shown in Section A.7.2, and the optimal contract without monitoring can be implemented
bilaterally. For k lower than but close to k̄, monitoring and loss mutualization are optimal, which
means the upper bound is k̄. This observation also implies there exists a lower bound kess,m < k̄
of the essential CCP region.

By Proposition 3 and A.1, we have kess,m ≥ kess because the region with full hedging and
without CCP capital in which a CCP is not essential is larger without monitoring. We now
characterize the threshold kess,m by considering three different cases. Statements about optimality
of contracts below are always conditional on k ∈ [kess, k̄].

Case 1. (ν − 1)(1− q)N > νC − 1
Proposition 3 shows that the optimal contract with monitoring features either CCP capital or

complete loss mutualization Because 1−αq > 1− q, the same result holds for the contract without
monitoring by Proposition A.1. Hence, in this case, a CCP is always essential and kess,m = νC − 1.

Case 2. νC − 1 ∈ [(ν − 1)(1− q)N , (ν − 1)(1− αq)N ]
In this region, complete loss mutualization is optimal with monitoring by Proposition 3. With-

out monitoring, CCP capital or complete loss mutualization is optimal for k ≥ νC−1 and full hedg-
ing with only collateral is optimal otherwise. This leaves two possibilities: either kess,m = νC−1 or
if k̂m < νC − 1 then kess,m = k̂m. In the latter case, k̂m is the value of the collateral cost such that
investors are indifferent between the complete LM contract with monitoring and the full-hedging
contract without monitoring. Hence, k̂m solves

0 = Uk=k̂m − UZ
m

|k=k̂m

= qR+
[
ν − 1− k̂m

] ĉ
2
− (k̂m − kN )

(
ĉ

2
− xOM

)
− ψ −

{
qR+

[
ν − 1− k̂m

] ĉ
2

}
= βq

(
1− ĉ

2

)
k̂m − kN

2
[
1− (1− q)N

]
− βq

− ψ (D.1)

Case 3. νC − 1 ≥ (ν − 1)(1− αq)N
Proposition 3 shows that complete loss mutualization is optimal with monitoring. Without

monitoring the optimal contract features complete loss mutualization for k ≥ (ν − 1)(1 − αq)N ,
and full hedging with collateral only otherwise. Hence, by an argument similar to that in Case 2,
kess,m = min{k̂m, (ν − 1)(1− αq)N}.

Monotonicity of kess,m
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Combining the results above, we obtain

kess,m = min
{
νC − 1, k̂m, (ν − 1)(1− αq)N

}
, with k̂m given by (D.1)

The third argument of the min strictly decreases with N . We also show that k̂m strictly decreases
with N when it is given by (D.1). For this, define g : (y, k) 7→ k+y(ν−1)

2+2y−βq and apply the Implicit
Function Theorem to equation (D.1). We obtain

∂k

∂N
= −

∂g
∂y

∂ȳ
∂N

∂g
∂k

with y = −(1− q)N . As ∂g
∂k > 0 and ∂ȳ

∂N > 0, the derivative is negative if and only if

0 <
∂g

∂y
⇔ 0 <

(ν − 1)(2− βq)− 2k

[2 + 2y − βq]2
=

2(k̄ − k)

[2 + 2y − βq]2

The last inequality holds because by Proposition 4, k̂m lies below k̄.
When kess,m is equal to the second or third argument, it strictly decreases with N . Besides, for

N large enough, kess,m is equal to the second or third argument as limN→∞(ν − 1)(1− αq)N = 0.
This proves that the result in Corollary 1 is robust when investors can choose whether to monitor.
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